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1 Settling ambiguities

Here is a short explanation on two topics that seem to have baffled some.

How many nodes and how many branches are there in a binary
tree In a theorem in the script we were supposed to prove that theories
with binary trees are not ω-stable. We needed a countable A for which S(A)
is uncountable. We simply said that every node of the tree gives a parameter
in A, so there are countably many parameters; and every branch gives rise
to a type, and hence there are uncountably many types.
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The numer of nodes=the number of finite sequences of 0, 1

The number of branches=the numbe of countable sequence of 0, 1

Note that whenever T is an infinite binary tree then the number of nodes is
countable and the number of branches in uncountable. This is not too easy
to imagine! (because we expect the number of nodes to be more than the
number of branches, as it is the case in finite trees). But note that x is a
node if x is represented by a finite sequence of 0’s and 1’s and f is a branch
if it is an infinite sequence of 0’s and 1’ s.
The above diagram also clarifies the symbols sa0 and sa1.
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What is a complete type? To this point, we have seen several definitions
for a complete type and different notations corresponding to each: tpM(a/A),
tp(a/A), p, etc. If you are confused whether or not the superscript M must
be there then read the following. What I want to explain is that the concept
of types is an elementary concept.

So let us first review the definitions: we said that p(x) is a type in SM(A) if
p(x) is a maximal set of formulae consistent with Th(MA). Now since p(x)∪
Th(MA) is consistent, (one can prove that) there exists N an elementary
extension of M and an a ∈ N such that p(x) = {φ(x) ∈ LA|N |= φ(a)}. So
we could have said that p ∈ SM(A) if there exists an extension N of M and an
element a ∈ N such that p(x) = tpN(a). So tpN(a/A) is a type in SM(A) and
this seems to be the confusing part (if the superscript is N then why is it a
type in SM?). If a happens to be in M then of course tpN(a/A) = tpM(a/A),
but there is no guarantee that a must be in M . There could even be some
other element b in M such that tpN(a/A) = tpM(b/A).

Consider the following diagram:

M N

M0

aa ==

A

OO

M0 �M,N and A a subset of M0

suppose that a ∈ M . Then as we mentioned above tpM(a/A) is both in
SM(A) and SM0(A). It is (perhaps confusingly) also in SN(A). Because p =
tpM(A) is consistent with Th(MA) and according to the diagram Th(MA) =
Th(NA) = Th(M0A). So SM(A) = SN(A) = SM0(A).

We proved in an exercise that indeed on can find a structure M ′ as in the
following diagram:

M ′

M

==

N
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M0 �M,N �M ′

so one could have said that it is indeed tpM ′
(a/A) that we are talking about,

which is in SM0(A) and SM(A) and SN(A). So perhaps it is a good idea
to remove the name of the structure and say tp(a/A) where we mean in
some M containing A and also in all elementary extensions and elementary
substructures of it containing A such as M0, N,M

′ in the diagram above.
Considering this, we can also write S(A) instead of SM(A), but we keep the
diagram of elementary extensions in mind.

We often fix a model M which is big and saturated enough (in sensible
terms, and we call it the Monster model) and we assume that all parameter
sets are subsets of M. So we can always think of a complete type as being
the type of an element of M over a subset of M.
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