BPS-states and small automorphic representations

Daniel Persson
Chalmers University of Technology

Darmstadt-Erlangen-Freiburg seminar on CFT Freiburg January 19, 2018

Mainly based on our recent papers

Small automorphic representations and degenerate Whittaker vectors w/ Gustafsson, Kleinschmidt; J. Num.Theory 166 (2016), 344-399

Eisenstein series and automorphic representations - with applications in string theory w/ Fleig, Gustafsson, Kleinschmidt CUP, Cambridge Studies in Advanced Mathematics to appear on June 25, 2018!

Fourier coefficients attached to small automorphic representations of $S L_{n}(\mathbb{A})$
w/ Ahlén, Gustafsson, Kleinschmidt, Liu; submitted to J. Num. Theory (preprint: [arXiv:I707.08937])
and work in progress with Gourevitch \& Sahi

Outline

I. Motivation

2. Automorphic forms and representation theory
3. Small representations: main results
4. Outlook

I. Motivation

Fourier coefficients of modular forms encode interesting arithmetic information

Classical theta function $\quad \theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \quad \tau \in \mathbb{H}$

Fourier coefficients of modular forms encode interesting arithmetic information

Classical theta function $\quad \theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \quad \tau \in \mathbb{H}$

$$
\theta(\tau)=\sum_{k=1}^{\infty} R_{2}(k) e^{2 \pi i k \tau}
$$

Fourier expansion

Fourier coefficients of modular forms encode interesting arithmetic information

Classical theta function $\quad \theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \quad \tau \in \mathbb{H}$

$$
\begin{aligned}
& \theta(\tau)=\sum_{k=1}^{\infty} R_{2}(k) e^{2 \pi i k \tau} \quad \text { Fourier expansion } \\
& R_{2}(k)=\left\{\sharp \text { ways to write } k^{2}=m^{2}+n^{2} \text { for } m, n \in \mathbb{Z}\right\}
\end{aligned}
$$

Fourier coefficients of modular forms encode interesting arithmetic information

Classical theta function $\quad \theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \quad \tau \in \mathbb{H}$

$$
\theta(\tau)=\sum_{k=1}^{\infty} R_{2}(k) e^{2 \pi i k \tau}
$$

Fourier expansion
$R_{2}(k)=\left\{\sharp\right.$ ways to write $k^{2}=m^{2}+n^{2}$ for $\left.m, n \in \mathbb{Z}\right\}$
Eisenstein series

$$
G_{2 w}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{(m+n \tau)^{2 w}}
$$

Fourier coefficients of modular forms encode interesting arithmetic information

Classical theta function $\quad \theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \quad \tau \in \mathbb{H}$
$\theta(\tau)=\sum_{k=1}^{\infty} R_{2}(k) e^{2 \pi i k \tau}$
Fourier expansion
$R_{2}(k)=\left\{\sharp\right.$ ways to write $k^{2}=m^{2}+n^{2}$ for $\left.m, n \in \mathbb{Z}\right\}$
Eisenstein series

$$
G_{2 w}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{(m+n \tau)^{2 w}}
$$

$$
\frac{G_{2 w}(\tau)}{2 \zeta(2 w)}=1+\frac{2}{\zeta(1-2 w)} \sum_{k=1}^{\infty} \sigma_{2 w-1}(k) e^{2 \pi i k \tau}
$$

divisor sum:

$$
\sigma_{2 w-1}(k)=\sum_{d \mid k} d^{2 w-1}
$$

Higher rank automorphic forms live on

$$
G(\mathbb{Z}) \backslash G / K
$$

What do Fourier coefficients encode in this case?

Higher rank automorphic forms live on

$$
G(\mathbb{Z}) \backslash G / K
$$

What do Fourier coefficients encode in this case?

By the Langlands-Shahidi method, the Fourier coefficients of Eisenstein series on simple Lie groups G give rise to automorphic L-functions.
-
Fourier coefficients attached to small automorphic representations play a crucial role in establishing examples of functoriality using theta correspondences

-

The Fourier coefficients of Eisenstein series also encode non-perturbative effects in string theory!

String amplitudes

Understand the structure of string interactions

String amplitudes

Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetry
- U-duality
amplitudes have intricate arithmetic structure $G(\mathbb{Z})$

String amplitudes

Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetry
- U-duality

amplitudes have intricate arithmetic structure $G(\mathbb{Z})$

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity
- non-perturbative effects (black holes, instantons)
- novel mathematical predictions from physics

Toroidal compactifications yield the chain of \mathbf{U}-duality groups

[Cremmer, Julia][Hull, Townsend]

D	G	K	$G(\mathbb{Z})$
10	$\mathrm{SL}(2, \mathbb{R})$	$\mathrm{SO}(2)$	$\mathrm{SL}(2, \mathbb{Z})$
9	$\mathrm{SL}(2, \mathbb{R}) \times \mathbb{R}^{+}$	$\mathrm{SO}(2)$	$\mathrm{SL}(2, \mathbb{Z})$
8	$\mathrm{SL}(3, \mathbb{R}) \times \mathrm{SL}(2, \mathbb{R})$	$\mathrm{SO}(3) \times \mathrm{SO}(2)$	$\mathrm{SL}(3, \mathbb{Z}) \times \mathrm{SL}(2, \mathbb{Z})$
7	$\mathrm{SL}(5, \mathbb{R})$	$\mathrm{SO}(5)$	$\mathrm{SL}(5, \mathbb{Z})$
6	$\operatorname{Spin}(5,5, \mathbb{R})$	$(\operatorname{Spin}(5) \times \operatorname{Spin}(5)) / \mathbb{Z}_{2}$	$\operatorname{Spin}(5,5, \mathbb{Z})$
5	$\mathrm{E}_{6}(\mathbb{R})$	$\mathrm{USp}(8) / \mathbb{Z}_{2}$	$\mathrm{E}_{6}(\mathbb{Z})$
4	$\mathrm{E}_{7}(\mathbb{R})$	$\mathrm{SU}(8) / \mathbb{Z}_{2}$	$\mathrm{E}_{7}(\mathbb{Z})$
3	$\mathrm{E}_{8}(\mathbb{R})$	$\mathrm{Spin}(16) / \mathbb{Z}_{2}$	$\mathrm{E}_{8}(\mathbb{Z})$

Physical couplings are given by automorphic forms on

$$
G(\mathbb{Z}) \backslash G(\mathbb{R}) / K
$$

Green, Gutperle, Sethi, Vanhove, Kiritsis, Pioline, Obers, Kazhdan, Waldron, Basu, Russo, Cederwall, Bao, Nilsson, D.P., Lambert, West, Gubay, Miller, Fleig, Kleinschmidt, ...

