Universität Freiburg, Abteilung für Mathematische Logik

Übung zur Vorlesung Modelltheorie 2, ss2015 Prof. Dr. Martin Ziegler Dr. Mohsen Khani

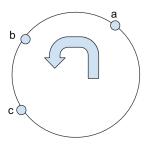
Blatt 1, teilen und forken

Aufgabe 1.

1. Seien M ein $|A|^+$ -saturiertes Modell und $A \subseteq M$. Zeigen Sie, dass es für jeder vollständige Typ $p \in S(M)$, gilt:

p forkt über $A \Leftrightarrow p$ teilt über A.

2. Angenommen, dass $p \in S(\mathfrak{C})$ ein A-invarianter Typ ist, zeigen Sie, dass p über A nicht forkt.


In der nächsten Aufgabe, sehen wir ein Beispiel für forken und nicht teilen.

Aufgabe 2 (dichte ziklische Ordnung).

Definition. $cyc(a, b, c) \Leftrightarrow$ wenn man von a gegen den Uhrzeigersinn läuft, kommt c nach b.

Alternative Definition: definiere cyc auf \mathbb{Q} :

$$cyc(a,b,c) \Leftrightarrow (a < b < c) \lor (c < a < b) \lor (b < c < a)$$

Sei T_{co} die Theorie von (\mathbb{Q}, cyc) .

- 1. Axiomatisire T_{co} .
- 2. Zeige, dass T_{co} die Quantoren eliminiert.
- 3. $a \neq b \Rightarrow cyc(a, x, b)$ teilt über \emptyset .
- 4. Der einzige 1=Typ über \emptyset forkt über \emptyset und teilt nicht. $(a \not\perp_{\emptyset} \emptyset)$.

In der nächsten Aufgabe, sehen wir ein Beispiel für nicht-transitive nichtforkende Erweiterungen.

Aufgabe 3.

- 1. Seien $T = T_{DLO}$, $A \models T$ und |a| = |b| = 1. Beschreibe $a \downarrow_A^d b$.
- 2. Was wäre es mit |a| = 1, |b| = 2?
- 3. Beschreibe Symmetrie und Transitivät.
- 4. Zeigen Sie, dass die folgende Transivität **nicht** gelt: wenn $p \subseteq q \subseteq r$ nichforkende Erweiterungen sind, dann r ist eine nichtforkende Erweiterung von p.

Aufgabe 4.

Wir haben in der Vorlesung gesehen dass, es in streng-minimale Theorien, gilt: $a \downarrow_A b$ gdw. $a \downarrow_A^{\text{pregeometry}} b$. Gilt das auch in o-minimale Theorien? (Diskussion über o-minimal Theorien im Tutorium)