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Abstract
Given a theory T of a polynomially bounded o-minimal expansion

R of R̄ = 〈R,+, ., 0, 1, <〉 with field of exponents Q, we introduce a the-
ory T whose models are expansions of dense pairs of models of T by a
discrete multiplicative group. We prove that T is complete and admits
quantifier elimination when predicates are added for certain existential
formulas. In particular, if T = RCF then T axiomatises 〈R̄,Ralg, 2Z〉,
where Ralg denotes the real algebraic numbers. We describe types and
definable sets in our models and prove that T is dependent.
Keywords. O-minimality, dense pairs, integer powers of two.

1 Introduction
Throughout, R̄ is the structure 〈R,+, ., 0, 1, <〉 and Lor its language. In [2]
van den Dries proved quantifier elimination for the theory of the structure

∗This paper is based on some results in the author’s PhD thesis titled ‘The first order
theory of a dense pair and a discrete multiplicative group’.
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〈R̄, 2Z〉 in a language L∗ containing as well as usual Lor-symbols, a predicate
symbol (in our notation) G, predicates {Pn}n∈N, and a function symbol λ.
In R the predicate G is interpreted as the the set of the integer powers of
two, 2Z. Each Pn represents the set 2nZ and to each x ∈ R, the function
λ assigns the largest integer power of two less than or equal to x. In fact,
〈2Z, {2nZ}n∈N, ., <〉 is a model of Presburger arithmetic and the quantifier
elimination of this structure plays role in the proof. By quantifier elimination,
every definable subsets of R is the union of an open set and a discrete set.
Hence Z is not definable, and therefore this structure is not subject to the
Gödel Phenomenon.

In [6] Günaydin extends the results of [2] to expansions of the field of
reals with a multiplicative subgroup generated by 2 and 3 and a further
predicate for the subgroup generated by 2, and notices in particular that in
this structure, 3Z is not definable. In [9] Hieronymi proves that for every
(α, β) ∈ R2, if logα(β) 6∈ Q then the structure 〈R̄, αZ, βZ〉 defines Z.

In [3] van den Dries proved that given a complete o-minimal theory (in
our notation) T ′ which extends the theory of ordered abelian groups, the
theory T ′d whose models 〈M,N〉 are dense pairs of models of T ′ is complete.
He formulated T ′d in a language L′d comprising of L′, the language of the o-
minimal theory T ′, and a predicate U for N and proved that every L′d-formula
is equivalent to a Boolean combination of formulas of the form ∃ȳ U(ȳ) ∧
φ(x̄, ȳ) with φ(x, y) an L′-formula. A particular example of a dense pair of o-
minimal structures is 〈R̄,Ralg〉. He further proved that every closed definable
subset of R is a finite union of points and open intervals and therefore Z is
not definable in this structure. He characterises types and definable sets in
models of T ′d and proves that the open L′d-definable sets are L′-definable.

Our aim is to bring together the quantifier elimination theorems of van
den Dries referred to, to axiomatise and prove a similar elimination theorem
for 〈R̄,Ralg, 2

Z〉 in a joint language of L∗ and L′d and observe that Z is not
definable in this structure. The idea of amalgamating these two proofs is
suggested by Miller in [11] in order to prove that every open definable set
in 〈R̄,Ralg, 2

Z〉 can be defined in 〈R, 2Z〉. As the question of open definable
sets is studied by Fornasiero in [4] and [5] we focus only on describing for-
mulas, definable sets and types, and then using the methods developed by
Hieronymi and Günaydin in [7] we will prove that the theory of this structure
is dependent.

Let us fix an expansion R of R̄ with T = Th(R) and L = L(T ). We will
assume that T is o-minimal and polynomially bounded with the field of expo-
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nents Q. The latter notion will be explained in subsection 1.1. Let L be the
language L∪ {NL, GL, λL, {PnL}n∈N} where NL and GL are unary predicates
respectively for the dense substructure and the discrete subgroup, λL is a
unary function symbol and {PnL}n∈N are countably many unary predicates.
We drop the index L for the elements of the language when it causes no
confusion with the components of the structure M = 〈M,N,G, λ, {Pn}n∈N〉.

Let T be a theory in the language L every model M =
〈M,N,G, λ, {Pn}n∈N〉 of which satisfies the following axioms:

1. Axioms expressing thatM |= T and N ≺M is dense inM and N 6= M .

2. G ⊆ N .

3. Axioms for G:

• G is a multiplicative subgroup of positive elements of M .
• 2 ∈ G ∧ ∀x(1 < x < 2→ x 6∈ G).
• ∀x > 0 ∃y ∈ G y ≤ x < 2y.

4. Axioms for Pn (n ∈ N):

• ∀x Pn(x)↔ ∃y ∈ G x = yn.
• Axioms expressing that for each x ∈ G and each n ∈ N, one and

only one of {x, 2x, . . . , 2n−1x} is in Pn.

5. Axioms for λ:

• ∀x λ(x) ∈ G.
• ∀x λ(x) ≤ x < 2λ(x).
• ∀x x ≤ 0→ λ(x) = 0.

Theorem 1.

