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Historische Anmerkungen zur Entwicklung der Riemannschen Geometrie

Die Riemannsche Geometrie ist eine natiirliche Erweiterung der Differentialgometrie
fiir Flichen in R3.

J. GauB3(1777-1855): Theorema Egregium (Die GauBlkriimmung ist eine Grofle der
inneren Geometrie einer Fldche)

B. Riemann (1826-1866) skizziert in seiner Antrittvorlesung (1854) (Uber die Hy-
pothesen welche der Geometrie zu Grunde liegen) abstrakte Rédume, in denen man

Langen und Winkel messen kann. Heute sprechen wir von einer Riemannschen
Metrik.

A. Einstein (1879-1955) wendet das Konzept der Riemannschen Metrik in einer
verdnderten Form an, um seine Allgemeine Relativitétstheorie zu entwickeln (1915).

Der Begriff der Mannigfaltigkeit in der heutigen form wurde 1913 durch H. Weyl
(1885-1955) eingefiihrt, eine formale Prazisierung der Arbeit von Riemann.
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1 Differenzierbare Mannigfaltigkeiten

Wir wiederholen zunéchst kurz einige grundlegenden Definitionen.

Seien U und V offene Teilmengen der topologischen Rédume X und Y. Eine Abbildung
¢ : U — V heiBt Homeomorphismus, falls ¢ bijektiv ist und ¢ sowie ¢ ~! stetig sind.

Sei M ein topologischer Raum.

1. Eine n-dimensionale Karte von M ist eine Homeomorphismus ¢ : U — ¢(U) =V,
wobei U C M und V' C R" offen Teilmengen sind.

2. Ein n-dimensionaler C%-Atlas A von M ist eine Familie von n-dimensionalen Karten
p; : Ui = V; fiir ¢ aus einer Indexmenge I, so dass Uie[ U, =M.

3. Zwei Karten 1, @o heifien C*-kompatibel fiir k& € N U {oco}, falls der Koordinaten-
wechsel
(p2 © 901_1’301(U10U2) : (Pl(Ul NUy) CR™ = po(U1 NU3) C R”

ein C*-Diffeomorphismus ist. Ein n-dimensionaler C°-Atlas A heifit C*-Atlas, falls
alle Karten C*-kompatibel sind.

4. Ein n-dimensionaler C*-Atlas A heifit maximal, wenn jede n-dimensionale Karte,
die mit den Karten in A C*-kompatibel ist, bereits zu A gehért.

1.1 Remark. Jeder maximale C*-Atlas A enhilt einen maximalen C*°-Atlas A’. Ein
maximaler C*°-Atlas A heifit differenzierbare Struktur.

1.2 Definition. Eine n-dimensionale differenzierbare Mannigfaltigkeit ist ein topologis-
cher Raum M mit abzahlbarer Umgebungsbasis so dass die Hausdorff-Eigenschaft erfiillt
ist und es gibt eine differenzierbare Struktur.

Bemerkung. e Eine topologischer Raum X erfiillt die Hausdorff-Eigenschaft bzw. heifit
Hausdorffsch falls fiir je 2 Punkte x,y € X mit x # y zugehorige offene Umgebungen
U und V existieren, so dass U NV = ().

e Ein System offener Mengen B in einem topologischen Raum X heifit Basis der
Topologie, falls jede offene Menge Vereinigung von Mengen aus B ist.

1.3 Definition. Seien M, N differenzierbare Mannigfaltigkeiten der Dimension m bzw.
n. Eine Abbildung F : M — N heiBt C*-differenzierbar in p € M, falls es Karten
p:UCM—=pU)CR™und ¢ : VC N = (V) CR” gibt mit

l.peUund F(U)CV
2. 1o F ol is Ck-differenzierbar in ¢(p) € R™.

Die Abbildung F ist in der Klasse C*(M, N) fiir k € NU {oo}, falls F' in jedem Punkt
p € M C*-differenzierbar ist.

Im Fall N = R bezeichnen wir C*(M, N) mit C*(M). Ist F € C>°(M, N) bezeichnen
wir F' einfach als differenzierbare Abbildung.
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Sei M eine n-dimensionale differenzierbare Mannigfaltigkeit (Mgft).

1.4 Definition. Eine differenzierbare Abbildung « : (—¢,€) — M heifit Kurve in M. Sei
a(0) = p und D, die Menge der Funktionen f : M — R welche differenzierbar in p sind.

Der Tangentenvektor der Kurve « in ¢ = 0 ist eine lineare Abbildung &/(0) : D, — R
gegeben durch (Foo)

, d(foa
@(0)f = dt =0

Ein Tangentenvektor in p € M ist der Tangentenvektor einer Kurve « : (—e€,e¢) — M in
t = 0 mit o(0) = p. Die Menge aller Tangentenvektoren in p ist 7),M.

Bezeichnung. Sei ¢ : U C M — ¢(U) eine Karte mit p € U und ¢(p) = zy € R™.

Wir kénnen die Kurve a(t) = gp_l(x(l],...,xéfl,xf) + t,xé“,...,:cg) betrachten. Den
dazugehoerigen Tangentialvektor bezeichnen wir mit
loxd 0
o(0) = —| =1 —|.
ox’ P ox’ P

Fir f € D, berechnen wir

9 d(f o a)‘ _0(foy™)

Ozt pf T dt =0 Ozt (o).

8 -
ox?

T, M ist ein n-dimensionaler Vektorraum und nach Wahl einer Karte ¢ is <

P> i=1,...,n

1.5 Proposition. Seien M und N differenzierbare Mannigfaltigkeiten und F : M — N
eine differenzierbare Abbildung. Zu p € M und v € T,M wdhlen wir eine differenzierbare
Kurve o : (—e,€) — M mit a(0) = p und o/(0) =v. Sei B = F o «. Die Abbildung

eine Basis von T, M.

DF, : T,M — Tp,y N, DFyv = §'(0)

ist eine lineare Abbildung und hdingt nicht von der Wahl von o fir v ab.

Die lineare Abbildung DF,, heifit differential von F in p. Fir f € CY(M) schreiben
wir df, = DF,.

1.6 Definition. Sei M eine differenzierbare Mannigfaltigkeit. Die Menge

™ = | ) T,M
peEM

heifit Tangentialbiindel iiber M. T'M ist eine differenzierbare Mannigfaltigkeit der Dimen-
sion 2n.
T M ist ein Vektorbiindel iiber M mit Projektionsabbildung

n:TM —- M, w(v)=p & veTl,M.



m is eine differenzierbare Abbildung.
Sei TyM der Dualraum von T,M. Die Menge T*M = Upe M{T;M heiﬁt Kotangen-
tialbiindel. Ist eine Karte ¢ : U — ¢(U) gegeben, dann ist Dy, = dyj, i = 1,...,n,

a.
ox P

p € U, eine Basis von Ty M dual zu

Fiir eine Karte schreibt man auch ¢ = (z!,...,2") : U — R, also ¢ = 2. Dann ist
dypt = dx".
Wir definieren auch

r-mal s-mal

und
TCIM = | ) 7M.
peEM

Eine Abbildung 7 : M — T M heiBt Tensorfeld, falls T(p) € T"' M Vp € M. Wir
schreibene T'(p) =: T}, =: T‘p.

2 Riemannsche Metriken

Betrachten wir ein (2, 0)-Tensorfeld g und eine Karte ¢ : U — V C R". Es gilt

n
gl =Y gijde’ ® dg’

ij=1
wobei 5 9

g heifit differenzierbar (C*°), falls die Funktionen g;; : U — R differenzierbar (C'*°) sind
fiir jede Karte . Wir schreiben g € D'(T(29 M).

2.1 Definition. Eine Riemann’sche Metrik g auf M ist ein C*° (2, 0)-Tensorfeld, so dass
gp : TyM x T,M — R

nicht ausgeartet, symmetrisch und positiv definit ist. Das Paar (M, g) heifit Riemannsche
Mannigfaltigkeit.

Bemerkung. Sei V' ein n-dimensionaler R-Vektorraum und b : V x V. — R eine sym-
metrische Bilinearform. Ist ey, ..., e, eine Basis von V, dann sei b;; = b(e;, €;).

1. b heift nicht ausgeartet, falls det (bi;), ;_, , # 0 fiir eine (jede) Basis.

2. b heifit positiv (negativ) definit, falls b(v,v) > 0(< 0) Vo € V\{0}.

3. Ind(b) = max{dim U|U C V Untervektorraum, so dass b|yxy negativ definit}
Also Ind(b) = 0 = positiv definit.



2.2 Definition. Sei (M, g) eine Riemannsche Mannigfaltigkeit, und ¢ : [a,b] — M eine
stiickweise C' Kurve, d.h. 3a =1ty < --- <ty = b, so dass clit,_,.t,) stetig differenzierbar
ist Vi=1,...,N. Es sei

e (€ (8), ()7 = | () = | (8)]-

Die (Bogen)ldnge von ¢ bzgl. g ist definiert durch

_ /ab ()]t

Bemerkung. Sei ¢ : [a@,b] — [a, b] bijektive, stiickweise C' und ¢ = cop. Es gilt L(¢) = L(c).

Betrachte g, und eine ONB (ey,...,e,) in (T,M, gp). Seien vy, ...,v, € T,M. Dann
gibt es a;; € R, so dass v; = Zj:1 a;jjej und D(vi,...,vy,) = det(aij)i j=1,.n definiert
eine n-form auf T, M (eine n-multilineare Abbildung 7, M™ — R). Die Zahl D(vy,...,vy)
ist das orientierte Volumen des Parallelotops, das von vy, ..., v, aufgespannt wird).

,t=1,...,n. Wir berechnen

Sei nun v; = %
p

0
9ij = gp(%

0
7%) Z azka]lgp elaek Z Ak aj]-
b k=1

Also (gij) = (aij) - (ai;). Somit folgt aus dem Determinanten-Produktsatz

| det(aw)\ | det(gm)|

2.3 Definition. Sei ¢ : U — V eine Karte und A C U mefibar, d.h. ¢(A) C R™ ist
messbar. Dann definieren wir

voly(A) =: vol(A) = /(A) ]det(gij)]% oo Y(z)dLm(z).
) —
dx

Allgemeiner kénnen wir eine mebare Zerlegung (Aq)aea von M wéhlen (mit A abzahlbar),
d.h. A, N Ag hat Ma8 0, M\ |J,cp Aa hat MaB8 0, und fiir jedes o existiert eine Karte
o i Uy = R™ mit A, C U,. Fiir eine mefibare Menge A C M definieren wir dann

volY(A) =) " vold(AN Aq).
aEA
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Let M be a manifold and let (N, k) be a Riemannian manifolds. We consider a map
F : M — N that is smooth (C*°, differentiable). The pull-back metric of h under F is a
(2,0)-tensor field on M defined by

(F*h)p(v,w) = hp@) (DFpv, DFyw) Vp € M and v,w € T, M.

2.4 Lemma. g = F*h is a Riemannian metric on M if and only if F' is an immersion.
g 1s called induced metric on M.

2.5 Remark. A smooth map F': M — N is an immersion if DF, : T)M — Tp)N is
injective as a linear map Vp € M. In particular it follows dimy; < dimpy. If, in addition,
F is a homeomorphism onto (M) C N, where p(M) has the standard subspace topology
induced from N, we call F' an embedding.

Proof. For p € M fixed F*h, is positive definit since DF,v # 0 Vv € T,M\{0}, and
F*h, is also non-degenerated. Let ¢ : U¥ — V¥ be a chart and p € U. Moreover let
Y : UY — V¥ be a chart in a neighborhood of F(p). We set U = U? N F~1(UY) that is
still an open neighborhood of p. We compute the local represenation of F*h = g on U.
Let i,5 € {1,...,dimys} and ¢ € U. Then

0¥ 0¥ 0¥ 0¥
gz‘j(Q) = gq(%hp @’q) = hF(q)(DFq%L]a DFq@M)-

—1\k
Recall that DFqg;- lg = a(wog+) o cp(q)%]q. Plugging this back into the previous
formula shows that g;'} is a smooth functions on U 3 p. Since p € U¥ was arbitrary, g;'} is

a smooth function on U?®. O

2.6 Example. Assume M C N is an immersed or an embedded submanifold of (N, h)
and let ¢ : M — N be the inclusion map. The induced metric on M is the pull-back
metric (*h = g. With this metric M is called a Riemannian (immersed or embedded)
submanifold.

2.7 Example (Metrics in graph coordinates). Let U C R™ be open and f € C*°(M). The
graph of f is the set graph(f) = {(z, f(z)) : * € U} C R which is an embedded
submanifold of dimension n of R®. The map X : U — R""' X(z) = (z, f()), is an
embedding and the induced Riemannian metric on U is

n
g=X*"g = da' @ da’ + df ® df.
i=1
2.8 Remark. Recall the symmetric product between 1-forms o, € T'(T*M): aV =
% (a® B+ B®a). Given a chart ¢ = (2!,...,2") on a Riemannian manifold (M, g), we
can write for the local representation of g:

n n n
9= E gijdx' @ dx’ = 5 E (gijda’ @ da? + gyjda? @ da') = g gijdz’ \V da’ .
ij=1 ij=1 ij=1



2.9 Definition. A (C*°)-diffeomorphism F': M — N (i.e. F is a differentiable bijection
with a differentiable inverse) is called an isometry if

F*h=g (1)
A map F: M — N is called a local isometry at p € M if 3 a neighborhood U C M of p
such that F : U — F(U) is a diffeomorphism satisfying (T).
2.10 Remark. Let (M,g) be a Riemannian manifold. ¢ induces a vector bundle isomor-
phism b : TM — T*M given by
dlr,m : TyM — Ty M via b(v)(w) = gp(v, w) Yo, w € T,M.
The inverse map of b is ff : T*M — TM. For instance, given a chart ¢ : U — V on M it

follows

n

;0
TpMav:Zv’axi|p Zgw vda:j.

i=1 3,j=1

This follows since
o) o) e I, gy
b(”)(@) =g(v, @) = ;U 9(@7 @) = ;U Gij-

Hence, the coefficients of the cotangent vector b(v) w.r.t. the ONB da/ are I, g;jv’ =:
vj. Similarly, we can compute the coefficients of f(«) for a € TyM. We consider the

represenation of #(«) w.r.t. the basis B‘Zi: o) =30 w 8;51‘ Then

n

B 0 i 0 9
v =alg) = g(H(@). 50 = Y whalg s o)

=1

where v; is the coefficient of o w.r.t. dz’. Hence > 1_, g”v; = w? where (g%) is the inverse
matrix of (g;;).

The maps b and § are called the musical isomorphisms between T'M and T*M because
they lower and raise the indices of the coefficient functions.

Let (M, g) be a Riemannian manifold and f € C°°(M). Recall that the differential
dfp : Ty,M — R, p € M, of f is defined as dfy(v) = v(f) Yv € T,M. Given a chart ¢ one
has

n ° -1 ]
aty =522 ) ¢ oy,

= ox?
df is a smooth (1,0)-tensor field, a smoooth 1-form.
2.11 Definition. The smooth vector field
f(df) =: Vf =:gradf e I'(TM)
is called gradient of f (w.r.t. g). In local coordinates ¢ : U — V the gradient V f writes

as
foso fop™) 0
Vilo = ]5 19 L s



2.12 Remark. Let f € C>®(M). If r € f(M) is a regular value of f (r € f(M) is a regular
value < df, # 0 Vp € f~1({r})), then f~1({r}) = N is a n — 1-dimensional submanifold
of M.

Claim. g,(V f(p),v) =dfp(v) =v(f) =0Vp € N and Vv € T,N.
Given v € T,M we write v* for all w € T,M with g,(v,w) = 0. Hence Vf(p)* = T,N.

Proof. Let c¢: (—€,€) — N with ¢(0) = v. Then f oc=r by definiiton of N and hence

(V1)) =o(p) = 12D o

O]

2.13 Ezample. Let f : R™ — R be given by f(z!,...,2") =>" (29)> — 1. Then 0 is a
regular value of f and f~1(0) = {z € R" : 3% | (2%)? = 1} =: S""! is the unit sphere of
R”. The metric on S”~! that is induced by the Euclidean metric is called canonical metric
of S"~! or standard metric.
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Riemannian distance We consider a Riemannian manifold (M, g).

A C! curve c: [a,b] — M is called regular if ¢/(t) # 0 for all t € [a, b].

We call a curve ¢ : [a,b] — M piecewise regular if 3{a = to < ...ty = b} = P such
that [y, _, 4 s a regular C' curve. We call such a partition P as before admissible.

A reparametrization of ¢ is a homeomorphism ¢ : [a,b] — [a,b] such that there is a
partition @ = to < ...ty = b of [a,b] such that @[y, | ;) is a diffeomorphism onto its
image. In particular we have that L(co ) = L(c).

Since ¢ is a homeomorphism between intervals it is either increasing or decreasing. In
the first case we call ¢ a forward reparametrization and otherwise backward reparametriza-
tion. If ¢ is a C! diffeomorphism, one has ¢(t) > 0 in the first case and otherwise ¢(t) < 0,

for all ¢ € (a,b).

If ¢ is differentiable in ¢ € [a,b], we define the speed of ¢ in t as |/(t)| = |c/(t)]|y =
g(c’(t),c’(t))%. We say a Ol curve c is a unit speed curve if |¢/(t)] = 1 V¢ and constant
speed if |/ (t)| = const. If ¢ is piecewise C! we say ¢ has unit speed if |/(t)| = 1 whenever
c is differentiable in t.

The arc-length function of a piecewise C! curve c: [a,b] — M is defined as

S() = L(clpuy) = / ¢ (5)]ds.

2.14 Lemma.

1. Every reqular curve c: [a,b] — (M, g) has unit speed forward reparametrization.

2. Every piecewise reqular curve has a unique forward reparametrization by arc length.

Proof. (1) We choose ty € [a,b] and define s : [a,b] — R by
t
s)) = [ 1¢(s)lgds.

to

Since s'(t) = |c/(t)| > 0, it follows that s is an increasing local C'! diffeomorphimus and thus

a C! diffeomorphism from [a, b] to an interval [a,b] C R. We define ¢ = s~! : [a,b] — [a, b].
Hence ¢ is forward reparametrization and for ¢ = c o p we compute

~ / / / / 1 /
2 0)1 = I (O e 0)] = ¢ DI (p(O)] = e (o] = 1.
Hence ¢ is a unit speed reparametrization of c.

If ¢ is piecewise regular, we prove the existence statement for the reparametrization by
induction on the number of smooth segments N for an admissible partition. If there is only
one segment, then the statement follows by (1). Assume the statement is true for partitions
with N segments. If ¢ : [a,b] — M is a piecewise regular curve such that Ja = ty <
oo <tyy1 = b with c|y,_, 4, is regular. Then there exists the desired reparametrizations
¢ [0,c] = [a,ty] and ¥ : [0,d] — [tn,b] for c[q ) and ¢y, 5 respectively. Then we

define
- {w(S) s € [0,c],
P(s—c) sé€lec+d.



Then ¢ : [0,d + ¢] — [a,b] is a desired reparametrization for c.