Examples

$$
\int d^{11-n} x \sqrt{G} f_{0}(g) \mathcal{R}^{4} \quad \int d^{11-n} x \sqrt{G} f_{4}(g) D^{4} \mathcal{R}^{4}
$$

These partition functions are Eisenstein series attached to small automorphic representations of G.
[Green, Miller,Vanhove][Pioline]

I/2-BPS

I/4-BPS

2. Automorphic forms and representation theory

Data:

- $G(\mathbb{R})$ real simple Lie group
(e.g. $S L(n, \mathbb{R})$)
$G(\mathbb{Z}) \subset G$ arithmetic subgroup
(e.g. $S L(n, \mathbb{Z})$)

Data:

- $G(\mathbb{R})$ real simple Lie group

$$
\text { (e.g. } S L(n, \mathbb{R}) \text {) }
$$

- $G(\mathbb{Z}) \subset G$ arithmetic subgroup
(e.g. $S L(n, \mathbb{Z})$)

Definition:

An automorphic form is a smooth function $\varphi: G \longrightarrow \mathbb{C}$ satisfying

1. Automorphy: $\forall \gamma \in G(\mathbb{Z}), \varphi(\gamma g)=\varphi(g)$
2. φ is an eigenfunction of the ring of inv. diff. operators on G
3. φ has well-behaved growth conditions

Example: Eisenstein series on $S L(2, \mathbb{R})$

$$
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m \tau+n|^{2 s}} \quad s \in \mathbb{C}
$$

Example: Eisenstein series on $S L(2, \mathbb{R})$

$$
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m \tau+n|^{2 s}} \quad s \in \mathbb{C}
$$

a function on

$$
\mathbb{H}=\{\tau=x+i y \in \mathbb{C} \mid y>0\}
$$

$$
\tau \mapsto \gamma \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Example: Eisenstein series on $S L(2, \mathbb{R})$

$$
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m \tau+n|^{2 s}} \quad s \in \mathbb{C}
$$

\rightarrow a function on

$$
\begin{aligned}
\mathbb{H} & =\{\tau=x+i y \in \mathbb{C} \mid y>0\} \\
\tau & \mapsto \gamma \cdot \tau=\frac{a \tau+b}{c \tau+d}
\end{aligned}
$$

\rightarrow converges absolutely for $\Re s>1$
$\rightarrow \Delta_{\mathbb{H}} E_{s}=s(s-1) E_{s}$

Example: Eisenstein series on $S L(2, \mathbb{R})$

$$
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m \tau+n|^{2 s}}
$$

$$
s \in \mathbb{C}
$$

But to fit the definition of an automorphic form we must try to view this as a function on the group $S L(2, \mathbb{R})$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$
can be represented in the form

$$
g=n a k=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$
can be represented in the form

$$
\begin{array}{r}
g=n a k=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
\downarrow \\
k \in S O(2)
\end{array}
$$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$

can be represented in the form

$$
g=n a k=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Acting with g on the point $i \in \mathbb{H}$ we find

$$
g \cdot i=x+i y=\tau \in \mathbb{H}
$$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$
can be represented in the form

$$
g=n a k=\left(\begin{array}{cc}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Acting with g on the point $i \in \mathbb{H}$ we find

$$
g \cdot i=x+i y=\tau \in \mathbb{H} \cong S L(2, \mathbb{R}) / S O(2)
$$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$

can be represented in the form

$$
g=n a k=\left(\begin{array}{cc}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Acting with g on the point $i \in \mathbb{H}$ we find

$$
g \cdot i=x+i y=\tau \in \mathbb{H}
$$

Using this fact we can lift the Eisenstein series to a function on $S L(2, \mathbb{R})$ via:

$$
E \longmapsto \varphi_{E}(g)=\varphi_{E}\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{cc}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=E(s, x+i y)
$$

Iwasawa decomposition: Any element $g \in S L(2, \mathbb{R})$

can be represented in the form

$$
g=n a k=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Acting with g on the point $i \in \mathbb{H}$ we find

$$
g \cdot i=x+i y=\tau \in \mathbb{H}
$$

Using this fact we can lift the Eisenstein series to a function on $S L(2, \mathbb{R})$ via:

$$
E \longmapsto \varphi_{E}(g)=\varphi_{E}\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{cc}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=E(s, x+i y)
$$

$$
\varphi_{E}(\gamma g)=\varphi_{E}(g) \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

$$
f\left(\frac{a \tau+b}{c \tau+b}\right)=(c \tau+d)^{k} f(\tau)
$$

Can we lift this to an automorphic form on $S L(2, \mathbb{R})$?

$$
f\left(\frac{a \tau+b}{c \tau+b}\right)=(c \tau+d)^{k} f(\tau)
$$

Can we lift this to an automorphic form on $S L(2, \mathbb{R})$?

$$
\text { Define: } \quad f \longmapsto \varphi_{f}(g)=(c i+d)^{-k} f(g \cdot i)
$$

This is now invariant under $S L(2, \mathbb{Z}): \quad \varphi_{f}(\gamma g)=\varphi_{f}(g)$
no weight!

Suppose that instead we start with a holomorphic modular form of weight k

$$
f\left(\frac{a \tau+b}{c \tau+b}\right)=(c \tau+d)^{k} f(\tau)
$$

Can we lift this to an automorphic form on $S L(2, \mathbb{R})$?

$$
\text { Define: } \quad f \longmapsto \varphi_{f}(g)=(c i+d)^{-k} f(g \cdot i)
$$

This is now invariant under $S L(2, \mathbb{Z}): \quad \varphi_{f}(\gamma g)=\varphi_{f}(g)$
no weight!
section of a line bundle on \mathbb{H} :
function on $S L(2, \mathbb{R})$:
φ_{f}

Suppose that instead we start with a holomorphic modular form of weight k

$$
f\left(\frac{a \tau+b}{c \tau+b}\right)=(c \tau+d)^{k} f(\tau)
$$

Can we lift this to an automorphic form on $S L(2, \mathbb{R})$?
Define: $\quad f \longmapsto \varphi_{f}(g)=(c i+d)^{-k} f(g \cdot i)$
This is now invariant under $S L(2, \mathbb{Z}): \quad \varphi_{f}(\gamma g)=\varphi_{f}(g)$
no
weight!

