Universität Freiburg, Abteilung für Mathematische Logik

Übung zur Vorlesung Modelltheorie 2, ss2015 Prof. Dr. Martin Ziegler Dr. Mohsen Khani

Blatt 8, Elimination der Imaginäre

Aufgabe 1. Describe what is meant by acl(a/E) and $dcl^{eq}(a)$.

The Pillay-Lascar Theorem says "if T is strongly minimal and $\operatorname{acl}(\emptyset)$ is infinite, then T has weak elimination of imaginaries". The next Aufgabe is a counterexample to the requirements and the statement.

Aufgabe 2. Define a relation R over \mathbb{Q} by

$$R(a, b, c, d) \Leftrightarrow a + b + c + d = 0.$$

Notice that (\mathbb{Q}, R) is equivalent to $(\mathbb{Q}, +)$ (no zero in the language), and R determines the affine lines over \mathbb{Q} . Show that (\mathbb{Q}, R) is strongly minimal, but it does not have weak elimination of imaginaries.

We saw in the lecture that if T is a totally transcendental theory in which each global type has a canonical base in \mathfrak{C} , then T has weak elimination of imaginaries. The proof went as follows: if e = c/E is imaginary and $\mathrm{RM}(c/E) = \alpha$, then we let $\mathbb P$ be the global type with $\mathrm{RM} = \alpha$ containing the formula xEc. This type has a canonical base d, and d is the canonical parameter we are looking for. It was left as an exercise to prove that d is finite. This assumption is justified in Aufgaben 3,4,5.

Aufgabe 3. Let \mathbb{D} be a definable class and D be a set such that for each automorphism α

$$\underbrace{\alpha(D) = D}_{\text{pointwise}} \Leftrightarrow \underbrace{\alpha(\mathbb{D}) = \mathbb{D}}_{\text{setwise}}$$

show that D contains a canonical parameter of \mathbb{D} .

Aufgabe 4. Let T be totally transcendental and \mathbb{P} be a global type. Show that \mathbb{P} has a finite canonical base in \mathfrak{C}^{eq} .

Aufgabe 5. Using the previous two Aufgaben, show that if \mathbb{P} has a canonical base $D \subseteq \mathfrak{C}$, then it has a finite base $d \subseteq \mathfrak{C}$.

We identified the canonical base for global types in ACF_p as follows: if $\mathbb{P}(\bar{x})$ is a global type, then it is given by an irreducible variety over \mathfrak{C}^n via $\operatorname{tp}(\bar{c}/\mathfrak{C})$ (inaccurate) where \bar{c} is the generic point of V. Also, we can say that $\mathbb{P}(\bar{x})$ is the type whose Morley rank is equal to the Morley rank of V and " $\bar{x} \in V$ " $\in \mathbb{P}(\bar{x})$. Let I be the corresponding ideal of V. Then $\operatorname{cb}(\mathbb{P}) = [V] = [I]$. Also $[I] = \bigcup_{k=0}^{\infty} [I_k]$ where $I_k = \{p \in I | \deg p \geq k\}$ is considered as a sub- \mathbb{C} -vector space of $\mathfrak{C}^{N(k)}$, where N(k) is the number of all monomials of $\operatorname{deg} \leq k$ in $X_1, \ldots X_n$, and we have $I = \bigcup_{k=0}^{\infty} I_k$. We are now supposed to apply Andre Weil's theorem over "the field of definition of variety" to prove:

Aufgabe 6. Let \mathfrak{C} be a field and $U \leq \mathfrak{C}^n$ (as vector spaces). Then [U] exists in \mathfrak{C} (for example if $U = \mathfrak{C}.(a_1, \ldots, a_n)$ then $[U] = (a_2/a_1, \ldots, a_n/a_1)$.

Let T be stable. We proved that $p \in S(B)$ does not fork over $A \subseteq B$ if and only if p has a good definition over $\operatorname{acl}^{eq}(A)$. In the proof of \Leftarrow we said if p has a good definition over $\operatorname{acl}^{eq}(A)$, then it defines a a global type \mathbb{P} extending p, which does not fork over $\operatorname{acl}^{eq}(A)$, and hence over A. The last claim is to be justified below:

Aufgabe 7.

- 1. If $b_0, b_1 \dots$ is an indiscernible sequence over A, then it is indiscernible over acl(A).
- 2. (Hence:) If $\phi(x, b)$ divides over A, then it divides over $\operatorname{acl}(A)$.
- 3. Give another proof for item 2, using transitivity.

The other direction of the proof went as follows: if p does not fork over A, then it has a global non-forking extension \mathbb{P} . If M is a model containing A, then \mathbb{P} does not fork over M. Since T is stable, \mathbb{P} is defined over M, and hence $cb(\mathbb{P}) \in M^{eq}$. Since M is arbitrary, $cb(\mathbb{P}) \in acl(A)$. The last sentence is justified below:

Aufgabe 8. Show that

$$\operatorname{acl}(A) = \bigcap_{M \text{model containing } A} M.$$