Übungsaufgaben zur Vorlesung Analysis I Prof. Dr. G. Wang Dr. A. Magni

WS 11/12, Serie 10 16.1.2012

Aufgabe 1 (Kettenregel)

(4 Punkte)

Differenzieren Sie die beiden Funktionen $f:(0,\infty)\to\mathbb{R}$:

- (a) $f(x) = x^{(x^x)}$
- (b) $f(x) = (x^x)^x$.

Aufgabe 2 (Die Tangensfunktion und Ihre Umkehrfunktion) (4 Punkte) Die Funktion tan : $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi:k\in\mathbb{Z}\}\to\mathbb{R}$, tan $t=\frac{\sin t}{\cos t}$, heißt Tangens. Zeigen Sie:

- a) $tan(t + \pi) = tan t$ für alle $t \in \mathbb{R}$.
- b) Die Umkehrfunktion arctan : $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ (vgl. Aufgabe 1 in Serie 10.) ist differenzierbar und $\arctan'(x) = \frac{1}{1+x^2}$.

Aufgabe 3 (Definition der Ableitung)

(4 Punkte)

Sei $\alpha \in \mathbb{R}$. Untersuchen Sie die Funktion $f : \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} |x|^{\alpha} \sin \frac{1}{x} & \text{für } x \neq 0, \\ 0 & \text{für } x = 0 \end{cases}$$

auf Stetigkeit und Differenzierbarkeit im Punkt $x_0 = 0$.

Aufgabe $4(Hebbarer\ Punkt\ f\"ur\ f')$

(4 Punkte)

Sei $I \subset \mathbb{R}$ offenes Intervall. Die Funktion $f: I \to \mathbb{R}$ sei in $x_0 \in I$ stetig, auf $I \setminus \{x_0\}$ differenzierbar und es gelte $\lim_{x \to x_0} f'(x) = a$. Zeigen Sie mit dem Mittelwertsatz $f'(x_0) = a$.

Aufgabe 5 (Maximumprinzip)

(4 Punkte)

Sei $f:[a,b]\to\mathbb{R}$ stetig und zweimal differenzierbar auf (a,b). Falls $f''\geq 0$, so gilt sup $f\leq \max\{f(a),f(b)\}$.

Hinweis: Beweisen Sie die Aussage zunächst unter der Voraussetzung $f'' \geq \varepsilon > 0$. Diese Zusatzannahme werden Sie wieder los, indem Sie $f + \varepsilon q$ mit einer geeigneten Hilfsfunktion q betrachten.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 23.1.12 bis 12:00.