We prove uniqueness. If ¢ = cop and é = co @ are both forward reparametrizations of
¢ by arc length. Since ¢ and ¢ have the same arc length and have both speed 1, they are
defined on intervals of the same length L(c). Up to translation ¢ and ¢ are therefore both
homeomorphisms from [0, L(c)] to [a,b]. If we define = @1 04, then 7 is a piecewise
regular increasing homeomorphism that satisfies ¢ = cog@on ==con. For all s € [0, L(c)]
except for finitely many, where 7, 4 and 1 are not smooth, we can compute

L=1d(s)| =& (n(s))n'(s)| = [ (n(s))In'(s) =7/ (s).
Since 7 is continuous and 7(0) = 0, it follows 7(s) = s for all s € [0, L(c)]. Hencec =¢. O

One of the most important concepts in Riemannian geometry is the distance between
points that we can define as follows.

2.15 Definition (Riemannian distance function). Let p,q € (M, g) and define

dg(p, q) = inf L(c)

where we take the infimum w.r.t. all piecewise regular curves c: [a,b] — M with c¢(a) = p
and ¢(b) = q.

The following lemma guarantees that d, is well-defined as long as M is connected.

2.16 Lemma. If M is a connected smooth manifold then for any two points in M there
exists a piecewise reqular curve that connects them.

Proof. Let p,q € M. Since a connected manifold is path-connected, p and ¢ can be joined
by a continuous path ¢ : [a,b] — M. By compactness of [a,b] and its image c¢([a, b]) there
exists a partition {a =ty < --- <ty = b} such that ¢([t;—1,;]) is contained in the domain
of a single smooth coordinate chart ¢ : U — V. We can also assume that V' is a ball.
Therefore we can replace each such segment by the image under ¢! of straight line in U.
This yields a piecwise regular curve between ¢ and gq. O

2.17 Theorem. Let (M,g) be a connected Riemannian manifold. (M,d,) is a metric
space whose topology is the same as the given topology of the manifold.

Proof. By definition dg4(p, q) > 0 Vp,q € M and d4(p,p) = 0 as well as symmetry in p and

q.
The triangle inequality follows because given piecewise regular curves c : [a,b] — M
and ¢ : [a,b] — M such that ¢(b) = ¢(a), then

oy 9 selat]
¢(s—b+a) se[bb+b—a

is a piecewise regular curve as well. Since L(¢) = L(c) + L(¢), it follows

dg(c(a), ¢(b)) < L(&) = L(c) + L(c).

Hence, taking the infimum w.r.t. ¢ and ¢ yields the triangle inequality.
We need to show that d4(p,q) > 0 if ¢ # p. We first prove the following Lemma.

11



2.18 Lemma. Let V C R"™ be open, let g be a Riemannian metric on V and let geyc be
the Euclidean Riemannian metric on V. Let K CV be compact. Then, dc,C' such that

clv <l|vlg < C|v|ge. Yz € K and Vv € T,U ~ R" with v # 0.

’geuc

2.19 Remark. If ¢ : U C M — V is a chart of (M, g), then we can consider the Riemannian
metric (p~1)*g = h on V. In particular ¢ : (U, g) — (V,h) is an isometry.

Proof of the Lemma. Define the continuous function (z,v) — |v|, = gx(v,v)% on the
compact set
L={(z,v) €T,U:2 € K,|v|g,.} = K xS

Hence, there exist ¢, C' > 0 such that
c< gm(v,v)% < Con L.

If v e T,U with x € K is arbitrary, consider w = ﬁ Then |w|g,,. = 1, it follows

w € L and by homogeneity of g, (v, v)% in v it follows

c < ﬂ <C
o |w|geuc o '

This is the claim. O

We can now finish the proof of the Theorem. Let p £ ¢ € M.

We pick a chart ¢ : U — V C R™ with p € U, ¢(p) = p and such that V = Byr(0) for
R > 0. We consider Br(0) =: K and assume the claim of Lemma for the pull-back
metric (¢~ 1)*g =g on V. N

We treat two cases. Assume first ¢ ¢ o *(K) = U. Let v : [0,1] — M be a piecewise
C! curve with v(0) = p and v(1) = ¢, and set 7 = sup{t > 0 : y(s) € UVs € [0,t]}.
Consider ¥ = ¢ o ~. It follows

1 T T
)= [ W= [ n o= [ F o
> ¢ [ Ot = ()| 2 R
0
Since v was arbitrary, it follows dy(p,q) > cR > 0.
Now let ¢ € U and let v be as before. If there exists 7 € (0,1) such that () ¢ U,

then we get as in the first case, that LI(y) > cR.
If v(t) € U for all t € (0,1), it follows

~ 1
LI(y) = L) > C/O W/(t)‘eucldt > c|y(Dleuet = €l¢(@)|euet > 0.

So we always have LI(y) > ¢|p(q)|euc- Taking the infimum again yield dy(p,q) > 0. O

12
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Consider R™"! together with a symmetric, non-degenerated bilinear form (-,-), not
necessarily positive definit. The index of (-,-) is defined as

ind. .y = max{dimy € N: (-,-)|yxv is negative definit}.

2.20 Ezample. Consider (v,w)1 := —v%uw® 4+ 30 vlw!. We write RT™ = (R (- )).
ind(. .y, =1 and ]R?H is called n 4+ 1-dimensional Minkowski space.

Given a non-degenerated, symmetric bilinear form (-,-) we set U+ = {v € R**! :
(v,u) =0 VYu e U}.
2.21 Fact.

1. If n+1 >0, then Jv € R™™ with (v,v) # 0.

2. Let U C R™! be a linear subspace and (-, Yuxu negative definite. Then dimy =
ind..y & (-, -)|gLxyL positive definite.

3. Let U C R™! be a linear subspace with U N U+ = {0}. Then 3 basis ey, ..., e, of
R and e, . .., e, € {£1} such thatspan{eq, ... ,er} = U andspan{egi1,...,en} =
Ut and <€i, 6j> = Ei(sij Vi,j € {0, ceey n}
Proof. (1) If (v,v) =0 Vv € V, then
1
(u,v) = 5 ((u+v,u+v) — (v,v) — (u,u)) Yu,v € V.
Hence (-,-) = 0.
(2) =: We show that UNU+ = 0. If u € UNU™, then (u,u) = 0. Since (-, -)|yxy negative
definit, it follows v = 0.
Hence dimy = n + 1 — dimg;..
We show that (v,v) > 0 Vv € UL (positive semi-definit). Otherwise Jv € UL with

(v,v) < 0, and therefore Z-, )| xw is negative definit with U + span(v) = W which
contradicts the definition of ind. .

We show (-,-) is non-degenerated on U+. Let v in U+ with (v,u) = 0 Yu € U*. Since
U+Ut =R (v,u) =0 Yu € R*L. From (-,-) non-degenerated it follows that v = 0.
It follows that (-,-) is positive definit on R™*1.

«: Exercise.

(3) Exercise. One can use (2). O

2.22 Corollary. Let v € R with (v,v); < 0 (v is timelike”). Then (-, )1|yLypr 98
positive definit.
2.23 Example (Lorentz model of hyperbolic space). The subset

H"(r) = {m c R (x,z)1 = 77“2,:5‘0 > 0}

of R"*1 is an n-dimensional Riemannian manifold.

To see this we consider f(z) = (x,z); that is smooth. Then df,(v) = 2(z,v);. In
particular, if 2 # 0, then df, # 0. Hence —r2 # 0 is a regular value of the function f, and
therefore f~*({—r%}) = H"(r) is a smooth manifold (a hypersurface). We note that

13



Vo € H*(r): T,H"(r) = kerdf, = {w € R"™ : (z,w); = 0} = {2} x {z}*.

With the previous corollary one has that (-,-)[(;31 (s} is positive definit.

Consider also the inclusion map 4 : H"(r) — R"*! i(x) = x. Then
i*(v, w1 |y = (Di|yv, Di|yw)1]z = (v,w); for v,w € T,H"(r).
We set H" := H"(1).

2.24 Definition. The Riemannian manifold H" with g = i*(-,); is called Lorentz model
of the hyperbolic Riemannian space.

2.25 Remark. H" is diffeomorphic to R™: the map = € R" — (y/1+ |2]%,Z) € H" is a
diffeomorphism.

2.26 Definition. A Riemannian manifold (M, g) is called frame homogeneous (”Raum
freier Beweglichkeit”) if the following holds: Let x,y € M and let (v, ..., v,), (w1,...,wy)
be ONB of T, M and T,M respectively w.r.t. g. Then there exists an isometry F' :
(M,g) — (M, g) such that F(x) =y and DFyv; = w; Vi=1,...,n.

2.27 Proposition. (H",i*(-,-)1) is frame homogeneous.

Proof. Let x,y € H" and (v1,...,v,), (w1,...,w,) ONB of T, H" and T,,H™ respectively.
= (z = vg,v1,...,0y) and (y = wo, w1, ..., w,) are ONBs of R?H. Then

dJA€O(n+1,1) ={A € GL(n,R) : (Av, Aw); = (v,w)}

s.t. Av, =w; Vi=0,...,n.

In particular A(H™(1)) = H™(1) (by definition of H™(1)).

We define F' = Algn(y. Then F : H"(1) — H"(1) is a diffeomorphism with F1 =
A gn(1) and F(z) = y as well as

DFEv,=w; Yi=1,...,n

since DF,v;(g) = v(go F) =v(go A) = (go Aoc)(0) = dg(Ac'(0)) = dgw; = w;(g) for
g € C*(H"(1)).
Moreover F' is an isometry of H", since
F*i*(v,w); = (Av, Aw)1 = (v, w);.
O

2.28 Remark. (R™,(-,-)eucs) is a frame homogeneous, und ebenso S* = {r € R"*! :
(x, T)enet = 1}.

Let z,y € R", und (v1,...,v,), (wi,...,w,) be ONBs.

To see this let z,y € R™ and let (v;)i=1,...n, (w;)i=1,..n ONBs at R™. Choose A € O(n)
such that Av; = wi Vi =1,...,n, and define F(z) = A(z — z) + y. Moreover DF, = A.
In the case of S" note that 7,S" = x+ and AS" = S VA € O(n + 1). We choose
A € O(n + 1) now such that Az =y and Av; = w; Vi = 1,...,n for ONBs (v;) and (w;)
of T, S"™ and T, S™ respectively.
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2.29 Definition. The Riemannian manifold B = (M, g) where M = B;(0) = {z € R":
(€, %) ey < 1} und g7’ = = ‘xl)Q (*, Yeuct 1s called Poincaré model of the hyperbolic space.

2.30 Lemma. The map F : H" — B", F(xg,z) =
B".

+1 Z, is an isometry between H" and

Proof. The inverse map is F~1(y) = ﬁ(l +|yl?, 2y1, - - -, 2yn). Hence F is a diffeomor-
phism.
We show that F*g” = i*(-,-);. More precisely

i () (DFuv, DFyw) = (v,w)1

V(z,v), (z,w) € T,H" (& (z,v)1 =0 = —zovo + D1y TiVi)).

1 V0 -
DF,v=— g tv) = —
= il T ) = 1+ 202"
and
~ wo ~
DF,w = —
R T R P
It follows

- o Tt oo~ TP (0 )
%,_/

(1+0)? VOTOWQ VOTOWO

~ z|? x
:Zviwi—&—vowo(( ) ):<(UO,5),(wo,w)>1.

P 1+ .%'0)2 1+ 29

O]

2.31 Definition. The Riemannian mfd H = {x = (z1,...,2,) € R” : 1 > 0} with the
metric g/ = x%(, Yeuct|z 18 called half space model of the hyperbolic space.

08.05.23

Let (M, g) be a Riemannian manifold and d, the induced distance function, i.e.

dg(p,q) = igf LI(v)

where 7 : [a,b] — M is piecewise regular with v(a) = p and ~(b) = q.

End of the proof of [2.17 Theorem. It remains to show that the metric topology of d, is
the same as the manifold topology. We will show the following first:

For p € M and W C M open with p € W there exists a chart ¢ : U — V = Byr(0) and
C, D > 0 such that ¢(p) =0, U C W and the following is satisfied:

e IfqgelU =¢p! (BR(O)>, then dgy(p, ¢) < Cdg(p, q) where § = ¢*(-,-)euet on U'.
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o If ¢ ¢ U’, then d4(p,q) > D.

Indeed we can find a chart ¢ : U' — V such that p € U, U C W such that ¢(p) =0 €
V = Byr(0).

e Consider ¢ € U’ = o} (BR(O)) and c(t) = to(q). Then L (c) = [0(q)|euct
Consider the pull-back metric (¢~1)*g on V. Wie Lemma we compute
1)*

1 1
LE D 9() = /0 (1)) o=t < C /0 1 (O leuatdt = L) = 10(0) o

Moreover, the map ¢ : U — V is an isometry between (U, g) and (V,(¢~1)*g) as
well between (Uag = (@)*geucl) and (Vva geucl)- Hence ’¢(Q)|eucl = dg(p, Q) and

L) = LI o c) > dy(p.q)

1

since ¢~ ocis a C! curve between p and ¢q. Then the first claim follows.

e We showed this already before.

Consider U C M open. For every p € U we can choose a coordinate chart o : U — V C R"”
as before. The second statement in the previous lemma implies that for ¢ € M with
dg(p,q) < D it follows ¢ € U' C U. Hence Bp(p) C U.

If A C M is open w.r.t. the metric topology, then Je > 0 such that Bl (p) C A. Let
W and ¢ : U — V be as in the previous lemma. Choose § > 0 small enough such that
C0 < e. By the first statement in Lemmait follows that ¢~ (B (0)) C Bs(p) C A.
Since ¢! (BSUCZ(O)) is open w.r.t. the manifold topology, the claim follows. O

Some more examples
1. Products. Consider Riemannian manifolds (M, go) and (M1, g1). The product man-
ifold My x M inherits the natural Riemannian metric g := go @ g1 defined via
g(poml)(v’ w) = 90|p0 (Dﬂ—0|(po,p1)v’ DT(O|(P0,P1)U)) +9 ’pl (D ’(po,m)v’ D7T1|(P0,p1)w)

where v ZMi—>MOXM1 is Wi((po,pl)) :pi,i:O,l and D’]TZ‘( T( M()X

M) — T, M;. The map

po,p1) - po,pl)(

D(ﬂ'o,ﬂ'l) (D7r0|p0,D771|p1) : T( MO X Ml) — TpoMO X Tlel

(po,p1) — p07p1)(

is a vector space isomorphism and hence we can identify each v € T{;, ,,,)(Mo x M)
with (vo,v1) € Ty MoxTp, My. We then write for (vo, v1), (wo, w1) € Ty py)Mox M:
I(prp2) (V0 V1), (wo, w1)) = golpo (v, wo) + g1lp, (v1,w1).

Given charts ; : U; — V; C R™,§ = 0, 1, then each metric g; has the local expression

gilu; = Xpi—1 (9)mde§ @ dgf. Recall ;= ()., 9").

A chart on My x M is given by (o, p1) : Ug x Uy — Vo x Vi C R™T™ and local
expression of g in this chart has the following coefficient matrix

N _ (0w, ki I=1,...,ng 0
R o 0 (gl)klakal =1,...,m ’
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Example: n-Torus.
Consider S' = {(z,y) € R? : 22 + y? = 1} with the restricted metric g = i*(-, ) euei-
Then the Riemannian manifold

N~

n—times n—times

is called n-torus.

. Warped Products. Again let (M;,g;),i = 0,1, be Riemannian manifolds and let
[+ My — (0,00). The warpred product My x s M is the Riemannian manifold given
by the product My x M; together with the Riemannian metric g := go® f2g; defined
by

Iipo.pn) (V0 v1), (wo, w1)) := golpo (v0, v0) + f(10)*G1lp; (v1,w1)
where (vg,v1), (wo,w1) € Ty Mo X T, My >~ Ty 51y (Mo x My).
Important examples of warped products are
Surfaces of Revolution.

Let C be an embedded smooth 1-dimensional submanifold in H := {(z,2) € R?:
x > 0}. C equipped with the restricted Euclidean metric i* (-, -)¢ye is @ Riemannian
manifold. The surface of revolution determined by C' is the subset

Sc =A{(z,y,2) : (x/xQ +y2,z) € C} CR3.

Let v~ ! = ¢ : (a,w) — H be a chart of C, i.e. ¢ = (a,b) is regular curve, and if
|'| =1, then c is an isometry. Consider the map

X(t,0) = (a(t) cos b, a(t)sin b, b(t)), X : (a,w) xSt = C
where we identify S! = {(z,y) € R? : 22 +y? = 1} with R/27Z via § ~ (cos 6, sin 0).
The pull-back Riemannian metric is

3
X*(-,Yeuat (v0, v1, w0, w1) = (DXv, DXW)eyar = Y _(da')*(DXv, DXw) = (x)
i=1
where (vo, v1), (wo, w1) € T(y,9)((cr, w) X S'). Note that
a'(t)cos® —a(t)sind
DX;p=|d(t)cos® a(t)sind
b (t) 0
Inserting this back in the previous equation and a computation yields

(%) = (d'(t) + V' () )vowo + a(t)?viwr = (dt)?(vo, wo) + a(t)?(dO)?(vy,wy).
T

Hence, the restricted Euclidean metric on S¢ is isometric to the warped product
(o, B) x4 St where S! is equipped with the metric d6?.
R™\{0} as warped product.
Consider (0,00) x¢S"! with f(t) =t and S"! = {z € R" : |z|eya = 1} equipped
with the restricted Euclidean metric. Then ®(t,0) =t -6 € R™\{0} is an isometry
between (0,00) x ¢ S"~1 and R"\{0} (Exercise).
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3 Connections

Consider a k-dimensional vector bundle 7 : E — M over M (e.g. the tangent bundle
TM). In particular F is a smooth manifold, 7 is a smooth map, and 7~}({z}) = E, is a
linear space of dimension k for all z € M.

[(E):={se€ C®(M,E):mos=idy}

is the family of smooth sections (e.g. I'(T'M) vector field).

Question: How can we differentiate a section s € T'(E) in direction of a vector field
Vel (TM)?

Note that we can already differentiate functions f € C°°(M) in direction of a vector
VeI (TM) via

v = 120

where ¢ : (—€,€) — M such that ¢/(0) = V.
The operator (V, f) e I(T'M) x C*(M) — Vy f € C*°(M) has the following properties:

(1) V is bilinear, i.e. VV,W € T'(T'M), Vf, fo, f1 € C°(M) and Vo, f € R

|t=0 = va|p

Vavf=Vv(af)=aVyf, Vviwf =Vvi+Vwf & Vv(fo+ fi) = Vv fo+ Vv fi.
(2) V is C*°-homogeneous in V, ie. Vo f = gVy(f).
(3) V satisfies the product rule

Vvlg-f)=V(g)f +9Vvf, YV eT(TM), Vf,ge C*(M).

3.1 Definition. A linear connection (or covarariant derivative, or gauge potential) on a
vectorbundle 7 : E — M is an operator

V:I(TM)xT(E) > T(E), (V,s) Vys

that satisfies the previous three points (1), (2) and (3) where f, fo, fi € C* are replaced
with s, sg,s1 € T'(E).
Most relevant for us will be connections on T'M.

3.2 Example. Consider the trivial bundle £ = M x R¥ — M with 7(z,v) = z. The
sections E1, ..., By with E;|, = (z,e;), Vo € M, satisfy that (Ei|z,..., Eglz) is a basis
of {} x R¥ = 771({z}) ~ R” for every x € M. Hence, every s € I'(E) has a unique
representation as s = >+, s'E; with s* € C®(M).

