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Historische Anmerkungen zur Entwicklung der Riemannschen Geometrie

� Die Riemannsche Geometrie ist eine natürliche Erweiterung der Differentialgometrie
für Flächen in R3.

J. Gauß(1777-1855): Theorema Egregium (Die Gaußkrümmung ist eine Größe der
inneren Geometrie einer Fläche)

� B. Riemann (1826-1866) skizziert in seiner Antrittvorlesung (1854) (Über die Hy-
pothesen welche der Geometrie zu Grunde liegen) abstrakte Räume, in denen man
Längen und Winkel messen kann. Heute sprechen wir von einer Riemannschen
Metrik.

� A. Einstein (1879-1955) wendet das Konzept der Riemannschen Metrik in einer
veränderten Form an, um seine Allgemeine Relativitätstheorie zu entwickeln (1915).

� Der Begriff der Mannigfaltigkeit in der heutigen form wurde 1913 durch H. Weyl
(1885-1955) eingeführt, eine formale Präzisierung der Arbeit von Riemann.
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� Krümmungsvergleichssätze: Rauchscher Vergleichsatz

� Isometrische Immersionen, Fundamentalgleichungen
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1 Differenzierbare Mannigfaltigkeiten

Wir wiederholen zunächst kurz einige grundlegenden Definitionen.

Seien U und V offene Teilmengen der topologischen Räume X und Y . Eine Abbildung
φ : U → V heißt Homeomorphismus, falls φ bijektiv ist und φ sowie φ−1 stetig sind.

Sei M ein topologischer Raum.

1. Eine n-dimensionale Karte von M ist eine Homeomorphismus φ : U → φ(U) = V ,
wobei U ⊂M und V ⊂ Rn offen Teilmengen sind.

2. Ein n-dimensionaler C0-Atlas A vonM ist eine Familie von n-dimensionalen Karten
φi : Ui → Vi für i aus einer Indexmenge I, so dass

⋃
i∈I Ui =M .

3. Zwei Karten φ1, φ2 heißen Ck-kompatibel für k ∈ N ∪ {∞}, falls der Koordinaten-
wechsel

φ2 ◦ φ−1
1 |φ1(U1∩U2) : φ1(U1 ∩ U2) ⊂ Rn → φ2(U1 ∩ U2) ⊂ Rn

ein Ck-Diffeomorphismus ist. Ein n-dimensionaler C0-Atlas A heißt Ck-Atlas, falls
alle Karten Ck-kompatibel sind.

4. Ein n-dimensionaler Ck-Atlas A heißt maximal, wenn jede n-dimensionale Karte,
die mit den Karten in A Ck-kompatibel ist, bereits zu A gehört.

1.1 Remark. Jeder maximale Ck-Atlas A enhält einen maximalen C∞-Atlas A′. Ein
maximaler C∞-Atlas A heißt differenzierbare Struktur.

1.2 Definition. Eine n-dimensionale differenzierbare Mannigfaltigkeit ist ein topologis-
cher Raum M mit abzählbarer Umgebungsbasis so dass die Hausdorff-Eigenschaft erfüllt
ist und es gibt eine differenzierbare Struktur.

Bemerkung. � Eine topologischer RaumX erfüllt die Hausdorff-Eigenschaft bzw. heißt
Hausdorffsch falls für je 2 Punkte x, y ∈ X mit x ̸= y zugehörige offene Umgebungen
U und V existieren, so dass U ∩ V = ∅.

� Ein System offener Mengen B in einem topologischen Raum X heißt Basis der
Topologie, falls jede offene Menge Vereinigung von Mengen aus B ist.

1.3 Definition. Seien M,N differenzierbare Mannigfaltigkeiten der Dimension m bzw.
n. Eine Abbildung F : M → N heißt Ck-differenzierbar in p ∈ M , falls es Karten
φ : U ⊂M → φ(U) ⊂ Rm und ψ : V ⊂ N → ψ(V ) ⊂ Rn gibt mit

1. p ∈ U und F (U) ⊂ V

2. ψ ◦ F ◦ φ−1 is Ck-differenzierbar in φ(p) ∈ Rm.

Die Abbildung F ist in der Klasse Ck(M,N) für k ∈ N ∪ {∞}, falls F in jedem Punkt
p ∈M Ck-differenzierbar ist.

Im Fall N = R bezeichnen wir Ck(M,N) mit Ck(M). Ist F ∈ C∞(M,N) bezeichnen
wir F einfach als differenzierbare Abbildung.
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19.04.2023

Sei M eine n-dimensionale differenzierbare Mannigfaltigkeit (Mgft).

1.4 Definition. Eine differenzierbare Abbildung α : (−ϵ, ϵ) → M heißt Kurve in M . Sei
α(0) = p und Dp die Menge der Funktionen f :M → R welche differenzierbar in p sind.

Der Tangentenvektor der Kurve α in t = 0 ist eine lineare Abbildung α′(0) : Dp → R
gegeben durch

α′(0)f =
d(f ◦ α)
dt

∣∣∣
t=0

.

Ein Tangentenvektor in p ∈ M ist der Tangentenvektor einer Kurve α : (−ϵ, ϵ) → M in
t = 0 mit α(0) = p. Die Menge aller Tangentenvektoren in p ist TpM .

Bezeichnung. Sei φ : U ⊂ M → φ(U) eine Karte mit p ∈ U und φ(p) = x0 ∈ Rn.
Wir können die Kurve α(t) = φ−1(x10, . . . , x

i−1
0 , xi0 + t, xi+1

0 , . . . , xn0 ) betrachten. Den
dazugehoerigen Tangentialvektor bezeichnen wir mit

α′(0) =:
∂φ

∂xi

∣∣∣
p
=:

∂

∂xi

∣∣∣
p
.

Für f ∈ Dp berechnen wir

∂

∂xi

∣∣∣
p
f =

d(f ◦ α)
dt

∣∣∣
t=0

=
∂(f ◦ φ−1)

∂xi
(x0).

TpM ist ein n-dimensionaler Vektorraum und nachWahl einer Karte φ is

(
∂
∂xi

∣∣∣
p

)
i=1,...,n

eine Basis von TpM .

1.5 Proposition. Seien M und N differenzierbare Mannigfaltigkeiten und F : M → N
eine differenzierbare Abbildung. Zu p ∈ M und v ∈ TpM wählen wir eine differenzierbare
Kurve α : (−ϵ, ϵ) →M mit α(0) = p und α′(0) = v. Sei β = F ◦ α. Die Abbildung

DFp : TpM → TF (p)N, DFpv = β′(0)

ist eine lineare Abbildung und hängt nicht von der Wahl von α für v ab.

Die lineare Abbildung DFp heißt differential von F in p. Für f ∈ C1(M) schreiben
wir dfp = DFp.

1.6 Definition. Sei M eine differenzierbare Mannigfaltigkeit. Die Menge

TM =
⋃
p∈M

TpM

heißt Tangentialbündel überM . TM ist eine differenzierbare Mannigfaltigkeit der Dimen-
sion 2n.

TM ist ein Vektorbündel über M mit Projektionsabbildung

π : TM →M, π(v) = p ⇔ v ∈ TpM.
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π is eine differenzierbare Abbildung.
Sei T ∗

pM der Dualraum von TpM . Die Menge T ∗M =
⋃
p∈M T ∗

pM heißt Kotangen-

tialbündel. Ist eine Karte φ : U → φ(U) gegeben, dann ist Dφip = dφip, i = 1, . . . , n,

p ∈ U , eine Basis von T ∗
pM dual zu ∂

∂xi

∣∣∣
p
.

Für eine Karte schreibt man auch φ = (x1, . . . , xn) : U → Rn, also φi = xi. Dann ist
dφi = dxi.

Wir definieren auch

T (r,s)
p M = T ∗

pM ⊗ · · · ⊗ T ∗
pM︸ ︷︷ ︸

r-mal

⊗TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
s-mal

und
T (r,s)M =

⋃
p∈M

T (r,s)
p M.

Eine Abbildung T : M → T (r,s)M heißt Tensorfeld, falls T (p) ∈ T
(r,s)
p M ∀p ∈ M . Wir

schreibene T (p) =: Tp =: T
∣∣
p
.

2 Riemannsche Metriken

Betrachten wir ein (2, 0)-Tensorfeld g und eine Karte φ : U → V ⊂ Rn. Es gilt

g|U =

n∑
i,j=1

gijdφ
i ⊗ dφj

wobei

gij = g

(
∂

∂xi
,
∂

∂xj

)
: U → R.

g heißt differenzierbar (C∞), falls die Funktionen gij : U → R differenzierbar (C∞) sind
für jede Karte φ. Wir schreiben g ∈ Γ(T (2,0)M).

2.1 Definition. Eine Riemann’sche Metrik g auf M ist ein C∞ (2, 0)-Tensorfeld, so dass

gp : TpM × TpM → R

nicht ausgeartet, symmetrisch und positiv definit ist. Das Paar (M, g) heißt Riemannsche
Mannigfaltigkeit.

Bemerkung. Sei V ein n-dimensionaler R-Vektorraum und b : V × V → R eine sym-
metrische Bilinearform. Ist e1, . . . , en eine Basis von V , dann sei bij = b(ei, ej).

1. b heißt nicht ausgeartet, falls det (bij)i,j=1,...,n ̸= 0 für eine (jede) Basis.

2. b heißt positiv (negativ) definit, falls b(v, v) > 0(< 0) ∀v ∈ V \{0}.

3. Ind(b) = max{dimU |U ⊂ V Untervektorraum, so dass b|U×U negativ definit}
Also Ind(b) = 0 ⇒ positiv definit.
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2.2 Definition. Sei (M, g) eine Riemannsche Mannigfaltigkeit, und c : [a, b] → M eine
stückweise C1 Kurve, d.h. ∃ a = t0 ≤ · · · ≤ tN = b, so dass c|[ti−1,ti] stetig differenzierbar
ist ∀i = 1, . . . , N . Es sei

gc(t)(c
′(t), c′(t))

1
2 = |c′(t)|g = |c′(t)|.

Die (Bogen)länge von c bzgl. g ist definiert durch

Lg(c) :=

∫ b

a
|c′(t)|dt.

Bemerkung. Sei φ : [ã, b̃] → [a, b] bijektive, stückweise C1 und c̃ = c◦φ. Es gilt L(c̃) = L(c).

Betrachte gp und eine ONB (e1, . . . , en) in (TpM, gp). Seien v1, . . . , vn ∈ TpM . Dann
gibt es aij ∈ R, so dass vi =

∑
j=1 aijej und D(v1, . . . , vn) := det(aij)i,j=1,...,n definiert

eine n-form auf TpM (eine n-multilineare Abbildung TpM
n → R). Die Zahl D(v1, . . . , vn)

ist das orientierte Volumen des Parallelotops, das von v1, . . . , vn aufgespannt wird).

Sei nun vi =
∂
∂xi

∣∣∣
p
, i = 1, . . . , n. Wir berechnen

gij = gp(
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p
) =

n∑
k,l=1

aikajlgp(el, ek) =
n∑

k,l=1

aikajl.

Also (gij) = (aij) · (aij). Somit folgt aus dem Determinanten-Produktsatz

| det(aij)| =
√
|det(gij)|.

2.3 Definition. Sei φ : U → V eine Karte und A ⊂ U meßbar, d.h. φ(A) ⊂ Rn ist
messbar. Dann definieren wir

volg(A) =: vol(A) =

∫
φ(A)

|det(gij)|
1
2 ◦ φ−1(x) dLn(x)︸ ︷︷ ︸

dx

.

Allgemeiner können wir eine meßbare Zerlegung (Aα)α∈Λ vonM wählen (mit Λ abzählbar),
d.h. Aα ∩ Aβ hat Maß 0, M\

⋃
α∈ΛAα hat Maß 0, und für jedes α existiert eine Karte

φα : Uα → Rn mit Aα ⊂ Uα. Für eine meßbare Menge A ⊂M definieren wir dann

volg(A) =
∑
α∈Λ

volg(A ∩Aα).

6



24.04.2023

Let M be a manifold and let (N,h) be a Riemannian manifolds. We consider a map
F : M → N that is smooth (C∞, differentiable). The pull-back metric of h under F is a
(2, 0)-tensor field on M defined by

(F ∗h)p(v, w) = hF (p)(DFpv,DFpw) ∀p ∈M and v, w ∈ TpM.

2.4 Lemma. g = F ∗h is a Riemannian metric on M if and only if F is an immersion.
g is called induced metric on M .

2.5 Remark. A smooth map F : M → N is an immersion if DFp : TpM → TF (p)N is
injective as a linear map ∀p ∈ M . In particular it follows dimM ≤ dimN . If, in addition,
F is a homeomorphism onto φ(M) ⊂ N , where φ(M) has the standard subspace topology
induced from N , we call F an embedding.

Proof. For p ∈ M fixed F ∗hp is positive definit since DFpv ̸= 0 ∀v ∈ TpM\{0}, and
F ∗hp is also non-degenerated. Let φ : Uφ → V φ be a chart and p ∈ U . Moreover let
ψ : Uψ → V ψ be a chart in a neighborhood of F (p). We set U = Uφ ∩ F−1(Uψ) that is
still an open neighborhood of p. We compute the local represenation of F ∗h = g on U .
Let i, j ∈ {1, . . . ,dimM} and q ∈ U . Then

gij(q) = gq(
∂φ

∂xi
|q,

∂φ

∂xj
|q) = hF (q)(DFq

∂φ

∂xi
|q, DFq

∂φ

∂xj
|q).

Recall that DFq
∂φ

∂xi
|q = ∂(ψ◦F◦φ−1)k

∂xi
◦ φ(q) ∂ψ

∂xk
|q. Plugging this back into the previous

formula shows that gφij is a smooth functions on U ∋ p. Since p ∈ Uφ was arbitrary, gφij is
a smooth function on Uφ.

2.6 Example. Assume M ⊂ N is an immersed or an embedded submanifold of (N,h)
and let ι : M → N be the inclusion map. The induced metric on M is the pull-back
metric ι∗h = g. With this metric M is called a Riemannian (immersed or embedded)
submanifold.

2.7 Example (Metrics in graph coordinates). Let U ⊂ Rn be open and f ∈ C∞(M). The
graph of f is the set graph(f) = {(x, f(x)) : x ∈ U} ⊂ Rn+1 which is an embedded
submanifold of dimension n of Rn. The map X : U → Rn+1, X(x) = (x, f(x)), is an
embedding and the induced Riemannian metric on U is

g = X∗geucl =

n∑
i=1

dxi ⊗ dxi + df ⊗ df.

2.8 Remark. Recall the symmetric product between 1-forms α, β ∈ Γ(T ∗M): α ∨ β =
1
2 (α⊗ β + β ⊗ α). Given a chart φ = (x1, . . . , xn) on a Riemannian manifold (M, g), we
can write for the local representation of g:

g =

n∑
i,j=1

gijdx
i ⊗ dxj =

1

2

n∑
i,j=1

(
gijdx

i ⊗ dxj + gijdx
j ⊗ dxi

)
=

n∑
i,j=1

gijdx
i ∨ dxj .
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2.9 Definition. A (C∞)-diffeomorphism F : M → N (i.e. F is a differentiable bijection
with a differentiable inverse) is called an isometry if

F ∗h = g (1)

A map F : M → N is called a local isometry at p ∈ M if ∃ a neighborhood U ⊂ M of p
such that F : U → F (U) is a diffeomorphism satisfying (1).

2.10 Remark. Let (M, g) be a Riemannian manifold. g induces a vector bundle isomor-
phism ♭ : TM → T ∗M given by

♭|TpM : TpM → T ∗
pM via ♭(v)(w) = gp(v, w) ∀v, w ∈ TpM.

The inverse map of ♭ is ♯ : T ∗M → TM . For instance, given a chart φ : U → V on M it
follows

TpM ∋ v =

n∑
i=1

vi
∂

∂xi
|p −→ b(v) =

n∑
i,j=1

gij(p)v
idxjp.

This follows since

♭(v)(
∂

∂xj
) = g(v,

∂

∂xj
) =

n∑
i=1

vig(
∂

∂xi
,
∂

∂xj
) =

n∑
i=1

vigij .

Hence, the coefficients of the cotangent vector ♭(v) w.r.t. the ONB dxj are
∑n

i=1 gijv
i =:

vj . Similarly, we can compute the coefficients of ♯(α) for α ∈ T ∗
pM . We consider the

represenation of ♯(α) w.r.t. the basis ∂
∂xi

: ♯(α) =
∑n

i=1w
i ∂
∂xi

. Then

vi = α(
∂

∂xi
) = g(♯(α),

∂

∂xi
) =

n∑
i=1

wig(
∂

∂xi
,
∂

∂xj
)

where vi is the coefficient of α w.r.t. dxi. Hence
∑n

k=1 g
ijvi = wj where (gij) is the inverse

matrix of (gij).
The maps ♭ and ♯ are called the musical isomorphisms between TM and T ∗M because

they lower and raise the indices of the coefficient functions.

Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Recall that the differential
dfp : TpM → R, p ∈ M , of f is defined as dfp(v) = v(f) ∀v ∈ TpM . Given a chart φ one
has

dfp =
n∑
j=1

∂(f ◦ φ−1)

∂xj
◦ φ(p)dxjp.

df is a smooth (1, 0)-tensor field, a smoooth 1-form.

2.11 Definition. The smooth vector field

♯(df) =: ∇f =: gradf ∈ Γ(TM)

is called gradient of f (w.r.t. g). In local coordinates φ : U → V the gradient ∇f writes
as

∇f |U =
n∑

i,j=1

gij
∂(f ◦ φ−1)

∂xi
◦ φ ∂

∂xj
.

8



2.12 Remark. Let f ∈ C∞(M). If r ∈ f(M) is a regular value of f (r ∈ f(M) is a regular
value ⇔ dfp ̸= 0 ∀p ∈ f−1({r})), then f−1({r}) = N is a n − 1-dimensional submanifold
of M .

Claim. gp(∇f(p), v) = dfp(v) = v(f) = 0 ∀p ∈ N and ∀v ∈ TpN.

Given v ∈ TpM we write v⊥ for all w ∈ TpM with gp(v, w) = 0. Hence ∇f(p)⊥ = TpN .

Proof. Let c : (−ϵ, ϵ) → N with c′(0) = v. Then f ◦ c ≡ r by definiiton of N and hence

gp(∇f(p), v) = v(f) =
d(f ◦ c)
dt

∣∣
t=0

= 0.

2.13 Example. Let f : Rn → R be given by f(x1, . . . , xn) =
∑n

i=1(x
i)2 − 1. Then 0 is a

regular value of f and f−1(0) = {x ∈ Rn :
∑n

i=1(x
i)2 = 1} =: Sn−1 is the unit sphere of

Rn. The metric on Sn−1 that is induced by the Euclidean metric is called canonical metric
of Sn−1 or standard metric.
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Riemannian distance We consider a Riemannian manifold (M, g).
A C1 curve c : [a, b] →M is called regular if c′(t) ̸= 0 for all t ∈ [a, b].
We call a curve c : [a, b] → M piecewise regular if ∃{a = t0 ≤ . . . tN = b} = P such

that γ|[ti−1,ti] is a regular C1 curve. We call such a partition P as before admissible.

A reparametrization of c is a homeomorphism φ : [ã, b̃] → [a, b] such that there is a
partition ã = t0 ≤ . . . tN = b̃ of [ã, b̃] such that φ|(ti−1,ti) is a diffeomorphism onto its
image. In particular we have that L(c ◦ φ) = L(c).

Since φ is a homeomorphism between intervals it is either increasing or decreasing. In
the first case we call φ a forward reparametrization and otherwise backward reparametriza-
tion. If φ is a C1 diffeomorphism, one has φ(t) > 0 in the first case and otherwise φ(t) < 0,
for all t ∈ (ã, b̃).

If c is differentiable in t ∈ [a, b], we define the speed of c in t as |c′(t)| = |c′(t)|g =

g(c′(t), c′(t))
1
2 . We say a C1 curve c is a unit speed curve if |c′(t)| = 1 ∀t and constant

speed if |c′(t)| = const. If c is piecewise C1 we say c has unit speed if |c′(t)| = 1 whenever
c is differentiable in t.

The arc-length function of a piecewise C1 curve c : [a, b] →M is defined as

s(t) = L(c|[a,t]) =
∫ t

a
|c′(s)|ds.

2.14 Lemma.

1. Every regular curve c : [a, b] → (M, g) has unit speed forward reparametrization.

2. Every piecewise regular curve has a unique forward reparametrization by arc length.

Proof. (1) We choose t0 ∈ [a, b] and define s : [a, b] → R by

s(t) =

∫ t

t0

|c′(s)|gds.

Since s′(t) = |c′(t)| > 0, it follows that s is an increasing local C1 diffeomorphimus and thus
a C1 diffeomorphism from [a, b] to an interval [ã, b̃] ⊂ R. We define φ = s−1 : [ã, b̃] → [a, b].
Hence φ is forward reparametrization and for c̃ = c ◦ φ we compute

|c̃′(t)| = |φ′(t)c′(φ(t))| = |φ′(t)||c′(φ(t))| = 1

|s′(φ(t))|
|c′(φ(t))| = 1.

Hence c̃ is a unit speed reparametrization of c.
If c is piecewise regular, we prove the existence statement for the reparametrization by

induction on the number of smooth segments N for an admissible partition. If there is only
one segment, then the statement follows by (1). Assume the statement is true for partitions
with N segments. If c : [a, b] → M is a piecewise regular curve such that ∃a = t0 ≤
· · · ≤ tN+1 = b with c|[ti−1,ti] is regular. Then there exists the desired reparametrizations
φ : [0, c] → [a, tN ] and ψ : [0, d] → [tN , b] for c|[a,tN ] and c|[tN ,b] respectively. Then we
define

ψ̃(s) =

{
φ(s) s ∈ [0, c],

ψ(s− c) s ∈ [c, c+ d].
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Then φ̃ : [0, d+ c] → [a, b] is a desired reparametrization for c.
We prove uniqueness. If c̃ = c ◦ φ̃ and ĉ = c ◦ φ̃ are both forward reparametrizations of

c by arc length. Since c̃ and ĉ have the same arc length and have both speed 1, they are
defined on intervals of the same length L(c). Up to translation φ̃ and φ̂ are therefore both
homeomorphisms from [0, L(c)] to [a, b]. If we define η = φ̃−1 ◦ ψ, then η is a piecewise
regular increasing homeomorphism that satisfies ĉ = c ◦ φ ◦ η = c̃ ◦ η. For all s ∈ [0, L(c)]
except for finitely many, where γ̃, γ̂ and η are not smooth, we can compute

1 = |ĉ′(s)| = |c̃′(η(s))η′(s)| = |c̃′(η(s))|η′(s) = η′(s).

Since η is continuous and η(0) = 0, it follows η(s) = s for all s ∈ [0, L(c)]. Hence c̃ = ĉ.

One of the most important concepts in Riemannian geometry is the distance between
points that we can define as follows.

2.15 Definition (Riemannian distance function). Let p, q ∈ (M, g) and define

dg(p, q) = inf L(c)

where we take the infimum w.r.t. all piecewise regular curves c : [a, b] →M with c(a) = p
and c(b) = q.

The following lemma guarantees that dg is well-defined as long as M is connected.

2.16 Lemma. If M is a connected smooth manifold then for any two points in M there
exists a piecewise regular curve that connects them.

Proof. Let p, q ∈M . Since a connected manifold is path-connected, p and q can be joined
by a continuous path c : [a, b] →M . By compactness of [a, b] and its image c([a, b]) there
exists a partition {a = t0 ≤ · · · ≤ tN = b} such that c([ti−1, ti]) is contained in the domain
of a single smooth coordinate chart φ : U → V . We can also assume that V is a ball.
Therefore we can replace each such segment by the image under φ−1 of straight line in U .
This yields a piecwise regular curve between q and q.

2.17 Theorem. Let (M, g) be a connected Riemannian manifold. (M,dg) is a metric
space whose topology is the same as the given topology of the manifold.

Proof. By definition dg(p, q) ≥ 0 ∀p, q ∈M and dg(p, p) = 0 as well as symmetry in p and
q.

