Übungsaufgaben zur Vorlesung Analysis I Prof. Dr. G. Wang Dr. A. Magni

WS 11/12, Serie 10 9.1.2012

Aufgabe 1 (Tangens und Cotangenz)

(4 Punkte)

Wir definieren die Funktionen tan (Tangens) und cot (Cotangens) durch

$$\tan : \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \} \to \mathbb{R}, \quad \tan = \frac{\sin x}{\cos x},$$

$$\cot : \mathbb{R} \setminus \{ k\pi : k \in \mathbb{Z} \} \to \mathbb{R}, \qquad \cot = \frac{\cos x}{\sin x}.$$

- a) Skizzieren Sie die Grahpen der Funktionen tan : $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$, cot : $(0, \pi) \to \mathbb{R}$.
- b) Begründen Sie, dass tan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ eine Umkehrfunktion besitzt; diese wird mit arctan : $\mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (Arcus Tangens) bezeichnet. Entsprechend hat cot : $(0, \pi) \to \mathbb{R}$ eine Umkehrfunktion; diese wird mit arccot : $\mathbb{R} \to (0, \pi)$ (Arcus Cotangens) bezeichnet.

Aufgabe 2 (Polarkoordinaten)

(4 Punkte

Rechnen Sie für $z=x+iy\in\mathbb{C}\backslash\{0\}$ die Gleichung $z=re^{i\vartheta}$ nach, wenn r und ϑ wie folgt definiert sind:

$$r = \sqrt{x^2 + y^2}, \quad \vartheta = \begin{cases} \arccos(x/r) & \text{für } y \ge 0 \\ 2\pi - \arccos(x/r) & \text{für } y < 0. \end{cases}$$

Schreiben Sie die Zahlen -3, 4i, -5i, $-e^{2i}$, $ie^{it}(t \in \mathbb{R})$, 1+i, -1-i und $(1+i)^{2012}$ in der Form $re^{i\vartheta}$.

Aufgabe 3 (Definition der Ableitung)

(4 Punkte)

Sei $g:(-a,a)\to\mathbb{R}$ eine beschränkte Funktion. Zeigen Sie, dass die Funktion

$$f: (-a, a) \to \mathbb{R}, \ f(x) = |x|^{1+\alpha} g(x)$$

im Punkt x = 0 die Ableitung f'(0) = 0 hat, falls $\alpha > 0$ ist.

Aufgabe 4 (Differentiationsregeln)

(4 Punkte)

Berechnen Sie die Ableitungen der folgenden Funktionen (mit Angabe des Definitionsbereichs):

(a)
$$f(x) = \frac{ax+b}{cx+d}$$
 mit $a, b, c, d \in \mathbb{R}, c \neq 0$.

- (b) $f(x) = x^{\alpha} \log(x)$ für $\alpha \in \mathbb{R}$.
- (c) f(x) = Arsinh(x) (Umkehrfunktion von sinh vgl. Aufgabe 3, Serie 9)).

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 16.1.12 bis 12:00.