1. The theory T is complete.

2. Every L-formula (with free variables z̄) has an equivalent which is a
Boolean combination of formulas of the form

∃x̄ = (x1, . . . , xn)∃ȳ = (y1, . . . , ym)( ∧
i=1,...,n

NL(xi) ∧
∧

i=1,...,m

GL(yi) ∧ φ(x̄, ȳ, z̄)
)
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with φ(x̄, ȳ, z̄) in L.

3. T is dependent.

Note that our structures in particular generalises the structure 〈R, 2Z〉 for
R as above, considered by Miller in [11]. Also note that, if R = R̄, then
〈R̄,Ralg, 2

Z, λ, {2nZ}n∈N〉 is axiomatised by T, where for each x, λ(x) is the
largest integer power of two less than or equal to x.

We will prove 1 and 2 in section 2, then in section 3 we use 2 to describe
definable sets and types, and finally, in section 4, we will prove 3. In the fol-
lowing subsection we explain the valuation inequality which is an ingredient
of our proofs in the next section.

1.1 Valuation Inequality

If M = 〈M,N,G, λ, {Pn}n∈N〉 is a model of T, then M and N are real closed
fields. Finite and infinitesimal elements of M are respectively the sets:

Fin(M) = {x ∈M : ∃n ∈ N |x| < n},
µ(M) = {x ∈M : ∀n ∈ N |x| < 1/n}.

Fin(M) is a valuation ring for M . We say x, y are in the same Archimedean
class if x/y and y/x are both in Fin(M). We denote by Γ(M) or Γ, the group
of all Archimedean classes ofM . The valuation ring Fin(M) is then obtained
by the standard valuation on M which sends each nonzero element x of M
to its Archimedean class v(x) in Γ.

In Γ the order is defined by v(x) > 0↔ |x| ∈ µ(M). Since by our axioms,
for each positive x we have λ(x) ≤ x < 2λ(x), each Archimedean class of M
in M is represented by an element of G and v(G) = Γ and G/2Z ∼= Γ.

Clearly we can also define Fin(N) and µ(N) and as N is dense in M and
G ⊆ N , the valuation groups of N and M coincide.

Since M is real closed, Γ is divisible and hence so is G/2Z, implying that
〈G, ., <, {Pn}〉 is a model of Presburger arithmetic (this can also be inferred
from items 3 and 4 in the axioms).

The field of exponents of R is the following field, denoted by K:

K = {r ∈ R : the function x→ xr on (0,∞) is 0-definable in R}.

We call R polynomially bounded (Miller, [10]) if for every unary definable
function f there exists some N ∈ N such that for all sufficiently large positive
elements x of R we have |f(x)| ≤ xN .
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In [10] it is proved that if R is an expansion of 〈R, <〉 then either R
defines ex, or for every ultimately nonzero R-definable f : R → R there
exists a nonzero c ∈ R and a 0-definable real power function xr such that
f(x) = cxr + o(xr).

For the rest of the paper we keep our assumptions that T is o-minimal,
polynomially bounded and has field of exponents Q (i.e. K = Q). With
these assumptions in place, we have:

Proposition 2 (The valuation inequality, Wilkie, van den Dries, Speisseger,
[12], [8]). Let M1,M2 |= T and M1 �M2. Then dimQ(Γ(M2)

Γ(M1)
) ≤ rankM1(M2).

In the above proposition, rankM1(M2) is the cardinality of a basis for M2

over M1 regarding the fact that the definable closure in o-minimal theories
is a pregeometry, and dimQ(Γ(M2)

Γ(M1)
) is the dimension as Q-vector spaces. We

will need a special case of this proposition for when rankM1(M2) = 1. In
this case the above proposition implies that when we expand a model of T
with one element, then we obtain at most one new Archimedean class (up
to linear independence over Q). More precisely, if x ∈M2 −M1 is such that
v(x) 6∈ Γ(M1) then for every element t in M〈x〉, v(t), the Archimedean class
of t, has a representative in Γ(M1).v(x)Q ⊆ Γ(M2).

1.2 Notation

Models of T are denoted by blackboard-bold letters, say M, and it is always
assumed that M is the structure 〈M,N,G, λ, {Pn}n∈N〉. We usually drop the
index n ∈ N. We often fix M and prove statements about its parts M,N,G,
etcetera. Apart from M, we have used the same notation for a structure
and its universe. By M〈x〉 we mean the L-definable closure of M ∪ {x}.
For a set Λ, by M〈Λ〉 we mean the L-definable closure of M ∪ {x : x ∈ Λ}.
The notion of rank and independence throughout the paper and the notation
rankM1(M2) is as pointed out after Proposition 2.

As mentioned earlier, to prove the completeness of T, we rely extensively
on the techniques in [2] and [3].

2 Towards the proofs
For the back and forth argument that we will employ in the proof of Theorem
1, we need the following definitions and lemmas. The following definition is
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an adaption of a similar definition from [3] to our setting.

Definition 2.1. Let M = 〈M,N,G, λ, {Pn}〉 ⊆ M1, where 〈M,N〉 is an
elementary pair of models of T . We say that M1 is a free extension of M, or
M is a free substructure of M1, if for every Y ⊆ N1, in M1, Y is independent
over N if and only if it is independent over M .