The triangle inequality follows because given piecewise regular curves c : [a, b] → M
and c̃ : [ã, b̃] →M such that c(b) = c̃(ã), then

ĉ(s) =

{
c(s) s ∈ [a, b]

c̃(s− b+ ã) s ∈ [b, b+ b̃− ã]

is a piecewise regular curve as well. Since L(ĉ) = L(c) + L(c̃), it follows

dg(c(a), c̃(̃b)) ≤ L(ĉ) = L(c) + L(c̃).

Hence, taking the infimum w.r.t. c and c̃ yields the triangle inequality.
We need to show that dg(p, q) > 0 if q ̸= p. We first prove the following Lemma.
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2.18 Lemma. Let V ⊂ Rn be open, let g be a Riemannian metric on V and let geuc be
the Euclidean Riemannian metric on V . Let K ⊂ V be compact. Then, ∃c, C such that

c|v|geuc ≤ |v|g ≤ C|v|geuc ∀x ∈ K and ∀v ∈ TxU ≃ Rn with v ̸= 0.

2.19 Remark. If φ : U ⊂M → V is a chart of (M, g), then we can consider the Riemannian
metric (φ−1)∗g = h on V . In particular φ : (U, g) → (V, h) is an isometry.

Proof of the Lemma. Define the continuous function (x, v) 7→ |v|g = gx(v, v)
1
2 on the

compact set
L = {(x, v) ∈ TxU : x ∈ K, |v|geuc} = K × Sn−1.

Hence, there exist c, C > 0 such that

c ≤ gx(v, v)
1
2 ≤ C on L.

If v ∈ TxU with x ∈ K is arbitrary, consider w = v
|v|geuc

. Then |w|geuc = 1, it follows

w ∈ L and by homogeneity of gx(v, v)
1
2 in v it follows

c ≤ |w|g
|w|geuc

≤ C.

This is the claim.

We can now finish the proof of the Theorem. Let p ̸= q ∈M .
We pick a chart φ : U → V ⊂ Rn with p ∈ U , φ(p) = p and such that V = B2R(0) for

R > 0. We consider BR(0) =: K and assume the claim of Lemma 2.18 for the pull-back
metric (φ−1)∗g = g̃ on V .

We treat two cases. Assume first q /∈ φ−1(K) = Ũ . Let γ : [0, 1] → M be a piecewise
C1 curve with γ(0) = p and γ(1) = q, and set τ = sup{t > 0 : γ(s) ∈ Ũ∀s ∈ [0, t]}.
Consider γ̃ = φ ◦ γ. It follows

Lg(γ) =

∫ 1

0
|γ′(t)|gdt ≥

∫ τ

0
|γ′(t)|gdt =

∫ τ

0
|γ̃′(t)|g̃dt

≥ c

∫ τ

0
|γ̃′(t)|eucldt ≥ c|γ̃(τ)| ≥ cR.

Since γ was arbitrary, it follows dg(p, q) ≥ cR > 0.

Now let q ∈ Ũ and let γ be as before. If there exists τ ∈ (0, 1) such that γ(τ) /∈ Ũ ,
then we get as in the first case, that Lg(γ) ≥ cR.

If γ(t) ∈ Ũ for all t ∈ (0, 1), it follows

Lg(γ) = Lg̃(γ̃) ≥ c

∫ 1

0
|γ̃′(t)|eucldt ≥ c|γ̃(1)|eucl = c|φ(q)|eucl > 0.

So we always have Lg(γ) ≥ c|φ(q)|eucl. Taking the infimum again yield dg(p, q) > 0.
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03.05.2023

Consider Rn+1 together with a symmetric, non-degenerated bilinear form ⟨·, ·⟩, not
necessarily positive definit. The index of ⟨·, ·⟩ is defined as

ind⟨·,·⟩ = max{dimU ∈ N : ⟨·, ·⟩|U×U is negative definit}.

2.20 Example. Consider ⟨v, w⟩1 := −v0w0 +
∑n

i=1 v
1w1. We write Rn+1

1 = (Rn+1, ⟨·, ·⟩1).
ind⟨·,·⟩1 = 1 and Rn+1

1 is called n+ 1-dimensional Minkowski space.

Given a non-degenerated, symmetric bilinear form ⟨·, ·⟩ we set U⊥ = {v ∈ Rn+1 :
⟨v, u⟩ = 0 ∀u ∈ U}.
2.21 Fact.

1. If n+ 1 > 0, then ∃v ∈ Rn+1 with ⟨v, v⟩ ≠ 0.

2. Let U ⊂ Rn+1 be a linear subspace and ⟨·, ·⟩|U×U negative definite. Then dimU =
ind⟨·,·⟩ ⇔ ⟨·, ·⟩|U⊥×U⊥ positive definite.

3. Let U ⊂ Rn+1 be a linear subspace with U ∩ U⊥ = {0}. Then ∃ basis e0, . . . , en of
Rn+1 and ϵ0, . . . , ϵn ∈ {±1} such that span{e0, . . . , ek} = U and span{ek+1, . . . , en} =
U⊥ and ⟨ei, ej⟩ = ϵiδij ∀i, j ∈ {0, . . . , n}.

Proof. (1) If ⟨v, v⟩ = 0 ∀v ∈ V , then

⟨u, v⟩ = 1

2
(⟨u+ v, u+ v⟩ − ⟨v, v⟩ − ⟨u, u⟩) ∀u, v ∈ V.

Hence ⟨·, ·⟩ ≡ 0.

(2) ⇒: We show that U ∩U⊥ = 0. If u ∈ U ∩U⊥, then ⟨u, u⟩ = 0. Since ⟨·, ·⟩|U×U negative
definit, it follows u = 0.
Hence dimU = n+ 1− dimU⊥ .

We show that ⟨v, v⟩ ≥ 0 ∀v ∈ U⊥ (positive semi-definit). Otherwise ∃v ∈ U⊥ with
⟨v, v⟩ < 0, and therefore ∠·, ·⟩|W×W is negative definit with U + span(v) = W which
contradicts the definition of ind⟨·,·⟩.

We show ⟨·, ·⟩ is non-degenerated on U⊥. Let v in U⊥ with ⟨v, u⟩ = 0 ∀u ∈ U⊥. Since
U +U⊥ = Rn+1, ⟨v, u⟩ = 0 ∀u ∈ Rn+1. From ⟨·, ·⟩ non-degenerated it follows that v = 0.

It follows that ⟨·, ·⟩ is positive definit on Rn+1.

⇐: Exercise.

(3) Exercise. One can use (2).

2.22 Corollary. Let v ∈ Rn+1
1 with ⟨v, v⟩1 < 0 (”v is timelike”). Then ⟨·, ·⟩1|v⊥×v⊥ is

positive definit.

2.23 Example (Lorentz model of hyperbolic space). The subset

Hn(r) =
{
x ∈ Rn+1 : ⟨x, x⟩1 = −r2, x0 > 0

}
of Rn+1 is an n-dimensional Riemannian manifold.

To see this we consider f(x) = ⟨x, x⟩1 that is smooth. Then dfx(v) = 2⟨x, v⟩1. In
particular, if x ̸= 0, then dfx ̸= 0. Hence −r2 ̸= 0 is a regular value of the function f , and
therefore f−1({−r2}) = Hn(r) is a smooth manifold (a hypersurface). We note that
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∀x ∈ Hn(r): TxH
n(r) = ker dfx = {w ∈ Rn+1

1 : ⟨x,w⟩1 = 0} = {x} × {x}⊥.

With the previous corollary one has that ⟨·, ·⟩|{x}⊥×{x}⊥ is positive definit.

Consider also the inclusion map i : Hn(r) → Rn+1, i(x) = x. Then

i∗⟨v, w⟩1|x = ⟨Di|xv,Di|xw⟩1|x = ⟨v, w⟩1 for v, w ∈ TxH
n(r).

We set Hn := Hn(1).

2.24 Definition. The Riemannian manifold Hn with g = i∗⟨·, ·⟩1 is called Lorentz model
of the hyperbolic Riemannian space.

2.25 Remark. Hn is diffeomorphic to Rn: the map x ∈ Rn 7→ (
√
1 + |x̃|2, x̃) ∈ Hn is a

diffeomorphism.

2.26 Definition. A Riemannian manifold (M, g) is called frame homogeneous (”Raum
freier Beweglichkeit”) if the following holds: Let x, y ∈M and let (v1, . . . , vn), (w1, . . . , wn)
be ONB of TxM and TyM respectively w.r.t. g. Then there exists an isometry F :
(M, g) → (M, g) such that F (x) = y and DFxvi = wi ∀i = 1, . . . , n.

2.27 Proposition. (Hn, i∗⟨·, ·⟩1) is frame homogeneous.

Proof. Let x, y ∈ Hn and (v1, . . . , vn), (w1, . . . , wn) ONB of TxH
n and TyH

n respectively.
⇒ (x = v0, v1, . . . , vn) and (y = w0, w1, . . . , wn) are ONBs of Rn+1

1 . Then

∃A ∈ O(n+ 1, 1) = {A ∈ GL(n,R) : ⟨Av,Aw⟩1 = ⟨v, w⟩}

s.t. Avi = wi ∀i = 0, . . . , n.
In particular A(Hn(1)) = Hn(1) (by definition of Hn(1)).

We define F = A|Hn(1). Then F : Hn(1) → Hn(1) is a diffeomorphism with F−1 =
A−1|Hn(1) and F (x) = y as well as

DFxvi = wi ∀i = 1, . . . , n

since DFxvi(g) = v(g ◦ F ) = v(g ◦ A) = (g ◦ A ◦ c)′(0) = dg(Ac′(0)) = dgwi = wi(g) for
g ∈ C∞(Hn(1)).
Moreover F is an isometry of Hn, since

F ∗i∗⟨v, w⟩1 = ⟨Av,Aw⟩1 = ⟨v, w⟩1.

2.28 Remark. (Rn, ⟨·, ·⟩eucl) is a frame homogeneous, und ebenso Sn = {x ∈ Rn+1 :
⟨x, x⟩eucl = 1}.
Let x, y ∈ Rn, und (v1, . . . , vn), (w1, . . . , wn) be ONBs.

To see this let x, y ∈ Rn and let (vi)i=1,...,n, (wi)i=1,...,n ONBs at Rn. Choose A ∈ O(n)
such that Avi = wi ∀i = 1, . . . , n, and define F (z) = A(z − x) + y. Moreover DFx = A.

In the case of Sn note that TxSn = x⊥ and ASn = Sn ∀A ∈ O(n + 1). We choose
A ∈ O(n + 1) now such that Ax = y and Avi = wi ∀i = 1, . . . , n for ONBs (vi) and (wi)
of TxSn and TySn respectively.

14



2.29 Definition. The Riemannian manifold B = (M, g) where M = B1(0) = {x ∈ Rn :
⟨x, x⟩eucl < 1} und gPx = 4

(1−|x|)2eucl
⟨·, ·⟩eucl is called Poincaré model of the hyperbolic space.

2.30 Lemma. The map F : Hn → Bn, F (x0, x̃) = 1
1+x0

x̃, is an isometry between Hn and
Bn.

Proof. The inverse map is F−1(y) = 1
1−|y|2 (1+ |y|2, 2y1, . . . , 2yn). Hence F is a diffeomor-

phism.

We show that F ∗gP = i∗⟨·, ·⟩1. More precisely

gPF (x)(DFxv,DFxw) = ⟨v, w⟩1

∀(x, v), (x,w) ∈ TxHn (⇔ ⟨x, v⟩1 = 0 = −x0v0 +
∑n

i=1 xivi⟩).

DFxv =
d

dt

∣∣∣
t=0

F (x+ tv) =
1

1 + x0
ṽ − v0

(1 + x0)2
x̃

and

DFxw =
1

1 + x0
w̃ − w0

(1 + x0)2
x̃.

It follows

gPF (x)(DFxv,DFxw)

=
4

(1− |F (x)|)2︸ ︷︷ ︸
(1+x0)2

(
1

(1 + x0)2

n∑
i=1

viwi +
v0w0

(1 + x0)4
|x̃|2 − 1

(1 + x0)3

(
w0

n∑
i=1

xivi︸ ︷︷ ︸
v0x0w0

+ v0

n∑
i=1

xiwi︸ ︷︷ ︸
v0x0w0

))

=
n∑
i=1

viwi + v0w0

(
|x̃|2

(1 + x0)2
− 2x0

1 + x0

)
= ⟨(v0, ṽ), (w0, w̃)⟩1.

2.31 Definition. The Riemannian mfd H = {x = (x1, . . . , xn) ∈ Rn : x1 > 0} with the
metric gHx = 1

x2n
⟨·, ·⟩eucl|x is called half space model of the hyperbolic space.

08.05.23

Let (M, g) be a Riemannian manifold and dg the induced distance function, i.e.

dg(p, q) = inf
γ
Lg(γ)

where γ : [a, b] →M is piecewise regular with γ(a) = p and γ(b) = q.

End of the proof of 2.17 Theorem. It remains to show that the metric topology of dg is
the same as the manifold topology. We will show the following first:

For p ∈ M and W ⊂ M open with p ∈ W there exists a chart φ : U → V = B2R(0) and
C,D > 0 such that φ(p) = 0, U ⊂W and the following is satisfied:

� If q ∈ U ′ = φ−1
(
BR(0)

)
, then dg(p, q) ≤ Cdḡ(p, q) where ḡ = φ∗⟨·, ·⟩eucl on U ′.

15



� If q /∈ U ′, then dg(p, q) ≥ D.

Indeed we can find a chart φ : U ′ → V such that p ∈ U , U ⊂ W such that φ(p) = 0 ∈
V = B2R(0).

� Consider q ∈ U ′ = φ−1
(
BR(0)

)
and c(t) = tφ(q). Then Leucl(c) = |φ(q)|eucl.

Consider the pull-back metric (φ−1)∗g on V . Wie Lemma 2.18 we compute

L(φ−1)∗g(c) =

∫ 1

0
|c′(t)|(φ−1)∗gdt ≤ C

∫ 1

0
|c′(t)|eucldt = Leucl(c) = |φ(q)|eucl.

Moreover, the map φ : U → V is an isometry between (U, g) and (V, (φ−1)∗g) as
well between (U, ḡ = (φ)∗geucl) and (V, geucl). Hence |φ(q)|eucl = dḡ(p, q) and

L(φ−1)∗g(c) = Lg(φ−1 ◦ c) ≥ dg(p, q)

since φ−1 ◦ c is a C1 curve between p and q. Then the first claim follows.

� We showed this already before.

Consider U ⊂M open. For every p ∈ U we can choose a coordinate chart φ : U → V ⊂ Rn
as before. The second statement in the previous lemma implies that for q ∈ M with
dg(p, q) < D it follows q ∈ U ′ ⊂ U . Hence BD(p) ⊂ U .

If A ⊂ M is open w.r.t. the metric topology, then ∃ϵ > 0 such that B
dg
ϵ (p) ⊂ A. Let

W and φ : U → V be as in the previous lemma. Choose δ > 0 small enough such that
Cδ < ϵ. By the first statement in Lemma 2.18 it follows that φ−1

(
Beucl
ϵ (0)

)
⊂ Bδ(p) ⊂ A.

Since φ−1
(
Beucl
ϵ (0)

)
is open w.r.t. the manifold topology, the claim follows.

Some more examples

1. Products. Consider Riemannian manifolds (M0, g0) and (M1, g1). The product man-
ifold M0 ×M1 inherits the natural Riemannian metric g := g0 ⊕ g1 defined via

g(p0,p1)(v, w) = g0|p0(Dπ0|(p0,p1)v,Dπ0|(p0,p1)w) + g1|p1(Dπ1|(p0,p1)v,Dπ1|(p0,p1)w)

where πi :Mi →M0 ×M1 is πi((p0, p1)) = pi, i = 0, 1 and Dπi|(p0,p1) : T(p0,p1)(M0 ×
M1) → TpiMi. The map

D(π0, π1)(p0,p1) = (Dπ0|p0 , Dπ1|p1) : T(p0,p1)(M0 ×M1) → Tp0M0 × Tp1M1

is a vector space isomorphism and hence we can identify each v ∈ T(p0,p1)(M0 ×M1)
with (v0, v1) ∈ Tp0M0×Tp1M1. We then write for (v0, v1), (w0, w1) ∈ T(p0,p1)M0×M1:

g(p1,p2)((v0, v1), (w0, w1)) = g0|p0(v0, w0) + g1|p1(v1, w1).

Given charts φi : Ui → Vi ⊂ Rni , i = 0, 1, then each metric gi has the local expression
gi|Ui =

∑ni
k,l=1(gi)kldφ

k
i ⊗ dφli. Recall φi = (φ1

i , . . . , φ
ni
i ).

A chart on M0 ×M1 is given by (φ0, φ1) : U0 × U1 → V0 × V1 ⊂ Rn0+n1 and local
expression of g in this chart has the following coefficient matrix

(gkl)k,l=1,...,n0+n1 =

(
(g0)kl, k, l = 1, . . . , n0 0

0 (g1)kl, k, l = 1, . . . , n1

)
.
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Example: n-Torus.
Consider S1 = {(x, y) ∈ R2 : x2 + y2 = 1} with the restricted metric g = i∗⟨·, ·⟩eucl.
Then the Riemannian manifold

Tn =
(
S1 × · · · × S1︸ ︷︷ ︸

n−times

, g ⊕ · · · ⊕ g︸ ︷︷ ︸
n−times

)
is called n-torus.

2. Warped Products. Again let (Mi, gi), i = 0, 1, be Riemannian manifolds and let
f :M0 → (0,∞). The warpred productM0×fM1 is the Riemannian manifold given
by the productM0×M1 together with the Riemannian metric g := g0⊕f2g1 defined
by

g(p0,p1)((v0, v1), (w0, w1)) := g0|p0(v0, v0) + f(p0)
2g1|p1(v1, w1)

where (v0, v1), (w0, w1) ∈ Tp0M0 × Tp1M1 ≃ T(p0,p1)(M0 ×M1).

Important examples of warped products are

Surfaces of Revolution.

Let C be an embedded smooth 1-dimensional submanifold in H := {(x, z) ∈ R2 :
x > 0}. C equipped with the restricted Euclidean metric i∗⟨·, ·⟩eucl is a Riemannian
manifold. The surface of revolution determined by C is the subset

SC = {(x, y, z) :
(√

x2 + y2, z
)
∈ C} ⊂ R3.

Let ψ−1 = c : (α, ω) → H be a chart of C, i.e. c = (a, b) is regular curve, and if
|c′| ≡ 1, then c is an isometry. Consider the map

X(t, θ) = (a(t) cos θ, a(t) sin θ, b(t)), X : (α, ω)× S1 → C

where we identify S1 = {(x, y) ∈ R2 : x2+y2 = 1} with R/2πZ via θ 7→ (cos θ, sin θ).

The pull-back Riemannian metric is

X∗⟨·, ·⟩eucl(v0, v1, w0, w1) = ⟨DXv,DXw⟩eucl =
3∑
i=1

(dxi)2(DXv,DXw) = (∗)

where (v0, v1), (w0, w1) ∈ T(t,θ)((α, ω)× S1). Note that

DXt,θ =

a′(t) cos θ −a(t) sin θ
a′(t) cos θ a(t) sin θ
b′(t) 0

 .

Inserting this back in the previous equation and a computation yields

(∗) = (a′(t)2 + b′(t)2︸ ︷︷ ︸
=1

)v0w0 + a(t)2v1w1 = (dt)2(v0, w0) + a(t)2(dθ)2(v1, w1).

Hence, the restricted Euclidean metric on SC is isometric to the warped product
(α, β)×a S1 where S1 is equipped with the metric dθ2.

Rn\{0} as warped product.

Consider (0,∞) ×f Sn−1 with f(t) = t and Sn−1 = {x ∈ Rn : |x|eucl = 1} equipped
with the restricted Euclidean metric. Then Φ(t, θ) = t · θ ∈ Rn\{0} is an isometry
between (0,∞)×f Sn−1 and Rn\{0} (Exercise).
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3 Connections

Consider a k-dimensional vector bundle π : E → M over M (e.g. the tangent bundle
TM). In particular E is a smooth manifold, π is a smooth map, and π−1({x}) = Ex is a
linear space of dimension k for all x ∈M .

Γ(E) := {s ∈ C∞(M,E) : π ◦ s = idM}

is the family of smooth sections (e.g. Γ(TM) vector field).

Question: How can we differentiate a section s ∈ Γ(E) in direction of a vector field
V ∈ Γ(TM)?

Note that we can already differentiate functions f ∈ C∞(M) in direction of a vector
V ∈ Γ(TM) via

V (f)(p) =
d(f ◦ c)
dt

|t=0 =: ∇V f |p

where c : (−ϵ, ϵ) →M such that c′(0) = Vp.

The operator (V, f) ∈ Γ(TM)× C∞(M) 7→ ∇V f ∈ C∞(M) has the following properties:

(1) ∇ is bilinear, i.e. ∀V,W ∈ Γ(TM), ∀f, f0, f1 ∈ C∞(M) and ∀α, β ∈ R

∇αV f = ∇V (αf) = α∇V f , ∇V+W f = ∇V f+∇W f & ∇V (f0 + f1) = ∇V f0 +∇V f1.

(2) ∇ is C∞-homogeneous in V , i.e. ∇gV f = g∇V (f).

(3) ∇ satisfies the product rule

∇V (g · f) = V (g)f + g∇V f, ∀V ∈ Γ(TM), ∀f, g ∈ C∞(M).

3.1 Definition. A linear connection (or covarariant derivative, or gauge potential) on a
vectorbundle π : E →M is an operator

∇ : Γ(TM)× Γ(E) → Γ(E), (V, s) 7→ ∇V s

that satisfies the previous three points (1), (2) and (3) where f, f0, f1 ∈ C∞ are replaced
with s, s0, s1 ∈ Γ(E).

Most relevant for us will be connections on TM .

3.2 Example. Consider the trivial bundle E = M × Rk → M with π(x, v) = x. The
sections E1, . . . , Ek with Ei|x = (x, ei), ∀x ∈ M , satisfy that (E1|x, . . . , Ek|x) is a basis
of {x} × Rk = π−1({x}) ≃ Rk for every x ∈ M . Hence, every s ∈ Γ(E) has a unique
representation as s =

∑k
i=1 s

iEi with s
i ∈ C∞(M).

(si ∈ C∞(M) since s is a smooth map M from to E.)

The standard connection on E is defined as

∇̄V s :=
k∑
i=1

V (si)Ei.
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The 3 properties (1), (2) and (3) follows directly from the corresponding properties for
V (f) = ∇V f , f ∈ C∞(M) and V ∈ Γ(TM).

This example for instance applies to the tangent bundle TRn = Rn × Rn.
3.3 Example. Let M ⊂ Rn be an m-dimensional submanifold. We know that TM ⊂ TRn,
i.e. TxM ⊂ TxRn ≃ Rn is m-dimensional linear subspace. There is the Euclidean inner
product ⟨·, ·⟩ on Rn. Then

(x, v) ∈ TRn = Rn × Rn with x ∈M ⇒ (x, v) = (x, v⊤) + (x, v⊥)

where (x, v⊤) ∈ TxM and (x, v⊥) ∈ (TxM)⊥ in {x}×Rn where forA ⊂ TxM the orthogonal
complement is A⊥ = {v ∈ TxRn : ⟨v, w⟩ = 0, ∀w ∈ A}.
Consider the standard connection ∇̄ on TRn and v ∈ TpM and X ∈ Γ(TM).

First we find an extenstion X̄ ∈ Γ(TRn) such that X̄|M = X.

For that we pick φ = (x1, . . . , xn) : U → V such that φ(U ∩M) = V ∩Rm×{0} =:W . A
vector field on W is defined by

DφX|φ−1(x) = (Y 1, . . . , Y m, 0, . . . , 0)

where Y i = X(xi)(φ−1(x)) defined for x ∈ W . Let P (x1, . . . , xn) = (x1, . . . , xm, 0, . . . , 0)
be the projection map, define Ȳ i(y) = Y i(P (y)) and X̄(p) = Dφ−1Ȳ |φ(p) for p ∈ U . By
definition it follows X̄|p = Xp for p ∈ M ∩ U . By partition of unity we find an extension
of X in a neighborhood of M .