(st € C°°(M) since s is a smooth map M from to E.)

The standard connection on F is defined as
k .
Vys = Z V(s")E;.
i=1

18



The 3 properties (1), (2) and (3) follows directly from the corresponding properties for
V(f)=Vvf, feC®M)and V e I'(TM).
This example for instance applies to the tangent bundle TR = R" x R".

8.8 Example. Let M C R™ be an m-dimensional submanifold. We know that TM C TR",
ie. T,M C T,R" ~ R" is m-dimensional linear subspace. There is the Euclidean inner
product (-,-) on R™. Then

(z,v) ETR" =R" x R" withz € M = (z,v) = (z,v') + (x,vF)

where (z,v") € T, M and (z,v+) € (T, M)+ in {z} xR" where for A C T, M the orthogonal
complement is A+ = {v € T,R" : (v,w) =0, Yw € A}.

Consider the standard connection V on TR™ and v € T,M and X € I'(TM).

First we find an extenstion X € I'(TR") such that X|y; = X.

For that we pick ¢ = (z!,...,2") : U — V such that o(UNM) = VNR™ x {0} = W. A
vector field on W is defined by

D(PX‘QD*l(m) = (Yl, LY, ,O)

where Y = X (2%)(¢~1(z)) defined for z € W. Let P(z!,...,2") = (z!,...,2™,0,...,0)
be the projection map, define Y'(y) = Y*(P(y)) and X(p) = Do~ 'Y |, for p € U. By
definition it follows X|, = X,, for p € M N U. By partition of unity we find an extension
of X in a neighborhood of M.

The connection V induces a connection on T'M as follows
V,X eT(TM) — VyX = (Vi X)T.
This does not depend on the extension X, since we can write V(X%)(p) = (X?0¢)'(0) =
(X?0c)(0) for a curve ¢ : (—¢,e) = M for ¢/(0) = V.
Let M be an m-dimensional smooth manifold. We can consider

U End(T, M) =: End(TM) ~ T*M & TM
peEM

where End(T, M) = {A: T,M — T, M linear}. This is a smooth manifold.

Note that given a chart ¢ : U — V, ¢(p) = (z',...,2™) the local representation of
TeTyMeT,Mis >3/ ajdz’|, ® 52 |- The coefficient matrix (af);,j1,....m determines
A € End(T,M).

3.4 Lemma. Let V be a connection on TM. Let X € T'(TM). Then 3L € T'(End(TM))
such that (Vy X)|, = L,V,. In particular Vy X|, depends only on the value of V in p.

Notation. We will also write Vy X |, =: V, X where v :=V,,.

Proof. Let V.V € T(TM) with V}, = V}, = v. We have to show that Vy X|, = V ¢ X|, for
every X € I'(T'M). Then we can set L,v := Vy X.

Since V' — Vy is linear, it is enough to show that 0 =V}, implies Vi X|, = 0.

We pick a chart ¢ = (z',...,2™) : U — V on M around p such that we can write
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V|U—ZZ 1V( )(‘)xz'
Now we choose a function A € C°°(M) such that supp A C U and A\(p) = 1. We write
NVIp = SOV ) ().

i=1

Note here that \ - V(z') € C°°(M) is well defined since \ is smooth and has compact
support in U, and also A ?ﬂ- € I'(TM) is a well-defined vector field on M.

Then it follows with the C°°(M) homogeneity of V that
Vaey X = XVyX = VyX[, = Ap)VvX|p = Viey Xy

=Y Ap) VE)E) Vo Xl =0.
=1 V

=0 da V,=0

Hence Lyv = VyX]|, with V, = v is well-defined. The matrix representation in local
coordinates of p — Ly, is (a](p))i j=1,...,m where these coefficients are defined via

0 = 0
— i Jy 2
Lpaxi - v/\a‘le’p = JZ‘:1U (V%X) p(2) G
al(p)
Hence p — L, is a smooth section of End(7'M), that is L € I'(End(T'M)). O

3.5 Lemma. Let Xy, X; € I'(TM) such that Xoly = Xi|u for U C M open. Then
VxXolyv = VxXil|u for all X e I'(TM) (i.e. Vx is a local operator).
Proof. Since Vy X is linear in X, it suffices to show that X |y = 0 implies Vy X |y = 0.
We choose A € C°°(M) such that supp A C U and A(p) =1 for p € U. Then it follows
1-NX=X = VyX|,=Vy(l-NX[p=V(1-NX,+(1-Np)VvX],=0.
U
3.6 Definition (Christoffel Symbols). Let V be a linear connection on TM and let
Ey,....,E, : U C M — TM]|y vector field defined on U such that (Ey(p),..., En(p))
is a basis for every p € M (for instance E; = % for a chart p = (2!,...,2") : U = V).

One calls Ey, ..., E,, a local frame. Then Vg, Ejly = > /%, F%Ek where Ffj are called
Christoffel symbols of V w.r.t. Fy, ..., Ep,.

3.7 Remark. For X, Y € I'(TM) and let E1,..., E,, be a local frame. Then we can write
X’U = Z:’;l XZEZ; Y‘U = 27;1 YZEq, and

VxY|y = Z X'V, (YE))
1,j=1

E;(Y7) E; +XZYJVE E;

MS‘MS

m
X(YMEy+ ) X'YIT}E.
i7j7k:1

=
Il
—

In particular, we see that VxY only depends on Y oc: (—e,e) — T M for some curve ¢
such that ¢(0) = X.
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Let Ffj be the Christoffel Symbols of a connection V on T'M w.r.t. to a local frame
Ey,....E,onUCM. If E;,;i=1,...,m, are the coordinate vectorfields % of a chart

o= (x',...,2™): U — V, then we also write ‘PFfj.
Let e',...,e™ be the local frame for T*M dual to Ej,..., E,,. The Christoffel symbols
Ff’j,i =1,...,m, define 1-forms via
m
k k i
wy =) Tie’
i=1
on U that are called connection 1-forms of V w.r.t. E1,..., E,,. Then we can write
m m ]
VvXlp =Y (VX" +D XIi(V) | B
k=1 j=1

Notations. If U C M is open, V € I'(TM) and X € I'(TU), then we define p € U
VY X|, = Vy(AX)|, where A € C°°(M) with suppA C U and A =1 in a neighborhood
of pin U.

3.8 Theorem (Levi-Civita connection). Let (M,g) be a Riemannian manifold. Then
there exists exactly one linear connections on TM such that VV, XY € T'(TM) the fol-
lowing properties hold:

(1) VxY —Vy X = [X,Y] (V is torsionfree, or symmetric)
[X,Y] € T(TM) denotes the Lie bracket, i.e. [X,Y](f)=X(Y(f)) —Y(X(f)).

(2) V(g(X,Y)) =g(VvX,Y)+ g(X,VvY) (V is a Riemannian connection)
We note that p € M — g(X,Y)(p) = gp(Xp,Y,) € C°(M) since g is smooth.

This connection V is defined through

29(VXK Z) = XQ(K Z)—{—Yg(Z,X) - Zg(X,Y) - g(X, [Yv ZD
+9(Y,[2,X]) +9(Z,[X.Y]) = Oxy(2). (2)

That is V)(Y = %ﬁ@x’y.
If o = (x',...,2™) is a chart, it follows for the Christoffel symbols ‘pI‘fj of V w.r.t. 2

8Ii’
1=1,...,m:
1 — 0 0 0
E_ L k(9 ~, o O
Fij ) ;g (81‘3 gil + ot gil 8xlgzg>
where (gkl)k,lzl,m,m is the inverse matriz of (gij)ij=1,...m-

From this formula we can see that @Ffj 18 symmetric in i, j.
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Proof. Uniqueness. Assume we have a connection with the two properties (1) and (2).
Then for X,Y,Z € I'(T'M) we compute the following:

Xg(Y,Z) =g9(VxY,Z) +g(Y,VxZ)
Y9(Z,X) =9(VyZ,X)+9(Z,VyX) =g(VyZ,X) +9(Z,VxY) — g(Z,[X,Y])
Zg(X,Y) =g(VzX,Y) +9(X,VzY) = g(VxZY) - g([X, Z],Y) + g(X,VzY).

This yields the formula .

If we show that the right hand side in defines a 1-form. Then we can define VxY :=
%ﬁ@xyy. For this it is enough to show that the right hand side in is C°(M)-
homogeneous in Z.

We compute

Xg(Y, f2) = X(f9(Y,2) = X()9(Y, 2) + [Xg(Y, Z),
Yg(X,f2) =Y ()9(X,2) + [Yg(X, Z).

On the other hand, we have

*Q(X’ D/a fZ]) = *g(XvY(f)ZJV f[Yv Z]) = *Y(f)g(X’ Z) - fg(X> [Y7 Z]),
gV, [fZ, X]) = X(f)g(Y, Z) + fg(Y,[Z, X]).

Plugging this into yields C°°(M )-homogenity.

Hence, the right hand side defines a 1-form and therefore via ff a vector field on M, and we
showed that for every connection V with the properties (1) and (2) VxY coincides with
this vector field. This gives uniqueness of V.

Ezistence. We need to show that the right hand side in , or more precisely §Oxy =:
VxY really defines a connection.

e Check that (X,Y) e I'(TM) x I'(TM) — VxY is R-bilinear.

e Check that VxY is C°°(M) homogeneous in X.

e Check that VxY satisfies a product rule in Y.

We will only check the last point. For this we compute:

29(Vx(fY), Z) = Xg(fY,Z) + fYg(Z,X) = Zg(X, fY)
—9(X,[fY, Z]) + g(fY,[Z, X)) + 9(Z,[X, [Y])
=X(flg(Y,2)+ fXg(Y,Z) + fYg(Z,X) = Z(f)9(X,Y) — fZg(X,Y)
+Z(f)g(X,Y) = fg(X,[Y, Z)) + fg(Y,[Z, X]) + X(f)g(Z,Y) + fg9(Z,[X,Y])
= g(2X())Y, Z) + g2V x(fY),Z) VX.,Y,Z e I(TM)and Vf € C®(M).

Finally, we show the formula for the Christoffel symbols. Let ¢ = (z!,...,2™) be a chart,
and set -2, = X, -2 :Yanda%,c:Z. Then

oxt iy

d = 0
— = ek~
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It follows with :

o 0 0 0 0
23 g =29 (Vo 20 2 ) = Lgit g .
prt ikt = 29 < 507 Ok’ 8xl> BT 9gi I T Pt

We note here, that the Lie bracket between the coordinate vector fields 621» vanishes. This
is not true in general for a local frame F;.

Keeping i, j fixed, this is a vector w.r.t. [ = 1,...,m that we get by applying (gx;)x to
((Pri‘cj)kﬂ,m,m- Hence applying the inverse (931)37121,,“7m from the left, yields the desired

formula for ‘K’Ffj. O

3.9 Ezamples. (1) The standard connection V on R™ is the Levi-Civita connection of
<’a '>eucl-

(2) Let M C R™ be a submanifold with i : M — R", i(z) = x and let g = i*(:, ) cucl-

We defined a connection via (X,Y) € T(TM) x T(TM) — VxY := (VzY)" where

X,Y are extensions of X,Y to R™ and (p,v)T is the component of (p,v) € T,R"
tangential to T, M.

Claim: V 1is the Levi-Civita connection of g.

Proof of the claim. We compute for X,Y,Z € T'(TM).

Xg(Y, Z)(p) = Xp{Y, Z)euet = (VX,Y |p: Z(D))euet (p) + (Y (9), Vix, Zlp)euct

<(vXp?lp)Ta Zp>eucl + <Ypa (VXp2|p)T>eucl
g(vXpY‘lm Zp) + g<YP7 VXPZ|P)'

Moreover
VxYlp = Vy X, = (VY] = Ve X]p) | = (X,Y](0)" = [X.Y](p)-

For the last identity we note that for f € ¢>(R") we have X, ?]p(f) =X, (Y(f)) -
Yp(X(f) = Xp(Y(flar) = Yo(X (flar) = [X, Y]p(f]ar)- O
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In the following let (M, g) be a Riemannian manifold and let V be its LC-connection.

3.10 Definition. A smooth vector field along a v € C*°(I, M), for an interval I C R, is
amap v : I — TM such that v(t) € T, ;)M Vt € I. The set of all smooth vector fields
along v is denoted with I'(v*TM).

More generally, one can consider a smooth section s of a vector bundle 7 : E — M
along v: s € C*(1, E) such that 7o s(t) = v(t).

The definition of vector field along a curve « also includes the case when v = const =
pe M. Thenv: I —T,M.

3.11 Theorem. There is a unique operator Vy : T(v*T M) — T'(v*T M) such that
(1) V¢ is linear,
(2) ve T(v*TM), f € C®°(I,R) = Vi(f-v) = flv+ fVv,
(8) If VeT(TM) and v =V o, then Viv|s = V) Vi,

V¢ is also called covariant derivative along .

Proof. Let ¢ = (x',...,2™) : U — V be a chart and assume (I) C U. Given v €
['(v*TM) we can then write

m

0
u(t) = sz(t)@‘ﬂy(t)

i=1
where vi(t) € C®°(I,R) fori=1,...,m.
Uniqueness of Vy if yv(I) C U. Assume there is an operator V; with the properties (1),
(2) and (3) on vector fields along v with (/) C U. Then

Since the Christoffel symbols Ffj for the chart ¢ are unique, also the operator V; is
uniquely determined on U throught this formula.

Claim. Let v € C®°(I,M) and v € T'(y*TM). Then Vi(v|s)|t, = Vivly, for any J C I
with v(J) C U for a chart ¢ : U — V.
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Proof of the claim. We define an operator on I'((y|;)*TM) via V|, := Vi(f0)|s, for
to € J where f € C*°(I,[0,1]) with f =1 on (o —¢,to+¢) and supp f C J. The definition
of V; is independent of the choice of f by the product rule for V;. This follows exactly
like the statement of Lemma [3.51 Then

(1) V, is linear,

(2) V, satisfies the product rule:
Vi(@0) i = Ve(£20) = (5F) (to) (FD)lio +57 (t0) Ve FD)lao = ' (t0)T(t0) +G(t0) ViTlro-

(3) If X € [(TM), then

Vi(X oy )ty = Ve(f(Xov1)te = Ve(f(X0V))te = Vo) Xov(to) = Vis),)t0) X (7]5) (0)-

Hence, V, is an operator that satisfies the properties (1), (2), (3) and hence coincides with
V, for v € T'((y]7)*TM) as long as v(J) C U for a charte ¢ : U — V (both have to be
vi).

Hence Vi(v| ), = Viv(to) for to € J and with v(J) C U. O

Eristence. We define V; : T'(v*TM) — T'(y*TM) through V; = V{ via the previous
formula on the domain of a given chart .

For definition of V; for general v and v € T'(y*T'M) we choose a covering of M with charts
¢ : U — V and define V,v|; as V{vl; for (t) € U.

If J C I with y(J) C U for such a chart ¢ : U — V, then V, satisfies (1), (2), (3) for
teld.

Claim. V; does not depend on the covering with charts.

If v = (y'...,y™) : U — V such that U N U # 0, then the computation we did for
uniquness shows that for v(t) € U N U we have

Vil = VEu),.
Hence, the definition of V; does not depend on covering of M with charts. O

3.12 Examples. e Consider M =R", TM =R" xR", v: I - R" and V € T'(y*TM).
A global chart of M is ¢(p',...,p") = (p',...,p") and ‘PFfj =0.

Hence V.V |y = (VY (t),..., (V™) (t)).

e Let M C R"™ be a m-dimensional submanifold, v : I — M a smooth curve. The
operator Vy : I'(y*TM) — I'(y*TM) is given by

(?ch)T = VtV|t.
Indeed, it satifies (1), (2) and (3).
3.13 Definition. We say v € I'(y*T M) is parallel along v if Vv = 0.

3.1} Remark. e v,w € '(y*T'M) parallel and o, 8 € R, then av + fw parallel as well.
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e TR" = R" x R™. Then Vv = Y1, (v*)(t)e; where € is a basis of R". Hence v is
parallel if and only if v(t) = v(0) = vy € R™.

3.15 Theorem. Lety € C*°(I,M), a € I andv € T, (o)M. Then there exists exactly one
parallel v € T'(v*T'M) with v(a) = vg,.

Proof. Let ¢ = (x',...,2™) : U — V be a chart such that v(a) € U. Then v(t) =
S 0 (t) 52 ey 3 (t) € U. It follows that v is parallel on J C I with y(J) C U if and
only if

) () + Y v (Bwi(y (1) =0 Vte ], Vi=1,...,m. (3)
j=1

Recall that cuj-(v’(t)) =3, 1“;'-116(’%(15))]’C are the connection 1-forms.

The equation is an ordinary, linear, R™-valued, differential equation with smooth
coefficients on J. Hence it has a unique solution everywhere on J (because it is linear
with smooth coefficients) for the initial value (v'(a),...,v™(a)).

If ¢ another chart with UNU # 0, the value of v at some to € I with y(¢9) € U N U then
determines v for any ¢t € I with y(t) € U.

Hence, the existence and uniqueness of such a parallel v on I follows from successively
solving the equation on coordinate charts. O

3.16 Definition. Let v : I — M as before and s,t € I. The parallel transport along ~y
from ~y(s) to y(t) is the map Pzt 1 TysyM — Ty 4yM defined as follows: If v € T, M, we
consider the v € T'(y*T'M) parallel with v(s) = v, and we set P];(v) = v(t).

3.17 Remark. The map Pgt is a vector space isomorphism between T’ M and 1., ;)M
where the inverse is given by Pgs.

This follows from the fact that solutions of are a vector space and unique for a given
initial value v(a) = v, (the parallel v with v(a) = 0 is the vector field v = 0). This implies
that Pg , is a linear map that is injective and therefore an isomorphism.

3.18 Lemma. Consider v € C*°(I, M) and V,W € T'(v*TM). Then

d
dt’
Proof. Exercise. O

(V (@), W(t)) = g(VeV]e, W(t)) + g(V(E), ViW]y).

3.19 Corollary. Consider a smooth curve v : I — M and s,t € I. Then Pgt s an
orthogonal map.

Proof. V,{W € I'(v*T'M) parallel. Then

%Q(V(t% W) = g(ViVI, W(t) + g(V(t), ViWlt) = 0.
Hence t € I — g(V(t),W(t)) is constant. O
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3.20 Lemma. Lety€ C*®(I,M),0€ I and W € T'(yv*TM). Then

d Y
Tl Pl (@),

Proof. Let ey,...,em € TyoyM be an ONB and let Ey(t),...,En(t) € T'(y*TM) be
parallel such that F;(0) =e; Vi = 1,...,m, that is P&tei = E;(t). Then Ei(t),..., En(t
is an ONB of T'(y*T'M) since Py, is orthogonal. Hence

ViWli—o =

W(t)=> W't)Ei(t)
i=1

and . .
Ptﬂ,/OW(t) = Z Wi(t)PtjoEi(t) = Z W(t)e;.
i=1 i=1

Therefore it follows

m m

%h:oPgOW(t) =3 WY () =Y ((Wi)’(O)Ei(O) n WinEl-\t:()) — VW liso.

