Abteilung für mathematische Logik

Mathematische Logik (SS 2014) Prof. Dr. Martin Ziegler Dr. Mohsen Khani

Übung zur Vorlesung Aufgabe 5, Der Sequenzenkalkül Abgabe am 2.6 vor 16:00 Uhr

Definition. Fix a language L. Let \mathfrak{A} be an L-substructure of \mathfrak{B} . Then \mathfrak{A} is called an elementary substructure of \mathfrak{B} if for every L-formula $\phi(x_1, \ldots, x_n)$ and elements a_1, \ldots, a_n all in A, we have

$$\mathfrak{A} \models \phi(a_1, \ldots, a_n)$$
 if and only if $\mathfrak{B} \models \phi(a_1, \ldots, a_n)$.

You can see in particular that in this case \mathfrak{A} satisfies all sentences that \mathfrak{B} satisfies. For example if the universe of \mathfrak{B} with some operators in the language is a field or a group, the so is the universe of \mathfrak{A} with those operations.

Theorem (Tarski). Fix a language L. Let \mathfrak{A} be an L-substructure of \mathfrak{B} . Then \mathfrak{A} is an elementary substructure of \mathfrak{B} if and only if for every formula $\phi(x, y_1, \ldots, y_n)$ in the language, and every a_1, \ldots, a_n in A we have:

if
$$\mathfrak{B} \models \exists x \phi(x, a_1, \dots, a_n)$$
 then $\mathfrak{A} \models \exists x \phi(x, a_1, \dots, a_n)$

Aufgabe (5-1). Consider the structure $\mathfrak{C} = \langle \mathbb{C}, +, ., 0, 1 \rangle$.

- 1. Give an example of a countable substructure $\langle A, +, ., 0, 1 \rangle$ of \mathfrak{C} such that $\langle A, +, ., 0, 1 \rangle$ is not a field. (1)
- 2. Give an example of a countable substructure $\langle A, +, ., 0, 1 \rangle$ of \mathfrak{C} in which the universe is a field (with the operations +, .) but the substructure is not elementary. (1)
- 3. By a Henkin construction (like the theory T^+ in the proof of completeness theorem) prove that there exists a countable elementary substructure of $\langle \mathbb{C}, +, ., 0, 1 \rangle$. (2)
- 4. Give an algebraic description of the above elementary substructure. (a mathematical guess suffices: begin with $\langle \mathbb{Q}, +, ., 0, 1 \rangle$. Note that by Tarski's theorem, and the fact that terms here are polynomials, the structure we are looking for should contain the roots of all polynomials with coefficient in \mathbb{Q} , because \mathbb{C} does). (1)

(Tutors: As a complementary remark, every substructure of \mathfrak{C} which is an algebraically closed field, is an elementary substructure. More generally if \mathfrak{A} and \mathfrak{B} are algebraically closed fields and \mathfrak{A} is a substructure of \mathfrak{B} , then it is an elementary substructure).

5. Let $\mathfrak{R} = \langle \mathbb{R}, +, ., 0, 1, < \rangle$. Let \mathfrak{R}' be a substructure of \mathfrak{R} such that $\mathfrak{R}' \models \operatorname{Th}(\mathfrak{R})$. Let $ax^2 + bx + c = 0$ be an equation with coefficients a, b, c in R'. Show that this equation has a root in \mathbb{R} if and only if it has a root in R'. (2)

Aufgabe (5-2). Suppose that x is not free in ψ .

- a) Prove in Hilbert Calculus that $\vdash \exists x(\phi(x) \lor \psi) \leftrightarrow \exists x\phi(x) \lor \psi$. (2)
- b) Prove it in the sequence calculus. (2)
- c) Explain why the condition "x is not free in ψ " is necessary. Examples in every-day language are also accepted. (1)
- d) (Krivine's hat, see also Aufgabe 3-1) using a) prove the following in Hilbert Calculus:

$$\exists x(H(x) \to \forall yH(y))$$

(2)

Aufgabe (5-3). Let L_1 and L_2 be two languages, T_1 a consistent L_1 -theory and T_2 a consistent L_2 - theory. Let $L = L_1 \cap L_2$. Suppose that T_1 and T_2 prove the same *L*-sentences. Show that $T_1 \cup T_2$ is consistent. (4)

Aufgabe (5-4). We call a class \mathcal{K} of *L*-structures, finitely axiomatisable if it is the class of models of a finite theory (= a finite set of sentences). Show that the class \mathcal{K} of *L*-structures is finitely axiomatisable if and only if \mathcal{K} and its complement are both axiomatisable. (=each of them is the set of models of a theory) (2)

Hinweis. First observe that if an infinite set of sentences is inconsistent, then there is a finite subset of it which is inconsistent (because if every finite subset is consistent, the by compactness the whole set is consistent). Suppose that T_1 axiomatises \mathcal{K} and T_2 axiomatises \mathcal{K}^c . Then observe that $T_2 \cup T_1$ is inconsistent and continue.

Aufgabe (5-5, Skolem's paradox, complementary). Let ZFC be the Zermelo-Frankel axioms for set theory with the axiom of choice. Show that there is a countable model \mathcal{M} of ZFC. How do you explain: $\mathcal{M} \models$ "there is an uncountable set"?