The connection ∇̄ induces a connection on TM as follows

V,X ∈ Γ(TM) 7→ ∇VX := (∇̄V̄ X̄)⊤.

This does not depend on the extension X̄, since we can write V (X̄i)(p) = (X̄i ◦ c)′(0) =
(Xi ◦ c)′(0) for a curve c : (−ϵ, ϵ) →M for c′(0) = Vp.

Let M be an m-dimensional smooth manifold. We can consider⋃
p∈M

End(TpM) =: End(TM) ≃ T ∗M ⊗ TM

where End(TxM) = {A : TxM → TxM linear}. This is a smooth manifold.

Note that given a chart φ : U → V , φ(p) = (x1, . . . , xm) the local representation of
T ∈ T ∗

pM ⊗TpM is
∑m

i,j=1 a
j
idx

i|p⊗ ∂
∂xj

|p. The coefficient matrix (aji )i,j=1,...,m determines
A ∈ End(TpM).

3.4 Lemma. Let ∇ be a connection on TM . Let X ∈ Γ(TM). Then ∃L ∈ Γ(End(TM))
such that (∇VX)|p = LpVp. In particular ∇VX|p depends only on the value of V in p.

Notation. We will also write ∇VX|p =: ∇vX where v := Vp.

Proof. Let V, V̄ ∈ Γ(TM) with Vp = V̄p = v. We have to show that ∇VX|p = ∇X̄X|p for
every X ∈ Γ(TM). Then we can set Lpv := ∇VX.

Since V → ∇V is linear, it is enough to show that 0 = Vp implies ∇VX|p = 0.

We pick a chart φ = (x1, . . . , xm) : U → V on M around p such that we can write
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V |U =
∑m

i=1 V (xi) ∂
∂xi

.

Now we choose a function λ ∈ C∞(M) such that suppλ ⊂ U and λ(p) = 1. We write

λ2V |U =

m∑
i=1

(λV (xi))(λ
∂

∂xi
).

Note here that λ · V (xi) ∈ C∞(M) is well defined since λ is smooth and has compact
support in U , and also λ ∂

∂xi
∈ Γ(TM) is a well-defined vector field on M .

Then it follows with the C∞(M) homogeneity of ∇ that

∇λ2VX = λ2∇VX ⇒ ∇VX|p = λ(p)∇VX|p = ∇λ2VX|p

=
m∑
i=1

λ(p) V (xi)(p)︸ ︷︷ ︸
=0 da Vp=0

∇λ ∂

∂xi
X|p = 0.

Hence Lpv = ∇VX|p with Vp = v is well-defined. The matrix representation in local

coordinates of p 7→ Lp is (aji (p))i,j=1,...,m where these coefficients are defined via

Lp
∂

∂xi
= ∇λ ∂

∂xi
X|p =

m∑
i,j=1

vi
(
∇ ∂

∂xi
X
)
|p(xj)︸ ︷︷ ︸

aji (p)

∂

∂xj
.

Hence p 7→ Lp is a smooth section of End(TM), that is L ∈ Γ(End(TM)).

3.5 Lemma. Let X0, X1 ∈ Γ(TM) such that X0|U = X1|U for U ⊂ M open. Then
∇XX0|U = ∇XX1|U for all X ∈ Γ(TM) (i.e. ∇X is a local operator).

Proof. Since ∇VX is linear in X, it suffices to show that X|U = 0 implies ∇VX|U = 0.

We choose λ ∈ C∞(M) such that suppλ ⊂ U and λ(p) = 1 for p ∈ U . Then it follows

(1− λ)X = X ⇒ ∇VX|p = ∇V (1− λ)X|p = Vp(1− λ)Xp + (1− λ)(p)∇VX|p = 0.

3.6 Definition (Christoffel Symbols). Let ∇ be a linear connection on TM and let
E1, . . . , Em : U ⊂ M → TM |U vector field defined on U such that (E1(p), . . . , Em(p))
is a basis for every p ∈ M (for instance Ei =

∂
∂xi

for a chart φ = (x1, . . . , xn) : U → V ).

One calls E1, . . . , Em a local frame. Then ∇EiEj |U =
∑m

k=1 Γ
k
ijEk where Γkij are called

Christoffel symbols of ∇ w.r.t. E1, . . . , Em.

3.7 Remark. For X,Y ∈ Γ(TM) and let E1, . . . , Em be a local frame. Then we can write
X|U =

∑m
i=1X

iEi, Y |U =
∑m

i=1 Y
iEi and

∇XY |U =

m∑
i,j=1

Xi∇Ei(Y
jEj)|U =

m∑
i,j=1

XiEi(Y
j)Ej +XiY j∇EiEj

=
m∑
k=1

X(Y k)Ek +
m∑

i,j,k=1

XiY jΓkijEk.

In particular, we see that ∇XY only depends on Y ◦ c : (−ϵ, ϵ) → TM for some curve c
such that c′(0) = X.
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Let Γkij be the Christoffel Symbols of a connection ∇ on TM w.r.t. to a local frame

E1, . . . , Em on U ⊂ M . If Ei, i = 1, . . . ,m, are the coordinate vectorfields ∂
∂xi

of a chart

φ = (x1, . . . , xm) : U → V , then we also write φΓkij .

Let e1, . . . , em be the local frame for T ∗M dual to E1, . . . , Em. The Christoffel symbols
Γkij , i = 1, . . . ,m, define 1-forms via

ωkj =
m∑
i=1

Γkije
i

on U that are called connection 1-forms of ∇ w.r.t. E1, . . . , Em. Then we can write

∇VX|U =

m∑
k=1

V (Xk) +

m∑
j=1

Xjωkj (V )

Ek.

Notations. If U ⊂ M is open, V ∈ Γ(TM) and X ∈ Γ(TU), then we define p ∈ U 7→
∇U
VX|p = ∇V (λX)|p where λ ∈ C∞(M) with suppλ ⊂ U and λ ≡ 1 in a neighborhood

of p in U .

3.8 Theorem (Levi-Civita connection). Let (M, g) be a Riemannian manifold. Then
there exists exactly one linear connections on TM such that ∀V,X, Y ∈ Γ(TM) the fol-
lowing properties hold:

(1) ∇XY −∇YX = [X,Y ] (∇ is torsionfree, or symmetric)

[X,Y ] ∈ Γ(TM) denotes the Lie bracket, i.e. [X,Y ](f) = X(Y (f))− Y (X(f)).

(2) V (g(X,Y )) = g(∇VX,Y ) + g(X,∇V Y ) (∇ is a Riemannian connection)

We note that p ∈M 7→ g(X,Y )(p) = gp(Xp, Yp) ∈ C∞(M) since g is smooth.

This connection ∇ is defined through

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])

+ g(Y, [Z,X]) + g(Z, [X,Y ]) = ΘX,Y (Z). (2)

That is ∇XY = 1
2♯ΘX,Y .

If φ = (x1, . . . , xm) is a chart, it follows for the Christoffel symbols φΓkij of ∇ w.r.t. ∂
∂xi

,
i = 1, . . . ,m:

Γkij =
1

2

m∑
l=1

gkl
(

∂

∂xj
gil +

∂

∂xi
gil −

∂

∂xl
gij

)
where (gkl)k,l=1,...,m is the inverse matrix of (gij)i,j=1,...,m.

From this formula we can see that φΓkij is symmetric in i, j.
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Proof. Uniqueness. Assume we have a connection with the two properties (1) and (2).
Then for X,Y, Z ∈ Γ(TM) we compute the following:

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX) = g(∇Y Z,X) + g(Z,∇XY )− g(Z, [X,Y ])

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = g(∇XZ, Y )− g([X,Z], Y ) + g(X,∇ZY ).

This yields the formula (2).

If we show that the right hand side in (2) defines a 1-form. Then we can define ∇XY :=
1
2♯ΘX,Y . For this it is enough to show that the right hand side in (2) is C∞(M)-
homogeneous in Z.

We compute

Xg(Y, fZ) = X(fg(Y, Z) = X(f)g(Y, Z) + fXg(Y, Z),

Y g(X, fZ) = Y (f)g(X,Z) + fY g(X,Z).

On the other hand, we have

− g(X, [Y, fZ]) = −g(X,Y (f)Z + f [Y,Z]) = −Y (f)g(X,Z)− fg(X, [Y,Z]),

g(Y, [fZ,X]) = X(f)g(Y,Z) + fg(Y, [Z,X]).

Plugging this into (2) yields C∞(M)-homogenity.

Hence, the right hand side defines a 1-form and therefore via ♯ a vector field onM , and we
showed that for every connection ∇ with the properties (1) and (2) ∇XY coincides with
this vector field. This gives uniqueness of ∇.

Existence. We need to show that the right hand side in (2), or more precisely ♯ΘX,Y =:
∇XY really defines a connection.

� Check that (X,Y ) ∈ Γ(TM)× Γ(TM) 7→ ∇XY is R-bilinear.

� Check that ∇XY is C∞(M) homogeneous in X.

� Check that ∇XY satisfies a product rule in Y .

We will only check the last point. For this we compute:

2g(∇X(fY ), Z) = Xg(fY, Z) + fY g(Z,X)− Zg(X, fY )

− g(X, [fY, Z]) + g(fY, [Z,X]) + g(Z, [X, fY ])

= X(f)g(Y,Z) + fXg(Y,Z) + fY g(Z,X)− Z(f)g(X,Y )− fZg(X,Y )

+ Z(f)g(X,Y )− fg(X, [Y, Z]) + fg(Y, [Z,X]) +X(f)g(Z, Y ) + fg(Z, [X,Y ])

= g(2X(f)Y, Z) + g(2∇X(fY ), Z) ∀X,Y, Z ∈ Γ(TM)and ∀f ∈ C∞(M).

Finally, we show the formula for the Christoffel symbols. Let φ = (x1, . . . , xm) be a chart,
and set ∂

∂xi
= X, ∂

∂xj
= Y and ∂

∂xk
= Z. Then

∇ ∂

∂xi

∂

∂xk
=

m∑
k=1

φΓkij
∂

∂xk
.
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It follows with (2):

2
m∑
k=1

φΓkijgkl = 2g

(
∇ ∂

∂xi

∂

∂xk
,
∂

∂xl

)
=

∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij .

We note here, that the Lie bracket between the coordinate vector fields ∂
∂xi

vanishes. This
is not true in general for a local frame Ei.

Keeping i, j fixed, this is a vector w.r.t. l = 1, . . . ,m that we get by applying (gkl)kl to
(φΓkij)k=1,...,m. Hence applying the inverse (gsl)s,l=1,...,m from the left, yields the desired

formula for φΓkij .

3.9 Examples. (1) The standard connection ∇̄ on Rm is the Levi-Civita connection of
⟨·, ·⟩eucl.

(2) Let M ⊂ Rm be a submanifold with i : M → Rn, i(x) = x and let g = i∗⟨·, ·⟩eucl.
We defined a connection via (X,Y ) ∈ Γ(TM)× Γ(TM) 7→ ∇XY := (∇

X̃
Ỹ )⊤ where

X̃, Ỹ are extensions of X,Y to Rm and (p, v)⊤ is the component of (p, v) ∈ TpRn
tangential to TpM .

Claim: ∇ is the Levi-Civita connection of g.

Proof of the claim. We compute for X,Y, Z ∈ Γ(TM).

Xg(Y,Z)(p) = Xp⟨Ỹ , Z̃⟩eucl = ⟨∇Xp Ỹ |p, Z̃(p)⟩eucl(p) + ⟨Ỹ (p),∇XpZ̃|p⟩eucl
= ⟨(∇Xp Ỹ |p)⊤, Zp⟩eucl + ⟨Yp, (∇XpZ̃|p)⊤⟩eucl
= g(∇XpY |p, Zp) + g(Yp,∇XpZ|p).

Moreover

∇XY |p −∇YX|p = (∇̄
X̃
Ỹ |p − ∇̄

Ỹ
X̃|p)⊤ = ([X̃, Ỹ ](p))⊤ = [X,Y ](p).

For the last identity we note that for f ∈ c∞(Rn) we have [X̃, Ỹ ]p(f) = X̃p(Ỹ (f))−
Ỹp(X̃(f)) = Xp(Y (f |M ))− Yp(X(f |M )) = [X,Y ]p(f |M ).
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In the following let (M, g) be a Riemannian manifold and let ∇ be its LC-connection.

3.10 Definition. A smooth vector field along a γ ∈ C∞(I,M), for an interval I ⊂ R, is
a map v : I → TM such that v(t) ∈ Tγ(t)M ∀t ∈ I. The set of all smooth vector fields
along γ is denoted with Γ(γ∗TM).

More generally, one can consider a smooth section s of a vector bundle π : E → M
along γ: s ∈ C∞(I, E) such that π ◦ s(t) = γ(t).

The definition of vector field along a curve γ also includes the case when γ ≡ const =
p ∈M . Then v : I → TpM .

3.11 Theorem. There is a unique operator ∇t : Γ(γ
∗TM) → Γ(γ∗TM) such that

(1) ∇t is linear,

(2) v ∈ Γ(γ∗TM), f ∈ C∞(I,R) ⇒ ∇t(f · v) = f ′v + f∇tv,

(3) If V ∈ Γ(TM) and v = V ◦ γ, then ∇tv|t = ∇γ′(t)V |γ(t).

∇t is also called covariant derivative along γ.

Proof. Let φ = (x1, . . . , xm) : U → V be a chart and assume γ(I) ⊂ U . Given v ∈
Γ(γ∗TM) we can then write

v(t) =

m∑
i=1

vi(t)
∂

∂xi
|γ(t)

where vi(t) ∈ C∞(I,R) for i = 1, . . . ,m.

Uniqueness of ∇t if γ(I) ⊂ U . Assume there is an operator ∇t with the properties (1),
(2) and (3) on vector fields along γ with γ(I) ⊂ U . Then

∇tv|t
(1)
=

m∑
i=1

∇t

(
vi

∂

∂xi
◦ γ(t)

)
(2)
=

m∑
i=1

(vi)′(t)
∂

∂xi
◦ γ(t) + vi(t)∇t

(
∂

∂xi
◦ γ(t)

)
(3)
=

m∑
i=1

(vi)′(t)
∂

∂xi
◦ γ(t) + vi(t)

(
∇γ′(t)

∂

∂xi

)
◦ γ(t)

=
m∑
i=1

(vi)′(t)
∂

∂xi
◦ γ(t) +

m∑
j=1

vi(t)(γ′(t))j
(
∇ ∂

∂xj

∂

∂xi

)
◦ γ(t)︸ ︷︷ ︸∑m

k=1
φΓkij◦γ(t)

∂

∂xk
◦γ(t)

=: ∇φ
t v|t.

Since the Christoffel symbols Γkij for the chart φ are unique, also the operator ∇t is
uniquely determined on U throught this formula.

Claim. Let γ ∈ C∞(I,M) and v ∈ Γ(γ∗TM). Then ∇t(v|J)|t0 = ∇tv|t0 for any J ⊂ I
with γ(J) ⊂ U for a chart φ : U → V .
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Proof of the claim. We define an operator on Γ((γ|J)∗TM) via ∇̃tṽ|t0 := ∇t(fṽ)|t0 for
t0 ∈ J where f ∈ C∞(I, [0, 1]) with f ≡ 1 on (t0−ϵ, t0+ϵ) and supp f ⊂ J . The definition
of ∇̃t is independent of the choice of f by the product rule for ∇t. This follows exactly
like the statement of Lemma 3.5. Then

(1) ∇̃t is linear,

(2) ∇̃t satisfies the product rule:

∇̃t(g̃ṽ)|t0 = ∇t(f
2g̃ṽ) = (g̃f)′(t0)(fṽ)|t0+g̃f(t0)∇t(fṽ)|t0 = g̃′(t0)ṽ(t0)+g̃(t0)∇̃tṽ|t0 .

(3) If X ∈ Γ(TM), then

∇̃t(X◦γ|J)|t0 = ∇t(f(X◦γ|J))t0 = ∇t(f(X◦γ))t0 = ∇γ′(t0)X◦γ(t0) = ∇(γ|J )′(t0)X◦(γ|J)(t0).

Hence, ∇̃t is an operator that satisfies the properties (1), (2), (3) and hence coincides with
∇t for v ∈ Γ((γ|J)∗TM) as long as γ(J) ⊂ U for a charte φ : U → V (both have to be
∇φ
t ).

Hence ∇t(v|J)t0 = ∇tv(t0) for t0 ∈ J and with γ(J) ⊂ U .

Existence. We define ∇t : Γ(γ∗TM) → Γ(γ∗TM) through ∇t = ∇φ
t via the previous

formula on the domain of a given chart φ.

For definition of ∇t for general γ and v ∈ Γ(γ∗TM) we choose a covering ofM with charts
φ : U → V and define ∇tv|t as ∇φ

t v|t for γ(t) ∈ U .

If J ⊂ I with γ(J) ⊂ U for such a chart φ : U → V , then ∇t satisfies (1), (2), (3) for
t ∈ J .

Claim. ∇t does not depend on the covering with charts.

If ψ = (y1, . . . , ym) : Ũ → Ṽ such that U ∩ Ũ ̸= ∅, then the computation we did for
uniquness shows that for γ(t) ∈ U ∩ Ũ we have

∇ψ
t v|t = ∇φ

t v|t.

Hence, the definition of ∇t does not depend on covering of M with charts.

3.12 Examples. � Consider M = Rn, TM = Rn × Rn, γ : I → Rn and V ∈ Γ(γ∗TM).
A global chart of M is φ(p1, . . . , pn) = (p1, . . . , pn) and φΓkij ≡ 0.

Hence ∇̄tV |t = ((V 1)′(t), . . . , (V n)′(t)).

� Let M ⊂ Rn be a m-dimensional submanifold, γ : I → M a smooth curve. The
operator ∇t : Γ(γ

∗TM) → Γ(γ∗TM) is given by

(∇̄tV |t)⊤ =: ∇tV |t.

Indeed, it satifies (1), (2) and (3).

3.13 Definition. We say v ∈ Γ(γ∗TM) is parallel along γ if ∇tv ≡ 0.

3.14 Remark. � v, w ∈ Γ(γ∗TM) parallel and α, β ∈ R, then αv+ βw parallel as well.

25



� TRn = Rn × Rn. Then ∇tv =
∑n

i=1(v
i)′(t)ei where e

i is a basis of Rn. Hence v is
parallel if and only if v(t) = v(0) = v0 ∈ Rn.

3.15 Theorem. Let γ ∈ C∞(I,M), a ∈ I and v ∈ Tγ(a)M . Then there exists exactly one
parallel v ∈ Γ(γ∗TM) with v(a) = va.

Proof. Let φ = (x1, . . . , xm) : U → V be a chart such that γ(a) ∈ U . Then v(t) =∑m
i=1 v

i(t) ∂
∂xi

|γ(t) if γ(t) ∈ U . It follows that v is parallel on J ⊂ I with γ(J) ⊂ U if and
only if

(vi)′(t) +
∑
j=1

vj(t)ωij(γ
′(t)) = 0 ∀t ∈ J, ∀i = 1, . . . ,m. (3)

Recall that ωij(γ
′(t)) =

∑m
k=1 Γ

i
jk(γ

′(t))k are the connection 1-forms.

The equation (3) is an ordinary, linear, Rm-valued, differential equation with smooth
coefficients on J . Hence it has a unique solution everywhere on J (because it is linear
with smooth coefficients) for the initial value (v1(a), . . . , vm(a)).

If φ̃ another chart with U ∩ Ũ ̸= ∅, the value of v at some t0 ∈ I with γ(t0) ∈ U ∩ Ũ then
determines v for any t ∈ I with γ(t) ∈ Ũ .

Hence, the existence and uniqueness of such a parallel v on I follows from successively
solving the equation (3) on coordinate charts.

3.16 Definition. Let γ : I → M as before and s, t ∈ I. The parallel transport along γ
from γ(s) to γ(t) is the map P γs,t : Tγ(s)M → Tγ(t)M defined as follows: If v ∈ Tγ(s)M , we
consider the v ∈ Γ(γ∗TM) parallel with v(s) = v, and we set P γs,t(v) = v(t).

3.17 Remark. The map P γs,t is a vector space isomorphism between Tγ(s)M and Tγ(t)M
where the inverse is given by P γt,s.

This follows from the fact that solutions of (3) are a vector space and unique for a given
initial value v(a) = va (the parallel v with v(a) = 0 is the vector field v ≡ 0). This implies
that P γs,t is a linear map that is injective and therefore an isomorphism.

3.18 Lemma. Consider γ ∈ C∞(I,M) and V,W ∈ Γ(γ∗TM). Then

d

dt
g(V (t),W (t)) = g(∇tV |t,W (t)) + g(V (t),∇tW |t).

Proof. Exercise.

3.19 Corollary. Consider a smooth curve γ : I → M and s, t ∈ I. Then P γs,t is an
orthogonal map.

Proof. V,W ∈ Γ(γ∗TM) parallel. Then

d

dt
g(V (t),W (t)) = g(∇tV |t,W (t)) + g(V (t),∇tW |t) = 0.

Hence t ∈ I 7→ g(V (t),W (t)) is constant.

26



24.05.2023

3.20 Lemma. Let γ ∈ C∞(I,M), 0 ∈ I and W ∈ Γ(γ∗TM). Then

∇tW |t=0 =
d

dt

∣∣∣
t=0

P γt,0W (t).

Proof. Let e1, . . . , em ∈ Tγ(0)M be an ONB and let E1(t), . . . , Em(t) ∈ Γ(γ∗TM) be
parallel such that Ei(0) = ei ∀i = 1, . . . ,m, that is P γ0,tei = Ei(t). Then E1(t), . . . , Em(t)
is an ONB of Γ(γ∗TM) since P γ0,t is orthogonal. Hence

W (t) =

m∑
i=1

W i(t)Ei(t)

and

P γt,0W (t) =

m∑
i=1

W i(t)P γt,0Ei(t) =

m∑
i=1

W i(t)ei.

Therefore it follows

d

dt
|t=0P

γ
t,0W (t) =

m∑
i=1

(W i)′(0)ei =

m∑
i=1

(
(W i)′(0)Ei(0) +W i∇tEi|t=0︸ ︷︷ ︸

=0

)
= ∇tW |t=0.

4 Curvature tensor

Let (M, g) be a Riemannian manifold and ∇ the LC connection.

4.1 Definition. The map

X,Y, Z ∈ Γ(TM) 7→ R(X,Y )Z := ∇X∇Y Z −∇X∇Y Z −∇[X,Y ]Z

definiert ein tensor feld in Γ(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ TM). R is called the Riemannian
curvature tensor of (M, g).

4.2 Remark. It is clear that R(X,Y )Z = −R(Y,X)Z. Hence R ≡ 0, if dimM = 1.

We need to show that R is indeed a tensor field. For this we show C∞(M) homogenenity
in X,Y, Z ∈ Γ(TM):

fR(X,Y )Z = R(fX, Y )Z = R(X, fY )Z = R(X,Y )(fZ).

For instance, we compute

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= ∇X(Y (f)Z + f∇Y Z)−∇Y (X(f)Z + f∇XZ)− [X,Y ](f)Z − f∇[X,Y ]Z

= X(Y (f))Z + Y (f)∇XZ +X(f)∇Y Z + f∇X∇Y Z

− Y (X(f))−X(f)∇Y Z − Y (f)∇XZ − f∇Y∇XZ − [X,Y ](f)− f∇[X,Y ]Z = . . .
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A geometric interpretation of R via parallel transport. Let α :W ⊂ R2 →M be
smooth such that (0, 0) ∈W , α(0, 0) = p ∈M (for instance, if φ : U → V is charte, α can
be φ−1 : V ∩ (R2 × {(0, . . . , 0)} ⊂ Rm) ≃W →M).

We set α(s, t) = αt(s) = αs(t) and define v :W → TM via

v(s, t) = Pαs0,t ◦ P
α0

0,sv0

for some v0 ∈ TM . Then π ◦ v(s, t) = α(s, t). We also define

w(s, t) = Pα0
t,0 ◦ Pαts,0(v(s, t)).

