Übungsaufgaben zur Vorlesung Analysis I Prof. Dr. G. Wang Dr. A. Magni

WS 11/12, Serie 6 28.11.2011

Aufgabe 1 (Komplexe Zahlen)

(4 Punkte)

1. Bestimmen Sie Real- und Imaginärteil, den Betrag sowie die konjugiertkomplexe Zahl zu

$$\frac{1}{1+i}$$
; $\frac{2-i}{2+i}$; $\frac{3+i}{1+2i}$; $(2+i)^n, n \in \mathbb{Z}$; $(\frac{1-i}{1+i})^n, n \in \mathbb{Z}$.

2. Bestimmen Sie die Quadratwurzeln von i. (Sie finden alle Lösungen $x \in \mathbb{C}$ mit $x^2 = i.$)

Aufgabe 2 (4 Punkte)

Für welche $z \in \mathbb{C}$ konvergieren die folgenden Reihen?

$$\sum_{n=1}^{\infty} \frac{z^n}{n^2} \qquad \sum_{n=1}^{\infty} n! z^n \qquad \sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$$

Aufgabe 3 (4 Punkte)

Welche der folgenden Reihen sind konvergent? Berechnen Sie gegebenenfalls den Wert der Reihe.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \qquad \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

Aufgabe 4 (Notwendige Bedingung für Konvergenz)

(4 Punkte)

Sei $a_n \in \mathbb{R}$, $n \in \mathbb{N}$, eine monoton fallende Nullfolge, und $p \in \mathbb{N}$ mit $p \geq 2$.

- (1) $\sum_{n=1}^{\infty}a_n$ konvergiert genau dann, wenn $\sum_{k=0}^{\infty}p^ka_{p^k}$ konvergiert.
- (2) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so folgt $\lim_{n\to\infty} (na_n) = 0$.
- (3) Ist d(n) die Anzahl der Stellen in der Dezimaldarstellung von n, so ist

$$\sum_{n=1}^{\infty} \frac{1}{d(n)^s n}$$

divergent für $0 \le s \le 1$ und konvergent für s > 1.

(Unter der Nullfolge versteht man eine Folge, die gegen 0 konvergiert.)

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 5.12 bis 12:00.