Aufgabe 1 (Drehimpulserhaltung)

Betrachten Sie Punkte p_1, \ldots, p_l in \mathbb{R}^3 , in denen Massen $m_1, \ldots, m_l > 0$ konzentriert sind. Wir nehmen an, dass sich Massen gemäß dem Newton'schen Gravitationgesetz anziehen. $X_l(t) = (x_l(t), y_l(t), z_l(z))$ beschreibt die Bewegung der l-ten Punktmasse in Abhängigkeit von der Zeit $t.(X_1(t), \ldots, X_l(t))$ beschreibt die Bewegung aller Teilchen und ist gegeben als Minimierer des Funktionals $\mathcal{F}(X) = \int_{t_1}^{t_2} f(X(t), X'(t)) dt$ wobei

$$f(z,p) = \frac{1}{2} \sum_{j=1}^{l} m_j |p_j|^2 - \sum_{l < k} \frac{\kappa m_l m_k}{|X_l - X_k|}.$$

- (i) Zeigen Sie: \mathcal{F} ist infinitesimal invariant unter Rotationen von \mathbb{R}^3 .
- (ii) Leiten Sie das zugehörige Noether'sche Erhaltungsgesetz her und interpretieren Sie das Ergebnis.

Aufgabe 2 (Verallgemeinertes Dirichlet Integral)

Sei $G(z) = (g_{ik}(z))_{i,k=1,\dots,m}$ eine $m \times m$ -Matrix Abbildung auf \mathbb{R}^m , so dass G(z) eine symmetrische und positiv definite Matrix ist für alle $z \in \mathbb{R}^m$ und $g_{ik} \in C^2(\mathbb{R}^m)$ für alle $i, k = 1, \dots, m$. Das verallgemeinerte Dirichlet Intergral bezüglich G von $u \in C^1(\overline{\Omega}, \mathbb{R}^m)$ is definiert durch

$$\mathcal{F}(u) = \frac{1}{2} \int_{\Omega} g_{ik}(z) \partial_{\alpha} u^{i}(z) \partial_{\alpha} u^{k}(z) dz$$

wobei $\Omega \subset \mathbb{R}^n$ ein C^1 -Gebiet ist.

- (i) Leiten Sie die Euler-Lagrange Gleichungen her.
- (ii) Sei $M=H^{-1}(\{0\})\subset\mathbb{R}^m$ eine Untermannigfaltigkeit, wobei $H\in C^1(\mathbb{R}^m)$ und DH_z hat maximalen Rang in allen Urbildern z von 0. Leiten Sie die transversalen Randbedingungen für ein Extremum $u\in C^2(\Omega,\mathbb{R}^m)$ her.

${\bf Aufgabe} \ {\bf 3} ({\it Minimum problem \ ohne \ L\"{o}sung})$

Zeigen Sie, dass das Funktional

$$\mathcal{F}(u) = \int_0^1 \left[(1 - (u'(x))^2)^2 + u^2(x) \right] dx$$

sein Infimum auf $C^1([0,1])$ nicht annimmt.

Abgabe möglich am Dienstag, 17. November, vor oder nach der Vorlesung.