=1 =1 =0

4 Curvature tensor

Let (M, g) be a Riemannian manifold and V the LC connection.

4.1 Definition. The map
XY, Z eT(TM) = R(X,Y)Z :=VxVyZ -VxVyZ -V xy|Z

definiert ein tensor feld in I'T*M ® T*M @ T*M @ TM). R is called the Riemannian
curvature tensor of (M, g).

4.2 Remark. It is clear that R(X,Y)Z = —R(Y, X)Z. Hence R =0, if dimy; = 1.

We need to show that R is indeed a tensor field. For this we show C°°(M) homogenenity
in X,Y,ZeI'(TM):

FR(X,Y)Z = R(fX,Y)Z = R(X, fY)Z = R(X,Y)(fZ).
For instance, we compute

R(X,Y)(fZ)=VxVy(fZ) = VyVx(fZ) = Vixy)(fZ)
=Vx(Y(f)Z+ fVyvZ)-Vy(X()Z + [VxZ) - [X,Y](f)Z - fVixnZ
=XY())Z+Y(/)IVxZ+X(f)VyZ + fVxVyZ
—Y(X(f) - X()VyZ =Y(f)IVxZ — fVyVxZ = [ X, Y|(f) = fVixy)Z = ...
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A geometric interpretation of R via parallel transport. Let o: W C R?> = M be
smooth such that (0,0) € W, «(0,0) = p € M (for instance, if ¢ : U — V is charte, a can
be 71 : VN (R? x {(0,...,0)} CR™) ~ W — M).

We set a(s,t) = al(s) = as(t) and define v : W — T'M via

v(s,t) = Py o P(i‘zvo
for some vy € TM. Then wov(s,t) = a(s,t). We also define
w(s t) = P§ o Po(v(s, 1)
It follows mow(s,t) = a(0,0) = p, that is w(s,t) € T,M. In particular w(0,0) = v(0,0) =
0.

4.3 Theorem. Let a, v and w as before. Then it follows

R a—a‘ 8&‘ V) —QQ‘ w(s,t)
ot Loy 9slo0) ° otdslooe

or equivalently

w(s,t) = vy + stR <8a Oa

oa A,
ot ‘(0,0)’ Js ‘(070)) vo +o(|(s,1)])

4.4 Lemma. Let a: W — M as before and let v : W — T M be such that mov = a. Then

Jda da

(%, E)U = VSVtU — Vtvs'l).

Proof of the lemma. We fix (sg,t9) € W. Assume first that %‘;‘, %—‘2‘ are linear independent
at (50, to).

= Ja chart ¢ such that poa(s,t) = (s,t,0,...,0) in a small open neighborhood of (s, o).
Computations take place in this neighborhood.

= T local vector fields X,Y,V € I'(T'M) such that [X,Y] = 0 and such that

Xoa:a—a, Yoaza—aandVooz:v.

0s ot
Since R is a tensor (that means (R(X,Y)V)|, = R(X,,Y,)V}), it follows that

(8& Oa

85’815) v=(R(X,Y)V)oa=Vx(VyV)oa—-Vy(VxV)oa—-0

= V%(VyV) oa — V%&(va) o
s t

= Vs(VyVoa(st)) — Vi(VxVoa(st))
= Vs(Vi(Voa(s, 1)) = Vi(Vs(V 0 afs, 1))

This is the claim, since V o a(s,t) = v(s, t).
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o 0
If 673(80,150) and ai(zé(SOatO)

again a chart ¢ with ¢(p) = 0 and we consider

are not linear independent where «(sg,t9) = p, then we consider

Oo Oo
D¢|p£|(s,t) +721, D<P|pg\(s,t) +T729
—— —

=01(s,t) =02(s,t)

such that these vectors are linear independent for all (s,¢) in a neighborhood W of (s0,t0).
Then we replace a with

ar(s,t) == a(s,t,7) == ¢ H(poals,t)+ stz +t12).

It follows that

oo,
0s l(s,t)

oo,
(st), Ot

— Do Yo
) ¢ (Vg + T29) )

= Dgo_l(iH + 7‘21)

are linear independent in T, M. Moreover, we define a smooth local vectorfield V' :
U — TM such that V o a = v, and also v,(s,t) = V o ar(s,t) for (s,t) € W.

In local coordinates w.r.t. the chart ¢ we have v (s, t) = Y.I* | vi(s, t)% o ar(s,t) with

smooth coefficients. We see that v; — v on W as 7 | 0. We compute then

m m l
Vivr(s,t) =) gt(vi)(s,t) + > k(s t) ( o ) (s,t)T, 0 ar(s,t) a‘; o e (s, t)

i=1 k=1

Oar

where (5 )l (5,t) = (Va(s,t) + 721)!. Finally we compute

oo, L. O\ ; P
Wf”f@v”—Z[as at(v»(s,twkglms,t)(at) ()T} 0 r(s.8) | 2 0 an(s,1

oo,

9 " dar ' i ’ s 9
+ a(UT)(s7t)+ Z UT(Svt)( ot > (Sat)rkloaT(svt) < s ) FijoaT(Svt)amsoa‘r(Sat)]'

Hence also VsV, (s,t) — VsViu(s,t) on W as T 10
We then follow the program of the first part of the proof and obtain

ooy

Oour
( Os

(sit) Ot

Jor(s,8) = Vouz) (vaé%fw) o) = Vagzy, (vaz%%>

(s,t) (s,)

We have expressed the right hand side in local coordinates and saw it converges to the
correspoinding term with 7 = 0.

da
(s.)” O
Hence we get the desired identity and this finishes the proof of the lemma.

Since R is a tensor field, if 7 — 0, also left hand side converges to R(%‘;‘

v(s,t).
(s’t)) (s,1)
O
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Proof of the theorem. First note that Vtv](&t) = 0. By the previous lemma we get

Oa O«
R(a, a)“(svt) = Vi Vs (s4)-

Then, we also compute

0 d a at o d at e
wlon = 0| (PPDG6,0) = P (ds\szo s,o<v<s,t>>) = P38 (Vstls) -
H
o 29 w00y = ViVurlooy = ROEZ| 22 )0(0,0)
ot 8sw (00) = Ve VsUl©0) = Ot 1(0,0)” 9s 1(0,0) Ll_«

=v0

This finishes the proof.
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Let (M,g) be a Riemannian manifold, V the LC connection and R the curvature
tensor.

4.5 Theorem. The following statements are equivalent:
(1) R=0,

(2) ¥p € M 3 neighborhood U of p such that: if v : [0,1] — U is smooth with v(0) =
Y(1) = p, then Py, = idr,n-
(The parallel transport is locally path independent.)

(3) Ify0,71 : [0,1] — M are homotopy equivalent via a smooth homotopy o : [0,1]2 — M
with a(s,0) = 70(0) = 11(0) and a(s, 1) = y(1) = 1(1), then F)§ = Fy}.

Proof. (1) = (3): Consider a smooth homotopy « : [0,1]?> — M between 7o and 71, that
ist «(0,t) = vo(t) and a(1,t) = 1 (t) for all t € [0,1] and «a(s,0) = 40(0) = 71(0) = p and
a(s,1) =40(1) =71(1) = q Vs € [0,1]. We set vs(t) := a(s, ).

Let vy € T,M and define V(s,t) = Fy5vg. Then V,V(s,t) = 0.

By assumption we have R = 0. Hence Lemma implies that 0 = V;VV (s, t). It
follows that ¢t € [0,1] — VV (s,t) is parallel vector field along .

On the other hand, we have V (s,0) = vg Vs € [0,1]. Hence VsV (s,0) = 0 which is
the initial value of the parallel vectorfield ¢ € [0,1] — VV(s,t). Hence V,V(s,t) =0
vt € [0,1] for all s € [0,1]. Hence s € [0,1] — V (s, t) parallel.

Especially for t = 1, it follows «a(s, 1) = ¢ and Paslvo € T,M constant in s € [0,1].

(3) = (2): We can choose U with p € U that is simply connected, for instance let
U = ¢ 1(B(0)). Then any closed curve v is homotopy equivalent to the constant curve p
via a smooth homotopy.

(2) = (1): This follows from Theorem. Let wo,w; € T,M and let a(s,t) be a smooth
map into M such that %—2‘(0, 0) = wp and %—‘2‘(0, 0) = w;. Consider w(s,t) as in |4.3[ Theo-
rem. For s,t small enough this is the parallel transport along a closed curve inside of the
neighborhood U given by (ii), it follows w(s,t) = w(0,0) € T, M. Dann folgt

804‘ oo Yo = 0

(5 ©0,0) s ‘ (0,0)
]

4.6 Corollary. If R = 0 and if M is simply connected, then there exists a global frame
on M for TM. That is TM = M x R™.

Proof. Let p € M be fixed and let v1,...,v, be a Basis of T,M. We then define V; €
(TM) via Vi(q) = Pyyv; where vy : [0,1] — M is a curve that connects p and ¢. The
previous Theorem implies that this definition of V; does not depend on +.

Moreover the smoothness of V; follows from the smooth dependency of solutions of
ODEs on a smooth parameter. In this cases the smooth parameter ist ¢ € M. ]
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4.7 Remark. The frame (Vi,...,V},) is also parallel, that is VxV; =0 Vi =1,...,m and

every vector field X € T'(T'M).

4.8 Examples. (1) M =T™ =R™/Z™. The covering map 7 : R™ — T™ induces locally
a Riemannian metric that is locally isometric to the Euclidean metric on R™. Hence

the Christoffel symbols vanish and R = 0. But T™ is not simply connected, despite
TT™ =T™ x R™,

(2) The Moebisu strip M = R?/I" admits a metric that is locally isometric to R”. Hence
R = 0. But T'M is not trivial (since M is not orientable) and M is not simply
connected.

In the following we also write (-,-) = g(-,-) for the Riemannian metric.
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4.9 Lemma (Symmetries of the curvature tensor). Let X,Y, Z, W € I'(TM).
(a) R(X,Y)Z = —R(X,Y)Z,
(b) R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0,
(¢) (R(X,Y)Z,W) = —(R(X,Y)W, Z),
(d) (R(X,Y)Z,W)=(R(Z,W)X,Y).

Proof. (a) We observed this already from the definition.

(b) Since R is a tensor, it is enough to consider vectorfields X,Y,Z with [X,Y], =
Y, Z], = [Z, X], = 0. Then the claim follows from symmetry of V and the definition.

(c) follows form the fact that V is a metric (Riemannian) connections. We assume
again that [X,Y], = 0. It is enough to show that (R(X,,Y},)Z,, Z,) = 0. For this we
compute

XP(Y‘ZF) = 2Xp(<vYZa Z)) = 2<VX(VYZ)p7 Zp> + 2<VYZpa vXZp)

as well as
YP(X|Z’2) = 2Vy(Vx2)p, Zp) +2(Vx Zp, Vy Zp).

We substract the second from the first line and obtain
0= [Xv Y]P|Z|2 = <R(XP’Y;J)ZP7 Zp>'
(d) follows form (a), (b) and (c). We skip details. O

4.10 Lemma (R in local coordinates). Given a chart ¢ : U — V we compute coefficient
functions lek of R w.r.t. the basis do’ @ dz? @ da-2;, that is

1, oxl’

m
) . o
[ k
Rly = U% l_lRl-jkdx’ ® dr! @ da* ® o

where R(aii, %)% =3 Réjk%- It holds

l 9 l 9 l - s 1l s 1l
Rijk - @ij - @Fik - Z (Fz’krjs - ijris) :
s=1
We can compute R, from g, and the first and second derivatives of g;; at p.
P p J

Proof. Recall that V s _ % =", T -2 Moreover
oxJ

jkozl"
0 0 0
GGeaai) g =V Ve VvV
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Then we compute

V Zaxz Jk&xl + ZF Jlaz.s‘

m s 1l 8
Zl,s 1F F 2l

That is the claim. O
4.11 Remark.
0 8 o 0 .90
i = R(55 g7 axk’ 8x ZRW’“"“ ro Rgi gui) aak

The identities of 4.9l Lemma then write as

Rl

(a) & R! ik

zyk
(b) & Rl + Ry, + Rj,; =0,
(c) & Rijr = —Rijix,

(d) © Riju = Ryuj-

Sectional curvature. We fix p € M and T, M and consider the Grassmannian space
Go(T,M) = {E C T,M : E linear subspace, dimgp = 2},

as well as G2(M) = U,y G2(Tp,M).
For E € Go(M) let u,v € E and define

Q(u,v) = (u,u) (v, v) — (u,v)? = det <<“’“> <“’”>> .

Q(u,v) > 0 if and only if u,v is a Basis of E. In particular, if u,v is orthonormal w.r.t.
g, then Q(u,v) = 1.
(1v/Q(u,v) is the area of the parallelogram spanned by v and v w.r.t. the inner product

<'7 > = gp')
Note that for linear map A : E — E we have Q(Au, Av) = (det A)?Q(u, v).
4.12 Definition (Sectional curvature). The function K : G3(M) — R given by

(R(u,v)v,u)
Q(u,v)

is called sectional curvature of (M, g).

K(F) := K(u,v) := , where u, v is a basis of F,

4.13 Remark. The definition of the sectional curvature K (E) = K (u,v) does not depend
on the choice of u,v. Indeed, if u’,v’ is another basis, then there exists A : £ — E such
that Au = v’ and Av =/, and (R(v/,v')v',u) = (det A)*(R(u,v)v,u).
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4.14 Examples. 1. (M,g) = (R™, (-, )euet), then R = 0. Hence K = 0.

2. M C R3 2-dimensional submanifold, then K(T,M) = K (p) is the Gau§ curvature.
For this recall that the Gaufl curvature, by the Theorema Egregium, is

2
0 0
K(p) = @F% - @F%I + Z (T4 Thy — T5iT51)
n=1

where we choose a charte such that %h,, 8%\1, is ONB of T, M. But the right hand
side is also

0 0 0
R3y,(p) = R(W‘pv @‘p)@ p(de;Q)) = Raono.

3. (M, g) frame homogeneous Riemannian manifold (Raum freier Beweglichkeit). Then
K = const = Kg € R.
Indeed: Since (M, g) is frame homogeneous, it follows VE, E' € Go(M) there exists
an isometry F : (M, g) — (M, g) such that DF(FE) = E'.
Exercise sheet 7: K(FE) = K(DF(E)) = K(E').

Question: Is information lost when going from R to K?

Answer: No. The knowledge of K determines R uniquely.

4.15 Lemma. Let V be a vector space of dimension > 2 and let {-,-) be an inner product
on V. Assume R,R' : V xV xV — V are trilinear maps such that the conditions (a),

(b) and (c) of [4.9 Lemma are satisfied by
(R(z,y)u,w), (R'(z,y)u,w).

If u,v € V are linear independent, then we define K(u,v) and K'(u,v) as above via
K(u,v) = R(u,v,v,u)/Q(u,v). If K(E) = K'(E) for all Go(V'), then R = R’.

Proof. Set
R(v,w, z,y) = (R(v,w)z,y).

We show that R(v, w,w,v) =0 for all v,w € V implies R(v,w,z,y) = 0 for all v, w,z,y €
V. Since the set of tensorfields with (a), (b) and (c) is an R vector space and since the
map R +— Kpg is linear, then it follows that the map R +— Kpg is injective.

If R(v,w,w,v) =0 VYo,w € TyM, then 0 = R(u,v + z,v + z,u) = 2R(u,v,z,u) +
R(u,v,v,u) + R(u,z,z,u) = 2R(u, v, z,u) Yu,v,x € T,M.

Hence R(u,v,z,u) = R(x,u,u,v) = R(u,z,v,u).

The same argument in wu yields first that R(u,v,z,w) = —R(u,v,z,w) Yu,z,v,w €
T,M. Then we also have

R(u,v,z,w) = R(w,z,v,u) = —R(x,v,w,u) — R(v,w,z,u) = R(x,v,u,w) — R(v,w,z,u)

= —R(v,u,z,w) — R(u,z,v,w) — R(v,w,z,u) = R(u,v,z,w).

Hence R(u,v,z,w) =0 Yu,v,w,z € V. O
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4.16 Corollary. Let (M,g) be Riem. mfd. and p € M. Assume K|g, (1,1 = ¢ = const.
Then
R(u,v)w = ¢ ({(v,w)u — (u, w)v) Yu,v,w € T,M.

Proof. Set R'(u,v)w = ¢ ({v,w)u — (u,w)v). Then Kg/(u,v) =c¢ = K(u,v) and R satis-
fies (a), (b), (¢) and (d). Hence R'(u,v)w = R(u,v)w. O
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5 Geodesics

Let (M, g) be a Riemannian manifold and V the LC connection.

5.1 Definition. Let I C R be an interval. A smooth curve c¢: I — M is called geodesic
if ¢ is parallel along ¢, that is V,¢’ = 0.

5.2 Remark. Let ¢ : U — V be a chart. Then g oc=: (c!,...,c™) and

Vi =0onJCIwithe(J)CcU < ()'(t)+ Z (cj)'(t)(ck)’(t)Fékoc(t) =0,i=1,...,m.
k=1

We call this the geodesic equation.
Proof. First
(1) = Z(ci)’(t)aii oc(t)ift €

Then
Vil = SO (1) + 3 (Ve g oelt) = ..

i=1 =1

O

5.8 Remark. The geodesic equation is a nonlinear ODE of second order with smooth
coefficients. Hence, the Theorem of Picard-Lindel6ff guarantees that for initial values
p € M and v € T,M there exists e > 0 and a unique geodesic ¢, : (—¢,€) — M such that
¢y(0) = p and ¢,(0) = v.

5.4 Remark. (1) If ¢(t) is a geodesic and a,b € R, then also ¢(t) = ¢(ta+0b) is a geodesic.

(2) If F:(M,g) — (M, g) is an isometry and c is geodesic on M, then Foc is a geodesic

on M.
(3) Let ¢ be a geodesic, then (¢/(t), ¢ (t)) = g (¢'(t), ¢ (t)) = |¢/(¢)|* is constant. Indeed

d

20, (0) = 2Vid|, (1)) = 0.

5.5 Examples. (1) (M, g) = (R™, (-, )euct)- Then p(z) = z is a global chart and ”Ffj =0
for all 4,5,k = 1,...,m. Hence, the geodesic equation becomes

where (c!,...,¢™) = poc. For given initial values p € R™ and v € R™ the unique

solution of this equation is ¢(t) = p + tv.
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(2) Let ¢: M C R™ be an embedded m-dimensional submanifold equipped with induced
intrinsic metric i*(-, -)euer. The geodesic equation for c(t) = (¢! (t),...,c"(t)) € M is

)" =o.
That is ¢”(t) is a vector normal to Ty M C R™.

(3) A special case of the previous example: S*~1 C R". Recall that 7,S"~* = {p} xp* for
p € S"L. Hence c(t) = (c!(t),...,c"(t)) € S™is geodesic if and only if ¢ (t)|| & Noc(t)
where N (p) is the outer unit normal vector in p € S*~!. For instance, the curves

c(t) =cost-p+sint-v e S pe S vept

are geodesics.

Moreover ¢ : R — S"! satisfies ¢(0) = p and ¢/(0) = v. Hence c is the unique
solution of the geodesic equation with intial values p and v.