Under the conditions of the above definition, if Z ⊆ N1, thenM〈Z〉∩N1 =
N〈Z〉.

We will also need the following lemma whose statement and proof can be
found in [3].

Lemma 3 ([3]). Let T be a complete o-minimal theory which extends the
theory of ordered abelian groups. Then

i) if the dense pair 〈M,N〉 of models of T is κ-saturated for κ > |T |, then
rankN(M) ≥ κ.

ii) If 〈M,N〉 is a dense pair of models of T , then M −N is dense in M .

In the following lemmas we identify the structure generated by elements
over a given structure.

Lemma 4. Let M1 = 〈M1, N1, G1, λ1, {P1n}n∈N〉 be a free extension of M
and x ∈ G1 −M . Then M〈x〉 is closed under λ1 and 〈M〈x〉, N〈x〉,M〈x〉 ∩
G1, λ1|M〈x〉, {P1n|M〈x〉}n∈N〉 is a free substructure of M1.

Proof. It follows from the freeness of M1 over M that M〈x〉 ∩ N1 = N〈x〉.
We need to prove is that M〈x〉 is closed under λ1. This simply implies that
M〈x〉∩G1 = λ1(M〈x〉) and 〈M〈x〉∩G1, P1n|M〈x〉, ., <〉 satisfies axioms 3,4,5.

Let t ∈ M〈x〉. By the valuation inequality, the Archimedean class of t
has a representative in Γ(M).v1(x)Q. Now as mentioned in Subsection 1.1,
Γ(M) ∼= G/2Z, hence there is a ∈ G and q ∈ Q such that t

axq
∈ FinM .

Since λ1(t) is in the same Archimedean class as t, λ1(t)
axq
∈ FinM . Assuming

q = u/v, and raising to the power of v we get λ1(t)v/avxu ∈ FinM . But
λ1(t)v/avxu is also in G1 and this implies that there is n ∈ N such that
λ1(t)v = 2navxu, by which λ1(t) ∈M〈x〉.

We denote the structure obtained in the above lemma by M〈x〉 and we
denote M〈x〉 ∩ G1 and P1n|M〈x〉 respectively by G〈x〉 and Pn〈x〉. Note that
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〈G〈x〉, {Pn〈x〉}, ., <〉 is a model of Presburger arithmetic generated by x over
〈G, {Pn}, ., <〉 in 〈G1, {P1n}, ., <〉.

In the following, for a sequence Λ of elements in G1, we denoteM〈Λ〉∩G1

by G〈Λ〉 and P1n|M〈Λ〉 by Pn〈Λ〉.

Lemma 5. Let M1 be a free extension of M and x ∈ N1 − M . Then
there is a countable sequence Λ = (ai)i∈N in G1 such that M〈x,Λ〉 :=
〈M〈x,Λ〉, N〈x,Λ〉, G〈Λ〉, λ1|M〈x,Λ〉, {Pn〈Λ〉}〉 is a free extension of M and a
free substructure of M1. Also each ai is hi(x) for L∪{λ}-definable functions
hi with parameters in M .

Proof. Consider the L-structure M〈x〉 and two cases. First, when M〈x〉
has no more Archimedean classes than M does. In this case, 〈M〈x〉, N〈x〉,
G, λ, {Pn}〉 is the L-structure we are looking for, and we let Λ = ∅. The
second case is when M〈x〉 has Archimedean classes that are not represented
in M . By the valuation inequality, we need only one element a1 in G1 so
that G〈a1〉 contains representatives for all Archimedean classes in M〈x〉.
Furthermore a1 is λ1(f1(x)) for some L-definable f with parameters in M .
Now consider the structure M〈a1〉 as described in the previous lemma. By
induction, if there is an Archimedean class in M〈x, a1, . . . , an〉 which is not
represented in G〈a1, . . . , an〉, then let an+1 ∈ G1 − M〈a1, . . . , an〉 be the
representative of this class in M1; otherwise let an+1 = an. Note that an+1 is
λ1(fn+1(x, a1, . . . , an)) for some L-definable fn+1 with parameters in M . Let
Λ = (ai)i∈N. We claim that M〈x,Λ〉 is closed under λ1, as a result of which
M〈x,Λ〉∩G1 = M〈Λ〉∩G1 = G〈Λ〉. So see this note that if t ∈M〈x,Λ〉 then
t ∈ M〈x, ai1 , . . . , aim〉 for some ai1 , . . . , aim ∈ Λ. By induction hypothesis,
λ1(t) is in M〈x, a1, . . . , ak〉 for a k > im, and hence in M〈x,Λ〉. By freeness
of M1 over M, M〈x,Λ〉 ∩N1 = N〈x,Λ〉, and the structure M〈x,Λ〉 as in the
statement of the theorem is an L-structure extending M and free over it.

For the next lemma, we suppose that M1 is a free extension of M and
x ∈M1 −M〈N1〉. In this case M〈x〉 ∩N1 = N and we have the following:

Lemma 6. For M1, M and x as in the above, there is a countable sequence
Λ = (ai)i∈N in G1 such that M〈x,Λ〉 is closed under λ1, and M〈x,Λ〉 :=
〈M〈x,Λ〉, N〈Λ〉, G〈Λ〉, λ1|M〈x,Λ〉, {Pn〈Λ〉}〉 is a free extension of M and a free
substructure of M1.