Under the action of $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \in S O(2)$ we now pick up a phase:

$$
\varphi_{f}\left(g\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i k \theta} \varphi_{f}(g)
$$

first hint of some representation theory underlying modular forms

Automorphic representations

$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R}))=\{$ space of automorphic forms on $G(\mathbb{R})\}$

Automorphic representations

$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R}))=\{$ space of automorphic forms on $G(\mathbb{R})\}$
\cup

$$
L^{2}(G(\mathbb{Z}) \backslash G(\mathbb{R}))
$$

Automorphic representations

$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R}))=\{$ space of automorphic forms on $G(\mathbb{R})\}$
The group G acts on this space via the right-regular representation:

$$
(\rho(h) \varphi)(g)=\varphi(g h)
$$

for $\varphi \in \mathcal{A}$ and $h, g \in G$

Automorphic representations

$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R}))=\{$ space of automorphic forms on $G(\mathbb{R})\}$
The group G acts on this space via the right-regular representation:

$$
(\rho(h) \varphi)(g)=\varphi(g h)
$$

$$
\text { for } \varphi \in \mathcal{A} \text { and } h, g \in G
$$

Definition: An automorphic representation π of G is an irreducible representation in the decomposition of \mathcal{A} under the right-regular action.
[Gelfand, Graev, Piatetski-Shapiro][Langlands]...

Toy model: Fourier analysis on $\mathbb{Z} \backslash \mathbb{R} \cong S^{1}$

Any function $f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})$ can be decomposed into a Fourier series:

$$
f(x)=\sum_{k \in \mathbb{Z}} c_{k} \psi_{k}(x)
$$

$\psi_{k}: \mathbb{Z} \backslash \mathbb{R} \rightarrow U(1)$

$$
\psi_{k}(x)=e^{2 \pi i k x} \quad k \in \mathbb{Z}, x \in \mathbb{R}
$$

Toy model: Fourier analysis on $\mathbb{Z} \backslash \mathbb{R} \cong S^{1}$

Any function $f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})$ can be decomposed into a Fourier series:

$$
\psi_{k}: \mathbb{Z} \backslash \mathbb{R} \rightarrow U(1)
$$

$$
\begin{aligned}
& f(x)=\sum_{k \in \mathbb{Z}} c_{k} \psi_{k}(x) \\
& \quad \psi_{k}(x)=e^{2 \pi i k x} \quad k \in \mathbb{Z}, x \in \mathbb{R}
\end{aligned}
$$

Moderate growth: restrict to square integrable functions

$$
L^{2}(\mathbb{Z} \backslash \mathbb{R})=\left\{\left.f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})\left|\sum_{k \in \infty}\right| c_{k}\right|^{2}<\infty\right\}
$$

$G=\mathbb{R}$ acts on $L^{2}(\mathbb{Z} \backslash \mathbb{R})$ via the regular representation

$$
(\rho(y) f)(x)=f(x+y)
$$

Toy model: Fourier analysis on $\mathbb{Z} \backslash \mathbb{R} \cong S^{1}$

Any function $f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})$ can be decomposed into a Fourier series:

$$
\begin{gathered}
f(x)=\sum_{k \in \mathbb{Z}} c_{k} \psi_{k}(x) \\
\psi_{k}: \mathbb{Z} \backslash \mathbb{R} \rightarrow U(1) \quad \psi_{k}(x)=e^{2 \pi i k x} \quad k \in \mathbb{Z}, x \in \mathbb{R}
\end{gathered}
$$

Moderate growth: restrict to square integrable functions

$$
\begin{gathered}
L^{2}(\mathbb{Z} \backslash \mathbb{R})=\left\{\left.f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})\left|\sum_{k \in \infty}\right| c_{k}\right|^{2}<\infty\right\} \\
L^{2}(\mathbb{Z} \backslash \mathbb{R})=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} \psi_{k}
\end{gathered}
$$

Toy model: Fourier analysis on $\mathbb{Z} \backslash \mathbb{R} \cong S^{1}$

Any function $f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})$ can be decomposed into a Fourier series:

$$
\begin{gathered}
f(x)=\sum_{k \in \mathbb{Z}} c_{k} \psi_{k}(x) \\
\psi_{k}: \mathbb{Z} \backslash \mathbb{R} \rightarrow U(1) \quad \psi_{k}(x)=e^{2 \pi i k x} \quad k \in \mathbb{Z}, x \in \mathbb{R}
\end{gathered}
$$

Moderate growth: restrict to square integrable functions

$$
L^{2}(\mathbb{Z} \backslash \mathbb{R})=\left\{\left.f \in C^{\infty}(\mathbb{Z} \backslash \mathbb{R})\left|\sum_{k \in \infty}\right| c_{k}\right|^{2}<\infty\right\}
$$

$$
L^{2}(\mathbb{Z} \backslash \mathbb{R})=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} \psi_{k} \longleftarrow \begin{aligned}
& \text { "automorphic } \\
& \text { representation" }
\end{aligned}
$$

Automorphic representations

$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R}))=\mathcal{A}_{\text {discrete }} \oplus \mathcal{A}_{\text {continuous }}$

$\mathcal{A}_{\text {discrete }}$: generated by cusp forms (and residues of Eisenstein series)

$$
\int_{U(\mathbb{Z}) \backslash U(\mathbb{R})} \varphi(u g) d u=0 \quad \text { all unipotents }
$$

$\mathcal{A}_{\text {continuous }}$: generated by Eisenstein series

Adelic framework

An efficient, but abstract, way to approach the subject of automorphic forms is by the introduction of adeles, rather ungainly objects that nevertheless, once familiar, spare much unnecessary thought and many useless calculations.
— Robert P. Langlands

Adelic framework

An efficient, but abstract, way to approach the subject of automorphic forms is by the introduction of adeles, rather ungainly objects that nevertheless, once familiar, spare much unnecessary thought and many useless calculations.
— Robert P. Langlands

Adelic framework

For each prime number p

Adelic framework

For each prime number p

Euclidean norm

The adeles are then defined as

$$
\mathbb{A}=\mathbb{R} \times \prod_{p \text { prime }<\infty}^{\prime} \mathbb{Q}_{p}
$$

$$
x^{2}=\left(x_{\infty} ; \dot{x}_{2}, x_{3}, \dot{x}_{5}, \ldots\right) \in \mathbb{A}
$$