Notation. Yv € TM let ¢, : (ay,wy) — M be unique maximal solution of the geodesic
equation on (M, g) with ¢/(0) = v: The interval (ay,w,) 3 0 is maximal with «,, 3, €
RU {£o0}.
5.6 Remark (Consequences of the Theorem of Picard-Lindeloff).

o W :={(v,t)lveTM,te (o,wy)} is open in TM x R.

o TM x {0} ¢ W and Vp € M it holds {0,} x R C W since ¢, (t) = p. Here
0p =0 € T,M.
o oy = Cp(s) and (ugy,wsy) = (%av, %wv), s> 0.

e Woffen=U:={veTM:1¢c (ay,wy)}=Pry (WNTM x {1}) offen in TM und
0, €U Vp e M.

5.7 Definition (Exponential Map). The map exp : U — M with exp(v) = ¢, (1) is called
exponential map.
For p € M we set exp,, := exp |ynr,m : U NTpM — M.

5.8 Lemma (Consequences of the Theorem of Picard-Lindeloff).
(1) exp is smooth,
(2) exp(tv) = c,(t) Vt € (o, By),

(8) D(exp,)o,v = v where v € To,(T,M) ~ T,M. Note that T,M =~ R™ and hence
Ty, (T,M) ~R™ ~ T, M.

Hence D(expp)op = id,p and in particular there exists an open neighborhood U of
0p such that exp,, : U — exp,(U) is a diffeomorphismus.

Proof. (1) This follows because of smooth dependence of ODEs on intial values.
(2) Follows since s € (v, 18,) — ¢y(st) is a maximal solution of V¢’ = 0 with ¢/(0)

tv. By uniqueness of solutions of the initial value problem it follows ¢, (st) = cgy(s).
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(3)

Let v € Ty, TpM and ~(t) = tv € T,M. Hence v'(0) = v. Therefore, we can compute
as follows

D(exp,)o,v = D(exp,)o,7'(0) = (exp, 07)"(0) = (exp,(tv))'[i=0 = ¢,(0) = v.

5.9 Examples.

(1)

(2)

(M,g) = R™: geodesics are curves following straight lines with constant speed
t+ p+tv. Hence exp,(v) = p+v.

S™ c R™*! (embedded sphere). Note that T,S"~! = p* and gEni1 = (-, Yeuct|,sn-1-
We know that the geodesic ¢, with ¢,(0) = p and ¢,(0) = v is given by

cy(t) = cost-p+sint - v.

Hence expp(tv) = cost - p +sint - v. In particular exp, is defined everywhere on
T,S" ! and it is injective on B(0,) C T,S" 1.

Similary, one argues for H™ C RTH (Lorentz-Modell of Hyperbolic space) (Ex-
ercise).

Consider a Lie-group G. For v € T.G there exists a unique left-invariant vector field
XY € I'(TG) such that X"(e) = v, that is X; = Dly|cv where ly(h) = gh. The
exponential map exp : T.G — G of a Lie group is defined as exp(v) = (1) where =
solves XV oy =/ with y(0) = e.

Let g be a bi-invariant Riemannian metric on G, that is left- and right-translations
[ and r are isometries (Exercise sheet 3, Problem 3).

Exercise sheet 7: the flow curve v of X" is a geodesic with 7/(0) = v. Hence

exp(v) =v'(0) = ¢,(0).

Hence, the geodesic exponential map exp, at e € G w.r.t. g coincides with exp.

In particular: Consider G = SO(n). g(A,B) = (A, B) = trace(A'B) induces a
bi-invariant metric on GG. The exponental map is
AF A
expp : TG — G, expgp(A) = ZF =e".
k>0

5.10 Definition. Let (M, g) be a Riemannian Mfd. p € M and U C T),M open and star-
shaped w.r.t. 0, such that exp, [y is a diffeomorphsm. Let L : (T, M, g,) — R™, (-, -)cuct)
orthogonal. Then we call

@ :exp,(U) = L(U) CR™, p = Lo (exp, o)™t

normal chart with center p, or normal coordinates.
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5.11 Theorem. Let ¢ be a normal chart on M at p. Then
Gijlp = 0ij,  Th(p) =0.
Proof. We compute
Dypv = Dipycy,(0) = L(v)
and

0 0 1. _ _ _
?9ijlp = g’p(@’pv @‘p) = glp(Dy 1Zp(€i)vD‘Pp 1(63')) = glp(L Yei, L 16]‘) = (€is €j)euct = Jij

where we used that L is orthogonal.
Let ¢ be a geodesic with ¢(0) = p and ¢/(0) = v. Then

@oc(t) = Lo (exp, 1) te(t)) = L(td(0)) = tLv =: ta.

Since L is orthogonal and since the geodesic ¢ was arbitrary,  can be choosen arbitrarily
as well.
The geodesic equation for ¢ w.r.t. the normal chart ¢ is

m
(tz®)" + Z “Df‘é-k oc(t)zizh = 0.
T ke

At t = 0 the equation is
> fTip)rlat = o (T (p))ja = 0.
Ji,k=1

Since F;k =T = (F;k (p))ji defines a symmetric bilinear form that maps every x € R™ to
0 € R™. Hence F;.k(p)zow,j,k:l,...,m. O

5.12 Remark. If R, # 0, then there is no chart such that all derivatives of g;; of order 1
and order 2 vanish at p.

5.13 Lemma. Let ¢ : [a,b] X (—€,€) — M a smooth map such that c(-,7) =: ¢; is a
geodesic for every T € (—e,€). Then

L P s v T P
Cln) = 5 a-teh (), ), Tl (), 5o ) =0 V€ [0,8] ¥ € (—e.e),

£<CT(t)va
Proof.

Do), L et = (Vi Lt ) + (), Ve 2 (2, 7)
dt CT ,aTC ,7_ = th— ts aTC ,T CT 5 ta']’ ,7' .
This is equal to

= (¢, (0), Ve, (6) = 5 (e (6), ¢, 1),
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where we used Vi, =0 V7 and V., gg = Vt% for the first equality. To see the latter, we
compute in local coordinates:

v oct 9 oc) = 9%¢t 9 et %% i
ot Oz 2970t Ot ot or 227 O

o cC.

The last expression on the right hand side is symmetric in ¢ and 7.

Moreover
d? ,£C>_1dd Py d

@@77 or 2d7_%<c‘rvc~r> T dr <vtc‘rv T> =0.

O]

5.14 Corollary (Gaufi Lemma). Let U C T,M starshaped w.r.t. 0, and let exp, be
defined on U. Then for every smooth v : (—e,e) = U C T,M it holds

(v(0),2'(0))p = (¢}0y (1), (exp,, Ov)/(o»expp(v(()))‘
Proof. Consider c(t,7) = exp,(tv(7)) = c-(t). Then ¢/ (0) = v(7) and cy(t) = C;(o) (t).
Y t(v(0),v'(0))p-

Proof of the claim. For t = 0 we have (c{(0), gﬁ(() 0))eo(0) = 0 since ¢(7,0) = p for all 7
and 9¢(0,0) = 0.

Claim. (cp(t), %

(0. 5] ) PRI ] 0.6 (0) = (0(0), (), = comst.
Hence t — (c¢{(t), gﬁ (t,0)) = t(v(0),2'(0)), is linear.
For ¢t = 1 we have (c{(1), aj " 0> (c ;0)( ), (exp,, 0v)'(0)) = (v(0),v'(0)). That is the
statement of the Lemma. O

5.15 Theorem (First variation of arc length). Set g = (-,-) and consider « : [a,b] X
(—€,€) = M smooth, a,(t) = a(t, 7). We assume |af(t)| = const =d > 0. Then

d 1 t=b

b
Folar) == | (ViablViE)it+ (a0, V(D)

t=a

where V(t) = ao‘ *(t,0) = Da(t,o)a%h- The map « is called smooth variation of ag and V is
called varzatzon vector field along «y.

Proof of Theorem |5.15].

d _ b d / ’ L. 1P oo ,
E T:OL(aT) B /a % T:O<a7—(t)’ aT(t)> dt = d/a <VTE‘(t,O)’ aO(t)>dt
o 1 b 804 / . aa , , b

In the first equality we used that « : [a, b] X (—€, e) — M is smooth. In the second equality
we used the chain rule and that V is a Riemannian connection.

In the third equality we used VT%‘; = Vtg—i‘. In the fourth inequality we use again
that V is a Riemannian connection. O
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More generally. A variaton of a piecewise smooth curve ¢ : [a,b] — M is a continuous
map « : [a,b] X (—€,€) — M such that

1. a(t,0) = c(t) Vt € [a, b],
2. Ja =19 < ...ty = bsuch that afy, | 1. 1x(—ee) is smooth Vi =1,... N.

A variation is called proper if a(a,7) = c(a) and a(b,7) = ¢(b) V7 € (—€,€). If a is
smooth, we call & a smooth variation.

The first variation formula also holds for general (non-smooth) variations with appro-
priate boundary terms.

5.16 Lemma. Given a smooth vector field V (t) along a differentiable curve c : [a,b] — M,
then there exists a smooth variation « : [a,b] X (—€,€) — M of ¢ such that V(t) is the
corresponding variational vector field of a. If V(a) = V(b) = 0, we can choose o as a
proper variation.

Proof. We set a(t,7) = exp.)(TV (t)). Since c([a,b]) C M is compact compact, we can
find € > 0 such that « is well defined on « : [a, b] X (—¢,€) — M. Moreover %ﬂ(to) =V (t).
If V(a) = 0 then a(a,7) = expq)(0cq)) = c(a) for all 7 € (—¢,¢€) and similarly if

V(b) = 0. O
5.17 Corollary. (1) c:[a,b] = M geodesic, then

d
—L(as) =0
dr (ar)

for every variation a of c.

(2) If |d(t)| = const and %TZOL(aT) = 0 for every Variation o of ¢ = ap with V(a) =

V(b) =0, then c is a geodesic.
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5.18 Definition. Let (M, g) be a Riemannian manifold, p € M, U C T,M open such
that 0, € U and exp,, : U — V := exp,(U) is a diffeomorphism.

o r:=1,:V —=1[0,00),1r(q) = ]exp;l(q)] = \/g(expgl(q),expgl(q)).
In particular 7 € C*°(V\{p}) and r(c,(1)) = r(exp,(v)) = |[v| = L(cv|jo,1]), since
|ch(t)] = |, (0)| = |v| and therefore L(cvljo,1) = fol |v|dt = |v].

* Q:=Qp:V —1[0,00), Qq) = (exp, ' (q), exp;, (9)) = (r(q))*.
In particular Q € C*°(M).

e X:=X,el(TV), X, =¢,(1) where v = exp, *(q).
5.19 Lemma. VQ = f 0 dQ = 2X.

Proof. Tt is sufficient to show that dQ.)(7'(0)) = 2(X(7(0)),~'(0)) for every regular curve
t

v :(—e€) = M. We set v(t) = (exp, )~ (¥( ))_
We compute

d
(Q2y)'(0) = = (v(®): v(®)i=0 = 20/ (1), v(#)) = 2((exp,, 0v)'(0), €0y (1)) = 2(+'(0), X(+(0)))-
O
5.20 Corollary. It holds |Vry| = const =1 on V\{p}.
Proof. We compute
2X, = VQlg = V(1?)|g = 2r(q) Vrl,.

For this we can consider drg (7'(0)) = (V(r?)4,7/(0)) and apply the chain rule to dr?.

Moreover, if exp,*(g) = v, then |Xy| = |c,(1)] = [v] = [exp,*(q)] = [r(q)]-

Hence |Vr| | = 1. O

5.21 Remark. Recall ¢,(s) = cy(s/t). Hence
tc,(8)]s=t = ¢4,(1) = X o exp,(tv) = r o exp, (tv)Vr o exp, (tv) = t|v|Vr o ¢, (t).

If |v] = 1, it follows ¢, (t) = Vroc,(t) Vt > 0. It follows that ¢, is a flow curve of the
vector field Vr. If ¢ € V\{p}, then there exists v € U such that exp,(v) = ¢ and therefore
Cy/lv| 18 the unique flow curve of Vr through g.

Recall d: M x M — [0,00) defined via
d(p,q) = inf{L(7) : v : [a,b] — M piecewise C* and v(a) = p,v(b) = q}.

5.22 Theorem. Let (M,g) be Riemannian manifold, p € M and p > 0 such that
exp,, ‘Bg(op) a diffeomorphismus onto its image. Then

(1) Vq € exp,(Bs(0p)) it holds rp(q) = d(p, q)-
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(2) Yv € Bs(0p) it holds
L(Cv|[0,1]) = d(p, cv(l))'

Hence cy|jo1] is a length minimizing curve between p and c,(1).

Proof. Note that (2) implies (1) since for ¢ € exp,(Bs(0,)) we can choose v € T, M such
that exp,(v) = c,(1) = q.

Let v € Bs(0,) and ¢,(1) = ¢, and let 7 : [a,b] — M be piecewise regular such that
7(a) = p and (b) = q.
Claim. L(v) > |v| = L(cylj0,1])-
Proof of the claim. W.l.o.g. v(t) # p Vt # a.
1. Assume 7([a,b]) C V = exp,(Bs(0p)). Then

b b
wv=w@>=rﬁ@—w¢@w:/knmvyaMt=/”mwawMt
ab ¢ b
=/XVwmw¢u»us/rﬂMﬁ=Lw»

Hence L(cylj01]) < L(7).

Note that this estimate is proved for v regular, but clearly generalizes for v piecewise
regular.

Assume we have 7 such that equality holds in the previous estimate. Then, whenever
v is differentiable in ¢t we have equality in

(Vrpoy(t),7' (1)) < W (O Vrp o y(t)],
and equality holds if and only if 7/(t) = A(t)Vr, o y(t) for A(t) > 0. This is the equality
case of the Cauchy-Schwarz inequality. Hence |7/(t)| = A(t) when + is differentiable in ¢.
In this case, by Lemma we know that v o ¢~ 1(t) =: c(t),t € [0,L(y)] with
o(t) = fj A(s)ds is an arclength reparametrization of ~.
Moreover, if ¢ is differentiable in ¢, then

()= 097 ()

@ o H(t)
Hence c is a gradient flow curve of Vr, and in particular also differentiable in every ¢ since
left and right hand derivatives of ¢ in every point ¢ are both equal to Vry(c(t)). It follows

there exists w € T, M with |w| = 1 such that ¢ = ¢,, with ¢,,(L(7)) = ¢. More precisely,

by uniqueness of the gradient flow curve ¢, of 7, through ¢ we have ¢, = ¢,/|y|, or
= T @) P (@)

2. Assume y([a,b]) NV £ (.

Consider ¢’ € (0,6). Then exp, g, (o,) is still a diffeomorphim. Moreover exp,(Bs0,)) =

V' is compact and OV’ = exp,(0By (0,)).

Let tg = inf{t € (a,b] : v(t) € (V')}. By continuity of v ¢ty € (a,b] and ~(ty) € IV".
We apply the first case to 7ljq4)- Define w = exp;l(’y(to)). Then it follows L(y) >
L(Yl[a,to]) = |w| = ¢'. This holds for every ¢’ € (0, ) and hence L(v) > |v| since v € Bs(0y).
Hence, the equality case can only appear when v([a,b]) C V and in this case 7 is a
reparametrization of ¢, jy((0,jv]]- O

= Vrpoc(t).
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5.23 Remark. e The previous theorem implies exp,(B5(0,)) C Bglg (p) if exp, [ B5(0,) 18
a diffeomorphism.
On the other hand, let » > § > 0 be small enough such that ng (p) C exp,(B(0y))
and such that exp, |p, (o,) is a diffeomorphism. If ¢ € ng (p), let v = exp, Hq).
Then ¢, : [0,1] — M is curve that connects p = ¢,(0) and ¢ = ¢,(1) with § >

d(p,cy(1)) = L(ey) = |v| according to the previous theorem and in this case B?g (p) =
expp(B(;(Op)).

e Let p,q € M with p # g, then d4(p,q) > 0.

Proof. For § > 0 small exp,, | ;(o,) is a diffeomorphism and exp,,(B5(0,)) = ng (p) is
an open neighborhood w.r.t. the topology on M. In particular the manifold topology
and the metric topology coincide. Since M is Hausdorffsch, there exists § > 0 such
that Bglg (p)N ng (g) = 0. Then it follows d4(p, q) > J since otherwise g € ng (p) by
the previous theorem. ]
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5.24 Theorem (Hopf-Rinow). Let (M,g) be Riemannian manifold. The following state-
ments are equivalent:

1. (M,dy) is a complete metric space.
2. dp € M such that exp,, is defined on T, M.
3. Yv e TM cy is defined on R.
Any of the previous statements implies that
4. ¥p,q € M 3 a geodesic ¢ : [a,b] — M such that c¢(a) = p, ¢(b) = q and d(p,q) = L(c).

A Riemannian manifold (M, g) is called complete if one of the previous statements 1. or
2. or 8. is satisfied.

5.25 Examples. (1) M compact (without boundary points), then M is complete, since
1. is satisfied.

(2) (R™, (-, Yeue)s (S™715%(, Veuer) and (H™1 i*(,-)1) are complete, since 2. is satis-
fied.

(3) Let M C R™ be an embedded submanifold, such that M is a closed subset of R™.
Then (M,i*(-,)euet = g) is complete. This can be seen as follows.

dg(p,q) > [P —qleues = Bl (p) CcMnN Bl eue (p). The set on the RHS is compact in

R™. Moreover Bfnlg (p) is closed w.r.t. the d, topology and hence w.r.t. the manifold

topology that comes from R"™. Hence ng (p) is a closed set in R™. Since it is also
subset of a compact set in R™, it is a compact subset in R" itself. Then it follows

also that BL (p) is compact w.r.t. dg. Therefore (M,d,) is complete as a metric
space.

5.26 Lemma. Assume exp, ‘BT(Op) is a diffeomorphism, and let p € (0,7). Then it holds:

Vg € M\ng (p) there exists ¢’ € 3ng (p) such that d(p,q) = d(p,q') + d(q,q).

Proof. Note first that ng (p) = epr(m) is compact. Here we use that p € (0,r).
It follows that also 0B;lg (p) is compact.
Since dy(x,q) = ry(z) is continuous on 8ng(p), there exists ¢/ € 8Bg"’ (p) such that
d(q',q) = minfeang ) d(z,q).
Let v : [0,1] — M be piecewise C! such that ¢,(0) = p and ¢,(1) = ¢q. There exists

to € [0,1] such that y(to) € 9Bs(p). Hence L(7vljo4,]) = 0 = d(p,q')-
On the other hand it hold L(v|y,17) > d(¥(to),q) > d(q', q)-

Hence L(v) > d(p,q') + d(¢',q), and so d(p,q) > d(p,q') + d(¢', q), and therefore we have
equality. O
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Proof of the Theorem of Hopf-Rinow. 1. Assume 2. We show 4. : 3 shortest curve be-
tween p and any g € M.

Choose ¢ € (0,d4(p, q)) as in the previous Lemma. We set

(exp,, \m)fl(m)
Because of 2. exp,(tv(z)) = c,(y)(t) is defined on R.

For g € M let ¢ € GB?Q (p) be as in Lemma where we choose § > 0 small enough
such that exp,! is defined on ng (p). Consider v(¢') =v and ¢, : R — M.

v(x) = = |v(z)| =1

Claim. cy(dg(p,q)) = q. Then it follows L(cy|[,d,(p,q))) = dg(P;q) and ¢, is the desired
shortes curve.