We omit the proof of the above lemma as it is by slight modifications in
the proof of Lemma 5.
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Back and forth argument, the proof of Theorem 1(1,2).
Suppose that M1 and M2 are fixed κ-saturated models of T for κ > |T |+ |L|+ ℵ0.
Denote by Σ the collection of isomorphisms f : M ∼= M′ (as in the following
diagram) where M is a free substructure of M1, M′ is a free substructure of M2

and |M |, |M ′| ≤ κ. We will show that Σ has the back and forth property. This
implies that M1 and M2 are elementarily equivalent. Since this holds for all such
M1 and M2, it also implies that T is complete.

M1 = 〈M1, N1, G1, λ1, {P1n}n∈N〉
↑

M = 〈M,N,G, λ, {Pn}n∈N〉
f

∼=
M′ = 〈M ′, N ′, G′, λ′, {P ′n}n∈N〉

↓
M2 = 〈M2, N2, G2, , λ2, {P2n}n∈N〉.

(2.1)

Let x ∈ M1 − M . What we need is a y ∈ M2 − M ′, and a structure
containing x and extending M which is isomorphic to a structure containing
y and extending M′, with an isomorphism that extends f and sends x to y.

According to ‘where’ in M1 the element x comes from, we have the fol-
lowing cases:
Case one: x ∈ G1−M .
Consider the structure M〈x〉, generated over M by x as described in Lemma
4. Let y ∈ G2−M ′ be an element which satisfies the same Presburger arith-
metic type over 〈G′, {P ′n}, ., <〉 as x does over 〈G, {Pn}, ., <〉. Such a y exists
since as mentioned earlier 〈G1, {P1n}, ., <〉 and 〈G2, P2n, ., <〉 are models of
Presburger arithmetic and this theory admits elimination of quantifiers. We
claim that y realises the same cut over M ′ as x does over M (via the iso-
morphism f); that is, for each t ∈ M , if x < t then y < f(t). To see
this, first note that as f is an isomorphism between M and M′, for each
t ∈ M , f(λ1(t)) = λ2(f(t)). Now suppose that x < t and λ1(t) = t . Then
λ2(f(t)) = f(t). So f(t) ∈ G′ and by the choice of y, y < f(t). Also if
λ1(t) < t < 2λ1(t) and x < λ1(t) < t then y < f(λ1(t)) = λ2(f(t)) < f(t).
Note that there is no case λ1(t) < x < t; as then, since x ∈ G, by the axioms
we have λ1(t) = x. One can simply verify that the two structures M〈x〉 and
M〈y〉, both as in Lemma 4 are isomorphic.
Case two: x ∈N1−M and x 6∈ G1.
In this case, consider the structureM〈x,Λ〉 as described in Lemma 5 with Λ =
(ai)i∈N a sequence in G1. Let b1 ∈ G2−G′ be an element, as in case one, that
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realises the same Presburger arithmetic type over 〈G′, {P ′n}, ., <〉 as a1 does
over 〈G, {Pn}, ., <〉. Let bn+1 be an element that realises the same Presburger
arithmetic type over G′〈b1, . . . , bn〉 as does an+1 over G′〈a1, . . . , an〉. Denote
by Λ′ the sequence (bi)i∈N obtained this way. Now let y ∈M2 be an element
realising the same cut in M ′〈Λ′〉 as the cut of x in M〈Λ〉. It is now easy to
check that the two structures M〈x,Λ〉 and M′〈y,Λ′〉 are isomorphic.
Case three: x ∈M〈N1〉 and x 6∈N1.
In this case, there are elements x1, . . . , xn in N1 such that x ∈M〈x1, . . . , xn〉.
Now, one can combine the arguments for cases one and two to get the result.
Case four: x ∈M1 and x 6∈M〈N1〉.
For this case we first construct the structure M〈x,Λ〉 as in Lemma 6. Now,
as in case two, we can find a sequence Λ′ = (bi)i∈N of elements in G2 such
that M〈Λ〉 and M〈Λ′〉 are isomorphic. By Lemma 3, M ′〈N2〉 = N2〈M ′〉 6=
M2, and since M2 − N2 is dense in M2 and M2 is saturated, we can find
y ∈ M2 −M ′〈N2〉 that realises the same cut in M ′〈Λ′〉 as the cut of x in
M〈Λ〉. In this case, the structures M〈x,Λ〉 and M′〈y,Λ′〉 as in Lemma 6 are
isomorphic.

The above four cases exhaust all possibilities and as mentioned before,
the completeness of T results from the fact that by our argument M1 is
elementarily equivalent to M2.

From here onwards when we say M1 is a ‘sufficiently’ saturated extension
of M, we mean saturated as in the setting of the proof of the above theorem.
Considering the axioms for λ, in the following we have stated item 2 of
Theorem 1 in a slightly different way.

Theorem 7. Every L-formula (with free variables ȳ) has an equivalent which
is a Boolean combination of formulas of the form

∃x̄ = (x1, . . . , xn) (
∧

i=1,...,n

(NL(xi)) ∧ φ(x̄, ȳ)) (*)

with φ(x̄, ȳ) in L ∪ {λL}.

