NIP Seminar

Model Theory 2, University of Freiburg

(Reference: A guide to NIP theories, Simon)

December 11, 2015

Definition 1 (Independence Property) A formula $\phi(x, y)$ has IP (the independence property) if there are sequences $(a_i)_{i \in \omega}$ and $(b_I)_{I \subseteq \omega}$ such that

$$\models \phi(a_i, b_I) \iff i \in I$$

A theory T is called NIP if there is no formula in it with IP. If $\phi(x, y)$ is NIP, then there is a maximal integer n such that there are no sequences $(a_i)_{i=1,...,n}$ and $(b_I)_{I \subseteq \{1,2,...,n\}}$ for which

$$\models \phi(a_i, b_I) \iff i \in I$$

This integer n is called the VC-dimension of $\phi(x, y)$.

Fact 2

1. $\phi(x, y)$ is NIP if and only if $\phi(y, x)$ is NIP.

2. $\phi(x, y)$ has IP if and only if there is an indiscernible sequence $(a_i)_{i \in \omega}$ and a tuple b such that

$$\models \phi(a_i, b) \iff i \text{ is even.}$$

3. T is NIP if and only if all formulae $\phi(x, y)$ with $|y| = 1$ are NIP.

Theorem 3 (Baldwin-Saxl) Assume that T is NIP, G is a group definable in T, and $(H_a)_{a \in B}$ is a definable family of subgroups of G. Then there is an integer N such that

$$\forall A_{\text{finite}} \exists A_0 \subseteq A \ (|A_0| \leq N \text{ and } \bigcap_{a \in A} H_a = \bigcap_{a \in A_0} H_a.)$$
Definition 4 (Invariant types) A global type $p \in S_\omega(M)$ is called A-invariant (A is small) if

$$\forall \sigma \in \text{Aut}(M/A) \quad \sigma(p) = p.$$

That is, for each a, b in the super-monster model

$$a \equiv_A b \Rightarrow \text{tp}(a/M) = \text{tp}(b/M).$$

Fact 5

- If p is a definable type, then it is invariant. Indeed if p is definable, then it is definable over some A with $|A| \leq |T|$ and p is A-invariant.
- If p is finitely satisfiable in A then it is A-invariant.

Fact 6 Two ways for obtaining finitely satisfiable types:

- Let A be a parameter set and D an ultra-filter on A^n. The type p_D defined as in the following is finitely satisfiable in A:

 $$\phi(x, b) \in p_D \iff \phi(A, b) \in D.$$

 Every global type finitely satisfiable A is of the form p_D for some ultra-filter D.

- Let $I = (a_i | i \in J)$ be indiscernible and T be NIP. The type $p := \lim_{i \in J} \text{tp}(a_i/M)$ is finitely satisfiable in I (the limit makes sense in the Stone topology.)

Definition 7 (defining scheme of a type) Let p be global and A-invariant. For each $\phi(x, y) \in L$, let $D_\phi := \{\text{tp}(b/A) | \phi(x, b) \in p\}$. The family $\{D_\phi\}_{\phi \in L}$ is called the defining schema of p, and it determines p. Using this schema we can extend p from M to $M' \supset M$ by defining

 $$\phi(x, b) \in p \iff \text{tp}(b/A) \in D_\phi \text{ for each } b \in M'.$$

Lemma 8 Let p be global and A-invariant.

- If p is definable, then it is A-definable.
- If p is finitely satisfiable in some small set, then it is finitely satisfiable in some model $M \supset A$.

2
Definition 9 (Product of Types) Let $p(x)$ and $q(y)$ be global types and p be A-invariant. We define $p(x) \otimes q(y)$ (a type with variables x and y) by

$$p(x) \otimes q(y) = \text{tp}(ab/M)$$

where $b \models q$ and $a \models p|_{Mb}$

- \otimes is associative, but, in general, not commutative.

- $p \otimes q$ is A-invariant if and only if q is.

Definition 10 (Morley Sequence) Let p be global and A invariant and $B \supseteq A$. Let

$$p(n)(x_0, \ldots, x_n) := p(x_n) \otimes p(x_{n-1}) \otimes \cdots \otimes p(x_0),$$

and

$$p(\omega)(x_0, x_1, \ldots) := \lim p(n)(x_0, \ldots, x_n).$$

Each realization $(a_i)_{i \in \omega}$ of $p(\omega)|_B$ is called a Morley sequence of p over B. Such a sequence is indiscernible over B and $\text{tp}(a_1, \ldots, a_n/B) = p(n)|_B$.

We defined Morley sequences in model theory 2 as follows: $I = (a_i)_{i \in \omega}$ is Morley in p over A if each a_i is a realisation of p and $a_i \downarrow_A a_1 \ldots a_{i-1}$. Read example 7.2.10 (and exercise 7.1.4) in Ziegler-Tent model theory book to see why these two definitions are equivalent.

Lemma 11 Assume that $p(x)$ and $q(y)$ are global types, p is definable, and q is finitely satisfiable in some small model. Then $p(x) \otimes q(y) = q(y) \otimes p(x)$ (in particular, in stable theories, \otimes commutes).

Theorem 12 (generically stable types) Let T be NIP and p be a global A-invariant type. Then the following are equivalent (and the type p that satisfies these, is said to be generically stable)

1. $p = \lim(I)$ for each $I \models p(\omega)|_A$ (that is p is the limit of each Morley sequence over A in p).

2. p is definable and finitely satisfiable in some small model M.

3. $p_x \otimes p_y = p_y \otimes p_x$.