Adelic framework

For each prime number p

Euclidean norm

$\mathbb{Q}_{\infty}=\mathbb{R}$

The adeles are then defined as

$$
\mathbb{A}=\mathbb{R} \times \prod_{p \text { prime }<\infty}^{\prime} \mathbb{Q}_{p}
$$

$$
\mathbb{Q} \hookrightarrow \mathbb{A}
$$

$$
\mathbb{Q} \subset \mathbb{A}
$$

discrete embedding

$$
q \mapsto(q ; q, q, q, \ldots)
$$

analogous to: $\quad \mathbb{Z} \subset \mathbb{R}$

Adelic framework

For each prime number p

Euclidean norm

$$
\mathbb{Q}_{\infty}=\mathbb{R}
$$

The adeles are then defined as

$$
\mathbb{A}=\mathbb{R} \times \prod_{p \text { prime }<\infty}^{\prime} \mathbb{Q}_{p}
$$

$$
x^{\prime}=\left(x_{\infty} ; x_{2}, x_{3}, x_{5}, \ldots\right) \in \mathbb{A}
$$

$$
\mathbb{Q} \hookrightarrow \mathbb{A}
$$

$$
q \mapsto(q ; q, q, q, \ldots)
$$

analogous to: $\quad \mathbb{Z} \subset \mathbb{R}$

Adelic framework

It is desirable to formulate all this instead in terms of the adeles

$$
\mathbb{A}=\mathbb{R} \times \prod_{p<\infty}^{\prime} \mathbb{Q}_{p} \quad \begin{gathered}
\text { restricted } \\
\text { direct product }
\end{gathered}
$$

Adelic framework

It is desirable to formulate all this instead in terms of the adeles

$$
\mathbb{A}=\mathbb{R} \times \prod_{p<\infty}^{\prime} \mathbb{Q}_{p}
$$

$\mathbb{Q} \subset \mathbb{A}$ diagonal embedding is discrete (c.f. $\mathbb{Z} \subset \mathbb{R}$)
$G(\mathbb{A})=G(\mathbb{R}) \times \prod_{p<\infty}^{\prime} G\left(\mathbb{Q}_{p}\right)$
$K_{\mathbb{A}}=K_{\infty} \times \prod_{p<\infty} G\left(\mathbb{Z}_{p}\right) \quad$ maximal compact subgroup
$\mathcal{A}(G(\mathbb{Z}) \backslash G(\mathbb{R})) \longrightarrow \mathcal{A}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$

Adelic framework

(completed) Riemann zeta function:

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

Adelic framework

(completed) Riemann zeta function:

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\pi^{-s / 2} \Gamma(s / 2) \prod_{p \text { prime }<\infty} \frac{1}{1-p^{-s}}
$$

Adelic framework

(completed) Riemann zeta function:

$$
\begin{aligned}
\xi(s) & =\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\pi^{-s / 2} \Gamma(s / 2) \prod_{p \text { prime }<\infty} \frac{1}{1-p^{-s}} \\
& =\int_{\mathbb{R}} e^{-\pi x^{2}}|x|^{s} d x \prod_{p \text { prime }<\infty} \int_{\mathbb{Q}_{p}} \gamma_{p}(x)|x|_{p}^{s} d x
\end{aligned}
$$

Adelic framework

(completed) Riemann zeta function:

$$
\begin{aligned}
\xi(s) & =\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\pi^{-s / 2} \Gamma(s / 2) \prod_{p \text { prime }<\infty} \frac{1}{1-p^{-s}} \\
& =\int_{\mathbb{R}} e^{-\pi x^{2}}|x|^{s} d x \prod_{p \text { prime }<\infty} \int_{\mathbb{Q}_{p}} \gamma_{p}(x)|x|_{p}^{s} d x \\
& =\int_{\mathbb{A}} \gamma_{\mathbb{A}}(x)|x|_{\mathbb{A}}^{s} d x
\end{aligned}
$$

In his famous thesis, Tate gave elegant new proofs of the functional equation and analytic continution of $\xi(s)$ using these techniques

Let (π, V) be an automorphic representation.
Let σ be an irreducible representation of $K_{\mathbb{A}}$
Definition: (π, V) is called admissible if $\operatorname{dim} V[\sigma]<\infty$

Let (π, V) be an automorphic representation.
Let σ be an irreducible representation of $K_{\mathbb{A}}$
Definition: (π, V) is called admissible if $\operatorname{dim} V[\sigma]<\infty$
Theorem [Flath]: For (π, V) admissible we have the Euler product:

$$
(\pi, V)=\bigotimes_{p}\left(\pi_{p}, V_{p}\right)
$$

Let (π, V) be an automorphic representation.
Let σ be an irreducible representation of $K_{\mathbb{A}}$
Definition: (π, V) is called admissible if $\operatorname{dim} V[\sigma]<\infty$
Theorem [Flath]: For (π, V) admissible we have the Euler product:

$$
(\pi, V)=\bigotimes\left(\pi_{p}, V_{p}\right)
$$The action of Hecke operators naturally encoded in the local representations π_{p} of $G\left(\mathbb{Q}_{p}\right)$

- Many calculations reduce to simpler local calculations
- Functional relations more natural in adelic picture (c. f. Tate's adelic treatment of the Riemann zeta function)

Eisenstein series

G simple Lie group over $\mathbb{Q} \quad(G=S L(n, \mathbb{Q}))$

$B=A N$ Borel subgroup

$$
A=\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right) \quad N=\left(\begin{array}{ccc}
1 & * & * \\
& 1 & * \\
& & 1
\end{array}\right)
$$

Eisenstein series

G simple Lie group over $\mathbb{Q} \quad(G=S L(n, \mathbb{Q}))$

$B=A N$ Borel subgroup

quasi-character: $\quad \chi: B(\mathbb{Q}) \backslash B(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$

$$
\begin{array}{ll}
\chi(n a)=\chi(a):=e^{\langle\lambda+\rho \mid H(a)\rangle}= & \prod_{p} \chi_{p}\left(a_{p}\right) \\
H: A \rightarrow \mathfrak{h} & \lambda \in \mathfrak{h}^{\star} \otimes \mathbb{C}
\end{array}
$$

Eisenstein series

G simple Lie group over $\mathbb{Q} \quad(G=S L(n, \mathbb{Q}))$

$B=A N$ Borel subgroup

quasi-character: $\quad \chi: B(\mathbb{Q}) \backslash B(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$

$$
\begin{aligned}
& \chi(n a)=\chi(a):=e^{\langle\lambda+\rho \mid H(a)\rangle}=\prod_{p} \chi_{p}\left(a_{p}\right) \\
& H: A \rightarrow \mathfrak{h} \\
& \quad \lambda \in \mathfrak{h}^{\star} \otimes \mathbb{C}
\end{aligned}
$$