Proof. Consider the situation as in Diagram 2.1. Suppose that ā = (a1, . . . ,
an) ∈Mn

1 and b̄ = (b1, . . . , bn) ∈Mn
2 realise the same formulas of the form (*).

We will prove that then tpM1
(ā) = tpM2

(b̄), and this is equivalent to the state-
ment of the theorem. Suppose that rankN1(N1〈ā〉) = rankN2(N2〈b̄〉) = r ≤ n
and without loss of generality we assume that a1, . . . , ar are independent over
N1 and so are b1, . . . , br overN2 (the fact that rankN1(N1〈ā〉) = rankN2(N2〈b̄〉)
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follows from the assumption that ā and b̄ realise the same formulas of the
form (*). To be precise, suppose that ar ∈ dcl(a1, . . . , ar−1, N1). Then there
is an L-definable function f such that ā = (a1, . . . , an) satisfies the formula:

∃n̄ = (n1 . . . , nm)
∧

i=1,...,m

NL(ni) ∧ xr = f(n̄, x1, . . . , xr−1) (2.2)

The above formula is satisfied by b̄ = (b1, . . . , bn) and this means that br ∈
dcl(b1, . . . , br−1, N2) ).

Now rankN1(N1〈ā〉) = r, implies that there is a tuple c̄ of elements in N1

such that rank〈c̄〉(〈ā, c̄〉) = r. Remember that 〈ā, c̄〉 is the L-definable closure
of {ā, c̄} in M1.

Consider the following type Φ(ȳ) in M2:

Φ(ȳ) = {φ(b̄, ȳ) ∧NL(ȳ) : φ(x̄, ȳ) ∈ L ∪ {λL} and M1 |= φ(ā, c̄)}.

As ā and b̄ realise the same formulas of the form (*) and M2 is satu-
rated, this type is satisfied in M2 by a tuple d̄ of elements of N2. With
a similar argument to that in parentheses above, one can check that then
rank〈d̄〉(〈b̄, d̄〉) = rank〈c̄〉(〈ā, c̄〉) = r.

As elementary pairs, 〈〈ā, c̄〉, 〈c̄〉〉 is isomorphic to 〈〈b̄, d̄〉, 〈d̄〉〉 via a map,
say i. In the following we will find an L-structure isomorphism between two
free L-substructures of M1 and M2 that extends this isomorphism.

Take an x > 0 in 〈ā, c̄〉 with λ1(x) 6∈ 〈ā, c̄〉. Let y = i(x) ∈ 〈b̄, d̄〉.
We want to show that λ2(y) realises the same cut in 〈b̄, d̄〉 as does λ1(x) in
〈ā, c̄〉, via i, and hence we have the isomorphism: 〈〈ā, c̄, λ1(x)〉, 〈c̄, λ1(x)〉〉 ∼=
〈〈b̄, d̄, λ2(y)〉, 〈d̄, λ2(y)〉〉 between two elementary pairs.

Suppose that λ1(x) < t for some t ∈ 〈ā, c̄〉. We can consider t as
f(ā, c̄) for some L-definable function f : M1 → M1 with no parameters.
Let also x = g(ā, c̄) for some definable function g. Then the formula
ψ(z̄) := ∃u NL(u) ∧ [u = λL(g(z̄, c̄))] ∧ [u < f(z̄, c̄)], is satisfied by ā.
Hence, by the choice of d̄, the corresponding formula ∃u NL(u) ∧ [u =
λL(g(z̄, d̄))]∧ [u < f(z̄, d̄)] is satisfied by b̄, which means λ2(y) < i(t). Conse-
quently λ1(x) and λ2(y) satisfy the same cuts respectively in 〈ā, c̄〉 and 〈b̄, d̄〉
and we have two isomorphic elementary pairs 〈〈ā, c̄, λ1(x)〉, 〈〈c̄, λ1(x)〉〉 and
〈〈b̄, d̄, λ2(y)〉, 〈d̄, λ2(y)〉〉.

Now let Λ1 = {λ1(x) : x ∈ 〈ā, c̄〉} and Λ′1 = {λ2(x) : x ∈ 〈b̄, d̄〉}.
Also let Λn+1 = {λ1(x) : x ∈ 〈ā, c̄,Λ1, . . . ,Λn〉 and Λ′n+1 = {λ2(x) : x ∈
〈b̄, d̄,Λ′1, . . . ,Λ′n〉}. Then 〈ā, c̄,

⋃
i∈N Λi〉 and 〈b̄, d̄,

⋃
i∈N Λ′i〉 are respectively
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closed under λ1 and λ2 and L-isomorphic. By a similar argument to the
above, it is easy to check that the two L-structures

M3 = 〈〈ā, c̄,
⋃
i∈N

Λi〉, 〈c̄,
⋃
i∈N

Λi〉, 〈ā, c̄,
⋃
i∈N

Λi〉 ∩G1, λ1|〈ā,c̄,⋃i∈N Λi〉, P1n|〈ā,c̄,⋃i∈N Λi〉〉

and

M4 = 〈〈b̄, d̄,
⋃
i∈N

Λ′i〉, 〈b̄,
⋃
i∈N

Λ′i〉, 〈b̄, d̄,
⋃
i∈N

Λ′i〉 ∩G2, λ2|〈b̄,d̄,⋃i∈N Λ′
i〉, P2n|〈b̄,d̄,⋃i∈N Λ′

i〉〉

are isomorphic and this isomorphism is in the back and forth system Σ. So,
the isomorphism between these two implies that M1 and M2 are elementarily
equivalent by which tpM1

(ā) = tpM2
(b̄), and this finishes the proof.