Let t € [0, d4(p, q)] be maximal such that dy(p,q) =t + dg(cy(t),q) (this is true for t = §
by Lemma).

Assume t < dg(p,q). Then we choose 6” > 0 small enough such that g ¢ Bgﬂ (cy(t)) and
as in Lemma. Let ¢" € 0Bsn(cy(t)) such that

dg(co(t),q) = dg(co(t),q") + dg(q", q)

and let w € T, ;)M with [w| = 1 such that ¢, (0") = ¢".
It follows

dg(p,q) =t +d(co(t),q) =t + 0" +dy(q",q).
Note that ¢ = L(cyj0,4) > dg(p, cu(t)) and 6" = d(cy(t),q"). Hence

dg(p,q) > dg(p, co(t)) + dg(co(t), ¢") + dg(q”, q) > dy(p, q)-

In particular, it follows t = L(cy|jo) = dg(p, cu(t)).
We define v = cyljo,57 * colo,q- It follows that L(vy) =t + 0" = dy(p, ¢").

Hence v is piecewise smooth curve, that is also length minimizer. Hence it ist geodesic.
In particular ¢,(t) = ¢},(0) = w and + is a smooth extension of ¢, beyond ¢
Therefore we have

d(p,q) = (t+06") +dg(q", q) =t + 8" + dy(co(t +3"), ).

That is in contradiction to the maximality of ¢.

2. 2. =1

Claim. exp, (W) = % Vr > 0.

Proof of the claim. C: Let v € T,M with |v| < r. Then it follows with ¢, : [0,1] - M
satisfies ¢, (t) = |v|. Hence d(p,c,(1)) < L(c,) = |v] < 7, and therefore exp,(v) € B (p).

D: Consider ¢ € M with dgy(p,q) < r. Because 1. there exists v € T,M such that
cy(1) = exp,(v) = q and |[v] = L(ey|jo,1)) = d(p, q) < r. Hence v € B;(0p).

The claim implies that B,(p) is compact for all » > 0. Hence (M, d,) is complete.
3. 1. = 3.
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Assume there exists v € T'M such that w, < co. Then we choose t; T w, and ¢,(t;) are
Cauchysequence w.r.t. d4. For this note that

dg(cu(ti), co(tivt)) < Lol t,,)) < (Bix1 — ti)[v]-

Since (M, dy) is a complete metric space, 3¢ € M such that ¢,(t;) — q.

Set w; = ¢,(t;). In particular |w;| = |v|. Since ¢,(t;) — ¢ and since |w;| = |v], there
exists a subsequence of w; that converges to w € T, M.
On the other hand, we know that W = {(v,t) € TM xR : t € (ay,wy)} is open. Hence we
can choose ty > 0 such that (w,ty) € W. It follows that i € N big enough (w;,tg) € W.
By uniqueness of geodesics we have that ¢y, (to) = ¢, (t; + to). Hence t; + tg < w, for i
sufficiently big. But we assumed t; T w,. This is a contradiction.

3. = 2. is obviously true. O

5.27 Proposition. 3V C M x M neighborhood of {(p,p) € M x M : p € M} and
V' '€ TM a neighborhood of {0, € T,M : p € M} such that m x (exply) : V! = V
diffeomorphismus.

Proof. 1. Vp € M we have that D(7 x exp)o, : To,TM — T,M x T,M is an isomorphism.
Indeed: let v € T,M . Then

Dl x xp)o,v = it (% x0) 0 + 1) = (0p,¢,(1) € {05} x T,M\{(0, )}

If v: (—€,¢) = M and 7(0) = p, then 5(t) = 0, is a horizontal curve in TM. It follows
™ x exp(y) = (v(t),7(t)) and

d ~
Sl=om x exp(3(t)) = (4/(0),7'(0)) € T, M x T, M\{(0,,0,)}
The span of these two images generates all of T),M x T),M. Hence D(m xexp)o, is surjective

and hence an isomorphism.

2. It already follows that in a neighborhood of every 0, the map m x exp is a diffeo-
morphism (*).

Vp € M there exists €, > 0 such that Vv € T,M with g,(v,v) < €, we have that
D(7 x exp), is an Isomorphism.

Let U C M be open such that U is compact. The dependence of €, on p is continuous.
Hence there exists € > 0 such that Vv € TU with |v|? < € we have that D(7 x exp), is a
diffeomorphism. We set TU = {v € TU : |v| < €}.

Moreover we can choose € > 0 small enough such that 7w x exp |pye is injective. Oth-
erwise Je, with €, | 0 and v,,w, € TU with n(v,) = 7(w,) = p, and exp(v,) =
exp(wy) = q,. Since U compact, there exists a subsequence n; such that (py,, ¢n,) — (p, q)
and vy, wy, — 0,. Hence ¢ = p. But this contradicts (*).

3. We can find a countable cover of M by such U;s with corresponding ¢;s. We
set V = |J,TU;" that is a neighborhood of {0, : p € M}. Then 7 x exp|y is a local
diffeomorphism. But it is also injective, since otherwise Jv,w € V with 7(v) = 7(w) = p.
Assume v € TU;" and w € TU;j. If ¢; < €; then v,w € TU;" and by the previous step we
would get v = w. O
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6 Jacobi Fields

Let (M, g) be a Riemannian manifold. We consider « : [a,b] x (—¢,€) — M smooth such
that V7 € (—e¢,€) the curvees ¢-(t) = a(t, 7) are geodesics. Set ¢g = c. (For instance we
can consider a(t, T) = exp,(tv(r)) where v : (—¢,€) — T, M is smooth.)

6.1 Lemma. The variation vector field Y (t) = a%oz(t, 0) e T(c*TM) of a along ¢ satisfies
V:iViY + R(K C/)C/ =0 (*)

Proof. Since the Levi-Civita connection is symmetric, it follows that

Oa oo
Vta l(t,r) = Vfal(t,f)-
Then, together with [£.4] Theorem it follows
Oa Oa Oa O Oa Oa
Vtvta l(t,0) = VtVTEkt,o) = (V Vi 8t> l(£,0) R(a , )7E|(t,0))a|(t,0)-

Since a(-,7) is geodesic VT € (—¢,€), the first term on the right hand side vanishes. O

6.2 Definition. Let c: [a,b] — M be a geodesic. Solutions of the equation (x) are called
Jacobi fields along c. (%) is called Jacobi equation.

6.3 Remark. If Y is a Jacobi field along ¢ and ¢(t) = c(a + tb) a linear reparametrization
of ¢ with a,b € R, then Y (t) = Y (a + tb) is Jacobi field along c.

6.4 Remark. Let E;,i =1,...,m, be parallel vectorfields along ¢ such that (E;(t))i=1....m
is an orthonormal basis V¢ € [a,b] and Fi(t) = ¢/(t). Then for any Y € I'(¢*T'M) we can
write Y = Y7, V() E;(t) for Y € C*°([a,b],R). We compute then

VY[ =Y (YY) (D)Ei(t) and ViViY|s = Y (V)" (£)Ei(t).
i=1 =1
Moreover
R(Y (t),c ZYl t), E1(t)Er(t) = > Y Y(t)RE, () Ex(t)
=1 k=1

where Zk L REL(OER(t) = R(Ei(t), E1(t))F1(t) and RE, € C°°([a,b],R). Note that
Ry, =Rl =0forallki=1,...,m.
Therefore, the Jacobi equatlon (%) is equivalent to

(YFY'(t) + Z REL(t) =0, k=2...,m, and (Y!)"(t) = 0.
This is a linear System of ODEs of second order and has a unique solution for initial values
Y (tp) = v and Y'(tp) = w with ¢y € [a,b]. In the following let [a,b] = [0,T] and to = 0.

It follows that {Y € I'(¢*T'M) : Y Jacobi} is a 2m-dimensional R-vector space.
The Jacobi equation is the linearisation of the geodesic equation.
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6.5 Lemma. Let ¢ be a geodesic and Y € T'(c*TM). We can write Y = YT + Y+
where Y| and Y+ L ¢, ice. (YL, ) =0. (If E; is as before, then Y = Y'E; and
Yt=y-Y". )

Then'Y is a Jacobi field if and only if Y and Y+ are Jacobi field.

Proof. One direction is clear.

Assume Y is Jacobi. Then Y satisfies (Y!)"”(¢) = 0. Hence 3a,b € R such that
Y1(t) = a+tb and therefore Y ' = (a+tb)c that satisfies the Jacobi equation. Hence Y '
is a Jacobi field.

Since the Jacobi equation is linear, also Y+ =Y — Y ' is a Jacoi field. O
6.6 Remark. dim{Y € T'(¢*TM) : Y L ¢ and Jacobi} = 2m — 2.

6.7 Example. Let (M, g) be Riem. mfd. with constant sectional curvature Ky <=
R(u,v)w = Ko ((v,w)u — (u, w)v).

Let E;,i = 1,...,m be orthonormal, parallel frame along ¢ with ¢/(t) = E1(t). Then
R(Ej, Em)Em = K() (Ej - 5ijm) and

Riyy =Ko (65— 6;16) =0if j=1i=1orj#4,4,j>1, and = Koifi=j> 1.
It follows that Y = Y, Y'E; Jacobi field (with Y L ¢)

— YY"+ K)Y'=0Vi=2,....m
<= JA, B € I'(¢*T M) parallel along ¢ d.h. V;A = V,B = 0 such that

cos (vVKot) A(t) + sin (vEot) B(t) Ko >0,
Y(t) = < A(t) + tB(t) Ky =0,
cosh(+/|Ko|t)A(t) 4+ sinh(\/|Ko|t)B(t) Ko < 0.

6.8 Lemma. Let c(t) = exp,(tv) = c,(t), t € [0,T], be a geodesic with v € T,M, let

w,z € T,M andY the Jacobi field with Y (0) = w and Y'(t) = z. We choose 7y : (—¢€,€) —
M with v(0) = p and ' (0) = w, and X € T'(v*TM) with X(0) = v and Vi X = z. Then

0 0
Y(t) = 5 lr=0exDy(r) (tX (7)) = - lr=0 exp(tX (7).
In particular, if w =0, then v =p and X(t) € I(T,M). It follows in this case

Y(t) = % - exp, (tX (7)) = D(exp,)w(tz) = tD(expy)ww(2).

Every Jacobi field is the variation vector field of a 1-Parameter family of geodesics.
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Proof. Consider a: [0, T] x (—¢,€) — M with a(t, 7) = exp,(;)(tX(7)). a is smooth. Then
%a(t,O) = (t) and % T
1-parameter family of geodesics.

We have also observed that Vtg—ff = VT%—‘,Z‘. Att =01t follows Y (0) = %\710 expy(r)(0) =
v/ (0) = w. Moreover

7004(15,0) = Y(t) is a Jacobi field along ¢ since a is a smooth

toJe Oa d
S P A tX(n)| _ =v.x _—
Vioron = ot ‘(0,0) v (dt‘t:O expy () (EX (1) )| _y =V X ()| _ =2
Because of uniqueness of the initial value problem it follows ¥ = Y. O

6.9 Definition. Let (M, g) be a Riemannian manifold and p € M. A point ¢ € M is
called conjugated to p if g is a singular value of the map exp,, i.e. Jv € T, M with expp(v)
such that D(exp,), : TyM — Ty M is degenerated (does not have full rank).

The next corollary follows directly from the previous lemma.

6.10 Corollary. A point ¢ € M is conjugated to p if and only if there exists a geodesic
c:10,T] = M with ¢(0) = p and ¢(T') = q, and a Jacobi field Y # 0 along ¢ such that
Y(0) =Y (T) =0. One also says q is conjugated to p along ¢ (via'Y ).

6.11 Remark. If ¢ is conjugated to p along ¢ : [0, 7] — M viaY, then it follows (Y (0), ¢/(0)) =
0 = (Y/(T),d(T)). But Yi(t) = (Y(t),d(t)) is linear. Hence (Y (t),c/(t)) = 0 for all
t € [0,T). It follows that Y is orthogonal to ¢'.

Let U C T M be open and star-shaped w.r.t. 0p, and let exp, lv:U —V C M be
a diffeomorphism. We want to analyze the pull-back metric g = (exp,)*g on T,M. g is
essentially g in normal coordinates.

In the following we use the notation R(u,v,w, z) = (R(u,v)w, z). Note that go, (w, z) =
gp(D(epr)opw,D(epr)gp) = gp(w, 2) =: (w, 2)p.

6.12 Theorem. Vu € U and Vw, z € TyM ~T,(T,M):

~ 1 1
g(w,2) = (w,2)p — sR(w,v,v,2) — =(VyR)(w,v,v, 2) + 0((1},@}]2])
3 6 N—
[o|4 f(v,w,z) with §f bounded
(Taylor expansion of g at v € TyM)

Proof. Let c(t) = exp,(tv) and let P, = Fg, : T,M — T,;)M be the parallel transport
along c. We define

R(t) = P, (R(P(-), ¢ (1)¢ (t)) € End(T,M).
Since P, is orthogonal and because of the symmetries of R it follows

(R(t)w, z)p = (w, R(t)2)p-
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Hence R(t) is symmetric linear map (self-adjoint). Also note the following: R'(0)w =
(VyR)(w,v)v. Moreover V, R satisfies the same symmetries as R and therefore R'(0) is
also symmetric.

Let y : [0,1] — End(7, M) be the solution of the following system of ODEs:

y"(t) + R(t)y(t) = 0 with y(0) = 0 and y'(0) = id7,pm-

Then it is straightforward to check that y solves this equation if and only if Y (t) =
Pi(y(t)w) is a Jacobi field along ¢ with Y(0) = 0 and Y'(0) = w. Indeed we have

Y'(t) = P(y" (t)w) = —P(R(t)y(t)w) = —R(Py(t)w, ' (t))'(t) = —=R(Y (t), ¢ (t))c'(¢).

Note that D(exp,,)ww = 2 Pyy(t)w because of the previous lemma. Hence

Jo(w, z) = gc(t)(D(epr)tvw7D(expp)t’vz) = t%(y(t)w,y(t)@p

where we used again that P; is orthogonal.
Now we compute the Taylor expansion of y(t). We have y(0) = 0 and y'(0) = idr, .
Also

y"(0) = —R(0)y(0) = 0, y"(0) = —R'(0)y(0) — R(0)y'(0) = —R(0)
and
y@(0) = —R"(0)y(0) — R'(0)y/(0) — R'(0)y/(0) — R(0)y"(0) = —2R/(0).
It follows
1

12t4R’(0)+o(t4).

1 1 1 , 1
y(t) = y(o)+ty'(0)+§t2’y"(0)+6t3y’"(0)+ﬂt4y""(0)+0(t4) = fldTprgtSR(U)Jr

Inserting this into the formula for g yields (after rearranging the terms)

G, 2) = (w, 2)) — ét2<R(0)w, 2y — étQ(w, R(0)2) — 1—12t3<R’(0)w, 2y — %t?’(w, R(0)2) + o(th)

— (w0, 2), — %t%R(O)w, 2y — ét?’(R’(O)w, 2) + ofth)

Now we can choose U = v/|v| for v and |v| for t. It follows that §|v[*(R(0)w,z) =
tR(w,v,v,2) and ¢|v[3(R'(0)w,z) = ¢(V,R)(w,v,v, 2). O

6.13 Corollary. Let (M,g) be Riem. mfd. and let p € M. Assume exp,|p, ) is a
diffeomorphism. If the sectional curvature K(E) > 0 VE € Go(T,M) (K(E) < 0), then
there exists p1 € (0, p) such that

d(exp,(v),exp,(w)) < v —wlp, (= [v—wp).

7 =7 holds only if v = Aw with A > 0.
exp,, is locally distance decreasing (increasing).
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Proof. Let K(E) > 0 and E = span(v,z) with v,z € T,M and (v,z) = 0. Then
(R(2,0),0,2) = K(E)[o]|2[2.

We fix v € T,M. For all E with v € E we find z € T,M with z L v and |z| = 1 such
that span(v,z) = E. Then we can consider K as a function on {z € T,M : z L v,|z| = 1}
that is continuous and hence Je > 0 s.t. mingeg, (1, M) veE K(E) = 6e > 0.

The Taylor expansion formula of the previous Theorem implies

~ 1 1

Gu(2,2) = 2" = SK(B)oP|2* = S(VoR)(2,0,0,2) + Vlpf (2,0, 2)
where (z,w) — f(z,v,w) is bilinear. Let |v| be small enough such that V,R(z,v,v, 2) +
[v[2f (2,0, 2) < €|v]2|z]5. Then it follows that

gu(z,2) < (1 = evf)l2l;.

Now let w € T,M be arbitrary and decompose w as w = w' + w’ where w' [[v and
wt L v. Then

2

~ T T
go(w,w) = |wly = |w" F+wt 7 < |Dexpy)o(w )2, o)

1 T
(L —efvlp) w5 < fw 34w,

In the seconde equality and in the second inequality for the first term, we also used the
Gaufl Lemma.

Now, we choose d; € (0,9) small enough and v, w € Bs, (0,,). For v(t) = (1 — t)v + tw
we have y(t) € Bs, (0,) (81 should be small enough such that the previous estimates hold).

Then §,(7/(t),7'(t)) < |¥/(t)[2. Taking the square root and integrating from 0 to 1
yields ~

L9(exp, 0v) = LY(y) < L#(v) = [v — wlp.

Taking the infimum w.r.t. v on the left hand side yields d?(exp,, v, exp, w) < [v — w]p.

Assume equality. Then g,(7/'(t),7'(t)) = |7/ (¢)]2 Vt € [0,1]. Hence, the Taylor ex-
pansion, with v and ~/(t)* inserted, equals |y/(¢)*|,. Hence K(span(y'(t)*,v)) = 0 and
therefore /() = 0. Hence /(t) = /()" V¢t € [0, 1]. O

6.14 Remark. One can even show the following refined statement. Let v L w € T,M with
|v]p = |w|p =1 and let E € G2(T,M) be the plane generated by v and w. Then

dy(co(t), cult)) = V3t <1 - K(E)étQ + 0(t4)) |

Hence, the sectional curvature only depends on the distance d,.

6.15 Theorem (E. Cartan). Let (M, g) and (M, §) be Riemannian manifolds with dimyy =
dimgz, p € M, p € M, and there exists an orthogonal map I : (T,M, g,) — (T, M, gy) such
that
Rle, () (Pw, (1), ¢,(1), Pw) = Re 1y (P, (1), ¢5(1), Pw) (+)

for all v,w € T,M with v = Iv,w = Iw. Here P = P&“l and P = ng.

Let U C T,M be open and starshaped w.r.t. Oy such that exp, | is a diffeomorphism
and let U = I(U) such that exp;|5 is a diffeomorphism.

Then expgolo(exp, [v)~! = F is an isometry between V = exp,(U) and V = exp(U).
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Proof. Define R,(t) = P, 'R(Puw, c,(t))c,(t). By Lemma (*x) implies
R[cv(l)(Pw,c;(l),c;(l),Pz) = E%(l)(ﬁﬁ, c%(l),c%(l),]gz) Yo, w,z € T,M.

Then we have B
I Vo Ry(t) oI = Ry(t) Yo € T,M (*).