It follows π ◦w(s, t) = α(0, 0) = p, that is w(s, t) ∈ TpM . In particular w(0, 0) = v(0, 0) =
v0.

4.3 Theorem. Let α, v and w as before. Then it follows

R

(
∂α

∂t

∣∣∣
(0,0)

,
∂α

∂s

∣∣∣
(0,0)

)
v0 =

∂

∂t

∂

∂s

∣∣∣
(0,0)

w(s, t)

or equivalently

w(s, t) = v0 + stR

(
∂α

∂t

∣∣∣
(0,0)

,
∂α

∂s

∣∣∣
(0,0)

)
v0 + o(|(s, t)|).

4.4 Lemma. Let α :W →M as before and let v :W → TM be such that π ◦v = α. Then

R(
∂α

∂s
,
∂α

∂t
)v = ∇s∇tv −∇t∇sv.

Proof of the lemma. We fix (s0, t0) ∈W . Assume first that ∂α
∂s ,

∂α
∂t are linear independent

at (s0, t0).

⇒ ∃ a chart φ such that φ◦α(s, t) = (s, t, 0, . . . , 0) in a small open neighborhood of (s0, t0).
Computations take place in this neighborhood.

⇒ ∃ local vector fields X,Y, V ∈ Γ(TM) such that [X,Y ] = 0 and such that

X ◦ α =
∂α

∂s
, Y ◦ α =

∂α

∂t
and V ◦ α = v.

Since R is a tensor (that means (R(X,Y )V )|p = R(Xp, Yp)Vp), it follows that

R

(
∂α

∂s
,
∂α

∂t

)
v = (R(X,Y )V ) ◦ α = ∇X(∇Y V ) ◦ α−∇Y (∇XV ) ◦ α− 0

= ∇ ∂α
∂s
(∇Y V ) ◦ α−∇ ∂α

∂t
(∇XV ) ◦ α

= ∇s(∇Y V ◦ α(s, t))−∇t(∇XV ◦ α(s, t))
= ∇s(∇t(V ◦ α(s, t)))−∇t(∇s(V ◦ α(s, t)))

This is the claim, since V ◦ α(s, t) = v(s, t).
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If ∂α
∂s (s0,t0)

and ∂α
∂t (s0,t0)

are not linear independent where α(s0, t0) = p, then we consider

again a chart φ with φ(p) = 0 and we consider

Dφ|p
∂α

∂s
|(s,t)︸ ︷︷ ︸

=ṽ1(s,t)

+τz1, Dφ|p
∂α

∂t
|(s,t)︸ ︷︷ ︸

=ṽ2(s,t)

+τz2

such that these vectors are linear independent for all (s, t) in a neighborhood W̃ of (s0, t0).
Then we replace α with

ατ (s, t) := α̃(s, t, τ) := φ−1(φ ◦ α(s, t) + sτz1 + tτz2).

It follows that

∂ατ
∂s

∣∣∣
(s,t)

= Dφ−1(ṽ1 + τz1)
∣∣∣
(s,t)

,
∂ατ
∂t

∣∣∣
(s,t)

= Dφ−1(ṽ2 + τz2)
∣∣∣
(s,t)

are linear independent in Tα(s,t)M . Moreover, we define a smooth local vectorfield V :

U → TM such that V ◦ α = v, and also vτ (s, t) = V ◦ ατ (s, t) for (s, t) ∈ W̃ .

In local coordinates w.r.t. the chart φ we have vτ (s, t) =
∑m

i=1 v
i
τ (s, t)

∂
∂xi

◦ ατ (s, t) with

smooth coefficients. We see that vτ → v on W̃ as τ ↓ 0. We compute then

∇tvτ (s, t) =
m∑
i=1

 ∂

∂t
(viτ )(s, t) +

m∑
k,l=1

vkτ (s, t)

(
∂ατ
∂t

)l
(s, t)Γik,l ◦ ατ (s, t)

 ∂

∂xi
◦ ατ (s, t)

where
(
∂ατ
∂t

)l
(s, t) = (ṽ2(s, t) + τz1)

l. Finally we compute

∇s∇tvτ (s, t) =

m∑
i=1

[
∂

∂s

 ∂

∂t
(viτ )(s, t) +

m∑
k,l=1

vkτ (s, t)

(
∂ατ
∂t

)l
(s, t)Γikl ◦ ατ (s, t)

 ∂

∂xi
◦ ατ (s, t)

+

 ∂

∂t
(viτ )(s, t) +

m∑
k,l=1

vkτ (s, t)

(
∂ατ
∂t

)l
(s, t)Γikl ◦ ατ (s, t)

(∂ατ
∂s

)j
Γsij ◦ ατ (s, t)

∂

∂xs
◦ ατ (s, t)

]
.

Hence also ∇s∇tvτ (s, t) → ∇s∇tv(s, t) on W̃ as τ ↓ 0.
We then follow the program of the first part of the proof and obtain

R(
∂ατ
∂s

∣∣∣
(s,t)

,
∂ατ
∂t

∣∣∣
(s,t)

)vτ (s, t) = ∇ ∂ατ
∂s

|(s,t)

(
∇ ∂ατ

∂t
vτ

)
|(s,t) −∇ ∂ατ

∂t
|(s,t)

(
∇ ∂ατ

∂s
vτ

) ∣∣∣
(s,t)

.

We have expressed the right hand side in local coordinates and saw it converges to the
correspoinding term with τ = 0.

SinceR is a tensor field, if τ → 0, also left hand side converges toR(∂α∂s

∣∣∣
(s,t)

, ∂α∂t

∣∣∣
(s,t)

)v(s, t).

Hence we get the desired identity and this finishes the proof of the lemma.
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Proof of the theorem. First note that ∇tv|(s,t) = 0. By the previous lemma we get

R(
∂α

∂t
,
∂α

∂s
)v(s, t) = ∇t∇sv|(s,t).

Then, we also compute

∂

∂s
w|(0,t) =

d

ds

∣∣∣
s=0

(
Pα0
t,0 (P

αt

s,0(v(s, t)))
)
= Pα0

t,0

(
d

ds

∣∣∣
s=0

Pα
t

s,0(v(s, t))

)
= Pα0

t,0

(
∇sv|(0,t)

)
.

Hence
∂

∂t

∂

∂s
w|(0,0) = ∇t∇sv|(0,0) = R(

∂α

∂t

∣∣∣
(0,0)

,
∂α

∂s

∣∣∣
(0,0)

) v(0, 0)︸ ︷︷ ︸
=v0

.

This finishes the proof.
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Let (M, g) be a Riemannian manifold, ∇ the LC connection and R the curvature
tensor.

4.5 Theorem. The following statements are equivalent:

(1) R ≡ 0,

(2) ∀p ∈ M ∃ neighborhood U of p such that: if γ : [0, 1] → U is smooth with γ(0) =
γ(1) = p, then P γ0,1 = idTpM .
(The parallel transport is locally path independent.)

(3) If γ0, γ1 : [0, 1] →M are homotopy equivalent via a smooth homotopy α : [0, 1]2 →M
with α(s, 0) = γ0(0) = γ1(0) and α(s, 1) = γ0(1) = γ1(1), then P

γ0
0,1 = P γ10,1.

Proof. (1) ⇒ (3): Consider a smooth homotopy α : [0, 1]2 → M between γ0 and γ1, that
ist α(0, t) = γ0(t) and α(1, t) = γ1(t) for all t ∈ [0, 1] and α(s, 0) = γ0(0) = γ1(0) = p and
α(s, 1) = γ0(1) = γ1(1) = q ∀s ∈ [0, 1]. We set γs(t) := α(s, t).

Let v0 ∈ TpM and define V (s, t) = P γs0,tv0. Then ∇tV (s, t) = 0.
By assumption we have R ≡ 0. Hence 4.4 Lemma implies that 0 = ∇t∇sV (s, t). It

follows that t ∈ [0, 1] 7→ ∇sV (s, t) is parallel vector field along γs.
On the other hand, we have V (s, 0) = v0 ∀s ∈ [0, 1]. Hence ∇sV (s, 0) = 0 which is

the initial value of the parallel vectorfield t ∈ [0, 1] 7→ ∇sV (s, t). Hence ∇sV (s, t) = 0
∀t ∈ [0, 1] for all s ∈ [0, 1]. Hence s ∈ [0, 1] 7→ V (s, t) parallel.

Especially for t = 1, it follows α(s, 1) = q and P γs0,1v0 ∈ TqM constant in s ∈ [0, 1].

(3) ⇒ (2): We can choose U with p ∈ U that is simply connected, for instance let
U = φ−1(Bϵ(0)). Then any closed curve γ is homotopy equivalent to the constant curve p
via a smooth homotopy.

(2) ⇒ (1): This follows from 4.3 Theorem. Let w0, w1 ∈ TpM and let α(s, t) be a smooth
map into M such that ∂α

∂s (0, 0) = w0 and ∂α
∂t (0, 0) = w1. Consider w(s, t) as in 4.3 Theo-

rem. For s, t small enough this is the parallel transport along a closed curve inside of the
neighborhood U given by (ii), it follows w(s, t) = w(0, 0) ∈ TpM. Dann folgt

R(
∂α

∂t

∣∣∣
(0,0)

,
∂α

∂s

∣∣∣
(0,0)

)v0 = 0.

4.6 Corollary. If R ≡ 0 and if M is simply connected, then there exists a global frame
on M for TM . That is TM =M × Rm.

Proof. Let p ∈ M be fixed and let v1, . . . , vm be a Basis of TpM . We then define Vi ∈
Γ(TM) via Vi(q) = P γ0,1vi where γ : [0, 1] → M is a curve that connects p and q. The
previous Theorem implies that this definition of Vi does not depend on γ.

Moreover the smoothness of Vi follows from the smooth dependency of solutions of
ODEs on a smooth parameter. In this cases the smooth parameter ist q ∈M .
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4.7 Remark. The frame (V1, . . . , Vm) is also parallel, that is ∇XVi = 0 ∀i = 1, . . . ,m and
every vector field X ∈ Γ(TM).

4.8 Examples. (1) M = Tm = Rm/Zm. The covering map π : Rm → Tm induces locally
a Riemannian metric that is locally isometric to the Euclidean metric on Rm. Hence
the Christoffel symbols vanish and R ≡ 0. But Tm is not simply connected, despite
TTm = Tm × Rm.

(2) The Moebisu stripM = R2/Γ admits a metric that is locally isometric to Rn. Hence
R ≡ 0. But TM is not trivial (since M is not orientable) and M is not simply
connected.

In the following we also write ⟨·, ·⟩ = g(·, ·) for the Riemannian metric.
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4.9 Lemma (Symmetries of the curvature tensor). Let X,Y, Z,W ∈ Γ(TM).

(a) R(X,Y )Z = −R(X,Y )Z,

(b) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0,

(c) ⟨R(X,Y )Z,W ⟩ = −⟨R(X,Y )W,Z⟩,

(d) ⟨R(X,Y )Z,W ⟩ = ⟨R(Z,W )X,Y ⟩.

Proof. (a) We observed this already from the definition.
(b) Since R is a tensor, it is enough to consider vectorfields X,Y, Z with [X,Y ]p =

[Y,Z]p = [Z,X]p = 0. Then the claim follows from symmetry of ∇ and the definition.
(c) follows form the fact that ∇ is a metric (Riemannian) connections. We assume

again that [X,Y ]p = 0. It is enough to show that ⟨R(Xp, Yp)Zp, Zp⟩ = 0. For this we
compute

Xp(Y |Z|2) = 2Xp(⟨∇Y Z,Z⟩) = 2⟨∇X(∇Y Z)p, Zp⟩+ 2⟨∇Y Zp,∇XZp⟩

as well as
Yp(X|Z|2) = 2⟨∇Y (∇XZ)p, Zp⟩+ 2⟨∇XZp,∇Y Zp⟩.

We substract the second from the first line and obtain

0 = [X,Y ]p|Z|2 = ⟨R(Xp, Yp)Zp, Zp⟩.

(d) follows form (a), (b) and (c). We skip details.

4.10 Lemma (R in local coordinates). Given a chart φ : U → V we compute coefficient
functions Rlijk of R w.r.t. the basis dxi ⊗ dxj ⊗ dxk ∂

∂xl
, that is

R|U =

m∑
i,j,k,l=1

Rlijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl

where R( ∂
∂xi
, ∂
∂xj

) ∂
∂xk

=
∑m

l=1R
l
ijk

∂
∂xl

. It holds

Rlijk =
∂

∂xi
Γljk −

∂

∂xj
Γlik −

m∑
s=1

(
ΓsikΓ

l
js − ΓsjkΓ

l
is

)
.

(We can compute Rp from gp and the first and second derivatives of gij at p. )

Proof. Recall that ∇ ∂

∂xj

∂
∂xk

=
∑m

l=1 Γ
l
jk

∂
∂xl

. Moreover

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj
−∇ ∂

∂xj
∇ ∂

∂xi
.
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Then we compute

∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
=

m∑
l=1

∂

∂xi
Γljk

∂

∂xl
+

m∑
l,s=1

ΓlikΓ
s
jl

∂

∂xs︸ ︷︷ ︸∑m
l,s=1 Γ

s
jkΓ

l
is

∂

∂xl

.

That is the claim.

4.11 Remark.

Rijkl := ⟨R( ∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂xl
⟩ =

m∑
s=1

Rsijkgsl = ♭ ◦R( ∂

∂xi
,
∂

∂xj
)
∂

∂xk
.

The identities of 4.9 Lemma then write as

(a) ⇔ Rlijk = −Rljik,

(b) ⇔ Rlijk +Rljki +Rlkij = 0,

(c) ⇔ Rijkl = −Rijlk,

(d) ⇔ Rijkl = Rklij .

Sectional curvature. We fix p ∈M and TpM and consider the Grassmannian space

G2(TpM) = {E ⊂ TpM : E linear subspace, dimE = 2},

as well as G2(M) =
⋃
p∈M G2(TpM).

For E ∈ G2(M) let u, v ∈ E and define

Q(u, v) = ⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2 = det

(
⟨u, u⟩ ⟨u, v⟩
⟨u, v⟩ ⟨v, v⟩

)
.

Q(u, v) > 0 if and only if u, v is a Basis of E. In particular, if u, v is orthonormal w.r.t.
g, then Q(u, v) = 1.

(
√
Q(u, v) is the area of the parallelogram spanned by u and v w.r.t. the inner product

⟨·, ·⟩ = gp.)
Note that for linear map A : E → E we have Q(Au,Av) = (detA)2Q(u, v).

4.12 Definition (Sectional curvature). The function K : G2(M) → R given by

K(E) := K(u, v) :=
⟨R(u, v)v, u⟩
Q(u, v)

, where u, v is a basis of E,

is called sectional curvature of (M, g).

4.13 Remark. The definition of the sectional curvature K(E) = K(u, v) does not depend
on the choice of u, v. Indeed, if u′, v′ is another basis, then there exists A : E → E such
that Au = u′ and Av = v′, and ⟨R(u′, v′)v′, u⟩ = (detA)2⟨R(u, v)v, u⟩.
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4.14 Examples. 1. (M, g) = (Rm, ⟨·, ·⟩eucl), then R ≡ 0. Hence K ≡ 0.

2. M ⊂ R3 2-dimensional submanifold, then K(TpM) = K(p) is the Gauß curvature.
For this recall that the Gauß curvature, by the Theorema Egregium, is

K(p) =
∂

∂x2
Γ2
11 −

∂

∂x1
Γ2
21 +

2∑
n=1

(
Γn11Γ

2
n2 − Γn21Γ

2
n1

)
where we choose a charte such that ∂

∂x1
|p, ∂

∂x2
|p is ONB of TpM . But the right hand

side is also

R2
211(p) = R(

∂

∂x2

∣∣∣
p
,
∂

∂x1

∣∣∣
p
)
∂

∂x1

∣∣∣
p
(dx2p) = R2112.

3. (M, g) frame homogeneous Riemannian manifold (Raum freier Beweglichkeit). Then
K = const = K0 ∈ R.
Indeed: Since (M, g) is frame homogeneous, it follows ∀E,E′ ∈ G2(M) there exists
an isometry F : (M, g) → (M, g) such that DF (E) = E′.

Exercise sheet 7: K(E) = K(DF (E)) = K(E′).

Question: Is information lost when going from R to K?

Answer: No. The knowledge of K determines R uniquely.

4.15 Lemma. Let V be a vector space of dimension ≥ 2 and let ⟨·, ·⟩ be an inner product
on V . Assume R,R′ : V × V × V → V are trilinear maps such that the conditions (a),
(b) and (c) of 4.9 Lemma are satisfied by

⟨R(x, y)u,w⟩, ⟨R′(x, y)u,w⟩.

If u, v ∈ V are linear independent, then we define K(u, v) and K ′(u, v) as above via
K(u, v) = R(u, v, v, u)/Q(u, v). If K(E) = K ′(E) for all G2(V ), then R = R′.

Proof. Set
R(v, w, x, y) = ⟨R(v, w)x, y⟩.

We show that R(v, w,w, v) = 0 for all v, w ∈ V implies R(v, w, x, y) = 0 for all v, w, x, y ∈
V . Since the set of tensorfields with (a), (b) and (c) is an R vector space and since the
map R 7→ KR is linear, then it follows that the map R 7→ KR is injective.

If R(v, w,w, v) = 0 ∀v, w ∈ TpM , then 0 = R(u, v + x, v + x, u) = 2R(u, v, x, u) +
R(u, v, v, u) +R(u, x, x, u) = 2R(u, v, x, u) ∀u, v, x ∈ TpM .

Hence R(u, v, x, u) = R(x, u, u, v) = R(u, x, v, u).
The same argument in u yields first that R(u, v, x, w) = −R(u, v, x, w) ∀u, x, v, w ∈

TpM . Then we also have

R(u, v, x, w) = R(w, x, v, u) = −R(x, v, w, u)−R(v, w, x, u) = R(x, v, u, w)−R(v, w, x, u)

= −R(v, u, x, w)−R(u, x, v, w)−R(v, w, x, u) = R(u, v, x, w).

Hence R(u, v, x, w) = 0 ∀u, v, w, x ∈ V .
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4.16 Corollary. Let (M, g) be Riem. mfd. and p ∈M . Assume K|G2(TpM) = c = const.
Then

R(u, v)w = c (⟨v, w⟩u− ⟨u,w⟩v) ∀u, v, w ∈ TpM.

Proof. Set R′(u, v)w = c (⟨v, w⟩u− ⟨u,w⟩v). Then KR′(u, v) = c = K(u, v) and R′ satis-
fies (a), (b), (c) and (d). Hence R′(u, v)w = R(u, v)w.
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5 Geodesics

Let (M, g) be a Riemannian manifold and ∇ the LC connection.

5.1 Definition. Let I ⊂ R be an interval. A smooth curve c : I → M is called geodesic
if c′ is parallel along c, that is ∇tc

′ ≡ 0.

5.2 Remark. Let φ : U → V be a chart. Then φ ◦ c =: (c1, . . . , cm) and

∇tc
′ = 0 on J ⊂ I with c(J) ⊂ U ⇔ (ci)′′(t)+

m∑
j,k=1

(cj)′(t)(ck)′(t)Γijk◦c(t) = 0, i = 1, . . . ,m.

We call this the geodesic equation.

Proof. First

c′(t) =
m∑
i=1

(ci)′(t)
∂

∂xi
◦ c(t) if t ∈ J.

Then

∇tc
′|t =

m∑
i=1

(ci)′′(t) +
∑
i=1

(ci)′(t)∇c′(t)
∂

∂xi
◦ c(t) = . . .

5.3 Remark. The geodesic equation is a nonlinear ODE of second order with smooth
coefficients. Hence, the Theorem of Picard-Lindelöff guarantees that for initial values
p ∈ M and v ∈ TpM there exists ϵ > 0 and a unique geodesic cv : (−ϵ, ϵ) → M such that
cv(0) = p and c′v(0) = v.

5.4 Remark. (1) If c(t) is a geodesic and a, b ∈ R, then also c̃(t) = c(ta+b) is a geodesic.

(2) If F : (M, g) → (M̃, g̃) is an isometry and c is geodesic onM , then F ◦c is a geodesic

on M̃ .

(3) Let c be a geodesic, then ⟨c′(t), c′(t)⟩ = gc(t)(c
′(t), c′(t)) = |c′(t)|2 is constant. Indeed

d

dt
⟨c′(t), c′(t)⟩ = 2⟨∇tc

′|t, c′(t)⟩ = 0.

5.5 Examples. (1) (M, g) = (Rm, ⟨·, ·⟩eucl). Then φ(x) = x is a global chart and φΓkij = 0
for all i, j, k = 1, . . . ,m. Hence, the geodesic equation becomes

(ci)′′ ≡ 0, i = 1, . . . ,m,

where (c1, . . . , cm) = φ ◦ c. For given initial values p ∈ Rm and v ∈ Rm the unique
solution of this equation is c(t) = p+ tv.
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(2) Let i :M ⊂ Rn be an embedded m-dimensional submanifold equipped with induced
intrinsic metric i∗⟨·, ·⟩eucl. The geodesic equation for c(t) = (c1(t), . . . , cn(t)) ∈M is

c′′(t)⊤ = 0.

That is c′′(t) is a vector normal to Tc(t)M ⊂ Rn.

(3) A special case of the previous example: Sn−1 ⊂ Rn. Recall that TpSn−1 = {p}×p⊥ for
p ∈ Sn−1. Hence c(t) = (c1(t), . . . , cn(t)) ∈ Sn is geodesic if and only if c′′(t)||±N◦c(t)
where N(p) is the outer unit normal vector in p ∈ Sn−1. For instance, the curves

c(t) = cos t · p+ sin t · v ∈ Sn−1, p ∈ Sn−1, v ∈ p⊥

are geodesics.

Moreover c : R → Sn−1 satisfies c(0) = p and c′(0) = v. Hence c is the unique
solution of the geodesic equation with intial values p and v.

Notation. ∀v ∈ TM let cv : (αv, ωv) → M be unique maximal solution of the geodesic
equation on (M, g) with c′v(0) = v: The interval (αv, ωv) ∋ 0 is maximal with αv, βv ∈
R ∪ {±∞}.
5.6 Remark (Consequences of the Theorem of Picard-Lindelöff).

� W := {(v, t)|v ∈ TM, t ∈ (αv, ωv)} is open in TM × R.

� TM × {0} ⊂ W and ∀p ∈ M it holds {0p} × R ⊂ W since c0p(t) ≡ p. Here
0p = 0 ∈ TpM .

� csv = cv(s) and (αsv, ωsv) = (1sαv,
1
sωv), s > 0.

� W offen ⇒ U := {v ∈ TM : 1 ∈ (αv, ωv)} = PTM (W ∩ TM × {1}) offen in TM und
0p ∈ U ∀p ∈M .

5.7 Definition (Exponential Map). The map exp : U →M with exp(v) = cv(1) is called
exponential map.

For p ∈M we set expp := exp |U∩TpM : U ∩ TpM →M .

5.8 Lemma (Consequences of the Theorem of Picard-Lindelöff).

(1) exp is smooth,

(2) exp(tv) = cv(t) ∀t ∈ (αv, βv),

(3) D(expp)0pv = v where v ∈ T0p(TpM) ≃ TpM . Note that TpM ≃ Rm and hence
T0p(TpM) ≃ Rm ≃ TpM .

Hence D(expp)0p = idTpM and in particular there exists an open neighborhood U of
0p such that expp : U → expp(U) is a diffeomorphismus.

Proof. (1) This follows because of smooth dependence of ODEs on intial values.

(2) Follows since s ∈ (1tαv,
1
tβv) 7→ cv(st) is a maximal solution of ∇tc

′ = 0 with c′(0) =
tv. By uniqueness of solutions of the initial value problem it follows cv(st) = ctv(s).
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(3) Let v ∈ T0pTpM and γ(t) = tv ∈ TpM . Hence γ′(0) = v. Therefore, we can compute
as follows

D(expp)0pv = D(expp)0pγ
′(0) = (expp ◦γ)′(0) = (expp(tv))

′|t=0 = c′v(0) = v.