3 Types and definable sets
We use the described quantifier elimination in the previous section for char-
acterising definable sets and types in our structures.

Theorem 8. Let M be a common elementary substructure of M1,M2 |= T.
Then

1. if ḡ1 ∈ Gn
1 and ḡ2 ∈ Gn

2 realise the same Presburger arithmetic-types
over 〈G, {Pn}, ., <〉 then they realise the same L-types over M in M1

and M2.

2. If n̄1 ∈ Nn
1 and n̄2 ∈ Nn

2 realise the same L ∪ {λ}-types over M (over
N) in M1 and M2, then they realise the same L-types over M (over N)
in M1 and M2.

Proof of 1. Suppose that ḡ1 = (g1,1, . . . , g1,n) and ḡ2 = (g2,1, . . . , g2,n). Then
by the assumption of the theorem, g1,1 and g2,1 realise the same Pres-
burger arithmetic types over 〈G, {Pn}, ., <〉 and therefore (by similar argu-
ment to case one for x and y) the same cuts in M . Now the two struc-
tures M〈g1,1〉 and M〈g1,2〉 as obtained in Lemma 4 are isomorphic and
this isomorphism (which sends g1,1 to g2,1) is in the back and forth sys-
tem Σ defined in page 8, in the proof of Theorem 1. This implies that
tpM1

(g1,1/M) = tpM2
(g2,1/M). Now assume that we have two isomorphic

structures M〈g1,1, . . . , g1,i〉 and M〈g2,1, . . . , g2,i〉 (for i < n). Then g1,i+1 and
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g2,i+1 realise the same cuts in G〈g1,1, . . . , g1,i〉 and G〈g2,1, . . . , g2,i〉 and hence
the same cuts in M〈g1,1 . . . , g1,i〉 and M〈g2,1, . . . , g2,i〉. Again by the argu-
ments of the case one, we obtain two isomorphic structures M〈g1,1, . . . , g1,i+1〉
and M〈g2,1, . . . , g2,i+1〉 in our back and forth system Σ and this leads to the
result we are looking for.

Proof of 2. Suppose that n̄1 = (n1,1, . . . , n1,n) and n̄2 = (n2,1, . . . , n2,n). We
do the argument for n11 and n21 and as in Proof of 1 above the result for
the tuples follows. Suppose that n11 and n21 realise the same L ∪ {λ}-types
over N . There is a sequence Λ = (ai)i∈N of elements in G1 as in Lemma 5
such that M〈Λ〉 is closed under λ1. There is also a sequence Λ′ = (bi)i∈N of
elements in G2 such thatM〈Λ〉 is isomorphic toM〈Λ′〉. As n11 and n21 realise
the same L ∪ {λ}-types over N and by the construction of the sequences Λ
and Λ′ as in Lemma 5 (in which each an, n > 1, in Λ is the witness for
the new Archimedean class obtained by adding n11 to M〈a1, . . . , an−1〉 and
equivalently to N〈a1 . . . , an−1〉), two structures M〈n11,Λ〉 and M〈n21,Λ

′〉 are
isomorphic. This isomorphism is in our back and forth system Σ and this is
what we need.

The second part of the above theorem is equivalent to the statement of
the following corollary for definable subsets of Nn. Note that definable here
always means with parameters.

Corollary 9 (definable subsets of Nn). Let M = 〈M,N,G, , λ, {Pn}n∈N〉 be
a model of T and Y ⊆ Nn be definable in M. Then Y = Z ∩ Nn for some
Z ⊆Mn definable by an L ∪ {λ}-formula.

We can now explain the main definability feature we were looking for:
a subset of Ralg is definable in 〈R̄,Ralg, 2

Z〉 if and only if it is of the form
Z ∩ Ralg for Z a definable set in 〈R̄, 2Z〉. The set Z is then the union of an
open set and finitely many discrete sets (by the d-minimality of 〈M,G〉 (see
for example [11]). So Z ∩ Ralg is not equal to Q which implies that Q and
hence Z are not definable in 〈R̄,Ralg, 2

Z〉.
The following theorem and corollary show that each discrete set defined

with parameters in N is a subset of N .

Theorem 10. Let M = 〈M,N,G, λ, {Pn}〉 be a model of T. Then N is
definably closed in M.