This follows since we have Vv, w, z € T, M

(R, 2y = (T o Rylt))w, 2} = (Bs(t) o Tw, 2 = (I~ o Bi(t) 0 w, 2,
Let y,(t) € End(T,M) be the solution of
Yo (t) + Ryyy = 0 and y,(0) =0, v, (0) = id7,as.

Because of (x) we have yz oI = I oy,(t), and Py, (t)w as well as ngyg(t)@ are Jacobi
fields. In[6.8 Lemma we showed that

D(expp)to(tw) = FPgy(yo(t)(tw)),  D(expp)m(tw) = Poj(ys(t)tw).

Hence Vv € U and Vw € T),M, setting t = 1,

‘D(expp)vw|expp(v) = |P(():751yv(1)w‘expp(v) = ’yv(l)w|p = |I © yv(l)w"ﬁ = ’y'ﬁ(l)ﬁ”’ﬁ = |D(expp)i7 B Iw|ex/\55(m'

Similarly one can show, using that the parallel transport is orthogonal, that
gexpp(v) (D(epr)vwa D(expp)vz) = gé?(f);(ﬂ) (D(é;f)ﬁ)ijwv D(é—)ﬁ/)'ﬁ)ﬂl'z)

Hence D(exps)y o I o D(exp,),! is an orthogonal map for all v € U, and consequently
expyo I o (exp, |y)~! is an isometry. O

6.16 Remark. (1) Note also the following: if exp; is defined on U then F is a local
isometry.

(2) If exp, and exp; are diffeomorphisms on 7, M and T];M respectively, then the map
é\(f)%l o I oexp, is an isometry between M and M.
But: if the assumptions in the previous theorem hold at any point (the curvature
tensors of ¢ ir/ld g are locally the same), then in general this does Not imply that
(M, g) and (M,g) are isometric.

6.17 Corollary. Let (M,g) and (M, g) with the same constant sectional curvature K

and with dimy; = dimgz. Consider p € M and p € M and I : (TyM, gp) — (Tﬁﬁ, 95)
orthogonal. Then there exist open neighborhoods V of p and 1% of p and an isometry

F:(V,glv)— (TN/,§|‘~/) such that F(p) =p and DF, = 1.

Consider
(S;)nai*<‘7 ‘>eucl) K = p% > 07
MTI@ = (Rma <'7 '>eucl) K = 0;
(H™,i*g1) K=—;<0.

Recall that S7' = {x € R™1: (2, ) ey = p?} and HY = {x € R™H gy (2, x) = p?}.
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Remark. If a Riemannian manifold (M, g) is frame homogeneous (" Raum freier Beweglichkeit”),
then the sectional curvature is constant K = Ky € R.

Proof. VE,NE C Go(TM) Fisometry F : (M,g) — (M, g) such that DF(E) = E. Then it
follows K(E) = K(DF(FE)) = K(E). O

Hence M7 has constant sectional curvature.
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6.18 Lemma. Let (M, g) be a Riem. mfd. and T C Isom(ﬂ,@ a subgroup that operates

free and properly discontinuous on M. Then there exists exactly one Riem. metric g on
M/T such that w: (M,g) — (M, g) is a local isometry (for every point p € M there exists
an open neighborhood V' such that (7|y)*g =9).

Proof. We know that M/T" is a smooth manifold and 7 is a covering map, i.e. a local
diffeomorphism.

Uniqueness of g: Let p € 7~ !({p}). For v € T,M there exsits exactly one ¥ € Tg]\? such
that Drzv = v. Hence g has to satify g,(v,v) = grp) (D750, Drpv) = g5(0,0).

Existence of g: Define g,(v,v) via g5(v,v). This is well-defined, since for any other p €
7 ({p}) and © € T;M as above, it follows that there exists an isometry F € I' such that
F(p) = pand mo F = m. Hence DrzDF30 = Dnyv. This implies DFj0 = v. Therefore
55(6, 5) = gF(ﬁ)(DFp’[), DFI;@) = gﬁ(f),f)). O
6.19 Theorem. Let (M™, g) be a complete, connected Riem. mfd. with constant sectional

curvature K. (M™, g) is called a space form. Then 3I' C Isom(M7}}) subgroup, such that
(M, g) is isometric to M /T,

Proof of[6.19 Theorem. We set

s
TR K > 0.

Choose pg € M%, p € M and I : T, )M} — T,,M orthogonal and define

00 K <0,
p:

F = exp, ol o (expy, |BP(OT’0))_1

Since M is complete, exp,, is defined on T),M and F' therefore well-defined and a local
isometry because of Cartan’s theorem. It follows

K <0: F:Mp — M is alocal isometry,
K>0: F:SM\{-po} — M is a local isometry.

In the case of K > 0 we pick qo € SJ"\{po, —po} and consider F(qo) = g € M as well as

I:= DFy, : T4, Syt — TgM. I is orthogonal.
We repeat the construction and define F= exp, ol o (expy, |S;)n\{_q0}) that is again a
local isometry.

It holds Dﬁqo =1= DF,, by construction.

6.20 Lemma (Rigidity of Isometries). Let (M,g) and (N,h) be Riemannian manifolds
with dimy; = dimy, and let F : (M,g9) — (N,h) be an isometry. Let p € M and

f(p)=q€N.

et U, C an C e the open domains where expy |y, and expl' |y, are
1) Let U, C T,M and U, C TyN be th domains wh My, and exp) |y,
defined. Then DF,(Up) C Uy and F o exp;‘,/l = expflv oDF), on Up.
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(2) If M is connected and L : (T,M, g,) — (TyN, hyq) orthogonal, then there is at most
one isometry F : (M, g) — (N, h) such that DF, = L.

Proof of the lemma. Let v € U, and ¢,(t) = expfgw(tv). Since F' is an isometry also f o
exph! (tv) is a geodesic in N. It follows %\tzo(FoeXp}ﬂVl (tv)) = DF,v. Hence Foexp)! (tv) =
expl (tDFpv) and DF,U, C U,. For t = 1 we also get Foexp)! (v) = exp) oDFyv Vv € U,,.
This proves (1).

Let F, F be isometries with DF, = DF, = L. Define

A={zeM:F(z)=F(z),DF, = DF,} # 0.

Note that T DF is contlnuous Hence A is closed We show A is also open. Indeed
Fo expp = exp oDF, = expp oDFp =Fo exp on Up. In particular ' = Fina
neighborhood of p. Since M is connected, it follows A = M. This proves the lemma. [

It follows F = Fina neighborhood of qg, and we can extend F' to —pgy via F(—pg) =

F(=po).

In any case F' : M — M is a local isometry and hence a covering map. Since M7 is

simply connected, it follows that F' : M7 =: M — M is in fact the universal cover of M.
Consider subgroup I' C Diff(]\7 ) of deck transformations of the covering, i.e. f €T

satisfies ' o f = F. In particular DF;Df; = DFj;. Therefore I' is even a group of

isometries on (M, §). Hence there exists exactly one Riemannian metric h on M /T (up to

isometries) such that = : M — M / I" is a local isometry where 7 is the ‘quotient map. But
by construction F = 7 and M = M /T. Hence (M, g) is isometric to (M /T, h). O

6.21 Remark. The space form problem is about to determine all compact Riem. Manifolds
with constant sectional curvature K up to isometries. The previous theorem tell us that
this becomes the problem of finding all subgroups (up to conjugation) of Isom(M7}}) that
act freely and properly discontinuous with compact quotient.

(a) K = 0: Every space form (M,g) is finitely covered by a flat torus (Bieberbach
Theorem).

(b) K > 0: M} is compact. Hence, the cardinality #I" of the subgroup in Isom(M7}}) is
finite. A full classification was given by J.A. Wolf: Spaces of constant curvature.

Note that, if m = 2n for n € N, then I' can only be {idsm } or {idgm ,—idsm }.

VK VK VK
Hence, only S and —=RP"™ can appear as space forms if m = 2n.
= VK
If m = 3, one obtains so-called lense spaces L, , = S3/ I'y4 that depend on two real

parameters.

(¢) K < 0: For m = 2 the problem is solved (”Teichmiillerraum”). For m > 3 the
construction of subgroups I' is difficult and the full classification is open. (Theorem
of Mostow: 1 (M™) ~ Wl(M "), then the corresponding group isomorphism induces
a unique isometry.
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6.22 Definition. Let (M, g) be a Riemannian manifold, p € M and (e;)i=1,...m an ONB
of (T, M, gp).

(1) The Ricci curvature ric™ = ricd =: ric of (M, g) is the symmetric (0, 2)-Tensorfield
m
ric : M — TYM, ricy(v,u) = trace (m € T,M — R(z,v)u € TpM) = Z(R(ei,v)u, €i)p-
i=1

Remark. Ifv = u = ey, then ric,(v,v) = ST R(es,v)v, e;) = S " K (span(v, e;)).

(2) The Scalar curvature S : M — R of (M, g) is defined as the trace of ric via

E I'le €i,€;)-

=1

6.23 Example. Consider the unit sphere S™ in R™*! equipped with the induced metric
i*(-, )euci- Then K =1 and

ric,(v,v) = |v|? Z 1= v} (m—1), ricy(v,u) = (m —1)gy(v,u).
and S(p) = (m — 1)n.

A geometric Meaning of Ricci curvature. Let ¢ : U — V be a chart and A C U be
measurable. The m-dimensional volume of A w.r.t. g was defined as

vold, (A) = / | det gi]2 0 o' (x)da.
p(A
In particular, if ¢ = (exp, lv)~! and A= ©(A) C T,M, then

Vol%l(A):/Jdetﬁx(ei,ej)ﬁdx
A

where g|, = ¢*g|,. This is indeed clear since

_ 0 0 _ _ -
gijop Ya) = gwl(x)(%bfl(m), %bfl(@) = Gp-1()(D(p D.ei, D(p 1)Iej) = gz(€i, €j).

Also note that
ga(eirej) = (ye(Dei ya(De;) = (y2(1)) e €5)
and hence det g, (e;, ej)% = det y, ().

6.24 Corollary. If ric(v,v) > 0 (or ric(v,v) < 0) Vv € T,M\{0}, then it follows that
exp, is volume decreasing (increasing) in a neighborhood of 0,. More precisely U C T, M
a neighborhood of 0, such that

vold, (exp,(A)) < volig (A) ().
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Proof. Let v € T,M and set a(t) := a,(t) = 1y, (t). Recall the Taylor expansion
. 1 1
yo(t) = tidp, ar — 6t?”Rv(O) + Ezt‘lR;,(O) + o(th).

We can choose v = v/|v|. Then one easily check from the defining ODE of y; that
i¥a(t[v]) = yu(t). Hence ay(t) = yu(t) = g55(tlv]) and

1 :
ay(t) = —ys(tlv]) = idr,m —

o]

SRS(O0)(tlo])? + 5 RE(O) (o) + oo
——

In particular a satisfies a(0) = idr, a7, a’(0) = 0 and a”(0) = —1 R, (0).
We compute the Taylor expansion of det a(t): One has

(det a(t))'(t) = det a(t)trace(a’(t)a(t) ™),
(deta(t))”(t) = (deta) (t)trace(d’(t)a(t) ™)
+ det a(t) (trace(a”(lt)a(lt)_1 + trace(a'(t)(—1)a(t)_1a'(t)a(t)_1))

We observe that

1
deta(0) =1, deta(t) =0 and (deta)”(0) = tracea” (0) = —= traceR,(0) .
3 ———

ricp (v,v)

Hence .
det a,(t) = deta(t) =1— G ric, (v, v)t? + o(t?|v|?).

Especially for ¢ = 1 we get
1
det a,(1) = detaz(|jv]) =1 — 8 ric, (v, v) + o(|v]?).
More precisely, o(|v|?) has the form f(|v])|v|? for a continuous function f with f(0) = 0.

Our assumption ric,(v,v) > 0 Vv € T,M yields that we can choose a neighborhood U of
0p such that

1.
— = xicy(v,0) + F(Jel) ol < 0

for all v € U. Then it follows for A C U and A = exp,(A) that

volﬁl(A):/Jdetyv(l)]dx:/Jdetav(l)\dxS[ldxzvolfﬁ’(ﬁ).
A A A
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A geometric meaning of Scalarcurvature.
6.25 Corollary. Let (M, g) be a Riem. manifold, p € M and dimy; = m. Then

1

volf, (By(p)) = wmp™ (1 )]

S()p + o(p2>)

where wy, = vol&*(B;(0)).

Remark. o(p?) is in fact o(p3) (Reference: A. Gray ”The volume of a small geodesic ball
of a Riemannian manifolde”).

Proof. We already saw that
voly (By(p)) = / dety,(1)dz! ... da™
By(0p)

where we have the Taylor expansion dety,(1) = 1 — % ric(z, z) + o(|z|*). Moreover

. spt m—1 . spt pm—i—l m—1 :
ric(z, z)dvol,) | =p ric(z, z)dvol,} | = voly,—1 (S ) traceric, .
9B,(0p) 0B1(0p) m —_———
5(p)
Hence
P ]. . Smfl - 2
voly (B,(p)) = wmp™ —/ / —ric(z, x)dvol,” | dp+o(p*™™)
0 JoB5(0y)
~ 5oy P28 (P)wm
[

Corollary. 3V C M x M neighborhood of {(p,p) e M x M :pe M} and V' C TM
a neighborhood of {0, € T,M : p € M} such that 7 x (exp |y+) : V' — V diffeomorphismus.
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7 Second Variation of arclength and Bonnet-Myers theorem

Let (M, g) be a Riem. mfd.

7.1 Theorem (Second variation formula). Let ¢ : [a,b] = M be a geodesic with || =
and let a : [a,b] X (—€,€) X (—€,€) = M be smooth such that c(t) = «(t,0,0). ( (t)
%al(m’o).) Set a(t,o0,7) = ay-(t),t € [a,b] and

Oa Oa .
V(t) = 870_‘(15,0,0)7 W(t) = Ekt’o,o) S F(C TM).

1

We define
L(aw,) = L(o, ) = / g?(t o7 dt, L(0,0) = L(e).
Moreover V! =V V and W' = V;W. Then
2,, b
el = [ (VO W0 — ROV, 0, W) — Vs ()W, (1)

oo b

s /
+ (Vo ] NIO)

In particular, if (V,c) =0 = (W,c) and a(a,o,7) = c(a), a(b,o,7) = c(b) Vo, 7 € (—¢,¢)?
(hence V. and W satisfy V(a) = V(b) = W(a) = W(b) = 0 and are therefore so-called

proper variations), we get
0%L ’
0o 0T 1(0,0)

where (V! W) = (V' W) + (V!,W') and the boundary condition is used for the last
equality.

= /b (V!,W') = (R(V, ), W)) dt = — /b<V" + R(V, ), W)dt

a

Proof. We first compute

oL 0 |0« b1 Har -1 da Do

E(O’,T) _/a 67' ot (t 9; T) dt_/a E(taavT) <V7'Eaa>(t,0',7')dt
Oa - da Oa

_/a ot — (t0,7) <Vt8f, a>(t,a, T)dt

where we used the chain rule and that we can switch the partial derivative w.r.t. ¢ and
co-variant derivative w.r.t. 7. We further compute

2L b o [|da da Do
Serten = | &;( X o) <Vta )t )) dt
b (10 -1 da da da _ Oa
:/a { E() <<V vt@ >y — )\ t,o,7) + (V, t ,Vta >(t,0,7)>
_ Oa Jda Oa Jda Oa

E() (V o 8t>(t o, T)<Vta 3t>(t o, T)}dt

61



Evaluation at (o, 7) = (0,0) yields

O’L
0001 (0,0)
oo

b
= [ TG gy 0 + VO — (V0. OV 0.0 e

b (0%
= [ TG 0) ~RVO. OO W @) + 7)) + (W W0 fa

4 (Vy92]10,0,¢(£)—0

This is the claim. O

Notation.
M. ={V €T(¢*TM) : V orthogonal, (V,¢') = 0,V (b) = V(a) = 0 piecewise C?}
where ¢ : [a,b] — M Geodaétische.

7.2 Definition. The symmetric bilinear form I. : M, x M, — R defined via
b
LV = [ (VW) = RV W)

is called index form of c.

Remark. Let a(t,0) be a proper variation of ¢ such that the variation vectorfield V(t) =
G2 1) satisfies V(t) L ¢(t) V¢ € [a,b]. Then it follows that L () |oo = L(V, V).

7.3 Corollary. Let c: [a,b] = M be a minimal geodesic, i.e. L(c) = d9(c(a),c(b)), then
1. is positive semi-definit.

Proof. Pick V'€ M. and let a(t,0) = exp.y(aV (1)), ie. g—g(t,()) = V(t). Since c is a

minimal geodesic, L(ay) has a minimum at o = 0. Hence %L(ag) =0 and %L(a) =

I.(V,V) > 0. O

7.4 Theorem (Bonnet-Myers). Let (M,g) be a complete, connected Riem. mfd. with
dimy; = m and Yv € TM one has ric(v,v) > (m — 1)Ko > 0. Then it follows that

™

diamy; = sup, yep d?(7,y) < TR
In particular: M is compact and the first fundamental group mi (M) is finite.

7.5 Remark. (1) K(E)> Ky VE € Go(TM), then

m m—1
ric(v,v) = Z(R(ei,v)v, i) = Z K (span(e;,v) > (m — 1) K.
i=1 i=1

where v € T,M for p € M and (e;) is an ONB of (T),M, g,) with e, = v.
(2) SYT* satisfies Ky = K =1 and diam S}" = 7.
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(3) (M,g) complete and connected with diamy; < co = M is compact (Hopf-Rinow-
Theorem), since exp,( Br(0,) ) = M
———

compact

(4) Let 7 : M — M be the universal cover and define § = 7*g that is a Riemannian
metric on M such that 7 is a local isometry. Hence ric, > (m — 1)Ko = ricz >

(m — 1)Ky. The theorem of Bonnet-Myers implies M is compact, and therefore
71 (M), that is isomorphic to the group of deck transformations, is finite.

Proof. Assume the statement is false and there exist points p, ¢ such that d9(p,q) = L >
\/}TT' Let ¢ be the geodesic that connects p and ¢ with |¢/| = 1 and let Ey, ..., Ep_1, By =

0

¢ € T(¢*T'M) ONB for every time ¢.
We define vectorfields Vj(t) = sin(w/Lt)E;(t). It follows that V;(0) = 0 and v;(L) = 0.
Moreover

L L
1.(V;, V) :—/0 <Vj,vj”+R(Vj,c’)c’,Vj>dt=/0 sin(rr/Lt)? (n?/L* — K (span(E;, Ep,))) .

Summing up w.r.t. j yields

> LV, V) = /L sin(r/Lt)? ((m — 1)7?/L? — ric(Ep, Em)) dt < 0.
0

Hence, there exists one index jo € {1,...,m—1} such that I.(V}, V;) < 0. This contradicts
minimality of c. O
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Let (M, g) be a Riemannian manifold and let ¢ : [a,b] — M be a geodesic.
Recall

M. ={V €T(c¢*TM) : V orthogonal, (V,c') = 0,V (b) = V(a) = 0 piecewise C?}

and
b
L(V,W) = / LV W'y — (R(V. ), W)} dt.

A point t € (a,b] is conjugated to a < 3 Jacobi field Y that vanishes in a and ¢t <
D(expe(g))ier(0) is degenerated.