$\chi(g)=\chi(n a k)=\chi(a)$
spherical

induced representation (principal series)

$$
\begin{aligned}
I(\chi) & =\{f: G(\mathbb{A}) \rightarrow \mathbb{C} \mid f(b g)=\chi(b) f(g), b \in B(\mathbb{A})\} \\
& =\operatorname{Ind}_{B(\mathbb{A})}^{G(\mathbb{A})} \chi=\prod_{p} I_{p}\left(\chi_{p}\right)
\end{aligned}
$$

induced representation (principal series)

$$
\begin{aligned}
I(\chi) & =\{f: G(\mathbb{A}) \rightarrow \mathbb{C} \mid f(b g)=\chi(b) f(g), b \in B(\mathbb{A})\} \\
& =\operatorname{Ind}_{B(\mathbb{A})}^{G(\mathbb{A})} \chi=\prod_{p} I_{p}\left(\chi_{p}\right)
\end{aligned}
$$

Gelfand-Kirillov (functional) dimension
$\operatorname{GKdim}\left(I_{\infty}\right)=\operatorname{dim}_{\mathbb{R}} G(\mathbb{R})-\operatorname{dim}_{\mathbb{R}} B(\mathbb{R})=\operatorname{dim}_{\mathbb{R}} N(\mathbb{R})$

Eisenstein series

The theory of Eisenstein series gives a $G(\mathbb{A})$-equivariant embedding

$$
E: I(\lambda) \longrightarrow \mathcal{A}(G(\mathbb{Q}) \backslash G(\mathbb{A}))
$$

Eisenstein series

The theory of Eisenstein series gives a $G(\mathbb{A})$-equivariant embedding

$$
E: I(\lambda) \longrightarrow \mathcal{A}(G(\mathbb{Q}) \backslash G(\mathbb{A}))
$$

defined by

$$
E(\lambda, g)=\sum e^{\langle\lambda+\rho \mid H(\gamma g)\rangle} \quad \lambda \in \mathfrak{h}^{\star} \otimes \mathbb{C}
$$

Eisenstein series

The theory of Eisenstein series gives a $G(\mathbb{A})$-equivariant embedding

$$
E: I(\lambda) \longrightarrow \mathcal{A}(G(\mathbb{Q}) \backslash G(\mathbb{A}))
$$

defined by

$$
E(\lambda, g)=\sum_{\gamma \in B(\mathbb{Q}) \backslash G(\mathbb{Q})} e^{\langle\lambda+\rho \mid H(\gamma g)\rangle} \quad \lambda \in \mathfrak{h}^{\star} \otimes \mathbb{C}
$$

It converges absolutely in the Godement range

$$
\left\langle\lambda \mid H_{\alpha}\right\rangle>1, \forall \alpha \in \Pi
$$

Can be continued to a meromorphic function on

Whittaker-Fourier coefficients

Introduce a unitary character $\quad \psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$

Whittaker-Fourier coefficients

 Introduce a unitary character $\quad \psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$ $\psi([N, N])=1 \quad$ since it is a group homomorphismψ is thus only non-trivial on the abelianization $[N, N] \backslash N$

$$
\psi(n)=\psi\left(\exp \left[\sum_{\alpha>0} u_{\alpha} E_{\alpha}\right]\right)=e^{2 \pi i \sum_{\alpha \in \Pi} m_{\alpha} u_{\alpha}} \quad m_{\alpha} \in \mathbb{Q}
$$

Whittaker-Fourier coefficients

Introduce a unitary character $\quad \psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$
$\psi([N, N])=1 \quad$ since it is a group homomorphism
ψ is thus only non-trivial on the abelianization $[N, N] \backslash N$
$\begin{array}{ll}\psi(n)=\psi\left(\exp \left[\sum_{\alpha>0} u_{\alpha} E_{\alpha}\right]\right)=e^{2 \pi i \sum_{\alpha \in \Pi} m_{\alpha} u_{\alpha}} \quad m_{\alpha} \in \mathbb{Q} \\ & u_{\alpha} \in \mathbb{A}\end{array}$
We say that ψ is:
generic if $\quad m_{\alpha} \neq 0 \quad \forall \alpha \in \Pi$
degenerate if $\quad m_{\alpha} \neq 0 \quad$ for some (but not all) $\alpha \in \Pi$

Whittaker-Fourier coefficients

For such a unitary character $\psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$ we have the Whittaker-Fourier coefficient

$$
W_{\psi}(\lambda, g)=\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} E(\lambda, n g) \overline{\psi(n)} d n
$$

Whittaker-Fourier coefficients

For such a unitary character $\psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$ we have the Whittaker-Fourier coefficient

$$
\begin{gathered}
W_{\psi}(\lambda, g)=\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} E(\lambda, n g) \overline{\psi(n)} d n \\
W_{\psi}(n a k)=\psi(n) W_{\psi}(a) \quad \begin{array}{l}
\text { determined by its } \\
\text { restriction to } A
\end{array} \\
W_{\psi}(\lambda, g) \in W h_{\psi}(\lambda) \subset \operatorname{Ind}_{N(\mathbb{A})}^{G(\mathbb{A})} \psi \quad \\
\begin{array}{l}
\text { unique } W \text { hittaker model } \\
I(\lambda) \cong W h_{\psi}(\lambda)
\end{array}
\end{gathered}
$$

[Gelfand, Graev][Jacquet, Langlands][Piateski-Shapiro][Shalika][Rodier]

Whittaker-Fourier coefficients

For such a unitary character $\psi: N(\mathbb{Q}) \backslash N(\mathbb{A}) \rightarrow U(1)$ we have the Whittaker-Fourier coefficient

$$
W_{\psi}(\lambda, g)=\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} E(\lambda, n g) \overline{\psi(n)} d n
$$

When ψ is generic we say that W_{ψ} is a generic coefficient

When ψ is degenerate we say that W_{ψ} is a degenerate coefficient
[Moeglin,Waldspurger][Matumoto]

Holomorphic modular form $f(\tau) \quad \tau \in \mathbb{H} \cong S L(2, \mathbb{R}) / U(1)$

$$
\begin{gathered}
\psi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\right)=\psi\left(e^{x E_{\alpha}}\right)=e^{2 \pi i m x} \\
x \in \mathbb{R} \quad m \in \mathbb{Z} \\
\psi \text { generic } \longleftrightarrow m \neq 0
\end{gathered}
$$