4. Each Morley sequence of p is totally indiscernible.
Definition 13 (a sequence being based on a set) Let $A \subseteq \mathcal{M}$ and let I be an indiscernible sequence. We say that I is based on A if it is indiscernible over A and for all $I_1, I_2 \models EM(I)$ (where EM is for Ehrenfeucht-Mostowski type), there is some a such that $a + I_1$ (a is added to the sequence) and $a + I_2$ are both indiscernible over A.

Proposition 14 (eventual types) Let T be NIP. Let I be based on A. There is a unique global type p with the following property (and this type is called the eventual type of I over A, and is denoted by $Ev(I/A)$): For each $J \models EM(I/A)$ and each $B \subseteq \mathcal{M}$, there is $a \models p|_B$ such that $J + a$ is A-indiscernible. Moreover p is invariant over A.

Definition 15 (dense meet-trees) A tree is a partially ordered set (M, \leq) such that for each $a \in M$, the set $\{x \in M | x \leq a\}$ is linearly ordered by \leq and for each $a, b \in M$ there is c such that $c \leq a$ and $c \leq b$. We call (M, \leq) a meet tree if in addition, for each $a, b \in M$ the set $\{x \in M | x \leq a, x \leq b\}$ has a greatest element, which we denote by $a \land b$. The theory of dense meet-trees, T_{dt}, is the theory defined by the following axioms:

- \leq defines a meet tree and \land is the meet relation.
- for each c the set $\{x | x \leq c\}$ is dense and has no first element.
- for each c there are infinitely many open cones centered at c.

T_{dt} is \aleph_0 categorical and its unique countable model is the Fraïssé limit of finite meet trees. T_{dt} is also NIP.

Remark 16 (indiscernible sequences in T_{dt}) Let $I = (a_i)_{i \in \omega}$ be an indiscernible sequence of single elements in T_{dt}. There are 6 possibilities for I:

1. I is constant.
2. I is increasing.
3. I is decreasing.
4. Elements of I are pairwise incomparable and $a_i \land a_j$ is constant for all i, j.
5. Elements of I are pairwise incomparable and $a_i \land a_j$ for $i < j$ depends only on i and is increasing with i.

4
6. Elements of \(I \) are pairwise incomparable and \(a_i \wedge a_j \) depends only on \(j \) and is decreasing with \(j \).

Definition 17 Let \(\pi(x) \) be a partial unary type over \(\emptyset \). We say that \(\pi(x) \) is stably embedded if for every formula \(\phi(x_1, \ldots, x_n, b) \) (\(b \in \mathbb{C} \)) there is a formula \(\psi(x_1, \ldots, x_n, z) \) and \(d \in \pi(\mathbb{C}) \) such that

\[
\forall \bar{a} \in \pi(\mathbb{C}) \quad \phi(\bar{a}, b) \iff \psi(\bar{a}, d).
\]

If \(\pi \) is stably embedded, then \(\psi \) can be chosen so that it depends only on \(\phi \) and not the parameter \(b \). A stably definable set is defined similarly.

Definition 18 Let \(A \subseteq \mathbb{C} \) be any set and \(B \subseteq \mathbb{C} \) be a small set of parameters. By \(A_{\text{ind}(B)} \), the induced structure over \(A \) by formulae in \(L(B) \), we mean the structure in the language \(L_B = \{ R_{\phi(x)}(\bar{x}) | \phi(x) \in L(B) \} \) whose universe is \(A \) and

\[
A_{\text{ind}(B)} \models R_{\phi}(\bar{a}) \iff \mathbb{C} \models \phi(\bar{a}).
\]

If \(M \prec N \) and \(N \) is \(|M|^+ \)-saturated, then \(M_{\text{ind}(N)} \) is called the Shelah expansion of \(M \) and is denoted by \(M^{sh} \). \(M^{sh} \) has quantifier elimination and is NIP.

Definition 19 An externally definable subset of a model \(M \) is a subset \(D \subseteq M^k \) where \(D = \phi(M, b) \) for some \(b \in \mathbb{C} \) (where \(b \) may not be in \(M \)).

Theorem 20 (Honest Definition) Let \(M \models T \), \(A \subseteq M \), \(\phi(x, y) \in L \) and \(b \in M \) be a \(|y| \)-tuple. Assume that \(\phi(x, y) \) is NIP. Then there is an elementary extension \((M, A) \prec (M', A') \) and a formula \(\psi(x, z) \in L \) and a tuple \(d \) in \(A' \) such that

\[
\phi(A, b) \subseteq \psi(A', d) \subseteq \phi(A', b).
\]

(\(\psi(x, d) \) is called the honest definition of \(\phi(x, b) \)).

Corollary 21 Assume that \(T \) is NIP. Let \(M \models T \) and \(A \subseteq M \). Let \(b \in M \) be a finite tuple. Let \((M, A) \prec (M', A') \) be an \(|M|^+ \)-saturated extension. Then there is \(A_0 \subseteq A' \) of size at most \(|T| \) such that for all \(a, a' \in A^k \) we have

\[
a \equiv_{A_0} a' \Rightarrow a \equiv_{b} a'.
\]

Lemma 22 (Shrinking of an indiscernible sequence) Let \(T \) be NIP. Let \(I = (a_i)_{i \in J} \) be an indiscernible sequence. Let \(\phi(\bar{x}, b) \in L(\mathbb{C}) \). Then there is a finite convex equivalence relation \(\simeq \) on \(J \) such that for all \(\bar{i}, \bar{j} \in J^n \) we have

\[
\bar{i} \simeq \bar{j} \Rightarrow \phi(a_{\bar{i}}, b) \iff \phi(a_{\bar{j}}, b).
\]