7.6 Lemma. IfV € M. with I.(V,IW)=0VW € M., then V is a Jacobi field.

Proof. Let a =ty <ty <--- <t, =bsuch that V|, , C?.
0= L(V, W) = Z/ (Ve WY — (RV, &), W) Yt = ()
i=1"7ti-1
Recall (V/, W) = (V" W)+ (V',W'). Hence

(%)

n b
S (VL W) — (V! W) (1)) — / (V" R(V, ), W (t)dt
1 a

.
I

/

I
NE

(V

b
(1) — VL), W (t) — / (V" 4 R(V, &), WY (#)dt = (%)

! —:A, V!

-.
Il

Choose now W € M, with sptW C (t;-1,t;) Vi = 1,...,n. Then it follows
b
() = — / (V" + R(V, ), W)(#)dt.
a

Hence V" + R(V, )¢’ =0 on (t;—1,t;) Vi = 1,...,n. Therefore

n

0="> (A, V,W(t)) YW € M..
=1

Choose W € M, with sptW C (ti—1,ti+1) and such that W(t;) = AV’ for one i €
{1,...,n—1}. Tt follows

L(V,W)=|A, (VY2 =0 = V() =V"*().

Hence V is C! in t; Vi, and since V satisfies the Jacobi equation in [t;_1,%;] for all 4, it is
even smooth and satisfies the Jacobi equation on [a, b]. O

7.7 Theorem. Let ¢ : [a,b] — M be a geodesic and there is nott € (a,b] that is conjugated
to a along c. Then
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(a) I.: M. x M. — R is positive definit.

(b) (Index Lemma) If V € T'(¢*TM) with (V,c') = 0 and if Y is the Jabobi field with
Y(a) =V(a) and Y (b) = V(b), it follows I.(V,V) > I.(Y,Y) with” =7 if and only
Y = V.

Proof. (1) We show: I, is positive semi-definit on M.. W.l.o.g. a =0 and c(0) = p.

For V' € M, we consider the variation a(t,0) = exp. (o V (t)), i.e. 9o (t,0) = V(1)
and a(t,0) = c(t). «a is piecewise C? on [t;_1,t;] X (—¢,¢€) for a decomposition of
0=ty <ty <---<t,=>of[0,b and € > 0 small enough.

Recall: every t € [0,b] is not conjugated to 0 < D(exp, ) (o) is not degenerated
vt € [a, b].

Hence 3¢ > 0 and & : [0,b] x (—¢,€) — T, M such that exp,oa = o and &(0,0) = 0,
and a(b, o) = bc'(0).

More explicitly: since ¢([0,b]) is compact we can find n € N and U;, i = 1,...,n,
such that ¢; := expp lu; : Ui — Vi = exp,(U;) is a diffeomorphism Vi = 1,...,n and
such that ¢([t;—1,%:]) C V; (note that for exp, is a diffeomorphism in a sufficiently
small neighborhood of ¢(t) for every ¢ € [0,b]). Moreover we can choose ¢; > 0 such
that a([ti—1,ti] x (—€i,€)) C Vi. Set € = min; ¢;. Set O“[ti_l,ti]x(—e,s)' Now we can
define «a as follows

alt,o) = ¢; L oay(t,o) for (t,0) € [ti—1,ti] x (—€,¢).
This is well-defined, since go;l oa(t;) = gp;rll o ay1(t;).
The Gauss Lemma implies L(0) := L(a(-,0)) = L(a(-,0)) and L(o) > L(0).
More explicitely: Set v(t) = a(t,0) for o € (—¢,€) fixed, and ¥(t,0) = a(t, o). Hence
exp, 0y = 7. exp, is a local diffeomorphism on | J;_, U; =: U. Hence g = (expp)

is a well-defined Riemannian metric on U and by construction LI(7) = L9 (7). Wi
can decompose 7' (t) as follows

() =7 + 37 (), J<(f>)|§’ \f%)r;

Note that g(3'(t).7(1))/I7(t)lz = (9(7.7)"/?)". Hence

b b
)= [ ROt > [ RO = F0)l =0 = be0); = L(c).

= L"(0) >0 = L"(0) = I.(V,V) > 0.

(2) sVeM,and I.(V,V) =0
By (1) it follows 0 < I.(V + eW,V + eW) = 2el,(V,W) + 2I.(W,W) Ve > 0 and
YW e M..

It follows I.(V,W) > 0. Replacing W with W implies I.(V,W) = 0 YW € M..
Hence V is a Jacobi field with V/(0) = V(b) = 0 (since V. € M,.). This is a
contradiction with b not conjugated to 0.

Hence I. positive definit. This proves a.
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(3) Uniqueness of the Jacobi field Y in (b): Consider the space of ) of orthogonal Jacobi
field along ¢ (this is a (2m — 2)-dimensional vector space).
We consider the linear map Y € Y + (Y (a), Y (b)) € (¢'(a))* @ (¢'(b))*. The kernel
of this map is 0. Otherwise a, b are conjugated to each other.
Now we consider V —Y € M,. (a) implies I.(V,V) = 2I.(V.Y)+ I.(Y,Y) = I.(V —
Y,V-Y)>0.
We show —2I.(V,Y) + I.(Y,Y) = —I.(Y,Y). Indeed

(V)Y) / {Y’ R(Y, ), V) }dt
=) - /(Y”+R(Yc)c Vyd = (v, v)|
(Y,Y) / [y = (R(Y, ), V) } dt = Y’,Y}‘b

Hence I.(V,Y) =I.(Y,Y) .
If 1.(V,V) =I1.(Y,Y), then I.(V =Y,V —Y) = 0. Since I, positive definit, it follows
V-Y=0.

O

7.8 Theorem. Let c: [a,b] — M be a geodesic and let ty € (a,b) be conjugated to a along
c. Then 3X € M, such that I.(X,X) < 0. In particular ¢ is not a minimal geodesic.

Proof. 3Y # 0 Jacobi field along ¢ with Y (a) = Y (t9) = 0. We define

Hence V € M..

Moreover let W € M, be smooth such that W (ty) = —Y”(ty). It holds Y'(t) # 0, since
otherwise Y =0, and Y'(t) L ¢/(t), since 0 = (Y, )/ (t) = (Y'(t), (t)).

Next we define for € > 0, X, =V + eW € M,.. Then

I(Xe, X) = I.(V,V) +2¢ I(V,W) +eI(W, W).
N—— N——
=(V'=(t0)=V'*(t0),V (to))=0 =(V'= (t0)=V'* (t0), W (to))=—Y" (to)|2=—|W (t0)|?
Hence I.(X¢, X.) = —2¢|W(to)|* + 2I.(W,W) and for ¢ > 0 small enough it follows
I.(X., X)) <O. O
7.9 Remark. e ¢ minimal geodesic = I, positive semi-definit.

e I, is not positive definit = 3 ¢y € (a, b] conjugated with a.

e Jty € (a,b) conjugated with a = I.. is Not positive semi-definit = ¢ is not a minimal
geodesic.
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8 Rauch comparison theorem

8.1 Theorem (Rauch). Let (M, g),(M, g) be Riem. mfds. with dimy; < dimg;. Let
¢,¢:]0,L] — M, M be geodesics with || = |&| = 1. We assume

1.Vt € [0,L] and VE € Go(T, M) with ¢'(t) € E and VE € GQ(Tg(t)M) with @ (t) € E
it holds KE) < K(E),

2. There is no t € (0,L) conjugated to 0 along c.

IfY,Y are Jacobi fields along c,¢ with Y (0) = 0 = Y (0), (Y'(0),(0)) = (Y'(0),&(0)) and
[Y'(0)| = |Y'(0)|, then it follows

Y ()| > Y (t)] Vt € [0, L.
Proof. W.lo.g. we assume (Y, ) = (Y, @) = 0. Then, by the rule of L'Hospital,

s YOP L Y OF _ [Y0)

=0 (Y ()2 0 [YI()2 |Y(0)]

For this also note that (YY) = 2(Y',Y) and 2(Y,Y) = 2(Y")Y) + 2(Y.Y') —
(Y'(0),Y'(0)) as t — 0.

Then it is enough to show that %:}};8:2 >0Vt €[0,L]. Then :1};8:2 is monotone non-

decreasing and hence :ggg:z >1Vte|o,L]

Morcover 4 ggg:j >0 (Y,YNY,Y) > (Y, Y)Y, Y).

If tg € (0, L] with Y (¢9) = 0, then the inequality follows trivally.

Let t1 € (0, L) be arbitrary such that Y(¢1) # 0. By replacing Y with oY for a € R\{0}
we can assume that |Y(¢1)| = |Y (1) = 1.

We show (Y',Y)(t1) > (Y',Y)(t;). For this observe first

t1
IC'[OM] (K Y) = B {<Y,’ Yl) - <R(}/’ Cl)clv Y>} ds
= /Otl {(VY") + (Y",Y)} ds

- / ' YYds = (Y'(11), Y (1)) — (Y(0), Y(0))
0 =0
1 E(1) = span{e/(1), Y (1)}, then (R(Y (8).¢ (1) (1), Y (6) = K(E@) (Y OR[COP - (v:)?).
—_——  N——

=1 =0
Hence

Lefy (Y2 Y) = /O YR - K(B@)Y (1) Pdt = (Y(0), Y (1)),
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Let E1, ..., E, = ¢ be a parallel orthonormal frame along ¢ such that Ey(t1) = Y (¢1). In
particular, we can write Y (t) = Y71 V() Eq(t).

We assume dimy; < dimg;. = 3 orthonormal, parallel fields El, e ,Em = ¢ along ¢ such

that El(tl) = Y(tl).

Now we define
m—1

V(t)= Y Yit)E(t) L)
i=1
It follows V(0) = 7 ' YI(0)Ei(0) = 0 = Y(0), V(t) = S/ Yi(t) Ei(t) = Y(t),
V| =[Y]and [V'| = [Y7].
Let E(t) = span{V(t),&(t)}. With this we can compute

V) = [ =K@ de= [V - RE)ITE)a

_ /: (V2 = ROV, 7)) dt = Ly, (V. V) = Iy, (V7)) = (V, V) ().

0.t

where the last inequality is (b) of[7.7| Theorem (Index Lemma). This finishes the proof. [

8.2 Corollary. Let dimy = dimy;, p€ M, p € M, and I : T,M — TgM orthogonal and
1. supK < infl?,

2. 5}2}“)5|BT(05) such that all differentials are non-degenerated, hence a local diffeomor-
phism.

Then
L(exp,07y) > L(expzo I o) for every C curve v : [a,b] — B,(0p).
~—~—
=7
Proof. 1If we show that |D(exp,) 7' (T)] > |D(expy)5(-

We fix 7 € [a,b] such that v(r) # 0 (w.lo.g.) and let Y,Y be Jacobi fields along t

exp,(ty(7)) = a(t, 7) and along t +— exps(ty(7)) = a(t, 7) with Y/(0) = 0 = Y'(0), Y'(0) =
~/(7) and Y’(0) = 7'(7) = I o~/(7). Hence Y,Y arise from the variations o, a.

y¥'(7)|, the claim follows.

I orthogonal =

(Y'(0),9(7)) = (T o/ (7), T o 5(7)) = (¥ (), 7 (7)) = (Y (0),3(7))
as well as |Y'(0)| = |Y'(0)].
Rauch’s theorem yields |Y ()| > |Y (¢)| Vt € [0,1]. If t = 1 this is what was to show. [

8.3 Corollary. Let (M,g) be a Riem. mfd. such that inf Ky > 0, consider p € M and
r > 0 such that exp, |, (0,) s a diffeomorphism, and let I : (R™, (-, )euct) — (TpM, gp).
Then

|7 — Yleuet > d°(exp, oI(Z),exp,ol(y)) Vz,y € IY(B,(0,).
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8.4 Remark. Let x,y € B,(p) C M and v,w € B,(0p) such that exp,(v) = x,exp,(w) = y.
Consider I7(v) = 7 and I!(w) = § in R™. Since I is orthogonal, g,(v,w) = (Z, §)euc-
By the corollary we have

-9 > d¥(z,y).

Let ~yp, be the geodesic between p and z, let v,, be the geodesic between p and y and
let v;, be the geodesic between x and y. All geodesics are parametrized by arclength.
The geodesics Ypz, Vpy, Yoy form a geodesic triangle A in B, (p). Let Z,(vpw:Ypy) =
arccos gp(Vp:(0),7,,(0)) be the angle between ~,, and 7, and similar for the other corners
of the geodesic triangle A. A comparison triangle for A in R™ are three points p, Z, 7 € R™
such that d’(p,z) = |p — 2|, d(p,y) = [p — y|, & (2,y) = |z — y|.

The points 0,7,y from before are not yet a comparison triangle in general. But we can
move the point Z to decrease the angle arccos % =: Z(z20y) (keeping the distance with
0 fixed) to obtain one.

As a consequence we get that a comparison triangle p, Z, y for A satisfies

Zp(m1,72) = £(207).

The choice of p where we measure this angle was arbitrary. Via the same procedure we
can construct comparison triangles such that

436(717’73) Z Z(Ofg) and 49(73772) Z Z(.’Z’yO)

Since up to translation and rotatation comparison triangle are unique, we get that

Zp(11,72) > £(20y), ZLe(v1,73) > £(02y) and Zy(y3,72) > £(2y0)

for any comparison triangle 0, Z, % in R"™.
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9 Second fundamental form and Gaufl equations

9.1 Definition. Let (M,g) be a Riem. mfd. with dimy; = m and let i : M C M be
an embedded m-dimensional submanifold. g induces a Riem. metric on M via i*g = g.
(M, g) is called Riemannian submanifold of (M, g).

Remark. We usually write i(p) = p and via Di|, we can identify the tangent space T, M
with a linear subspace in Tj,) M. In particular, one writes

gp(V, W) = Gr(p) (Dilpv, Dilpw) = gp(v, w).
9.2 Lemma. The restriction of the tangent bundle @ : TM — M to M s
i*TM = {veTM : pv) € M}—M.
i*TM — M is an m-dimensional vector bundle over M. Moreover
TM* ={v e TMv € (TryM)* C TrpyM} — M
is a m — m-dimensional subvector bundle of i*TM.

9.8 Remark. The LC connection V of (M, g) induces a linear connection V on i*TM — M
via
X eD(*TM),v € TM = V,X =V, X € Tr() M
where X € I'(TM) with X|y; = X. Each I'(i*T M) admits a unique decomposition
X=X"4+X+ XTer(TM), X+ e (TM™").

9.4 Theorem. The LC connection of (M, g) is given through X,Y € T(TM) — (VYY) |y =
VxY € T(TM) where X,Y € T(TM) such that X|y = X, Y|y =Y. X|y = X actually
means X oi = DiX.

Proof. 1. V is linear connection.

2. V is symmetric. For this choose X,Y for X,Y as in the theorem. We compute

VxY —VyX = (V¥ = Vo) |y = X, Y] | = (X, V)T

Note that X oi = DiX,Y oi = DiY implies [X,Y]oi = Di[X,Y], or in other words
[X,Y]|n = [X, Y]. Hence ([X,V][m)" = [X,Y].

3. V is a Riemannian connection. Let Z € I'(TM) and Z € I'(T M) such that Z|y; = Z.
Let p € M. We compute

Zpg(X,Y) = (Zp)3(X s, YIm) = Zpg(X, Y )| = 9(Vz, X, V) 0i + §(X,Vz Y) o
=g(Vz, X, Y)+-=g((Vz,X)",Y)+ - =g(Vz,X,Y) +..

9.5 Definition. The second fundamental form h € T(TM* @ TM* @ TM+) is defined as

X, Y e(TM) — h(X,Y): (VxY)t e D(TM?1).
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9.6 Remark. It holds
(a) h(X,Y)=h(Y,X), and h is a tensor field
(b) If N € T(TM+™), then g(h(X,Y),N) = —g(Y,VxN).
(¢) VxY =VxY +h(X,Y).

Proof. () h(X.Y) —h(Y.X) = (V¥ — V5 X)" |y = (X, V]la)* = (XY =0,
Moreover h(fX,Y) = (Vpx Y'Y = (f9xY )L = fA(X,Y) = Fh(Y, X) = h(fY, X).
Hence h is a tensor field and h(X,Y)|, only depends on X, and Y,.

(b) Note that g(Y,N) =0 on M. Hence 0 = X,g(Y,N) for p € M. It follows
0=Xpg(Y,N) = Xpg(Y,N) = g(Vx,Y.N(p)  +4(Y(p),Vx,N).
—_——

9((Vx, YN (P))=g(h(X.Y),N)(p)

(c) This is clear from the definition.

O
9.7 Theorem (GauB equation). Let (M, g) be a Riem. submfd. of (M,g). Then
GR(X.Y)Z,W) = g(R(X,Y)Z,W) + g(h(X, W), h(Y, Z)) — §(h(X, Z), h(Y, W)
VXY, Z,W e I'(TM).
Proof. By definition: VxY = VxY + h(X,Y). Then
RXVZ=(REDD=(Vx B2 ~V5VZ- VD
=VxZ=VxZ+h(X,Z) on M
Hence
R(X,Y)Z =Vx(VyZ+h(Y,Z)) = Vy(VxZ+ X, Z)) - Vixy)Z.
Note that VxVyZ = VxVyZ + h(X,VyZ) with h(X,VyZ) € TM~*. This yields
(R(X,Y)2)" = R(X,Y)Z + (Vxh(Y,2))" = (Vyh(X,2))".
Note that g(h(Y,Z),W) =0 VW € I'(T'M). Hence
I(VxMY,2),W) = —g(h(Y, Z), VxW) = —g(h(Y, Z), (X, W)).
This gives the claim. O

9.8 Remark. Let E € Go(T M) with span(u,v) = E. Then

g(h(u7 'LL), h(?}, U)) — g<h(u7 U)? h(u7 U))
Q(u,v) '

Recall Q(u,v) = g(u,u)g(v,v) — g(u,v)?. In particular, for (M,g) = (R3,(-,-)) this is
Gaufl’ Theorema Egregium.

K(E) = K(E) +
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9.9 Definition. A Riem. submfd. (M, g) is called totally geodesic if every geodesic in
(M, g) is also a geodesic in (M, g).

9.10 Theorem. (M, g) is totally geodesic in (M, g) if and only if h = 0.
Proof. Geodesic equation: V¢ =V + h(c, ). O

9.11 Example. M C R™ totally geodesic if and only if M is affine subspace.

In general, there are not totally geodesic submanifolds. for dimy;s < dimg;.

9.12 Corollary. Let (M,g) be Riem., p € M, and U C T,M offen such that O, € U and
exp,lu is a diffeomorphism. Falls E C Ga(T,M), then M := exp,(ENU) is a embedded
submanifold. Then h, = 0 and K(F) = K(F) = K, where K, is the Gaufl curvature of
(M, g|ar) in p.

Remark. The corollary provides the original definition of sectional curvature by B. Rie-
mann (Habilitationsvortrag 1854).

vy U

particular for ¢ = 0 we get h,(v,v) = 0 Vo € E. Hence h, = 0. Then the claim follows
from the Theorema egregium. O

Proof. v € E and exp,(v) = ¢y. = 0= V¢, = (Vicy)| = Viey. Hence h(c),,c,) = 0. In
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