Holomorphic modular form $f(\tau) \quad \tau \in \mathbb{H} \cong S L(2, \mathbb{R}) / U(1)$

$$
\begin{array}{rlrl}
\psi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\right)=\psi\left(e^{x E_{\alpha}}\right)=e^{2 \pi i m x} & W_{m}(\tau) & =\int_{0}^{1} f(\tau+1) e^{-2 \pi i m u} d u \\
x \in \mathbb{R} \quad m \in \mathbb{Z} \\
\psi \text { generic } & \longleftrightarrow m \neq 0 & & =c(m) e^{2 \pi i m \tau}
\end{array}
$$

Holomorphic modular form $f(\tau) \quad \tau \in \mathbb{H} \cong S L(2, \mathbb{R}) / U(1)$

$$
\begin{aligned}
\psi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\right) & =\psi\left(e^{x E_{\alpha}}\right)=e^{2 \pi i m x} & W_{m}(\tau) & =\int_{0}^{1} f(\tau+1) e^{-2 \pi i m u} d u \\
x & \in \mathbb{R} \quad m \in \mathbb{Z} & & =c(m) e^{2 \pi i m \tau} \\
\psi \text { generic } & \longleftrightarrow m \neq 0 & &
\end{aligned}
$$

Non-holomorphic Eisenstein series

$$
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n)=1}} \frac{y^{s}}{|m+n \tau|^{2 s}}
$$

$$
\begin{gathered}
s \in \mathbb{C} \\
\tau=x+i y \in \mathbb{H}
\end{gathered}
$$

Holomorphic modular form $f(\tau) \quad \tau \in \mathbb{H} \cong S L(2, \mathbb{R}) / U(1)$

$$
\begin{array}{rlrl}
\psi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\right) & =\psi\left(e^{x E_{\alpha}}\right)=e^{2 \pi i m x} & W_{m}(\tau) & =\int_{0}^{1} f(\tau+1) e^{-2 \pi i m u} d u \\
x & \in \mathbb{R} \quad m \in \mathbb{Z} & & =c(m) e^{2 \pi i m \tau} \\
\psi \text { generic } & \longleftrightarrow m \neq 0 &
\end{array}
$$

Non-holomorphic Eisenstein series

$$
\begin{array}{cc}
E(s, \tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\
(m, n)=1}} \frac{y^{s}}{|m+n \tau|^{2 s}} & \begin{array}{c}
s \in \mathbb{C} \\
\tau=x+i y \in \mathbb{H}
\end{array} \\
W_{m}(\tau)=\int_{0}^{1} E(s, \tau+u) e^{-2 \pi i m u} d u=\frac{\sqrt{y}}{\xi(2 s)} \sigma_{1-2 s}(m) K_{s-1 / 2}(2 \pi|m| y) e^{2 \pi i m x} \\
\sigma_{1-2 s}(m)=\sum_{d \mid m} d^{1-2 s} & \uparrow
\end{array}
$$

Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

$$
W_{\psi}(\lambda, g)=\int_{N(\mathbb{A})} \chi\left(w_{0} n g\right) \overline{\psi(n)} d n=\prod_{p} W_{\psi_{p}}
$$

Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

$$
W_{\psi}(\lambda, g)=\int_{N(\mathbb{A})} \chi\left(w_{0} n g\right) \overline{\psi(n)} d n=\prod_{p} W_{\psi_{p}}
$$

Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

$$
\begin{aligned}
W_{\psi}(\lambda, g) & =\int_{N(\mathbb{A})} \chi\left(w_{0} n g\right) \overline{\psi(n)} d n=\prod_{p} W_{\psi_{p}} \\
W_{\psi_{\infty}} & =\int_{N(\mathbb{R})} \chi_{\infty}\left(w_{0} n a_{\infty}\right) \overline{\psi_{\infty}(n)} d n \\
W_{\psi_{p}} & =\int_{N\left(\mathbb{Q}_{p}\right)} \chi_{p}\left(w_{0} n a_{p}\right) \overline{\psi_{p}(n)} d n
\end{aligned}
$$

Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

$$
W_{\psi}(\lambda, g)=\int_{N(\mathbb{A})} \chi\left(w_{0} n g\right) \overline{\psi(n)} d n=\prod_{p} W_{\psi_{p}}
$$

Theorem [Shintani, Casselman-Shalika]:

The (unramified) p-adic Whittaker function $W_{\psi_{p}}$ is given by the Weyl character formula of the Langlands dual group ${ }^{L} G$

Example: $\quad G=S L\left(n, \mathbb{Q}_{p}\right) \quad{ }^{L} G=S L(n, \mathbb{C})$

$$
a^{J}=\left(\begin{array}{ccc}
p^{j_{1}} & & \\
& \ddots & \\
& & p^{j_{n}}
\end{array}\right) \in A\left(\mathbb{Q}_{p}\right) / A\left(\mathbb{Z}_{p}\right) \quad J=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}
$$

$$
A_{\chi}=\left(\begin{array}{ccc}
p^{-s_{1}} & & \\
& \ddots & \\
& & p^{-s_{n}}
\end{array}\right) \in{ }^{L} A(\mathbb{C})
$$

Satake-Langlands parameter

$$
W_{\psi}\left(\chi, a^{J}\right)=\left\{\begin{array}{cc}
\sharp \operatorname{ch}_{J}\left(A_{\chi}\right) & j_{1} \geq \cdots \geq j_{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

3. Small representations: main results

General Fourier coefficients

$P=L U$ standard parabolic of G

General Fourier coefficients

> $P=L U$ standard parabolic of G

Example: $P=\left\{\left(\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ & & * & * \\ & & & *\end{array}\right)\right\}=L U$

General Fourier coefficients

> $P=L U$ standard parabolic of G

Example:

General Fourier coefficients

$P=L U$ standard parabolic of G
unitary character $\psi_{U}: U(\mathbb{Q}) \backslash U(\mathbb{A}) \rightarrow U(1)$

General Fourier coefficients

- $P=L U$ standard parabolic of G
unitary character $\quad \psi_{U}: U(\mathbb{Q}) \backslash U(\mathbb{A}) \rightarrow U(1)$
For any automorphic form φ we have the U-coefficient

$$
F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u
$$

Also known as "unipotent period integrals".