12



Proof. Let b ∈ M − N . We need to show that b is not definable with
parameters of N . Let M1 = 〈M1, N1, G1, λ1, {P1n}〉 be a saturated model
of T which is a free extension of M. Let b1 ∈ M1 − N1 be an ele-
ment which satisfies the same cut in N as does b and b1 6= b. We
claim that b1 satisfies the same type over N as does b. Clearly λ(b1) =
λ(b) ∈ N . Since for each x ∈ M ⊇ N〈b〉, λ(x) ∈ N , the structure
〈N〈b〉, N, λ(N), λ|N〈b〉, {Pn|N}〉 is a model of T which, as we will prove, is
isomorphic to 〈N〈b1〉, N, λ1(N〈b1〉), λ1|N〈b1〉, {P1n|N〈b1〉}〉. Note that since
b1 realises the same cut in N as b does, for each L-definable function f
with parameters in N , f(b1) and f(b) realise the same cuts in N , and
λ1(f(b1)) = λ(f(b)), that is, N〈b1〉 is also closed under λ1 and for each
x ∈ N〈b1〉, λ1(x) ∈ N . This isomorphism, as in the proof of quantifier elimi-
nation, implies that b1 and b satisfy the same types over N . From b1 6= b, we
get that b is not definable with parameters in N .

Corollary 11. Let M |= T and D ⊆ M be a discrete set defined with
parameters in N . Then D ⊆ N .

Proof. Let x ∈ D. Then since D is discrete and N is dense in M , there are
a, b ∈ N such that x ∈ (a, b) and x is the only point in this interval; that is,
the singleton {x} is definable with parameters in N and as N is definably
closed, x ∈ N .

The above corollary can be strengthened to the following statement: If
D is a definable set in M which is a finite union of discrete sets, then D
is a subset of N . To see this, note that D is a finite union of discrete sets
if and only if D[n] = ∅, for some n ∈ N; where D[0] = D and for i ≤ n,
D[i] = D[i−1] − isolated points of D[i−1].

As in [3], we also call a definable subset S of M , small, if there is an L-
definable function f : Mn →M such that S ⊆ f(Nn). In the next theorem,
we prove that every definable set in a model of T is, up to a small set,
definable with an L ∪ {λ}-formula.

Theorem 12. Let M |= T and S ⊆ M be definable. Then there is a small
set X ⊆M and an L∪{λ} -definable set S ′ for which to have S−X = S ′−X.

Proof. It suffices to prove that for each definable function F : M →M , there
is an L∪{λ}-definable function g and a small set X ⊆M such that for each
x ∈M −X, F (x) = g(x). If this is true, then to get the result we replace F
with the characteristic function of S.

13



For the proof of the above statement, take a sufficiently saturated elemen-
tary extension M1 of M. By the proof of case four, for each x ∈M1−M〈N1〉,
there is a sequence Λ(x) = (a

(x)
i )i∈N of elements of G1 such that M〈x,Λ(x)〉

is closed under λ1 and the universe of a model. So we have the following
implication in M1:

x 6∈M〈N1〉 ⇒ F (x) ∈M〈x,Λ(x)〉. (3.1)

By the construction of Λ(x), there are a(x)
1 , . . . , a

(x)
n in G1 such that a(x)

i =

g
(x)
i (x) for some L ∪ {λ}-definable function g

(x)
i with parameters in M and

F (x) ∈ M〈x, a(x)
1 , . . . , a

(x)
n 〉. So, applying compactness theorem to Equation

3.1, there are L-definable functions h1, . . . , hm defined on Mnhi and L∪{λ}-
definable functions f1, . . . , fn such that∧

i=1,...,m

(x 6∈ hi(Nnhi ))⇒
∨

i=1,...,n

(F (x) = fi(x)).

The above implication together with the following two facts gives the result.
First, finite unions of small sets are small. Second, by the case four of our
proof of quantifier elimination the sets {x 6∈ M〈N1〉 : F (x) = fi(x)} is the
intersection of M1 −M〈N1〉 with an L ∪ {λ}-definable set.

4 T has NIP
In [5], it is proved that if 〈B,A〉 is a dense pair of d-minimal structures, then
its open core is B; that is, every open set definable in 〈B,A〉 is definable in
B. Applying this result to our models we get the following: every open set
definable in M |= T can be defined by an L ∪ {λ}-formula.

This section proves the dependency of T relying on the above fact and
heavy use of the techniques developed in [7] for the dense pairs of o-minimal
structures. However, it is recently pointed out to the author that the NIP
for T follows from our theorem 7 and Corollary 2.6 of Chernikov in [1]. That
being so, the only reason for having kept this proof here is that it relies more
on the structural properties of our models.

Let us first recall the following definition of dependence.

Definition 4.1. Let T1 be a complete theory in the language L1 and M1 be
a monster model of T1. We call T1 dependent if for every L1-formula φ(x̄, ȳ),
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b̄ ∈ M |ȳ|
1 and (āi)i∈N an indiscernible sequence of tuples in M |x̄|

1 , there exists
a natural number N such that

• either for all i > N , M1 |= φ(āi, b̄), or

• for all i > N , M1 |= ¬φ(āi, b̄).

It is well-known that T1 is dependent also if the above holds for all for-
mulas φ(x, ȳ) and b̄ ∈M |ȳ|

1 . It is also well-known that Boolean combinations
of dependent formulas are dependent.

We will also need the following lemma.

Lemma 13 ([7]). LetM1 be a monster model of a theory T1 and (āi)i∈N be an
indiscernible sequence. Let φ(x̄, ȳ) be a formula such that M |= ∃ȳ φ(āi, ȳ)
for some i. Then there is an indiscernible sequence (b̄i)i∈N such that for each
i, M |= φ(āi, b̄i).

