Aufgabe 1 (Gardingsche Ungleichung)

Betrachten Sie auf $C^{\infty}(\mathbb{R}^n, \mathbb{R}^N)$ den linearen Operator

$$(Lu)_i = a_{ij}^{\alpha\beta} \partial_{\alpha\beta}^2 u^j$$
 für $i = 1, \dots, N$,

mit $a_{ij}^{\alpha\beta} \in \mathbb{R}$ konstant.

- (1) Berechnen Sie das Symbol $\sigma_L(x,\xi) \in \mathbb{R}^{N \times N}$ für $(x,\xi) \in T^*\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$. (4 Punkte)
- (2) Es gelte die Bedingung

$$\langle \sigma_L(x,\xi)\eta,\eta\rangle > 0$$
 für alle $\xi \in \mathbb{R}^n \setminus \{0\}, \ \eta \in \mathbb{R}^N \setminus \{0\}.$

Zeigen Sie dass L elliptisch ist, und dass die Bedingung im Fall N=1 sogar äquivalent zur Elliptizität ist (4 Punkte).

(3) Es gelte für ein $\lambda > 0$ die Bedingung von Legendre-Hadamard

$$\langle \sigma_L(x,\xi)\eta,\eta\rangle \geq \lambda |\xi|^2 |\eta|^2$$
 für alle $\xi \in \mathbb{R}^n$, $\eta \in \mathbb{R}^N$.

Zeigen Sie für $u \in C_c^{\infty}(\mathbb{R}^n)$ die Gardingsche Ungleichung (4 Punkte)

$$\int_{\mathbb{R}^n} a_{ij}^{\alpha\beta} \partial_{\alpha} u^i \partial_{\beta} u^j \ge \lambda \int_{\mathbb{R}^n} |Du|^2.$$

Hinweis. Verwenden Sie die Fouriertransformation

$$\hat{u}(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} u(x) e^{-i\langle p, x \rangle} dx.$$

Aufgabe 2 (Hodge-Laplace für Riemannsche Flächen)(4 Punkte)

Betrachten Sie auf $U \subset \mathbb{R}^2$ die konforme Riemannsche Metrik $g_{ij} = e^{2u}\delta_{ij}$ mit $u \in C^1(U)$. Berechnen Sie die Operatoren d_g^* und Δ_g auf p-Formen mit p = 0, 1, 2 (möglichst unter Verwendung der Operatoren d^* und Δ bzgl. der Standardmetrik.)

Abgabe Montag 9.12.2013 in der Vorlesung.