$F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u$

- These are not Eulerian in general (no CS-formula)
- $\quad F_{\psi_{U}}(u g)=\psi_{U}(u) F_{\psi_{U}}(g) \quad \forall u \in U$
- Very difficult to compute in general

Idea: consider special types of automorphic representations

Character variety orbits

Crucial obervation: For any $\gamma \in L(\mathbb{Q})$ we have

$$
\begin{aligned}
F_{\psi_{U}}(\gamma g) & =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi\left(\gamma^{-1} u \gamma g\right) \overline{\psi_{U}(u)} d u \\
& =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}\left(\gamma u \gamma^{-1}\right)} d u=: F_{\psi_{U}^{\gamma}}(g)
\end{aligned}
$$

Character variety orbits

Crucial obervation: For any $\gamma \in L(\mathbb{Q})$ we have

$$
\begin{aligned}
F_{\psi_{U}}(\gamma g) & =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi\left(\gamma^{-1} u \gamma g\right) \overline{\psi_{U}(u)} d u \\
& =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}\left(\gamma u \gamma^{-1}\right)} d u=: F_{\psi_{U}^{\gamma}}(g)
\end{aligned}
$$

Hence, Fourier coefficients are organized into orbits under the adjoint action of the Levi $L(\mathbb{Q})$ on the unipotent $U(\mathbb{Q})$

Sufficient to determine the coefficient for one representative in each Levi orbit of ψ_{U}

Each such Levi orbit can be embedded into a nilpotent G-orbit.

Character variety orbits

Crucial obervation: For any $\gamma \in L(\mathbb{Q})$ we have

$$
\begin{aligned}
F_{\psi_{U}}(\gamma g) & =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi\left(\gamma^{-1} u \gamma g\right) \overline{\psi_{U}(u)} d u \\
& =\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}\left(\gamma u \gamma^{-1}\right)} d u=: F_{\psi_{U}^{\gamma}}(g)
\end{aligned}
$$

Wavefront set: $W F(\pi)=\left\{\mathcal{O} \mid F_{\mathcal{O}} \neq 0\right\}$

The wavefront set of a representation is the set of nilpotent orbits which have non-zero Fourier coefficients

Minimal automorphic representations

Definition: An automorphic representation

$$
\pi=\bigotimes_{p \leq \infty} \pi_{p}
$$

is minimal if each factor π_{p} has smallest non-trivial
Gelfand-Kirillov dimension.
[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]...

Minimal automorphic representations

Definition: An automorphic representation

$$
\pi=\bigotimes_{p \leq \infty} \pi_{p}
$$

is minimal if each factor π_{p} has smallest non-trivial
Gelfand-Kirillov dimension.
[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]...

Automorphic forms $\varphi \in \pi_{\text {min }}$ are characterised by having very few non-vanishing Fourier coefficients.
[Ginzburg, Rallis, Soudry]

The wavefront set of the minimal representation is

$$
W F\left(\pi_{\min }\right)=\overline{\mathcal{O}_{\min }}
$$

where $\mathcal{O}_{\text {min }}$ is the smallest non-trivial nilpotent orbit:

$$
\mathcal{O}_{\min }=G \cdot E_{\alpha}
$$

α

simple root

The Gelfand-Kirillov dimension is:

$$
\operatorname{GK} \operatorname{dim}\left(\pi_{m i n}\right)=\frac{1}{2} \operatorname{dim}\left(\mathcal{O}_{m i n}\right)
$$

Example: Theta series

The minimal representation is a generalization of the Weil representation, associated with classical theta series

$$
\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}}
$$

Example: Theta series

The minimal representation is a generalization of the Weil representation, associated with classical theta series

$$
\begin{gathered}
\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}} \\
\rho: S L(2, \mathbb{R}) \rightarrow L^{2}(\mathbb{R}) \quad \rho\left(\left(\begin{array}{cc}
-1 & 1
\end{array}\right)\right) \cdot f(r)=\lambda \widehat{f(r)}
\end{gathered}
$$

Example: Theta series

The minimal representation is a generalization of the Weil representation, associated with classical theta series

$$
\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}}
$$

$\rho: S L(2, \mathbb{R}) \rightarrow L^{2}(\mathbb{R})$

$$
\rho\left(\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right)\right) \cdot f(r)=\lambda \widehat{f(r)}
$$

Fix: $f(r)=e^{-\pi r^{2}} \quad$ Then we have

$$
\sum_{n \in \mathbb{Z}} \rho\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
\sqrt{y} & \\
& 1 / \sqrt{y}
\end{array}\right)\right) \cdot f(n)=y^{1 / 4} \sum_{n \in \mathbb{Z}} e^{\pi i \tau n^{2}}=y^{1 / 4} \theta(\tau)
$$

Example: Theta series

The minimal representation is a generalization of the Weil representation, associated with classical theta series

$$
\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{i \pi \tau n^{2}}
$$

$\rho: S L(2, \mathbb{R}) \rightarrow L^{2}(\mathbb{R})$

$$
\rho\left(\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right)\right) \cdot f(r)=\lambda \widehat{f(r)}
$$

Fix: $f(r)=e^{-\pi r^{2}} \quad$ Then we have

$$
\sum_{n \in \mathbb{Z}} \rho\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
\sqrt{y} & \\
& 1 / \sqrt{y}
\end{array}\right)\right) \cdot f(n)=y^{1 / 4} \sum_{n \in \mathbb{Z}} e^{\pi i \tau n^{2}}=y^{1 / 4} \theta(\tau)
$$

$$
\theta(\tau)=\sum_{k=1}^{\infty} R_{2}(k) e^{2 \pi i k \tau}
$$

Minimal automorphic representations of $S L(n, \mathbb{A})$

[w/ Ahlén, Gustafsson, Kleinschmidt, Liu]

$\operatorname{GKdim}\left(\pi_{\min }\right)=n-1$
F number field $\quad \mathbb{A}=\mathbb{A}_{F}$ adeles
Borel subgroup $\quad B=N A$

$$
\left(F=\mathbb{Q}, \mathbb{A}=\mathbb{A}_{\mathbb{Q}}\right)
$$

Minimal automorphic representations of $S L(n, \mathbb{A})$

[w/ Ahlén, Gustafsson, Kleinschmidt, Liu]

$\operatorname{GKdim}\left(\pi_{m i n}\right)=n-1$
F number field $\quad \mathbb{A}=\mathbb{A}_{F}$ adeles