5.9 Examples.

(1) (M, g) = Rm: geodesics are curves following straight lines with constant speed
t 7→ p+ tv. Hence expp(v) = p+ v.

(2) Sm ⊂ Rm+1 (embedded sphere). Note that TpSn−1 = p⊥ and gS
n−1

p = ⟨·, ·⟩eucl|TpSn−1 .
We know that the geodesic cv with cv(0) = p and c′v(0) = v is given by

cv(t) = cos t · p+ sin t · v.

Hence expp(tv) = cos t · p + sin t · v. In particular expp is defined everywhere on
TpSn−1 and it is injective on Bπ(0p) ⊂ TpSn−1.

Similary, one argues for Hm ⊂ Rm+1
1 (Lorentz-Modell of Hyperbolic space) (Ex-

ercise).

(3) Consider a Lie-group G. For v ∈ TeG there exists a unique left-invariant vector field
Xv ∈ Γ(TG) such that Xv(e) = v, that is Xv

g = Dlg|ev where lg(h) = gh. The
exponential map exp : TeG→ G of a Lie group is defined as exp(v) = γ(1) where γ
solves Xv ◦ γ = γ′ with γ(0) = e.

Let g be a bi-invariant Riemannian metric on G, that is left- and right-translations
l and r are isometries (Exercise sheet 3, Problem 3).

Exercise sheet 7: the flow curve γ of Xv is a geodesic with γ′(0) = v. Hence

exp(v) = γ′(0) = c′v(0).

Hence, the geodesic exponential map expe at e ∈ G w.r.t. g coincides with exp.

In particular: Consider G = SO(n). g(A,B) = ⟨A,B⟩ = trace(AtB) induces a
bi-invariant metric on G. The exponental map is

expE : TEG→ G, expE(A) =
∑
k≥0

Ak

k!
= eA.

5.10 Definition. Let (M, g) be a Riemannian Mfd. p ∈M and U ⊂ TpM open and star-
shaped w.r.t. 0p such that expp |U is a diffeomorphsm. Let L : (TpM, gp) → Rm, ⟨·, ·⟩eucl)
orthogonal. Then we call

φ : expp(U) → L(U) ⊂ Rm, φ = L ◦ (expp |U )−1

normal chart with center p, or normal coordinates.
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5.11 Theorem. Let φ be a normal chart on M at p. Then

gij |p = δij ,
φΓkij(p) = 0.

Proof. We compute
Dφpv = Dφpc

′
v(0) = L(v)

and

φgij |p = g|p(
∂

∂xi
|p,

∂

∂xj
|p) = g|p(Dφ−1ip(ei), Dφ

−1
p (ej)) = g|p(L−1ei, L

−1ej) = ⟨ei, ej⟩eucl = δij

where we used that L is orthogonal.
Let c be a geodesic with c(0) = p and c′(0) = v. Then

φ ◦ c(t) = L ◦ (expp |U )−1(c(t)) = L(tc′(0)) = tLv =: tx.

Since L is orthogonal and since the geodesic c was arbitrary, x can be choosen arbitrarily
as well.

The geodesic equation for c w.r.t. the normal chart φ is

(txi)′′︸ ︷︷ ︸
=0

+

m∑
j,k=1

φΓijk ◦ c(t)xjxk = 0.

At t = 0 the equation is

m∑
j,k=1

φΓijk(p)x
jxk = xT (Γijk(p))j,kx = 0.

Since Γijk = Γikj , (Γ
i
jk(p))jk defines a symmetric bilinear form that maps every x ∈ Rm to

0 ∈ Rm. Hence Γijk(p) = 0 ∀i, j, k = 1, . . . ,m.

5.12 Remark. If Rp ̸= 0, then there is no chart such that all derivatives of gij of order 1
and order 2 vanish at p.

5.13 Lemma. Let c : [a, b] × (−ϵ, ϵ) → M a smooth map such that c(·, τ) =: cτ is a
geodesic for every τ ∈ (−ϵ, ϵ). Then

d

dt
⟨c′τ (t),

∂

∂τ
c|(t,τ)⟩ =

1

2

d

dτ
⟨c′τ (t), c′τ (t)⟩,

d2

dt2
⟨c′τ (t),

∂c

∂τ
(t, τ)⟩ = 0 ∀t ∈ [a, b] ∀τ ∈ (−ϵ, ϵ).

Proof.
d

dt
⟨c′τ (t),

∂

∂τ
c(t, τ)⟩ = ⟨∇tc

′
τ |t,

∂

∂τ
c(t, τ)⟩+ ⟨c′τ (t),∇t

∂c

∂τ
(t, τ)⟩.

This is equal to

= ⟨c′τ (t),∇τ c
′
τ (t)⟩ =

1

2

d

dτ
⟨c′τ (t), c′τ (t)⟩.
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where we used ∇tc
′
τ ≡ 0 ∀τ and ∇τ

∂c
∂t = ∇t

∂c
∂τ for the first equality. To see the latter, we

compute in local coordinates:

∇τ

(∑ ∂ci

∂t

∂

∂xi
◦ c
)

=
∑
i

∂2ci

∂τ∂t

∂

∂xi
◦ c+

∑
i,j

∂ci

∂t

∂cj

∂τ
∇ ∂

∂xj

∂

∂xi
◦ c.

The last expression on the right hand side is symmetric in t and τ .
Moreover

d2

dt2
⟨c′τ ,

∂

∂τ
c⟩ = 1

2

d

dτ

d

dt
⟨c′τ , c′τ ⟩ =

d

dτ
⟨∇tc

′
τ , c

′
τ ⟩ = 0.

5.14 Corollary (Gauß Lemma). Let U ⊂ TpM starshaped w.r.t. 0p and let expp be
defined on U . Then for every smooth v : (−ϵ, ϵ) → U ⊂ TpM it holds

⟨v(0), v′(0)⟩p = ⟨c′v(0)(1), (expp ◦v)
′(0)⟩expp(v(0)).

Proof. Consider c(t, τ) = expp(tv(τ)) = cτ (t). Then c
′
τ (0) = v(τ) and c′0(t) = c′v(0)(t).

Claim. ⟨c′0(t), ∂c∂τ
∣∣∣
(t,0)

⟩
∣∣∣
c0(t)

= t⟨v(0), v′(0)⟩p.

Proof of the claim. For t = 0 we have ⟨c′0(0), ∂c∂τ (0, 0)⟩c0(0) = 0 since c(τ, 0) = p for all τ

and ∂c
∂τ (0, 0) = 0.

d

dt
⟨c′0(t),

∂c

∂τ

∣∣∣
(t,0)

⟩ Lemma 5.13
=

1

2

d

dτ

∣∣∣
τ=0

⟨c′τ (t), c′τ (t)⟩ = ⟨v(0), v′(0)⟩p = const.

Hence t 7→ ⟨c′0(t), ∂c∂τ (t, 0)⟩ = t⟨v(0), v′(0)⟩p is linear.

For t = 1 we have ⟨c′0(1), ∂c∂τ
∣∣∣
(1,0)

⟩ = ⟨c′v(0)(1), (expp ◦v)
′(0)⟩ = ⟨v(0), v′(0)⟩. That is the

statement of the Lemma.

5.15 Theorem (First variation of arc length). Set g = ⟨·, ·⟩ and consider α : [a, b] ×
(−ϵ, ϵ) →M smooth, ατ (t) = α(t, τ). We assume |α′

0(t)| = const = d > 0. Then

d

dτ
L(ατ ) = −1

d

∫ b

a
⟨∇tα

′
0|t, V (t)⟩dt+ ⟨α′

0(t), V (t)⟩
∣∣∣t=b
t=a

where V (t) = ∂α
∂τ (t, 0) = Dα(t,0)

∂
∂τ |t. The map α is called smooth variation of α0 and V is

called variation vector field along α0.

Proof of Theorem 5.15.

d

dτ

∣∣∣
τ=0

L(ατ ) =

∫ b

a

d

dτ

∣∣∣
τ=0

⟨α′
τ (t), α

′
τ (t)⟩

1
2dt =

1

d

∫ b

a
⟨∇τ

∂α

∂t

∣∣∣
(t,0)

, α′
0(t)⟩dt

=
1

d

∫ b

a
⟨∇t

∂α

∂τ

∣∣∣
(t,0)

, α′
0(t)⟩dt = −1

d

∫ b

a
⟨∂α
∂τ

∣∣∣
(t,0)

,∇tα
′
0(t)⟩dt+ ⟨V (t), α′

0(t)⟩
∣∣∣b
a
.

In the first equality we used that α : [a, b]× (−ϵ, ϵ) →M is smooth. In the second equality
we used the chain rule and that ∇ is a Riemannian connection.

In the third equality we used ∇τ
∂α
∂t = ∇t

∂α
∂τ . In the fourth inequality we use again

that ∇ is a Riemannian connection.
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More generally. A variaton of a piecewise smooth curve c : [a, b] →M is a continuous
map α : [a, b]× (−ϵ, ϵ) →M such that

1. α(t, 0) = c(t) ∀t ∈ [a, b],

2. ∃a = t0 < . . . tN = b such that α|[ti−1,ti]×(−ϵ,ϵ) is smooth ∀i = 1, . . . , N .

A variation is called proper if α(a, τ) = c(a) and α(b, τ) = c(b) ∀τ ∈ (−ϵ, ϵ). If α is
smooth, we call α a smooth variation.

The first variation formula also holds for general (non-smooth) variations with appro-
priate boundary terms.

5.16 Lemma. Given a smooth vector field V (t) along a differentiable curve c : [a, b] →M ,
then there exists a smooth variation α : [a, b] × (−ϵ, ϵ) → M of c such that V (t) is the
corresponding variational vector field of α. If V (a) = V (b) = 0, we can choose α as a
proper variation.

Proof. We set α(t, τ) = expc(t)(τV (t)). Since c([a, b]) ⊂ M is compact compact, we can

find ϵ > 0 such that α is well defined on α : [a, b]× (−ϵ, ϵ) →M . Moreover ∂α
∂τ |(t,0) = V (t).

If V (a) = 0 then α(a, τ) = expc(a)(0c(a)) = c(a) for all τ ∈ (−ϵ, ϵ) and similarly if
V (b) = 0.

5.17 Corollary. (1) c : [a, b] →M geodesic, then

d

dτ
L(ατ ) = 0

for every variation α of c.

(2) If |c′(t)| = const and d
dτ τ=0

L(ατ ) = 0 for every Variation α of c = α0 with V (a) =
V (b) = 0, then c is a geodesic.
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5.18 Definition. Let (M, g) be a Riemannian manifold, p ∈ M , U ⊂ TpM open such
that 0p ∈ U and expp : U → V := expp(U) is a diffeomorphism.

� r := rp : V → [0,∞), r(q) = | exp−1
p (q)| =

√
g(exp−1

p (q), exp−1
p (q)).

In particular r ∈ C∞(V \{p}) and r(cv(1)) = r(expp(v)) = |v| = L(cv|[0,1]), since
|c′v(t)| = |c′v(0)| = |v| and therefore L(cv|[0,1]) =

∫ 1
0 |v|dt = |v|.

� Q := Qp : V → [0,∞), Q(q) = ⟨exp−1
p (q), exp−1

p (q)⟩ = (r(q))2.

In particular Q ∈ C∞(M).

� X := Xp ∈ Γ(TV ), Xq = c′v(1) where v = exp−1
p (q).

5.19 Lemma. ∇Q = ♯ ◦ dQ = 2X.

Proof. It is sufficient to show that dQγ(0)(γ
′(0)) = 2⟨X(γ(0)), γ′(0)⟩ for every regular curve

γ : (−ϵ, ϵ) →M . We set v(t) = (expp |U )−1(γ(t)).
We compute

(Q◦γ)′(0) = d

dt
⟨v(t), v(t)⟩|t=0 = 2⟨v′(t), v(t)⟩ = 2⟨(expp ◦v)′(0), c′v(0)(1)⟩ = 2⟨γ′(0), X(γ(0))⟩.

5.20 Corollary. It holds |∇rp| = const = 1 on V \{p}.

Proof. We compute
2Xq = ∇Q|q = ∇(r2)|q = 2r(q)∇r|q.

For this we can consider dr2q(γ
′(0)) = ⟨∇(r2)q, γ

′(0)⟩ and apply the chain rule to dr2.
Moreover, if exp−1

p (q) = v, then |Xq| = |c′v(1)| = |v| = | exp−1
p (q)| = |r(q)|.

Hence |∇r|q| = 1.

5.21 Remark. Recall cv(s) = ctv(s/t). Hence

tc′v(s)|s=t = c′tv(1) = X ◦ expp(tv) = r ◦ expp(tv)∇r ◦ expp(tv) = t|v|∇r ◦ cv(t).

If |v| = 1, it follows c′v(t) = ∇r ◦ cv(t) ∀t > 0. It follows that cv is a flow curve of the
vector field ∇r. If q ∈ V \{p}, then there exists v ∈ U such that expp(v) = q and therefore
cv/|v| is the unique flow curve of ∇r through q.

Recall d :M ×M → [0,∞) defined via

d(p, q) = inf{L(γ) : γ : [a, b] →M piecewise C1 and γ(a) = p, γ(b) = q}.

5.22 Theorem. Let (M, g) be Riemannian manifold, p ∈ M and ρ > 0 such that
expp |Bδ(0p) a diffeomorphismus onto its image. Then

(1) ∀q ∈ expp(Bδ(0p)) it holds rp(q) = d(p, q).
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(2) ∀v ∈ Bδ(0p) it holds
L(cv|[0,1]) = d(p, cv(1)).

Hence cv|[0,1] is a length minimizing curve between p and cv(1).

Proof. Note that (2) implies (1) since for q ∈ expp(Bδ(0p)) we can choose v ∈ TpM such
that expp(v) = cv(1) = q.

Let v ∈ Bδ(0p) and cv(1) = q, and let γ : [a, b] → M be piecewise regular such that
γ(a) = p and γ(b) = q.

Claim. L(γ) ≥ |v| = L(cv|[0,1]).
Proof of the claim. W.l.o.g. γ(t) ̸= p ∀t ̸= a.

1. Assume γ([a, b]) ⊂ V = expp(Bδ(0p)). Then

|v| = rp(q) = rp(q)− rp(p) =

∫ b

a
(rp ◦ γ)′(t)dt =

∫ b

a
drp(γ

′(t))dt

=

∫ b

a
⟨∇rp|γ(t), γ′(t)⟩dt ≤

∫ b

a
|γ′(t)|dt = L(γ).

Hence L(cv|[0,1]) ≤ L(γ).
Note that this estimate is proved for γ regular, but clearly generalizes for γ piecewise

regular.
Assume we have γ such that equality holds in the previous estimate. Then, whenever

γ is differentiable in t we have equality in

⟨∇rp ◦ γ(t), γ′(t)⟩ ≤ |γ′(t)||∇rp ◦ γ(t)|,

and equality holds if and only if γ′(t) = λ(t)∇rp ◦ γ(t) for λ(t) ≥ 0. This is the equality
case of the Cauchy-Schwarz inequality. Hence |γ′(t)| = λ(t) when γ is differentiable in t.

In this case, by Lemma 2.14, we know that γ ◦ φ−1(t) =: c(t), t ∈ [0, L(γ)] with
φ(t) =

∫ t
a λ(s)ds is an arclength reparametrization of γ.

Moreover, if c is differentiable in t, then

c′(t) = γ′ ◦ φ−1(t)
1

φ′ ◦ φ−1(t)
= ∇rp ◦ c(t).

Hence c is a gradient flow curve of ∇rp and in particular also differentiable in every t since
left and right hand derivatives of c in every point t are both equal to ∇rp(c(t)). It follows
there exists w ∈ TpM with |w| = 1 such that c = cw with cw(L(γ)) = q. More precisely,
by uniqueness of the gradient flow curve cv/|v| of rp through q we have cw = cv/|v|, or

w = 1
| exp−1

p (q)| exp
−1
p (q).

2. Assume γ([a, b]) ∩ V c ̸= ∅.
Consider δ′ ∈ (0, δ). Then expp |Bδ′ (0p) is still a diffeomorphim. Moreover expp(Bδ′0p)) =

V ′ is compact and ∂V ′ = expp(∂Bδ′(0p)).
Let t0 = inf{t ∈ (a, b] : γ(t) ∈ (V ′)c}. By continuity of γ t0 ∈ (a, b] and γ(t0) ∈ ∂V ′.

We apply the first case to γ|[a,t0]. Define w = exp−1
p (γ(t0)). Then it follows L(γ) ≥

L(γ|[a,t0]) ≥ |w| = δ′. This holds for every δ′ ∈ (0, δ) and hence L(γ) > |v| since v ∈ Bδ(0p).
Hence, the equality case can only appear when γ([a, b]) ⊂ V and in this case γ is a
reparametrization of cv/|v||[0,|v|].
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5.23 Remark. � The previous theorem implies expp(Bδ(0p)) ⊂ B
dg
δ (p) if expp |Bδ(0p) is

a diffeomorphism.

On the other hand, let r > δ > 0 be small enough such that B
dg
δ (p) ⊂ expp(Br(0p))

and such that expp |Br(0p) is a diffeomorphism. If q ∈ B
dg
δ (p), let v = exp−1

p (q).
Then cv : [0, 1] → M is curve that connects p = cv(0) and q = cv(1) with δ >

d(p, cv(1)) = L(cv) = |v| according to the previous theorem and in this case B
dg
δ (p) =

expp(Bδ(0p)).

� Let p, q ∈M with p ̸= q, then dg(p, q) > 0.

Proof. For δ > 0 small expp |Bδ(0p) is a diffeomorphism and expp(Bδ(0p)) = B
dg
δ (p) is

an open neighborhood w.r.t. the topology onM . In particular the manifold topology
and the metric topology coincide. Since M is Hausdorffsch, there exists δ > 0 such

that B
dg
δ (p)∩Bdg

δ (q) = ∅. Then it follows dg(p, q) > δ since otherwise q ∈ B
dg
δ (p) by

the previous theorem.
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5.24 Theorem (Hopf-Rinow). Let (M, g) be Riemannian manifold. The following state-
ments are equivalent:

1. (M,dg) is a complete metric space.

2. ∃p ∈M such that expp is defined on TpM .

3. ∀v ∈ TM cv is defined on R.

Any of the previous statements implies that

4. ∀p, q ∈M ∃ a geodesic c : [a, b] →M such that c(a) = p, c(b) = q and d(p, q) = L(c).

A Riemannian manifold (M, g) is called complete if one of the previous statements 1. or
2. or 3. is satisfied.

5.25 Examples. (1) M compact (without boundary points), then M is complete, since
1. is satisfied.

(2) (Rm, ⟨·, ·⟩eucl), (Sm−1, i∗⟨·, ·⟩eucl) and (Hm−1, i∗⟨·, ·⟩1) are complete, since 2. is satis-
fied.

(3) Let M ⊂ Rn be an embedded submanifold, such that M is a closed subset of Rn.
Then (M, i∗⟨·, ·⟩eucl = g) is complete. This can be seen as follows.

dg(p, q) ≥ |p− q|eucl ⇒ B
dg
r (p) ⊂M ∩B⟨·,·⟩eucl

r (p). The set on the RHS is compact in

Rn. Moreover B
dg
r (p) is closed w.r.t. the dg topology and hence w.r.t. the manifold

topology that comes from Rn. Hence B
dg
r (p) is a closed set in Rn. Since it is also

subset of a compact set in Rn, it is a compact subset in Rn itself. Then it follows

also that B
dg
r (p) is compact w.r.t. dg. Therefore (M,dg) is complete as a metric

space.

5.26 Lemma. Assume expp |Br(0p) is a diffeomorphism, and let ρ ∈ (0, r). Then it holds:

∀q ∈M\Bdg
ρ (p) there exists q′ ∈ ∂B

dg
ρ (p) such that d(p, q) = d(p, q′) + d(q′, q).

Proof. Note first that B
dg
ρ (p) = expp(Bρ(0p)) is compact. Here we use that ρ ∈ (0, r).

It follows that also ∂B
dg
ρ (p) is compact.

Since dg(x, q) = rq(x) is continuous on ∂B
dg
ρ (p), there exists q′ ∈ ∂B

dg
ρ (p) such that

d(q′, q) = min
x̃∈∂Bdgρ (p)

d(x, q).

Let γ : [0, 1] → M be piecewise C1 such that cv(0) = p and cv(1) = q. There exists
t0 ∈ [0, 1] such that γ(t0) ∈ ∂Bδ(p). Hence L(γ|[0,t0]) ≥ δ = d(p, q′).

On the other hand it hold L(γ|[t0,1]) ≥ d(γ(t0), q) ≥ d(q′, q).

Hence L(γ) ≥ d(p, q′) + d(q′, q), and so d(p, q) ≥ d(p, q′) + d(q′, q), and therefore we have
equality.
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Proof of the Theorem of Hopf-Rinow. 1. Assume 2. We show 4. : ∃ shortest curve be-
tween p and any q ∈M .

Choose δ ∈ (0, dg(p, q)) as in the previous Lemma. We set

v(x) :=
(expp |Bδ(0p))

−1(x)

| · · · |
⇒ |v(x)| = 1.

Because of 2. expp(tv(x)) = cv(x)(t) is defined on R.

For q ∈ M let q′ ∈ ∂B
dg
δ (p) be as in 5.26 Lemma where we choose δ > 0 small enough

such that exp−1
p is defined on B

dg
2δ (p). Consider v(q

′) = v and cv : R →M .

Claim. cv(dg(p, q)) = q. Then it follows L(cv|[0,dg(p,q)]) = dg(p, q) and cv is the desired
shortes curve.

Let t ∈ [δ, dg(p, q)] be maximal such that dg(p, q) = t + dg(cv(t), q) (this is true for t = δ
by 5.26 Lemma).

Assume t < dg(p, q). Then we choose δ′′ > 0 small enough such that q /∈ B
dg
δ′′ (cv(t)) and

as in 5.26 Lemma. Let q′′ ∈ ∂Bδ′′(cv(t)) such that

dg(cv(t), q) = dg(cv(t), q
′′) + dg(q

′′, q)

and let w ∈ Tcv(t)M with |w| = 1 such that cw(δ
′′) = q′′.

It follows
dg(p, q) = t+ d(cv(t), q) = t+ δ′′ + dg(q

′′, q).

Note that t = L(cv|[0,t]) ≥ dg(p, cv(t)) and δ
′′ = d(cv(t), q

′′). Hence

dg(p, q) ≥ dg(p, cv(t)) + dg(cv(t), q
′′) + dg(q

′′, q) ≥ dg(p, q).

In particular, it follows t = L(cv|[0,t]) = dg(p, cv(t)).

We define γ = cw|[0,δ′′] ∗ cv|[0,t]. It follows that L(γ) = t+ δ′′ = dg(p, q
′′).

Hence γ is piecewise smooth curve, that is also length minimizer. Hence it ist geodesic.
In particular c′v(t) = c′w(0) = w and γ is a smooth extension of cv beyond t

Therefore we have

d(p, q) = (t+ δ′′) + dg(q
′′, q) = t+ δ′′ + dg(cv(t+ δ′′), q).

That is in contradiction to the maximality of t.

2. 2. ⇒ 1.

Claim. expp

(
Br(0p)

)
= B

dg
r (p) ∀r > 0.

Proof of the claim. ⊂: Let v ∈ TpM with |v| ≤ r. Then it follows with cv : [0, 1] → M

satisfies c′v(t) = |v|. Hence d(p, cv(1)) ≤ L(cv) = |v| ≤ r, and therefore expp(v) ∈ B
dg
r (p).

⊃: Consider q ∈ M with dg(p, q) ≤ r. Because 1. there exists v ∈ TpM such that
cv(1) = expp(v) = q and |v| = L(cv|[0,1]) = d(p, q) ≤ r. Hence v ∈ Br(0p).

The claim implies that Br(p) is compact for all r > 0. Hence (M,dg) is complete.

3. 1. ⇒ 3.
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Assume there exists v ∈ TM such that ωv < ∞. Then we choose ti ↑ ωv and cv(ti) are
Cauchysequence w.r.t. dg. For this note that

dg(cv(ti), cv(ti+1)) ≤ L(cv|[ti,ti+1]) ≤ (ti+1 − ti)|v|.