Theorem 14. T is dependent.

Proof. Let M = 〈M,N,G, λ, {Pn}〉 be a monster model of T and (ai)i∈N an
indiscernible sequence. Let φ(ai, b̄) = ∃z̄ (NL(z̄) ∧ ψ(ai, b̄, z̄)) be a formula
in L with parameters b̄ where ψ is an L ∪ {λ}-formula. We need to prove
that the following set J ⊆ N is finite or co-finite:

J := {i ∈ N : M |= φ(ai, b̄)}.

We break the proof of this down to the following cases.
Case 1. Suppose that all ai’s are in N . Let X be the set {x ∈ N : φ(x, b̄)}.
Then, by Corollary 9, X = Y ∩ N for Y a definable subset (possibly with
other parameters than b̄) in the language L ∪ {λ}. So we have:

M |= φ(ai, b̄) iff ai ∈ X
iff ai ∈ N ∩ Y

iff ai ∈ Y

But, ai ∈ Y is clearly expressible by an L ∪ {λ} formula. By Theorem 7.4
in [7], the theory of 〈M,G〉 is dependent. So only finitely or cofinitely many
ai’s are in Y .
Case 2. Suppose that ai’s all lie in M − N and b̄ ∈ N . For z̄ ∈ N , define
Az̄ = {x : M |= ψ(x, b̄, z̄)}. For a fixed z̄, By d-minimality of 〈M,G〉, Az̄ is
the union of an open set and finitely many discrete sets:

Az̄ = O ∪D1 ∪ . . . ∪Dn.
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Let a ∈ (ai)i∈N. If a ∈ D1 ∪ . . . ∪ Dn then by the lines after corollary 11,
a ∈ N , which is contradictory with our assumption that ai 6∈ N . So, for each
z̄ ∈ N ,

a ∈ Az̄ iff a ∈ Int(Az̄).

We now have:

M |= ∃z̄ ∈ N ψ(a, b̄, z̄) iff

a ∈
⋃
z̄∈N

Az̄ iff a ∈
⋃
z̄∈N

Int(Az̄).

As
⋃
z̄∈N Int(Az̄) is an open definable set, by the first paragraph of this

section, it is defined by an L ∪ {λ}-formula. Again as the theory of 〈M,G〉
is dependent there are only finitely or cofinitely many ai’s in this set and the
statement of the theorem in this case is proved.
Case 3. Let (ai)i∈N be an indiscernible sequence of elements not in N where
the set {ai : i ∈ N} is dependent over N . Then for some i, there exists an
i0 < i such that ai ∈ N〈a0, . . . , ai0〉. So there exists an L-definable function
f : M →M such that

∃c̄ c̄ ∈ N ∧ ai = f(c̄, a0, . . . , ai0).

Since (ai)i∈N is indiscernible, the above holds for all i ≥ i0 (and the same
set{a0, . . . , ai0}). Now by Lemma 13 there is an indiscernible sequence (ḡi)i∈N
of tuples in N such that for all i (i ≥ i0)

f(ḡi, a0, . . . , ai0) = ai.

So we have
M |= φ(ai, b̄)↔ φ(f(ḡi, a0, . . . , ai0), b̄).

Since (ḡi)i∈N is an indiscernible sequence of tuples in N , and by a similar
argument to that for the first case, there are finitely or cofinitely many (ḡi)’s
for which M |= φ(f(ḡi, a0, . . . , ai0), b̄). So there are finitely or cofinitely many
ai’s for which M |= φ(ai, b̄).
Case 4. Now consider the case where (ai)i∈N are independent over N . First
note that for each i, ai 6∈ N〈b̄〉. This is because if for an i0, ai0 ∈ N〈b̄〉, then
all ai’s are in N〈b̄〉 and therefore rankN({ai, i ∈ N}) ≤ rankN(b̄) which is
impossible because rankN({ai, i ∈ N}) is infinite.
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Since for each x in M , λ(x) ∈ N , N〈b̄〉 is closed under λ. Hence
〈M,N〈b〉, G, λ, {Pn}〉 is a model of T and by Theorem 10, N〈b̄〉 is definably
closed in M . The rest of the proof is as in case 2:

for a fixed z̄ ∈ N , let Az̄ = {x : M |= ψ(x, b̄, z̄)}. Then Az̄ = O ∪D1 . . .∪
Dn with O open and D1 ∪ . . . ∪ Dn a finite union of discrete sets definable
with parameters in N〈b̄〉. If ai ∈ Az̄ then ai ∈ O (since again be the lines
after corollary 11, D1 ∪ . . . ∪Dn ⊆ N〈b̄〉). So

M |= φ(ai, b̄) iff ai ∈
⋃
z̄∈N

Int(Az̄).

The set
⋃
z̄∈N Int(Az̄) is an open definable set and hence is definable with an

L∪{λ}-formula and again by dependency of the theory of 〈M,G〉 the result
follows.

Remark 4.1. This paper is a shortened version of the intended paper by the
author on the same subject. Having learnt of the independent work in [5]
and [4], the author omitted results (especially those related to the open core
of the models) that could follow more easily from that work.
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