Universität Freiburg, Abteilung für Mathematische Logik

Ubung zur Vorlesung Modelltheorie 1, ws2014-2015 Prof. Dr. Heike Mildenberger Dr. Mohsen Khani

Blatt 11, Stability, Categoricity, Saturatedness

The first exercise of this week is a set theory exercise. It is worth making yourself familiar with the statement and the proof of the following two.

Aufgabe 1.

1. Suppose that κ is an infinite cardinal. Show that $\kappa \cdot \kappa = \kappa$, where \cdot denotes the multiplication of cardinals.

Hinweis. First a quick reminder that $k \cdot k$ is by definition $|\kappa \times \kappa|$. The proof is by transfinite induction on κ . Assume that it holds for smaller cardinals. So if $\alpha < \kappa$ then $\alpha.\alpha = \alpha < \kappa$. Also it easy to see that $\kappa \leq \kappa.\kappa$. We need only to show that $\kappa \cdot \kappa \leq \kappa$. For this we need to define a well-ordering \triangleleft on $\kappa \times \kappa$ in such a way that all initial segments of $\kappa \times \kappa$ with this well-ordering have size $\leq \kappa$. Define the following well-ordering \triangleleft on $\kappa \times \kappa$:

$$\langle \alpha, \beta \rangle \triangleleft \langle \alpha', \beta' \rangle \text{ if } \begin{cases} \max\{\alpha, \beta\} < \max\{\alpha', \beta'\} \text{ or} \\ \max\{\alpha, \beta\} = \max\{\alpha', \beta'\} \text{ and } \langle \alpha, \beta \rangle <_{\text{lex}} \langle \alpha', \beta' \rangle \end{cases}$$

where $<_{\text{lex}}$ denotes the lexicographic order (with priority to the second coordinate). Now with the help of Figure 1 show that each $\langle \alpha, \beta \rangle \in \kappa \times \kappa$ has no more than κ predecessors with the ordering \triangleleft . In Figure 1 the predecessors of an $\langle \alpha, \beta \rangle$ with $\beta < \alpha$ appear in grey. You may also think of an onion!

2. Show that for each infinite cardinal κ , there is a dense linear order (A, <) and a $B \subset A$ such that B is dense in A and $|B| \leq \kappa < |A|$.

Hinweis. Let $\lambda \leq \kappa$ be least such that $2^{\lambda} > \kappa$. Set

 $A : \{ \text{all functions from } \lambda \text{ to } \mathbb{Q} \}.$

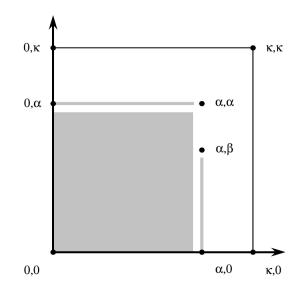


Figure 1: predecessors of $\langle \alpha, \beta \rangle$ where $\beta < \alpha$. The figure comes from http: //www.cl.cam.ac.uk/~lp15/papers/Sets/AC.pdf

Define the following order on A:

f < g if $f(\alpha) < g(\alpha)$; where α is the least such that $f(\alpha) \neq g(\alpha)$.

Let B be the set of sequences in A that are eventually zero. Show that B is the B!

Aufgabe 2. Let $L = \{E\}$ be the language with a single binary relation symbol. let T be the theory of an equivalence relation where for each $n \in \omega$ there is a unique equivalence class of size n. Show that T is ω -stable and not \aleph_0 -categorical and not \aleph_1 -categorical.

Bemerkung. Compare the above exercise with the following two facts:

- 1. The Categoricity Theorem says that if T is categorical in some **uncountable** cardinal, then it is κ -categorical in all uncountable κ 's.
- 2. A countable theory that is categorical in some uncountable cardinal, is ω -stable.

Aufgabe 3. 1. Show that DLO is **not** κ -stable for any infinite κ .

2. (Generalisation of the previous item) we say that a theory T has the **order property** if there is a formula $\phi(\bar{x}, \bar{y})$ with |x| = |y| = n and $M \models T$ and $(\bar{c}_i)_{i \in \omega}$ an infinite sequence in M^n such that

$$M \models \phi(\bar{c}_i, \bar{c}_j)$$
 if and only if $i < j$.

Use part 2 of Aufgabe 1 to show that if T has the order property then it is **not** κ -stable for any infinite κ .

Hinweis (for part 2). Use A and B in Aufgabe 1 part 2 as sets of indices of a suitable sequence (c_i) in such a way that $S_n(\{x_b | b \in B\}) > |B|$.

Aufgabe 4. If T is κ -stable, then (up to logical equivalences) $|T| \leq \kappa$.

Aufgabe 5.

- 1. If M is κ -saturated, then each definable subset of M is either finite or of cardinality at least κ .
- 2. Suppose that $|L| \leq \aleph_0$. Let M_1, M_2, \ldots be a sequence of *L*-structures. Let *F* be a non-principle ultrafilter on ω . Show that $\prod_{i < \omega} M_i/F$ is \aleph_1 -saturated. If we assume the Continuum Hypothesis, this implies that if *M* and *N* are countable *L*-structures and $M \equiv N$, then the $M^{\omega}/F \cong N^{\omega}/F$ where by M^{ω}/F we mean the ultrapower of *M*.

Ich wünsche Ihnen ein frohes neues Jahr!