Since (M,dg) is a complete metric space, ∃q ∈M such that cv(ti) → q.
Set wi = c′v(ti). In particular |wi| = |v|. Since cv(ti) → q and since |wi| = |v|, there

exists a subsequence of wi that converges to w ∈ TqM .

On the other hand, we know that W = {(ṽ, t) ∈ TM ×R : t ∈ (αṽ, ωṽ)} is open. Hence we
can choose t0 > 0 such that (w, t0) ∈ W . It follows that i ∈ N big enough (wi, t0) ∈ W .
By uniqueness of geodesics we have that cwi(t0) = cv(ti + t0). Hence ti + t0 < ωv for i
sufficiently big. But we assumed ti ↑ ωv. This is a contradiction.

3. ⇒ 2. is obviously true.

5.27 Proposition. ∃V ⊂ M × M neighborhood of {(p, p) ∈ M × M : p ∈ M} and
V ′ ⊂ TM a neighborhood of {0p ∈ TpM : p ∈ M} such that π × (exp |V ′) : V ′ → V
diffeomorphismus.

Proof. 1. ∀p ∈M we have that D(π× exp)0p : T0pTM → TpM ×TpM is an isomorphism.
Indeed: let v ∈ TpM . Then

D(π × exp)0pv =
d

dt
|t=1(π × exp)(0p + tv) = (0p, c

′
v(1)) ∈ {0p} × TpM\{(0p, 0p)}.

If γ : (−ϵ, ϵ) →M and γ(0) = p, then γ̃(t) = 0γ(t) is a horizontal curve in TM . It follows
π × exp(γ̃) = (γ(t), γ(t)) and

d

dt
|t=0π × exp(γ̃(t)) = (γ′(0), γ′(0)) ⊂ TpM × TpM\{(0p, 0p)}.

The span of these two images generates all of TpM×TpM . Hence D(π×exp)0p is surjective
and hence an isomorphism.

2. It already follows that in a neighborhood of every 0p the map π × exp is a diffeo-
morphism (*).

∀p ∈ M there exists ϵp > 0 such that ∀v ∈ TpM with gp(v, v) < ϵp we have that
D(π × exp)v is an Isomorphism.

Let U ⊂M be open such that U is compact. The dependence of ϵp on p is continuous.
Hence there exists ϵ > 0 such that ∀v ∈ TU with |v|2 < ϵ we have that D(π × exp)v is a
diffeomorphism. We set TU ϵ = {v ∈ TU : |v| < ϵ}.

Moreover we can choose ϵ > 0 small enough such that π × exp |TUϵ is injective. Oth-
erwise ∃ϵn with ϵn ↓ 0 and vn, wn ∈ TU ϵn with π(vn) = π(wn) = pn and exp(vn) =
exp(wn) = qn. Since U compact, there exists a subsequence ni such that (pni , qni) → (p, q)
and vni , wni → 0p. Hence q = p. But this contradicts (*).

3. We can find a countable cover of M by such Uis with corresponding ϵis. We
set V =

⋃
i TU

ϵi
i that is a neighborhood of {0p : p ∈ M}. Then π × exp |V is a local

diffeomorphism. But it is also injective, since otherwise ∃v, w ∈ V with π(v) = π(w) = p.
Assume v ∈ TU ϵii and w ∈ TU

ϵj
j . If ϵi ≤ ϵj then v, w ∈ TU ϵii and by the previous step we

would get v = w.
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6 Jacobi Fields

Let (M, g) be a Riemannian manifold. We consider α : [a, b]× (−ϵ, ϵ) → M smooth such
that ∀τ ∈ (−ϵ, ϵ) the curvces cτ (t) = α(t, τ) are geodesics. Set c0 = c. (For instance we
can consider α(t, τ) = expp(tv(τ)) where v : (−ϵ, ϵ) → TpM is smooth.)

6.1 Lemma. The variation vector field Y (t) = ∂
∂τ α(t, 0) ∈ Γ(c∗TM) of α along c satisfies

∇t∇tY +R(Y, c′)c′ = 0 (∗).

Proof. Since the Levi-Civita connection is symmetric, it follows that

∇t
∂α

∂τ
|(t,τ) = ∇τ

∂α

∂t
|(t,τ).

Then, together with 4.4 Theorem it follows

∇t∇t
∂α

∂α
|(t,0) = ∇t∇τ

∂α

∂t
|(t,0) =

(
∇τ∇t

∂α

∂t

)
|(t,0) +R(

∂α

∂t
|(t,0),

∂α

∂τ
|(t,0))

∂α

∂t
|(t,0).

Since α(·, τ) is geodesic ∀τ ∈ (−ϵ, ϵ), the first term on the right hand side vanishes.

6.2 Definition. Let c : [a, b] →M be a geodesic. Solutions of the equation (∗) are called
Jacobi fields along c. (∗) is called Jacobi equation.

6.3 Remark. If Y is a Jacobi field along c and c̃(t) = c(a+ tb) a linear reparametrization
of c with a, b ∈ R, then Ỹ (t) = Y (a+ tb) is Jacobi field along c̃.

6.4 Remark. Let Ei, i = 1, . . . ,m, be parallel vectorfields along c such that (Ei(t))i=1,...,m

is an orthonormal basis ∀t ∈ [a, b] and E1(t) = c′(t). Then for any Y ∈ Γ(c∗TM) we can
write Y =

∑m
i=1 Y

i(t)Ei(t) for Y
i ∈ C∞([a, b],R). We compute then

∇tY |t =
m∑
i=1

(Y i)′(t)Ei(t) and ∇t∇tY |t =
m∑
i=1

(Y i)′′(t)Ei(t).

Moreover

R(Y (t), c′(t))c′(t) =
m∑
i=1

Y i(t)R(Ei(t), E1(t))E1(t) =
m∑
i=1

m∑
k=1

Y i(t)Rki11(t)Ek(t)

where
∑m

k=1R
k
i11(t)Ek(t) = R(Ei(t), E1(t))E1(t) and Rki11 ∈ C∞([a, b],R). Note that

Rk111 = R1
i11 = 0 for all k, i = 1, . . . ,m.

Therefore, the Jacobi equation (∗) is equivalent to

(Y k)′′(t) +

m∑
i=2

Rki11(t)Y
i(t) = 0, k = 2 . . . ,m, and (Y 1)′′(t) = 0.

This is a linear System of ODEs of second order and has a unique solution for initial values
Y (t0) = v and Y ′(t0) = w with t0 ∈ [a, b]. In the following let [a, b] = [0, T ] and t0 = 0.

It follows that {Y ∈ Γ(c∗TM) : Y Jacobi} is a 2m-dimensional R-vector space.
The Jacobi equation is the linearisation of the geodesic equation.
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6.5 Lemma. Let c be a geodesic and Y ∈ Γ(c∗TM). We can write Y = Y ⊤ + Y ⊥

where Y ⊤||c′ and Y ⊥ ⊥ c′, i.e. ⟨Y ⊥, c′⟩ = 0. (If Ei is as before, then Y ⊤ = Y 1E1 and
Y ⊥ = Y − Y ⊤. )

Then Y is a Jacobi field if and only if Y ⊤ and Y ⊥ are Jacobi field.

Proof. One direction is clear.
Assume Y is Jacobi. Then Y 1 satisfies (Y 1)′′(t) = 0. Hence ∃a, b ∈ R such that

Y 1(t) = a+ tb and therefore Y ⊤ = (a+ tb)c′ that satisfies the Jacobi equation. Hence Y ⊤

is a Jacobi field.
Since the Jacobi equation is linear, also Y ⊥ = Y − Y ⊤ is a Jacoi field.

6.6 Remark. dim{Y ∈ Γ(c∗TM) : Y ⊥ c′ and Jacobi} = 2m− 2.

6.7 Example. Let (M, g) be Riem. mfd. with constant sectional curvature K0 ⇐⇒
R(u, v)w = K0 (⟨v, w⟩u− ⟨u,w⟩v).

Let Ei, i = 1, . . . ,m be orthonormal, parallel frame along c with c′(t) = E1(t). Then
R(Ej , Em)Em = K0 (Ej − δjmEm) and

Rij11 = K0

(
δij − δj1δ

i
1

)
= 0 if j = 1, i = 1 or j ̸= i, i, j > 1, and = K0 if i = j > 1.

It follows that Y =
∑m

i=2 Y
iEi Jacobi field (with Y ⊥ c′)

⇐⇒ (Y i)′′ +K0Y
i = 0 ∀i = 2, . . . ,m

⇐⇒ ∃A,B ∈ Γ(c∗TM) parallel along c d.h. ∇tA = ∇tB = 0 such that

Y (t) =


cos
(√
K0t

)
A(t) + sin

(√
K0t

)
B(t) K0 > 0,

A(t) + tB(t) K0 = 0,

cosh(
√

|K0|t)A(t) + sinh(
√
|K0|t)B(t) K0 < 0.

6.8 Lemma. Let c(t) = expp(tv) = cv(t), t ∈ [0, T ], be a geodesic with v ∈ TpM , let
w, z ∈ TpM and Y the Jacobi field with Y (0) = w and Y ′(t) = z. We choose γ : (−ϵ, ϵ) →
M with γ(0) = p and γ′(0) = w, and X ∈ Γ(γ∗TM) with X(0) = v and ∇tX = z. Then

Y (t) =
∂

∂τ
|τ=0 expγ(τ)(tX(τ)) =

∂

∂τ
|τ=0 exp(tX(τ)).

In particular, if w = 0, then γ ≡ p and X(t) ∈ Γ(TpM). It follows in this case

Y (t) =
∂

∂τ

∣∣∣
τ=0

expp(tX(τ)) = D(expp)tv(tz) = tD(expp)tv(z).

Every Jacobi field is the variation vector field of a 1-Parameter family of geodesics.
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Proof. Consider α : [0, T ]×(−ϵ, ϵ) →M with α(t, τ) = expγ(τ)(tX(τ)). α is smooth. Then

∂
∂tα(t, 0) = c′(t) and ∂

∂τ

∣∣∣
τ=0

α(t, 0) = Ỹ (t) is a Jacobi field along c since α is a smooth

1-parameter family of geodesics.
We have also observed that∇t

∂α
∂τ = ∇τ

∂α
∂t .At t = 0 it follows Y (0) = d

dτ |τ=0 expγ(τ)(0) =
γ′(0) = w. Moreover

∇t
∂α

∂τ (0,0)
= ∇τ

∂α

∂t

∣∣∣
(0,0)

= ∇τ

( d
dt

∣∣∣
t=0

expγ(t)(tX(τ)
)∣∣∣
τ=0

= ∇τX(τ)
∣∣∣
τ=0

= z.

Because of uniqueness of the initial value problem it follows Y = Ỹ .

6.9 Definition. Let (M, g) be a Riemannian manifold and p ∈ M . A point q ∈ M is
called conjugated to p if q is a singular value of the map expp, i.e. ∃v ∈ TpM with expp(v)
such that D(expp)v : TpM → TqM is degenerated (does not have full rank).

The next corollary follows directly from the previous lemma.

6.10 Corollary. A point q ∈ M is conjugated to p if and only if there exists a geodesic
c : [0, T ] → M with c(0) = p and c(T ) = q, and a Jacobi field Y ̸= 0 along c such that
Y (0) = Y (T ) = 0. One also says q is conjugated to p along c (via Y ).

6.11 Remark. If q is conjugated to p along c : [0, T ] →M via Y , then it follows ⟨Y (0), c′(0)⟩ =
0 = ⟨Y (T ), c′(T )⟩. But Y 1(t) = ⟨Y (t), c′(t)⟩ is linear. Hence ⟨Y (t), c′(t)⟩ = 0 for all
t ∈ [0, T ]. It follows that Y is orthogonal to c′.

Let U ⊂ TpM be open and star-shaped w.r.t. 0p, and let expp |U : U → V ⊂ M be
a diffeomorphism. We want to analyze the pull-back metric g̃ = (expp)

∗g on TpM . g̃ is
essentially g in normal coordinates.

In the following we use the notation R(u, v, w, z) = ⟨R(u, v)w, z⟩. Note that g̃0p(w, z) =
gp(D(expp)0pw,D(expp)0p) = gp(w, z) =: ⟨w, z⟩p.

6.12 Theorem. ∀u ∈ U and ∀w, z ∈ TpM ≃ Tv(TpM):

g̃v(w, z) = ⟨w, z⟩p −
1

3
R(w, v, v, z)− 1

6
(∇vR)(w, v, v, z) + o(⟨v, v⟩2p)︸ ︷︷ ︸

|v|4f(v,w,z) with f bounded

.

(Taylor expansion of g̃ at v ∈ TpM)

Proof. Let c(t) = expp(tv) and let Pt = P c0,t : TpM → Tc(t)M be the parallel transport
along c. We define

R(t) = P−1
t (R(Pt(·), c′(t))c′(t)) ∈ End(TpM).

Since Pt is orthogonal and because of the symmetries of R it follows

⟨R(t)w, z⟩p = ⟨w,R(t)z⟩p.
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Hence R(t) is symmetric linear map (self-adjoint). Also note the following: R′(0)w =
(∇vR)(w, v)v. Moreover ∇vR satisfies the same symmetries as R and therefore R′(0) is
also symmetric.

Let y : [0, 1] → End(TpM) be the solution of the following system of ODEs:

y′′(t) +R(t)y(t) = 0 with y(0) = 0 and y′(0) = idTpM .

Then it is straightforward to check that y solves this equation if and only if Y (t) =
Pt(y(t)w) is a Jacobi field along c with Y (0) = 0 and Y ′(0) = w. Indeed we have

Y ′′(t) = Pt(y
′′(t)w) = −Pt(R(t)y(t)w) = −R(Pty(t)w, c′(t))c′(t) = −R(Y (t), c′(t))c′(t).

Note that D(expp)tvw = 1
tPty(t)w because of the previous lemma. Hence

g̃tv(w, z) = gc(t)(D(expp)tvw,D(expp)tvz) =
1

t2
⟨y(t)w, y(t)z⟩p

where we used again that Pt is orthogonal.
Now we compute the Taylor expansion of y(t). We have y(0) = 0 and y′(0) = idTpM .

Also
y′′(0) = −R(0)y(0) = 0, y′′′(0) = −R′(0)y(0)−R(0)y′(0) = −R(0)

and
y(4)(0) = −R′′(0)y(0)−R′(0)y′(0)−R′(0)y′(0)−R(0)y′′(0) = −2R′(0).

It follows

y(t) = y(0)+ty′(0)+
1

2
t2y′′(0)+

1

6
t3y′′′(0)+

1

24
t4y′′′′(0)+o(t4) = tidTpM−1

6
t3R(0)+

1

12
t4R′(0)+o(t4).

Inserting this into the formula for g̃ yields (after rearranging the terms)

g̃tv(w, z) = ⟨w, z⟩p −
1

6
t2⟨R(0)w, z⟩ − 1

6
t2⟨w,R(0)z⟩ − 1

12
t3⟨R′(0)w, z⟩ − 1

12
t3⟨w,R′(0)z⟩+ o(t4)

= ⟨w, z⟩p −
1

3
t2⟨R(0)w, z⟩ − 1

6
t3⟨R′(0)w, z⟩+ o(t4)

Now we can choose ṽ = v/|v| for v and |v| for t. It follows that 1
6 |v|

2⟨R(0)w, z⟩ =
1
6R(w, v, v, z) and

1
6 |v|

3⟨R′(0)w, z⟩ = 1
6(∇vR)(w, v, v, z).

6.13 Corollary. Let (M, g) be Riem. mfd. and let p ∈ M . Assume expp |Bρ(p) is a
diffeomorphism. If the sectional curvature K(E) > 0 ∀E ∈ G2(TpM) (K(E) < 0), then
there exists ρ1 ∈ (0, ρ) such that

d(expp(v), expp(w)) ≤ |v − w|p (≥ |v − w|p).

” = ” holds only if v = λw with λ ≥ 0.
expp is locally distance decreasing (increasing).
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Proof. Let K(E) > 0 and E = span(v, z) with v, z ∈ TpM and ⟨v, z⟩ = 0. Then
⟨R(z, v), v, z⟩ = K(E)|v|2|z|2.

We fix v ∈ TpM . For all E with v ∈ E we find z ∈ TpM with z ⊥ v and |z| = 1 such
that span(v, z) = E. Then we can consider K as a function on {z ∈ TpM : z ⊥ v, |z| = 1}
that is continuous and hence ∃ϵ > 0 s.t. minE∈G2(TpM),v∈EK(E) = 6ϵ > 0.

The Taylor expansion formula of the previous Theorem implies

g̃v(z, z) = |z|2 − 1

3
K(E)|v|2|z|2 − 1

6
(∇vR)(z, v, v, z) + |v|4pf(z, v, z)

where (z, w) 7→ f(z, v, w) is bilinear. Let |v| be small enough such that 1
6∇vR(z, v, v, z) +

|v|4pf(z, v, z) ≤ ϵ|v|2p|z|4p. Then it follows that

g̃v(z, z) ≤ (1− ϵ|v|2p)|z|2p.

Now let w ∈ TpM be arbitrary and decompose w as w = w⊤ + w⊥ where w⊤||v and
w⊥ ⊥ v. Then

g̃v(w,w) = |w|2v = |w⊤|2v+|w⊥|2v ≤ |D(expp)v(w
⊤)|2expp(v)+(1−ϵ|v|p)|w⊥|2p ≤ |w⊤|2p+|w⊥|2p.

In the seconde equality and in the second inequality for the first term, we also used the
Gauß Lemma.

Now, we choose δ1 ∈ (0, δ) small enough and v, w ∈ Bδ1(0p). For γ(t) = (1− t)v + tw
we have γ(t) ∈ Bδ1(0p) (δ1 should be small enough such that the previous estimates hold).

Then g̃v(γ
′(t), γ′(t)) ≤ |γ′(t)|2p. Taking the square root and integrating from 0 to 1

yields
Lg(expp ◦γ) = Lg̃(γ) ≤ Lgp(γ) = |v − w|p.

Taking the infimum w.r.t. γ on the left hand side yields dg(expp v, exppw) ≤ |v − w|p.
Assume equality. Then g̃v(γ

′(t), γ′(t)) = |γ′(t)|2p ∀t ∈ [0, 1]. Hence, the Taylor ex-

pansion, with v and γ′(t)⊥ inserted, equals |γ′(t)⊥|p. Hence K(span(γ′(t)⊥, v)) = 0 and
therefore γ′(t)⊥ = 0. Hence γ′(t) = γ′(t)⊤ ∀t ∈ [0, 1].

6.14 Remark. One can even show the following refined statement. Let v ⊥ w ∈ TpM with
|v|p = |w|p = 1 and let E ∈ G2(TpM) be the plane generated by v and w. Then

dg(cv(t), cw(t)) =
√
2t

(
1−K(E)

1

6
t2 + o(t4)

)
.

Hence, the sectional curvature only depends on the distance dg.

6.15 Theorem (E. Cartan). Let (M, g) and (M̃, g̃) be Riemannian manifolds with dimM =

dim
M̃
, p ∈M , p̃ ∈ M̃ , and there exists an orthogonal map I : (TpM, gp) → (TpM̃, g̃p) such

that
R|cv(1)(Pw, c

′
v(1), c

′
v(1), Pw) = R̃cṽ(1)(P̃ w̃, c

′
ṽ(1), c

′
ṽ(1), P̃w) (∗∗)

for all v, w ∈ TpM with ṽ = Iv, w̃ = Iw. Here P = P cv0,1 and P̃ = P
cṽ
0,1.

Let U ⊂ TpM be open and starshaped w.r.t. 0p such that expp |U is a diffeomorphism

and let Ũ = I(U) such that ẽxpp̃|Ũ is a diffeomorphism.

Then ẽxpp̃◦I ◦(expp |U )−1 = F is an isometry between V = expp(U) and Ṽ = ẽxpp̃(Ũ).
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Proof. Define Rv(t) = P−1
t R(Ptw, c

′
v(t))c

′
v(t). By 4.15 Lemma (∗∗) implies

R|cv(1)(Pw, c
′
v(1), c

′
v(1), P z) = R̃cṽ(1)(P̃ w̃, c

′
ṽ(1), c

′
ṽ(1), P̃ z) ∀v, w, z ∈ TpM.

Then we have
I−1 ◦ R̃ṽ(t) ◦ I = Rv(t) ∀v ∈ TpM (∗).

This follows since we have ∀v, w, z ∈ TpM

⟨Rvw, z⟩p = ⟨(I ◦Rv(t))w, z̃⟩p̃ = ⟨(R̃ṽ(t) ◦ I)w, z̃⟩p̃ = ⟨(I−1 ◦ R̃ṽ(t) ◦ I)w, z⟩p.

Let yv(t) ∈ End(TpM) be the solution of

y′′v (t) +Rvyv = 0 and yv(0) = 0, y′v(0) = idTpM .

Because of (∗) we have yṽ ◦ I = I ◦ yv(t), and P cv0,tyv(t)w as well as P
cṽ
0,tyṽ(t)w̃ are Jacobi

fields. In 6.8 Lemma we showed that

D(expp)tv(tw) = P cv0,t(yv(t)(tw)), D(ẽxpp̃)tṽ(tw̃) = P
cṽ
0,t(yṽ(t)tw̃).

Hence ∀v ∈ U and ∀w ∈ TpM , setting t = 1,

|D(expp)vw|expp(v) = |P cṽ0,1yv(1)w|expp(v) = |yv(1)w|p = |I ◦ yv(1)w|p̃ = |yṽ(1)w̃|p̃ = |D(expp)ṽ ◦ Iw|ẽxpp̃(ṽ).

Similarly one can show, using that the parallel transport is orthogonal, that

gexpp(v)(D(expp)vw,D(expp)vz) = g̃ẽxpp̃(ṽ)(D(ẽxpp̃)ṽIw,D(ẽxpp̃)ṽIz).

Hence D(ẽxpp̃)ṽ ◦ I ◦ D(expp)
−1
v is an orthogonal map for all v ∈ U , and consequently

ẽxpp̃ ◦ I ◦ (expp |U )−1 is an isometry.

6.16 Remark. (1) Note also the following: if ẽxpp̃ is defined on Ũ then F is a local
isometry.

(2) If expp and ẽxpp̃ are diffeomorphisms on TpM and Tp̃M̃ respectively, then the map

ẽxp−1
p̃ ◦ I ◦ expp is an isometry between M and M̃ .

But: if the assumptions in the previous theorem hold at any point (the curvature
tensors of g and g̃ are locally the same), then in general this does Not imply that

(M, g) and (M̃, g̃) are isometric.

6.17 Corollary. Let (M, g) and (M̃, g̃) with the same constant sectional curvature K0

and with dimM = dim
M̃
. Consider p ∈ M and p̃ ∈ M̃ and I : (TpM, gp) → (Tp̃M̃, g̃p̃)

orthogonal. Then there exist open neighborhoods V of p and Ṽ of p̃ and an isometry
F : (V, g|V ) → (Ṽ , g̃|

Ṽ
) such that F (p) = p̃ and DFp = I.

Consider

Mm
K =


(Smρ , i∗⟨·, ·⟩eucl) K = 1

ρ2
> 0,

(Rm, ⟨·, ·⟩eucl) K = 0,

(Hm
ρ , i

∗g1) K = 1
−ρ2 < 0.

Recall that Smρ = {x ∈ Rm+1 : ⟨x, x⟩eucl = ρ2} and Hm
ρ = {x ∈ Rm+1 : g1(x, x) = ρ2}.
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Remark. If a Riemannian manifold (M, g) is frame homogeneous (”Raum freier Beweglichkeit”),
then the sectional curvature is constant K = K0 ∈ R.

Proof. ∀E, Ẽ ⊂ G2(TM) ∃ isometry F : (M, g) → (M, g) such that DF (E) = Ẽ. Then it
follows K(Ẽ) = K(DF (E)) = K(E).

Hence Mm
K has constant sectional curvature.
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6.18 Lemma. Let (M̃, g̃) be a Riem. mfd. and Γ ⊂ Isom(M̃, g̃) a subgroup that operates

free and properly discontinuous on M̃ . Then there exists exactly one Riem. metric g on
M/Γ such that π : (M̃, g̃) → (M, g) is a local isometry (for every point p̃ ∈ M̃ there exists
an open neighborhood V such that (π|V )∗g = g̃).

