Aufgabe 1 (Hölderräume)

Sei $G = \mathbb{R}^n \times \mathbb{R}$ und $u \in C^{2,1}(G)$. Definiere

$$||u||_{C^{2,1,\alpha}(G)} = ||u||_{C^{2,1}(G)} + [D^{2,1}u]_{\alpha,G}.$$

Zeigen Sie, dass $C^{2,1,\alpha}(G)=\{u\in C^{2,1}(G),||u||_{C^{2,1,\alpha}(G)}<\infty\}$ ein Banachraum ist.

Aufgabe 2

Sei $\epsilon > 0$ und $g \in C^{\infty}(\mathbb{R})$ mit g(t) = 1 für $t \geq 1$, g(t) = 0 für $t \leq -1$, und g'(t) > 0 auf \mathbb{R} . Definiere $\phi_{\epsilon}(r) = -\epsilon \log(r)$, für $r \in \mathbb{R}_{+}$, und für $x \in \mathbb{R}^{n}$ betrachte $\eta_{\epsilon}(x) = g(\phi_{\epsilon}(|x|))$. Zeigen Sie, dass

$$\eta_{\epsilon}(0) = 1$$
, $D\eta_{\epsilon}(0) = 0$, $D^{2}\eta_{\epsilon}(0) = 0$

und dass es ein $0 < C < \infty$ gibt, so dass

$$|x||D\eta_{\epsilon}(x)| + |x|^2|D^2\eta_{\epsilon}(x)| \le C\epsilon$$
.

Setze $v_{\epsilon}(x) = \eta_{\epsilon}(x)h(x)$, wobei $h : \mathbb{R}^n \to \mathbb{R}$ ein harmonisches quadratisches Polynom ist. Zeigen Sie, dass

$$0 < ||\Delta v_{\epsilon}||_{L^{\infty}} \le \frac{1}{\epsilon} ||D^2 v_{\epsilon}||_{L^{\infty}}.$$

Schliessen Sie, dass es ein $u_{\epsilon} \in C_c^{\infty}(B_1(0))$ gibt, mit

- $1 = ||\Delta u_{\epsilon}||_{L^{\infty}} \le \frac{1}{\epsilon}||D^2 u_{\epsilon}||_{L^{\infty}},$
- $||u_{\epsilon}||_{L^{\infty}} \leq \frac{1}{2n};$

wobei $B_1(0) \in \mathbb{R}^n$ der Einheitsball mit Zentrum im 0 ist.

Abgabe Montag 10.02.2014 in der Vorlesung.