Abteilung für mathematische Logik

Mathematische Logik (SS 2014) Prof. Dr. Martin Ziegler Dr. Mohsen Khani

Übung zur Vorlesung Aufgabe 4, Kompaktheitssatz Abgabe am 26.5 vor 16:00 Uhr

For your ease of reference, I first state the 'compactness' theorem in the first order and propositional logic.

(First order logic). Let Σ be an infinite set of sentences in a first order language L. Then if for every finite subset Δ of Σ , there is an L-structure \mathfrak{M}_{Δ} such that $\mathfrak{M}_{\Delta} \models \Delta$, then there is an L-structure \mathfrak{M}_{Σ} such that $\mathfrak{M}_{\Sigma} \models \Sigma$.

(Propositional logic). Let Σ be an infinite set of formulae. Suppose that for every finite subset Δ of Σ there is an assignment β_{Δ} of variables such that all formulas in Δ are true with respect to β_{Δ} . Then there is an assignment β_{Σ} of variables, for which all formulas in Σ are true.

Aufgabe (4-1).

- a) Is it possible to have a set Σ of sentences in a first order language L such that the following two happen at the same time:
 - (a) For every natural number n, there is some $\mathfrak{M} \models \Sigma$ with |M| = n (the universe of \mathfrak{M} has n elements).
 - (b) There is no $\mathfrak{M} \models \Sigma$ with an infinite universe. (2)

Remark. The above question can be better put in the following two ways:

- Is the class of all finite *L*-structures elementary (i.e is it exactly the class of models of a theory)?
- Is there any theory with arbitrarily large finite models and no infinite model?
- b) Is it possible to write a set of axioms Σ such that for every *L*-structure \mathfrak{M} we have $\mathfrak{M} \models \Sigma$ if and only if *M* is infinite? (put differently, is the class of infinite *L*-structures elementary?) (1)
- c) Let L_{or} be the language of ordered rings and \mathfrak{R} the ordered field of real numbers. Show that there exists an L_{or} -structure \mathfrak{R}' with the following two properties:
 - \mathfrak{R}' satisfies all first order sentences that \mathfrak{R} satisfies¹.

¹The set of all first order sentences that \Re satisfies is called the theory of \Re and is denoted by $Th(\Re)$.

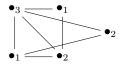
• (R', <) is not archimedean (that is there is an element in R' which is greater than every natural number². (You may also have a look at exercise 2-3)). (2)

(Tutors: limits of functions in non-standard analysis should be explained).

Definition. A (simple and undirected) graph G is called N-colourable if it is possible to assign a colour from the set C of colours: {Colour 1, Colour 2, ..., Colour N} to each of its vertices in a way that:

- 1. Every vertex gets a (unique) colour.
- 2. No adjacent vertices have the same colour.

For example the following graph is coloured by three colours $\{1, 2, 3\}$:



But the following cannot get three colours:

Theorem (De Bruijn–Erdős). Let $n \in \mathbb{N}$. An infinite graph G is N colourable if and only if every finite subgraph of G is N-colourable.

Aufgabe (4-2).

- 1. Prove the above theorem using the compactness theorem in the first order logic. (2)
- 2. Prove the above theorem using the compactness theorem in the propositional logic. (2)

Aufgabe (4-3). Are the following formulae logically valid (=allgemeingülig)?

(a)
$$\phi_1 = (\forall x \, Rxy \to (\exists z \, Pz \to Px)) \leftrightarrow ((\forall x \, Rxy \land \exists z \, Pz) \to Px)$$
 (1)

- (b) $\phi_2 = (\exists x \forall y \, Rxy \to \forall y \exists x \, Rxy)$ (1)
- (c) $\phi_3 = (\forall z \, Rz fxz \to \exists x \forall z Rzx)$ (1)
- (d) As you have proved, (c) is not valid. Does this not violate \exists -quantifier axiom? (1)

²Such an element is called "infinitely large"

Aufgabe (4-4). Prove the following in Hilbert Calculus and without employing Gödel's completeness theorem.

(a) $\exists v_0 R v_0 v_1 \rightarrow \exists v_2 R v_2 v_1$	(2)

(b) $\exists v_0 \neg Rv_0 f v_0 \lor \exists v_1 R c v_1$ (2)