Proof. We know that M/Γ is a smooth manifold and π is a covering map, i.e. a local
diffeomorphism.

Uniqueness of g: Let p̃ ∈ π−1({p}). For v ∈ TpM there exsits exactly one ṽ ∈ Tp̃M̃ such
that Dπp̃ṽ = v. Hence g has to satify gp(v, v) = gπ(p̃)(Dπp̃ṽ, Dπp̃ṽ) = g̃p̃(ṽ, ṽ).

Existence of g: Define gp(v, v) via g̃p̃(ṽ, ṽ). This is well-defined, since for any other p̂ ∈
π−1({p}) and v̂ ∈ Tp̂M̃ as above, it follows that there exists an isometry F ∈ Γ such that
F (p̂) = p̃ and π ◦ F = π. Hence Dπp̃DFp̂v̂ = Dπp̂v̂. This implies DFp̂v̂ = ṽ. Therefore
g̃p̃(ṽ, ṽ) = gF (p̂)(DFp̂v̂, DFp̂v̂) = gp̂(v̂, v̂).

6.19 Theorem. Let (Mm, g) be a complete, connected Riem. mfd. with constant sectional
curvature K. (Mm, g) is called a space form. Then ∃Γ ⊂ Isom(Mm

K) subgroup, such that
(M, g) is isometric to Mm

K/Γ.

Proof of 6.19 Theorem. We set

ρ =

{
∞ K ≤ 0,
π√
K

K > 0.

Choose p0 ∈ Mm
K , p ∈M and I : Tp0Mm

K → TpM orthogonal and define

F := expp ◦I ◦ (expp0 |Bρ(0p0 ))
−1.

Since M is complete, expp is defined on TpM and F therefore well-defined and a local
isometry because of Cartan’s theorem. It follows{

K ≤ 0 : F : Mm
K →M is a local isometry,

K > 0 : F : Smρ \{−p0} →M is a local isometry.

In the case of K > 0 we pick q0 ∈ Smρ \{p0,−p0} and consider F (q0) = q ∈ M as well as

Ĩ := DFq0 : Tq0Smρ → TqM . Ĩ is orthogonal.

We repeat the construction and define F̃ = expq ◦Ĩ ◦ (expq0 |Smρ \{−q0}) that is again a
local isometry.

It holds DF̃q0 = Ĩ = DFq0 by construction.

6.20 Lemma (Rigidity of Isometries). Let (M, g) and (N,h) be Riemannian manifolds
with dimM = dimN , and let F : (M, g) → (N,h) be an isometry. Let p ∈ M and
f(p) = q ∈ N .

(1) Let Up ⊂ TpM and Uq ⊂ TqN be the open domains where expMp |Up and expNq |Uq are

defined. Then DFp(Up) ⊂ Uq and F ◦ expMp = expNq ◦DFp on Up.
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(2) If M is connected and L : (TpM, gp) → (TqN,hq) orthogonal, then there is at most
one isometry F : (M, g) → (N,h) such that DFp = L.

Proof of the lemma. Let v ∈ Up and cv(t) = expMp (tv). Since F is an isometry also f ◦
expMp (tv) is a geodesic inN . It follows d

dt |t=0(F ◦expMp (tv)) = DFpv. Hence F ◦expMp (tv) =

expNq (tDFpv) and DFpUp ⊂ Uq. For t = 1 we also get F ◦expMp (v) = expNq ◦DFpv ∀v ∈ Up.
This proves (1).

Let F, F̃ be isometries with DFp = DF̃p = L. Define

A = {x ∈M : F (x) = F̃ (x), DFx = DF̃x} ≠ ∅.

Note that x 7→ DFx is continuous. Hence A is closed. We show A is also open. Indeed
F ◦ expMp = expNq ◦DFp = expNp ◦DF̃p = F̃ ◦ expMp on Up. In particular F = F̃ in a
neighborhood of p. Since M is connected, it follows A =M . This proves the lemma.

It follows F = F̃ in a neighborhood of q0, and we can extend F to −p0 via F (−p0) =
F̃ (−p0).
In any case F : Mm

K → M is a local isometry and hence a covering map. Since Mm
K is

simply connected, it follows that F : Mm
K =: M̃ →M is in fact the universal cover of M .

Consider subgroup Γ ⊂ Diff(M̃) of deck transformations of the covering, i.e. f ∈ Γ
satisfies F ◦ f = F . In particular DFp̂Dfp̃ = DFp̃. Therefore Γ is even a group of

isometries on (M̃, g̃). Hence there exists exactly one Riemannian metric h on M̃/Γ (up to

isometries) such that π : M̃ → M̃/Γ is a local isometry where π is the quotient map. But

by construction F = π and M = M̃/Γ. Hence (M, g) is isometric to (M̃/Γ, h).

6.21 Remark. The space form problem is about to determine all compact Riem. Manifolds
with constant sectional curvature K up to isometries. The previous theorem tell us that
this becomes the problem of finding all subgroups (up to conjugation) of Isom(Mm

K) that
act freely and properly discontinuous with compact quotient.

(a) K = 0: Every space form (M, g) is finitely covered by a flat torus (Bieberbach
Theorem).

(b) K > 0: Mm
K is compact. Hence, the cardinality #Γ of the subgroup in Isom(Mm

K) is
finite. A full classification was given by J.A. Wolf: Spaces of constant curvature.

Note that, if m = 2n for n ∈ N, then Γ can only be {idSm1√
K

} or {idSm1√
K

,−idSm1√
K

}.

Hence, only Sm1√
K

and 1√
K
RPm can appear as space forms if m = 2n.

If m = 3, one obtains so-called lense spaces Lp,q = S3/Γp,q that depend on two real
parameters.

(c) K < 0: For m = 2 the problem is solved (”Teichmüllerraum”). For m ≥ 3 the
construction of subgroups Γ is difficult and the full classification is open. (Theorem

of Mostow: π1(M
m) ≃ π1(M̃

m), then the corresponding group isomorphism induces
a unique isometry.
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6.22 Definition. Let (M, g) be a Riemannian manifold, p ∈M and (ei)i=1,...,m an ONB
of (TpM, gp).

(1) The Ricci curvature ricM = ricg =: ric of (M, g) is the symmetric (0, 2)-Tensorfield

ric :M → T 0
2M, ricp(v, u) = trace

(
x ∈ TpM 7→ R(x, v)u ∈ TpM

)
=

m∑
i=1

⟨R(ei, v)u, ei⟩p.

Remark. If v = u = em, then ricp(v, v) =
∑m−1

i=1 ⟨R(ei, v)v, ei⟩ =
∑m−1

i=1 K(span(v, ei)).

(2) The Scalar curvature S :M → R of (M, g) is defined as the trace of ric via

S(p) =

m∑
i=1

ricp(ei, ei).

6.23 Example. Consider the unit sphere Sm in Rm+1 equipped with the induced metric
i∗⟨·, ·⟩eucl. Then K ≡ 1 and

ricp(v, v) = |v|2
m−1∑
i=1

1 = |v|2(m− 1), ricp(v, u) = (m− 1)gp(v, u).

and S(p) = (m− 1)n.

A geometric Meaning of Ricci curvature. Let φ : U → V be a chart and A ⊂ U be
measurable. The m-dimensional volume of A w.r.t. g was defined as

volgm(A) =

∫
φ(A)

|det gij |
1
2 ◦ φ−1(x)dx.

In particular, if φ = (expp |U )−1 and Ã = φ(A) ⊂ TpM , then

volgm(A) =

∫
Ã
| det g̃x(ei, ej)|

1
2dx

where g̃|x = φ∗g|x. This is indeed clear since

gij◦φ−1(x) = gφ−1(x)(
∂

∂xi
|φ−1(x),

∂

∂xj
|φ−1(x)) = gφ−1(x)(D(φ−1)xei, D(φ−1)xej) = g̃x(ei, ej).

Also note that
g̃x(ei, ej) = ⟨yx(1)ei, yx(1)ej⟩ = ⟨(yx(1))2ei, ej⟩

and hence det g̃x(ei, ej)
1
2 = det yx(t).

6.24 Corollary. If ric(v, v) > 0 (or ric(v, v) < 0) ∀v ∈ TpM\{0}, then it follows that
expp is volume decreasing (increasing) in a neighborhood of 0p. More precisely ∃U ⊂ TpM
a neighborhood of 0p such that

volgm(expp(Ã)) ≤ vol
gp
m (Ã) (≥).
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Proof. Let v ∈ TpM and set a(t) := av(t) =
1
t yv(t). Recall the Taylor expansion

yv(t) = tidTpM − 1

6
t3Rv(0) +

1

12
t4R′

v(0) + o(t4).

We can choose ṽ = v/|v|. Then one easily check from the defining ODE of yṽ that
1
|v|yṽ(t|v|) = yv(t). Hence av(t) =

1
t yv(t) =

1
t|v|yṽ(t|v|) and

av(t) =
1

t|v|
yṽ(t|v|) = idTpM − 1

6
Rṽ(0)(t|v|)2︸ ︷︷ ︸

1
6
Rv(0)t2

+
1

12
R′
ṽ(0)(t|v|)

3 + o(t3|v|3).

In particular a satisfies a(0) = idTpM , a′(0) = 0 and a′′(0) = −1
3Rv(0).

We compute the Taylor expansion of det a(t): One has

(det a(t))′(t) = det a(t)trace(a′(t)a(t)−1),

(det a(t))′′(t) = (det a)′(t)trace(a′(t)a(t)−1)

+ det a(t)
(
trace(a′′(t)a(t)−1 + trace(a′(t)(−1)a(t)−1a′(t)a(t)−1)

)
We observe that

det a(0) = 1, det a(t)′ = 0 and (det a)′′(0) = tracea′′(0) = −1

3
traceRv(0)︸ ︷︷ ︸

ricp(v,v)

.

Hence

det av(t) = det a(t) = 1− 1

6
ricp(v, v)t

2 + o(t2|v|2).

Especially for t = 1 we get

det av(1) = det aṽ(|v|) = 1− 1

6
ricp(v, v) + o(|v|2).

More precisely, o(|v|2) has the form f(|v|)|v|2 for a continuous function f with f(0) = 0.
Our assumption ricp(v, v) > 0 ∀v ∈ TpM yields that we can choose a neighborhood U of
0p such that

−1

6
ricp(v, v) + f(|v|)|v|2 < 0

for all v ∈ U . Then it follows for Ã ⊂ U and A = expp(A) that

volgm(A) =

∫
Ã
| det yv(1)|dx =

∫
Ã
| det av(1)|dx ≤

∫
Ã
1dx = vol

gp
m (Ã).
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A geometric meaning of Scalarcurvature.

6.25 Corollary. Let (M, g) be a Riem. manifold, p ∈M and dimM = m. Then

volgm(Bρ(p)) = ωmρ
m

(
1− 1

6(m+ 2)
S(p)ρ2 + o(ρ2)

)
where ωm = voleuclm (B1(0)).

Remark. o(ρ2) is in fact o(ρ3) (Reference: A. Gray ”The volume of a small geodesic ball
of a Riemannian manifolde”).

Proof. We already saw that

volgm(Bρ(p)) =

∫
Bρ(0p)

det yx(1)dx
1 . . . dxm

where we have the Taylor expansion det yx(1) = 1− 1
6 ric(x, x) + o(|x|3). Moreover∫

∂Bρ(0p)
ric(x, x)d vol

Sm−1
ρ

m−1 = ρm−1

∫
∂B1(0p)

ric(x, x)d vol
Sm−1
1
m−1 =

ρm+1

m
volm−1(Sm−1

1 ) trace ricp︸ ︷︷ ︸
S(p)

.

Hence

volgm(Bρ(p)) = ωmρ
m −

∫ ρ

0

∫
∂Bρ̃(0p)

1

6
ric(x, x)d volS

m−1
r
m−1 dρ̃︸ ︷︷ ︸

− 1
6(m+2)

ρm+2S(p)ωm

+o(ρ2+m)

5.27 Corollary. ∃V ⊂M ×M neighborhood of {(p, p) ∈M ×M : p ∈M} and V ′ ⊂ TM
a neighborhood of {0p ∈ TpM : p ∈M} such that π×(exp |V ′) : V ′ → V diffeomorphismus.
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7 Second Variation of arclength and Bonnet-Myers theorem

Let (M, g) be a Riem. mfd.

7.1 Theorem (Second variation formula). Let c : [a, b] → M be a geodesic with |c′| ≡ 1
and let α : [a, b] × (−ϵ, ϵ) × (−ϵ, ϵ) → M be smooth such that c(t) = α(t, 0, 0). ( c′(t) =
∂
∂tα|(t,0,0).) Set α(t, σ, τ) = ασ,τ (t), t ∈ [a, b] and

V (t) =
∂α

∂σ
|(t,0,0), W (t) =

∂α

∂τ
|(t,0,0) ∈ Γ(c∗TM).

We define

L(ασ,τ ) = L(σ, τ) =

∫ b

a

∣∣∣∣∂α∂t (t, σ, τ)
∣∣∣∣
g

dt, L(0, 0) = L(c).

Moreover V ′ = ∇tV and W ′ = ∇tW . Then

∂2α

∂α∂τ
|(0,0) =

∫ b

a

(
⟨V ′(t),W ′(t)⟩ − ⟨R(V (t), c′(t))c′(t),W (t)⟩ − ⟨V, c′⟩′(t)⟨W, c′⟩′(t)

)
dt

+ ⟨∇σ
∂α

∂τ

∣∣∣
(t,0,0)

, c′(t)⟩
∣∣∣b
a
.

In particular, if ⟨V, c′⟩ = 0 = ⟨W, c′⟩ and α(a, σ, τ) = c(a), α(b, σ, τ) = c(b) ∀σ, τ ∈ (−ϵ, ϵ)2
(hence V and W satisfy V (a) = V (b) = W (a) = W (b) = 0 and are therefore so-called
proper variations), we get

∂2L

∂σ∂τ

∣∣∣
(0,0)

=

∫ b

a

(
⟨V ′,W ′⟩ − ⟨R(V, c′)c′,W ⟩

)
dt = −

∫ b

a
⟨V ′′ +R(V, c′)c′,W ⟩dt

where ⟨V ′,W ⟩′ = ⟨V ′′,W ⟩ + ⟨V ′,W ′⟩ and the boundary condition is used for the last
equality.

Proof. We first compute

∂L

∂τ (σ,τ)
=

∫ b

a

∂

∂τ

∣∣∣∣∂α∂t (t, σ, τ)
∣∣∣∣ dt =∫ b

a

∣∣∣∣∂α∂t (t, σ, τ)
∣∣∣∣−1

⟨∇τ
∂α

∂t
,
∂α

∂t
⟩(t, σ, τ)dt

=

∫ b

a

∣∣∣∣∂α∂t (t, σ, τ)
∣∣∣∣−1

⟨∇t
∂α

∂τ
,
∂α

∂t
⟩(t, σ, τ)dt

where we used the chain rule and that we can switch the partial derivative w.r.t. t and
co-variant derivative w.r.t. τ . We further compute

∂2L

∂σ∂τ
(σ, τ) =

∫ b

a

∂

∂σ

(∣∣∣∣∂α∂t (t, σ, τ)
∣∣∣∣−1

⟨∇t
∂α

∂τ
,
∂α

∂t
⟩(t, σ, τ)

)
dt

=

∫ b

a

{ ∣∣∣∣∂α∂t (. . . )
∣∣∣∣−1(

⟨∇σ∇t
∂α

∂τ
,
∂α

∂t
⟩(t, σ, τ) + ⟨∇t

∂α

∂τ
,∇t

∂α

∂σ
⟩(t, σ, τ)

)
−
∣∣∣∣∂α∂t (. . . )

∣∣∣∣−2

⟨∇t
∂α

∂τ
,
∂α

∂t
⟩(t, σ, τ)⟨∇t

∂α

∂σ
,
∂α

∂t
⟩(t, σ, τ)

}
dt
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Evaluation at (σ, τ) = (0, 0) yields

∂2L

∂σ∂τ
(0, 0)

=

∫ b

a

{
⟨∇σ∇t

∂α

∂τ

∣∣∣
(t,0,0)

, c′(t)⟩+ ⟨V ′,W ′⟩(t)− ⟨W ′(t), c′(t)⟩⟨V ′(t), c′(t)⟩
}
dt

=

∫ b

a

{
⟨∇t∇σ

∂α

∂τ
, c′(t)⟩︸ ︷︷ ︸

d
dt
⟨∇σ ∂α∂τ |t,0,0,c′(t)⟩−0

−⟨R(V (t), c′(t))c′(t),W (t)⟩+ ⟨V ′,W ′⟩(t) + ⟨W, c′⟩′⟨V, c′⟩′(t)
}
dt

This is the claim.

Notation.

Mc = {V ∈ Γ(c∗TM) : V orthogonal, ⟨V, c′⟩ = 0, V (b) = V (a) = 0 piecewise C2}

where c : [a, b] →M Geodätische.

7.2 Definition. The symmetric bilinear form Ic : Mc ×Mc → R defined via

Ic(V,W ) =

∫ b

a

{
⟨V ′,W ′⟩ − ⟨R(V, c′)c′,W ⟩

}
dt

is called index form of c.

Remark. Let α(t, σ) be a proper variation of c such that the variation vectorfield V (t) =
∂α
∂σ (t,0)

satisfies V (t) ⊥ c′(t) ∀t ∈ [a, b]. Then it follows that d2

dσ2L(ασ)|σ=0 = Ic(V, V ).

7.3 Corollary. Let c : [a, b] → M be a minimal geodesic, i.e. L(c) = dg(c(a), c(b)), then
Ic is positive semi-definit.

Proof. Pick V ∈ Mc and let α(t, σ) = expc(t)(σV (t)), i.e. ∂α
∂σ (t, 0) = V (t). Since c is a

minimal geodesic, L(ασ) has a minimum at σ = 0. Hence d
dσL(ασ) = 0 and d2

dσ2L(σ) =
Ic(V, V ) ≥ 0.

7.4 Theorem (Bonnet-Myers). Let (M, g) be a complete, connected Riem. mfd. with
dimM = m and ∀v ∈ TM one has ric(v, v) ≥ (m − 1)K0 > 0. Then it follows that
diamM = supx,y∈M dg(x, y) ≤ π√

K0
.

In particular: M is compact and the first fundamental group π1(M) is finite.

7.5 Remark. (1) K(E) ≥ K0 ∀E ∈ G2(TM), then

ric(v, v) =

m∑
i=1

⟨R(ei, v)v, ei⟩ =
m−1∑
i=1

K(span(ei, v) ≥ (m− 1)K0.

where v ∈ TpM for p ∈M and (ei) is an ONB of (TpM, gp) with em = v.

(2) Sm1 satisfies K0 = K ≡ 1 and diam Sm1 = π.
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(3) (M, g) complete and connected with diamM < ∞ ⇒ M is compact (Hopf-Rinow-
Theorem), since expp( BR(0p)︸ ︷︷ ︸

compact

) =M

(4) Let π : M̃ → M be the universal cover and define g̃ = π∗g that is a Riemannian

metric on M̃ such that π is a local isometry. Hence ricg ≥ (m − 1)K0 ⇒ ricg̃ ≥
(m − 1)K0. The theorem of Bonnet-Myers implies M̃ is compact, and therefore
π1(M), that is isomorphic to the group of deck transformations, is finite.

Proof. Assume the statement is false and there exist points p, q such that dg(p, q) = L >
π√
K0

. Let c be the geodesic that connects p and q with |c′| = 1 and let E1, . . . , Em−1, Em =

c′ ∈ Γ(c∗TM) ONB for every time t.
We define vectorfields Vj(t) = sin(π/Lt)Ei(t). It follows that Vj(0) = 0 and vj(L) = 0.

Moreover

Ic(Vj , Vj) = −
∫ L

0
⟨Vj , V ′′

j +R(Vj , c
′)c′, Vj⟩dt =

∫ L

0
sin(π/Lt)2

(
π2/L2 −K(span(Ej , Em))

)
.

Summing up w.r.t. j yields

∑
Ic(Vj , Vj) =

∫ L

0
sin(π/Lt)2

(
(m− 1)π2/L2 − ric(Em, Em)

)
dt < 0.

Hence, there exists one index j0 ∈ {1, . . . ,m−1} such that Ic(Vj , Vj) < 0. This contradicts
minimality of c.
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Let (M, g) be a Riemannian manifold and let c : [a, b] →M be a geodesic.
Recall

Mc = {V ∈ Γ(c∗TM) : V orthogonal, ⟨V, c′⟩ = 0, V (b) = V (a) = 0 piecewise C2}

and

Ic(V,W ) =

∫ b

a

{
⟨V ′,W ′⟩ − ⟨R(V, c′)c′,W ⟩

}
dt.

A point t ∈ (a, b] is conjugated to a ⇔ ∃ Jacobi field Y that vanishes in a and t ⇔
D(expc(0))tc′(0) is degenerated.

7.6 Lemma. If V ∈ Mc with Ic(V,W ) = 0 ∀W ∈ Mc, then V is a Jacobi field.

Proof. Let a = t0 < t1 < · · · < tn = b such that V |[ti,ti+1] C
2.

0 = Ic(V,W ) =
n∑
i=1

∫ ti

ti−1

{
⟨V i,W i⟩ − ⟨R(V, c′)c′,W ⟩

}
dt = (∗)

Recall ⟨V ′,W ⟩′ = ⟨V ′′,W ⟩+ ⟨V ′,W ′⟩. Hence

(∗) =
n∑
i=1

(
⟨V ′,W ⟩(ti)− ⟨V ′,W ⟩(ti−1)

)
−
∫ b

a
⟨V ′′ +R(V, c′)c′,W ⟩(t)dt

=
n∑
i=1

⟨V ′−(ti)− V
′+(ti)︸ ︷︷ ︸

=:∆tiV
′

,W (ti)⟩ −
∫ b

a
⟨V ′′ +R(V, c′)c′,W ⟩(t)dt = (∗∗)

Choose now W ∈ Mc with sptW ⊂ (ti−1, ti) ∀i = 1, . . . , n. Then it follows

(∗∗) = −
∫ b

a
⟨V ′′ +R(V, c′)c′,W ⟩(t)dt.

Hence V ′′ +R(V, c′)c′ = 0 on (ti−1, ti) ∀i = 1, . . . , n. Therefore

0 =

n∑
i=1

⟨∆tiV
′,W (ti)⟩ ∀W ∈ Mc.

Choose W ∈ Mc with sptW ⊂ (ti−1, ti+1) and such that W (ti) = ∆tiV
′ for one i ∈

{1, . . . , n− 1}. It follows

Ic(V,W ) = |∆ti(V
′)|2 = 0 ⇒ V

′−(ti) = V
′+(ti).

Hence V is C1 in ti ∀i, and since V satisfies the Jacobi equation in [ti−1, ti] for all i, it is
even smooth and satisfies the Jacobi equation on [a, b].

7.7 Theorem. Let c : [a, b] →M be a geodesic and there is not t ∈ (a, b] that is conjugated
to a along c. Then
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(a) Ic : Mc ×Mc → R is positive definit.

(b) (Index Lemma) If V ∈ Γ(c∗TM) with ⟨V, c′⟩ = 0 and if Y is the Jabobi field with
Y (a) = V (a) and Y (b) = V (b), it follows Ic(V, V ) ≥ Ic(Y, Y ) with ” = ” if and only
if Y = V .

Proof. (1) We show: Ic is positive semi-definit on Mc. W.l.o.g. a = 0 and c(0) = p.

For V ∈ Mc we consider the variation α(t, σ) = expc(t)(σV (t)), i.e. ∂α
∂σ (t, 0) = V (t)

and α(t, 0) = c(t). α is piecewise C2 on [ti−1, ti] × (−ϵ, ϵ) for a decomposition of
0 = t0 ≤ t1 ≤ · · · ≤ tn = b of [0, b] and ϵ > 0 small enough.

Recall: every t ∈ [0, b] is not conjugated to 0 ⇔ D(expp)tc′(0) is not degenerated
∀t ∈ [a, b].

Hence ∃ϵ > 0 and α̃ : [0, b]× (−ϵ, ϵ) → TpM such that expp ◦α̃ = α and α̃(0, σ) = 0p
and α̃(b, σ) = bc′(0).

More explicitly: since c([0, b]) is compact we can find n ∈ N and Ui, i = 1, . . . , n,
such that φi := expp |Ui : Ui → Vi = expp(Ui) is a diffeomorphism ∀i = 1, . . . , n and
such that c([ti−1, ti]) ⊂ Vi (note that for expp is a diffeomorphism in a sufficiently
small neighborhood of c(t) for every t ∈ [0, b]). Moreover we can choose ϵi > 0 such
that α([ti−1, ti]× (−ϵi, ϵi)) ⊂ Vi. Set ϵ = mini ϵi. Set α|[ti−1,ti]×(−ϵ,ϵ). Now we can
define α̃ as follows

α̃(t, σ) = φ−1
i ◦ αi(t, σ) for (t, σ) ∈ [ti−1, ti]× (−ϵ, ϵ).

This is well-defined, since φ−1
i ◦ αi(ti) = φ−1

i+1 ◦ αi+1(ti).

The Gauss Lemma implies L(σ) := L(α(·, σ)) = L(α̃(·, σ)) and L(σ) ≥ L(0).

More explicitely: Set γ(t) = α(t, σ) for σ ∈ (−ϵ, ϵ) fixed, and γ̃(t, σ) = α̃(t, σ). Hence
expp ◦γ̃ = γ. expp is a local diffeomorphism on

⋃n
i=1 Ui =: U . Hence g̃ = (expp)

∗g

is a well-defined Riemannian metric on U and by construction Lg̃(γ̃) = Lg(γ). We
can decompose γ̃′(t) as follows

γ̃′(t) = γ̃′(t)⊥ + g̃(γ̃′(t),
γ(t)

|γ(t)|g̃
)
γ(t)

|γ(t)|g̃
.

Note that g̃(γ̃′(t), γ(t))/|γ(t)|g̃ = (g̃(γ̃, γ̃)1/2)′. Hence

Lg̃(γ) =

∫ b

0
|γ̃′(t)|g̃dt ≥

∫ b

0
|γ̃(t)|′g̃dt = |γ̃(b)|g̃ − 0 = b|c′(0)|g̃ = Lg(c).

⇒ L′′(0) ≥ 0 ⇒ L′′(0) = Ic(V, V ) ≥ 0.

(2) Is V ∈ Mc and Ic(V, V ) = 0.

By (1) it follows 0 ≤ Ic(V + ϵW, V + ϵW ) = 2ϵIv(V,W ) + ϵ2Ic(W,W ) ∀ϵ > 0 and
∀W ∈ Mc.

It follows Ic(V,W ) ≥ 0. Replacing W with W implies Ic(V,W ) = 0 ∀W ∈ Mc.
Hence V is a Jacobi field with V (0) = V (b) = 0 (since V ∈ Mc). This is a
contradiction with b not conjugated to 0.

Hence Ic positive definit. This proves a.
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(3) Uniqueness of the Jacobi field Y in (b): Consider the space of Y of orthogonal Jacobi
field along c (this is a (2m− 2)-dimensional vector space).

We consider the linear map Y ∈ Y 7→ (Y (a), Y (b)) ∈ (c′(a))⊥ ⊕ (c′(b))⊥. The kernel
of this map is 0. Otherwise a, b are conjugated to each other.

Now we consider V − Y ∈ Mc. (a) implies Ic(V, V )− 2Ic(V, Y ) + Ic(Y, Y ) = Ic(V −
Y, V − Y ) > 0.

We show −2Ic(V, Y ) + Ic(Y, Y ) = −Ic(Y, Y ). Indeed

Ic(V, Y ) =

∫ b

a

{
⟨Y ′, V ′⟩ − ⟨R(Y, c′)c′, V ⟩

}
dt

= ⟨Y ′, V ⟩
∣∣∣b
a
−
∫ b

a
⟨Y ′′ +R(Y, c′)c′, V ⟩dt = ⟨Y ′, V ⟩

∣∣∣b
a
.

Ic(Y, Y ) =

∫ b

a

{
⟨Y ′, Y ′⟩ − ⟨R(Y, c′)c′, Y ⟩

}
dt = ⟨Y ′, Y ⟩

∣∣∣b
a

Hence Ic(V, Y ) = Ic(Y, Y ) .

If Ic(V, V ) = Ic(Y, Y ), then Ic(V −Y, V −Y ) = 0. Since Ic positive definit, it follows
V − Y = 0.

7.8 Theorem. Let c : [a, b] →M be a geodesic and let t0 ∈ (a, b) be conjugated to a along
c. Then ∃X ∈ Mc such that Ic(X,X) < 0. In particular c is not a minimal geodesic.

Proof. ∃Y ̸= 0 Jacobi field along c with Y (a) = Y (t0) = 0. We define

V (t) =

{
Y (t) t ∈ [0, t0]

0 t ∈ [t0, b].

Hence V ∈ Mc.
Moreover letW ∈ Mc be smooth such thatW (t0) = −Y ′(t0). It holds Y

′(t) ̸= 0, since
otherwise Y ≡ 0, and Y ′(t) ⊥ c′(t), since 0 = ⟨Y, c′⟩′(t) = ⟨Y ′(t), c′(t)⟩.

Next we define for ϵ > 0, Xϵ = V + ϵW ∈ Mc. Then

Ic(Xϵ, Xϵ) = Ic(V, V )︸ ︷︷ ︸
=⟨V ′−(t0)−V ′+(t0),V (t0)⟩=0

+2ϵ I(V,W )︸ ︷︷ ︸
=⟨V ′−(t0)−V ′+(t0),W (t0)⟩=−|Y ′(t0)|2=−|W (t0)|2

+ϵ2I(W,W ).

Hence Ic(Xϵ, Xϵ) = −2ϵ|W (t0)|2 + ϵ2Ic(W,W ) and for ϵ > 0 small enough it follows
Ic(Xϵ, Xϵ) < 0.

7.9 Remark. � c minimal geodesic ⇒ Ic positive semi-definit.

� Ic is not positive definit ⇒ ∃ t0 ∈ (a, b] conjugated with a.

� ∃t0 ∈ (a, b) conjugated with a ⇒ Ic is Not positive semi-definit ⇒ c is not a minimal
geodesic.
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8 Rauch comparison theorem

8.1 Theorem (Rauch). Let (M, g), (M̃, g̃) be Riem. mfds. with dimM ≤ dim
M̃
. Let

c, c̃ : [0, L] →M, M̃ be geodesics with |c′| = |c̃′| = 1. We assume

1. ∀t ∈ [0, L] and ∀E ∈ G2(Tc(t)M) with c′(t) ∈ E and ∀Ẽ ∈ G2(Tc̃(t)M̃) with c̃′(t) ∈ Ẽ

it holds KE) ≤ K̃(Ẽ),

2. There is no t ∈ (0, L) conjugated to 0 along c̃.

If Y, Ỹ are Jacobi fields along c, c̃ with Y (0) = 0 = Ỹ (0), ⟨Y ′(0), c′(0)⟩ = ⟨Ỹ ′(0), c̃′(0)⟩ and
|Y ′(0)| = |Ỹ ′(0)|, then it follows

|Y (t)| ≥ |Ỹ (t)| ∀t ∈ [0, L].

Proof. W.l.o.g. we assume ⟨Y, c′⟩ = ⟨Ỹ , c̃′⟩ = 0. Then, by the rule of L’Hospital,

lim
t→0

|Y (t)|2

|Ỹ (t)|2
= lim

t→0

|Y ′(t)|2

|Ỹ ′(t)|2
=

|Y ′(0)|
|Ỹ ′(0)|

= 1.

For this also note that ⟨Y, Y ⟩′ = 2⟨Y ′, Y ⟩ and 2⟨Y ′, Y ⟩′ = 2⟨Y ′′, Y ⟩ + 2⟨Y ′, Y ′⟩ →
⟨Y ′(0), Y ′(0)⟩ as t→ 0.

Then it is enough to show that d
dt

|Y (t)|2

|Ỹ (t)|2
≥ 0 ∀t ∈ [0, L]. Then |Y (t)|2

|Ỹ (t)|2
is monotone non-

decreasing and hence |Y (t)|2

|Ỹ (t)|2
≥ 1 ∀t ∈ [0, L].

Moreover d
dt

|Y (t)|2

|Ỹ (t)|2
≥ 0 ⇔ ⟨Y ′, Y ⟩⟨Ỹ , Ỹ ⟩ ≥ ⟨Ỹ ′, Ỹ ⟩⟨Y, Y ⟩.

If t0 ∈ (0, L] with Y (t0) = 0, then the inequality follows trivally.

Let t1 ∈ (0, L) be arbitrary such that Y (t1) ̸= 0. By replacing Y with αY for α ∈ R\{0}
we can assume that |Y (t1)| = |Ỹ (t1)| = 1.

We show ⟨Y ′, Y ⟩(t1) ≥ ⟨Ỹ ′, Ỹ ⟩(t1). For this observe first

Ic|[0,t1]
(Y, Y ) =

∫ t1

0

{
⟨Y ′, Y ′⟩ − ⟨R(Y, c′)c′, Y ⟩

}
ds

=

∫ t1

0

{
⟨Y ′, Y ′⟩+ ⟨Y ′′, Y ⟩

}
ds

=

∫ t1

0
⟨Y ′, Y ⟩′ds = ⟨Y ′(t1), Y (t1)⟩ − ⟨Y ′(0), Y (0)⟩︸ ︷︷ ︸

=0

.

If E(t) = span{c′(t), Y (t)}, then ⟨R(Y (t), c′(t))c′(t), Y (t)⟩ = K(E(t))
(
|Y (t)|2 |c′(t)|2︸ ︷︷ ︸

=1

−⟨Y, c′⟩2︸ ︷︷ ︸
=0

)
.

Hence

Ic|[0,t1]
(Y, Y ) =

∫ t1

0
|Y ′|2 −K(E(t))|Y (t)|2dt = ⟨Y ′(t1), Y (t1)⟩.
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Let E1, . . . , Em = c′ be a parallel orthonormal frame along c such that E1(t1) = Y (t1). In
particular, we can write Y (t) =

∑m−1
i=1 Y i(t)Ei(t).

We assume dimM ≤ dim
M̃
. ⇒ ∃ orthonormal, parallel fields Ẽ1, . . . , Ẽm = c̃′ along c̃ such

that E1(t1) = Ỹ (t1).
Now we define

Ṽ (t) =
m−1∑
i=1

Y i(t)Ẽi(t) ⊥ c′(t).

It follows Ṽ (0) =
∑m−1

i=1 Y i(0)Ẽi(0) = 0 = Ỹ (0), Ṽ (t1) =
∑m−1

i=1 Y i(t1)Ẽi(t1) = Ỹ (t1),

|Ṽ | = |Y | and |Ṽ ′| = |Y ′|.
Let Ẽ(t) = span{Ṽ (t), c̃′(t)}. With this we can compute

⟨Y ′, Y ⟩(t1) =
∫ t1

0

(
|Y ′|2 −K(E(t))|Y |2

)
dt ≥

∫ t1

0

(
|V ′|2 − K̃(Ẽ(t))|Ṽ |2

)
dt

=

∫ t1

0

(
|Ṽ ′|2 −R(Ṽ , c̃′)c̃′, Ṽ ⟩

)
dt = Ic|[0,t1]

(Ṽ , Ṽ ) ≥ Ic|[0,t1]
(Y, Ỹ ) = ⟨Ỹ ′, Ỹ ⟩(t1).

where the last inequality is (b) of 7.7 Theorem (Index Lemma). This finishes the proof.

8.2 Corollary. Let dimM = dim
M̃
, p ∈M , p̃ ∈ M̃ , and I : TpM → Tp̃M̃ orthogonal and

1. supK ≤ inf K̃,

2. ẽxpp̃|Br(0p̃) such that all differentials are non-degenerated, hence a local diffeomor-
phism.

Then
L(expp ◦γ) ≥ L(ẽxpp̃ ◦ I ◦ γ︸︷︷︸

=:γ̃

) for every C1 curve γ : [a, b] → Br(0p).

Proof. If we show that |D(expp)γ(τ)γ
′(τ)| ≥ |D(expp̃)γ̃(τ)γ̃

′(τ)|, the claim follows.

We fix τ ∈ [a, b] such that γ(τ) ̸= 0 (w.l.o.g.) and let Y, Ỹ be Jacobi fields along t 7→
expp(tγ(τ)) = α(t, τ) and along t 7→ ẽxpp̃(tγ̃(τ)) = α̃(t, τ) with Y (0) = 0 = Ỹ (0), Y ′(0) =

γ′(τ) and Ỹ ′(0) = γ̃′(τ) = I ◦ γ′(τ). Hence Y, Ỹ arise from the variations α, α̃.

I orthogonal ⇒

⟨Y ′(0), γ(τ)⟩ = ⟨I ◦ γ′(τ), I ◦ γ(τ)⟩ = ⟨γ̃′(τ), γ̃′(τ)⟩ = ⟨Ỹ ′(0), γ̃(τ)⟩

as well as |Y ′(0)| = |Ỹ ′(0)|.
Rauch’s theorem yields |Y (t)| ≥ |Ỹ (t)| ∀t ∈ [0, 1]. If t = 1 this is what was to show.

8.3 Corollary. Let (M, g) be a Riem. mfd. such that infKM ≥ 0, consider p ∈ M and
r > 0 such that expp |Br(0p) is a diffeomorphism, and let I : (Rm, ⟨·, ·⟩eucl) → (TpM, gp).
Then

|x̃− ỹ|eucl ≥ dg(expp ◦I(x̃), expp ◦I(ỹ)) ∀x̃, ỹ ∈ I−1(Br(0p).
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8.4 Remark. Let x, y ∈ Br(p) ⊂M and v, w ∈ Br(0p) such that expp(v) = x, expp(w) = y.
Consider I−1(v) = x̃ and I−1(w) = ỹ in Rm. Since I is orthogonal, gp(v, w) = ⟨x̃, ỹ⟩eucl.
By the corollary we have

|x̃− ỹ| ≥ dg(x, y).

Let γpx be the geodesic between p and x, let γpx be the geodesic between p and y and
let γxy be the geodesic between x and y. All geodesics are parametrized by arclength.
The geodesics γpx, γpy, γxy form a geodesic triangle ∆ in Br(p). Let ∠p(γpx, γpy) =
arccos gp(γ

′
px(0), γ

′
py(0)) be the angle between γpx and γpy and similar for the other corners

of the geodesic triangle ∆. A comparison triangle for ∆ in Rm are three points p̄, x̄, ȳ ∈ Rm
such that dg(p, x) = |p− x|, dg(p, y) = |p− y|, dg(x, y) = |x− y|.
The points 0, x̃, ỹ from before are not yet a comparison triangle in general. But we can
move the point x̃ to decrease the angle arccos ⟨x̃,ỹ⟩

|x̃||ỹ| =: ∠(x̃0ỹ) (keeping the distance with

0 fixed) to obtain one.

As a consequence we get that a comparison triangle p̄, x̄, ȳ for ∆ satisfies

∠p(γ1, γ2) ≥ ∠(x̄0ȳ).

The choice of p where we measure this angle was arbitrary. Via the same procedure we
can construct comparison triangles such that

∠x(γ1, γ3) ≥ ∠(0x̄ȳ) and ∠y(γ3, γ2) ≥ ∠(x̄ȳ0).

Since up to translation and rotatation comparison triangle are unique, we get that

∠p(γ1, γ2) ≥ ∠(x̄0ȳ), ∠x(γ1, γ3) ≥ ∠(0x̄ȳ) and ∠y(γ3, γ2) ≥ ∠(x̄ȳ0)

for any comparison triangle 0, x̄, ȳ in Rn.
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9 Second fundamental form and Gauß equations

9.1 Definition. Let (M̄, ḡ) be a Riem. mfd. with dimM̄ = m̄ and let i : M ⊂ M̄ be
an embedded m-dimensional submanifold. ḡ induces a Riem. metric on M via i∗ḡ = g.
(M, g) is called Riemannian submanifold of (M̄, ḡ).

Remark. We usually write i(p) = p and via Di|p we can identify the tangent space TpM
with a linear subspace in Ti(p)M̄ . In particular, one writes

gp(v, w) = ḡπ(p)(Di|pv,Di|pw) = ḡp(v, w).

9.2 Lemma. The restriction of the tangent bundle π̄ : TM̄ → M̄ to M is

i∗TM̄ = {v ∈ TM̄ : p̄(v) ∈M}→M.

i∗TM̄ →M is an m̄-dimensional vector bundle over M . Moreover

TM⊥ = {v ∈ i∗TM̄ |v ∈ (Tπ̄(v)M̄)⊥ ⊂ Tπ̄(v)M̄} →M

is a m̄−m-dimensional subvector bundle of i∗TM̄ .

9.3 Remark. The LC connection ∇̄ of (M̄, ḡ) induces a linear connection ∇̄ on i∗TM̄ →M
via

X ∈ Γ(i∗TM̄), v ∈ TM 7→ ∇̄vX̄ =: ∇vX ∈ Tπ(v)M̄

where X̄ ∈ Γ(TM̄) with X̄|M = X. Each Γ(i∗TM̄) admits a unique decomposition

X = X⊤ +X⊥, X⊤ ∈ Γ(TM), X⊥ ∈ Γ(TM⊥).

9.4 Theorem. The LC connection of (M, g) is given through X,Y ∈ Γ(TM) 7→ (∇̄X̄ Ȳ )⊤|M =
∇XY ∈ Γ(TM) where X̄, Ȳ ∈ Γ(TM̄) such that X̄|M = X, Ȳ |M = Y . X̄|M = X actually
means X̄ ◦ i = DiX.

Proof. 1. ∇ is linear connection.

2. ∇ is symmetric. For this choose X̄, Ȳ for X,Y as in the theorem. We compute

∇XY −∇YX :=
(
∇̄X̄ Ȳ − ∇̄Ȳ Ȳ

)⊤ |M = [X̄, Ȳ ]⊤|M = ([X̄, Ȳ ]|M )⊤.

Note that X̄ ◦ i = DiX, Ȳ ◦ i = DiY implies [X̄, Ȳ ] ◦ i = Di[X,Y ], or in other words
[X̄, Ȳ ]|M = [X,Y ]. Hence ([X̄, Ȳ ]|M )⊤ = [X,Y ].

3. ∇ is a Riemannian connection. Let Z ∈ Γ(TM) and Z̄ ∈ Γ(TM̄) such that Z̄|M = Z.
Let p ∈M . We compute

Zpg(X,Y ) = (Z̄p)ḡ(X̄|M , Ȳ |M ) = Z̄pḡ(X̄, Ȳ )|M = ḡ(∇̄Z̄pX̄, Ȳ ) ◦ i+ ḡ(X̄, ∇̄Z̄p Ȳ ) ◦ i

= ḡ(∇̄ZpX,Y ) + · · · = g((∇̄ZpX̄)⊤, Y ) + · · · = g(∇ZpX,Y ) + . . . .

9.5 Definition. The second fundamental form h ∈ Γ(TM∗ ⊗ TM∗ ⊗ TM⊥) is defined as

X,Y ∈ Γ(TM) 7→ h(X,Y ) : (∇̄XY )⊥ ∈ Γ(TM⊥).

70



9.6 Remark. It holds

(a) h(X,Y ) = h(Y,X), and h is a tensor field

(b) If N ∈ Γ(TM⊥), then ḡ(h(X,Y ), N) = −ḡ(Y, ∇̄XN).

(c) ∇̄XY = ∇XY + h(X,Y ).

Proof. (a) h(X,Y ) − h(Y,X) =
(
∇X̄ Ȳ −∇Ȳ X̄

)⊥ |M = ([X̄, Ȳ ]|M )⊥ = ([X,Y ])⊥ = 0.
Moreover h(fX, Y ) = (∇̄fXY )⊥ = (f∇̄XY )⊥ = fh(X,Y ) = fh(Y,X) = h(fY,X).
Hence h is a tensor field and h(X,Y )|p only depends on Xp and Yp.

(b) Note that ḡ(Y,N) = 0 on M . Hence 0 = Xpḡ(Y,N) for p ∈M . It follows

0 = Xpḡ(Y,N) = Xpḡ(Ȳ , N̄) = ḡ(∇̄Xp Ȳ , N(p))︸ ︷︷ ︸
g((∇̄XpY,N(p)))=g(h(X,Y ),N)(p)

+ḡ(Y (p), ∇̄XpN̄).

(c) This is clear from the definition.

9.7 Theorem (Gauß equation). Let (M, g) be a Riem. submfd. of (M̄, ḡ). Then

ḡ(R(X,Y )Z,W ) = ḡ(R̄(X,Y )Z,W ) + ḡ(h(X,W ), h(Y, Z))− ḡ(h(X,Z), h(Y,W ))

∀X,Y, Z,W ∈ Γ(TM).

Proof. By definition: ∇̄XY = ∇XY + h(X,Y ). Then

R̄(X,Y )Z = (R̄(X̄, Ȳ )Z̄)|M =
(
∇̄X̄ ∇̄Ȳ Z̄︸ ︷︷ ︸

=∇̄XZ=∇XZ+h(X,Z) on M

−∇̄Ȳ ∇̄X̄ Z̄ − ∇̄[X̄,Ȳ ]Z̄
)
|M .

Hence

R̄(X,Y )Z = ∇̄X(∇Y Z + h(Y,Z))− ∇̄Y (∇XZ + h(X,Z))− ∇̄[X,Y ]Z.

Note that ∇̄X∇Y Z = ∇X∇Y Z + h(X,∇Y Z) with h(X,∇Y Z) ∈ TM⊥. This yields

(R̄(X,Y )Z)⊤ = R(X,Y )Z + (∇̄Xh(Y, Z))
⊤ − (∇̄Y h(X,Z))

⊤.

Note that ḡ(h(Y, Z),W ) = 0 ∀W ∈ Γ(TM). Hence

ḡ(∇̄Xh(Y,Z),W ) = −ḡ(h(Y,Z), ∇̄XW ) = −ḡ(h(Y, Z), h(X,W )).

This gives the claim.

9.8 Remark. Let E ∈ G2(TM) with span(u, v) = E. Then

K(E) = K̄(E) +
ḡ(h(u, u), h(v, v))− ḡ(h(u, v), h(u, v))

Q(u, v)
.

Recall Q(u, v) = g(u, u)g(v, v) − g(u, v)2. In particular, for (M̄, ḡ) = (R3, ⟨·, ·⟩) this is
Gauß’ Theorema Egregium.
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9.9 Definition. A Riem. submfd. (M, g) is called totally geodesic if every geodesic in
(M, g) is also a geodesic in (M̄, ḡ).

9.10 Theorem. (M, g) is totally geodesic in (M̄, ḡ) if and only if h ≡ 0.

Proof. Geodesic equation: ∇̄c′c
′ = ∇c′c

′ + h(c′, c′).

9.11 Example. M ⊂ Rn totally geodesic if and only if M is affine subspace.

In general, there are not totally geodesic submanifolds. for dimM < dimM̄ .

9.12 Corollary. Let (M̄, ḡ) be Riem., p ∈ M̄ , and U ⊂ TpM̄ offen such that Op ∈ U and
¯expp|U is a diffeomorphism. Falls E ⊂ G2(TpM̄), then M := ¯expp(E ∩ U) is a embedded

submanifold. Then hp = 0 and K̄(E) = K(E) = Kp where Kp is the Gauß curvature of
(M, ḡ|M ) in p.

Remark. The corollary provides the original definition of sectional curvature by B. Rie-
mann (Habilitationsvortrag 1854).

Proof. v ∈ E and expp(v) = cv. ⇒ 0 = ∇̄tcv = (∇̄tcv)
⊤ = ∇tcv. Hence h(c′v, c

′
v) = 0. In

particular for t = 0 we get hp(v, v) = 0 ∀v ∈ E. Hence hp = 0. Then the claim follows
from the Theorema egregium.
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