Borel subgroup $\quad B=N A$

$$
\left(F=\mathbb{Q}, \mathbb{A}=\mathbb{A}_{\mathbb{Q}}\right)
$$

Theorem: For any $\varphi \in \pi_{\text {min }}$ we have the Fourier expansion:

$$
\varphi(g)=\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) d n+\sum_{i=1}^{n-1} \sum_{\gamma \in \Gamma_{i}} \int_{N(F) \backslash N(\mathrm{~A})} \varphi(n \gamma g) \overline{\psi_{\alpha_{i}}(n)} d n
$$

$$
\Gamma_{i}=\operatorname{Stab}_{\hat{e}_{i}} \backslash S L(n-i, F)
$$

Minimal automorphic representations of $S L(n, \mathbb{A})$

[w/ Ahlén, Gustafsson, Kleinschmidt, Liu]

$\operatorname{GKdim}\left(\pi_{m i n}\right)=n-1$
F number field $\quad \mathbb{A}=\mathbb{A}_{F}$ adeles

Borel subgroup $\quad B=N A$

$$
\left(F=\mathbb{Q}, \mathbb{A}=\mathbb{A}_{\mathbb{Q}}\right)
$$

Theorem: For any $\varphi \in \pi_{\text {min }}$ we have the Fourier expansion:

$$
\varphi(g)=\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) d n+\sum_{i=1}^{n-1} \sum_{\gamma \in \Gamma_{i}} \int_{N(F) \backslash N(\mathbb{A})} \varphi(n \gamma g) \overline{\psi_{\alpha_{i}}(n)} d n
$$

This is the complete expansion, including all non-abelian coefficients.
Analogue to the Piatetski-Shapiro-Shalika expansion of cusp forms.

$$
P=L U \subset S L(n, \mathbb{A})
$$ maximal parabolic

What can we say about the U-coefficient?

$$
F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u
$$

$$
P=L U \subset S L(n, \mathbb{A})
$$ maximal parabolic

What can we say about the U-coefficient?

$$
F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u
$$

Theorem [AGKLP]: For $\varphi \in \pi_{\text {min }}$ we have
$\operatorname{rank}\left(\psi_{U}\right)>1 \quad F_{\psi_{U}}=0$
$\operatorname{rank}\left(\psi_{U}\right)=1 \quad F_{\psi_{U}}(g)=\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha}(n)} d n$

$$
P=L U \subset S L(n, \mathbb{A})
$$ maximal parabolic

What can we say about the U-coefficient?

$$
F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u
$$

Theorem [AGKLP]: For $\varphi \in \pi_{\text {min }}$ we have

$$
\begin{array}{lll}
\operatorname{rank}\left(\psi_{U}\right)>1 & F_{\psi_{U}}=0 & F_{\psi_{U}} \neq W F\left(\pi_{\text {min }}\right) \\
\operatorname{rank}\left(\psi_{U}\right)=1 & F_{\psi_{U}}(g)=\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha}(n)} d n
\end{array}
$$

$$
P=L U \subset S L(n, \mathbb{A})
$$ maximal parabolic

What can we say about the U-coefficient?

$$
F_{\psi_{U}}(g)=\int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}(u)} d u
$$

Theorem [AGKLP]: For $\varphi \in \pi_{\text {min }}$ we have

$$
\begin{array}{rlrl}
\operatorname{rank}\left(\psi_{U}\right)>1 & F_{\psi_{U}} & =0 \quad F_{\psi_{U}} \neq W F\left(\pi_{\text {min }}\right) \\
\operatorname{rank}\left(\psi_{U}\right)=1 & F_{\psi_{U}}(g) & =\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha}(n)} d n \\
& =\prod_{p \leq \infty} F_{p}
\end{array}
$$

Next-to-minimal representations

Wavefront set: $\mathrm{WF}\left(\pi_{n t m}\right)=\overline{\mathcal{O}_{n t m}}$

Next-to-minimal representations

Wavefront set: $\operatorname{WF}\left(\pi_{n t m}\right)=\overline{\mathcal{O}_{n t m}}$

Theorem [AGKLP]: For $\varphi \in \pi_{n t m}$ we have
$\operatorname{rank}\left(\psi_{U}\right)>2 \quad F_{\psi_{U}}=0$
$\operatorname{rank}\left(\psi_{U}\right)=2 \quad F_{\psi_{U}}(g)=\int_{C(\mathbb{A})} \int_{N(F) \backslash N(\mathbb{A})} \varphi(n w c g) \overline{\psi_{\alpha, \beta}(n)} d n d c$

Next-to-minimal representations

Wavefront set: $\operatorname{WF}\left(\pi_{n t m}\right)=\overline{\mathcal{O}_{n t m}}$

Theorem [AGKLP]: For $\varphi \in \pi_{n t m}$ we have

$$
\begin{aligned}
\operatorname{rank}\left(\psi_{U}\right)>2 \quad F_{\psi_{U}} & =0 \quad F_{\psi_{U}} \notin W F\left(\pi_{n t m}\right) \\
\operatorname{rank}\left(\psi_{U}\right)=2 \quad F_{\psi_{U}}(g) & =\int_{C(\mathbb{A})} \int_{N(F) \backslash N(\mathbb{A})} \varphi(n w c g) \overline{\psi_{\alpha, \beta}(n)} d n d c \\
& =\prod_{p \leq \infty} F_{p}
\end{aligned}
$$

Example for $S L(5, \mathbb{A})$

$$
P=L U \quad L=S L(4) \times G L(1) \quad U=\left\{\left(\begin{array}{lll}
1 & & \stackrel{*}{*} \\
& 1 & \underset{\sim}{*} \\
& & \underset{\sim}{*} \\
& & 1 \\
1
\end{array}\right)\right\}
$$

Example for $S L(5, \mathbb{A})$

$$
\begin{aligned}
& P=L U \quad L=S L(4) \times G L(1) \quad U=\left\{\left(\begin{array}{lll}
1 & & \stackrel{*}{*} \\
& 1 & \stackrel{*}{*} \\
& & \stackrel{*}{1} \\
& & \\
& &
\end{array}\right)\right\} \\
& \psi_{U}\left(\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & & * \\
& & 1 & \\
& & * \\
& & & 1
\end{array}\right) .1 . x\right)=e^{2 \pi i k x} \quad x \in \mathbb{A}, k \in \mathbb{Q} \quad \operatorname{rank}\left(\psi_{U}\right)=1
\end{aligned}
$$

Example for $S L(5, \mathbb{A})$

$$
\begin{gathered}
P=L U \\
\\
\psi_{U}\left(\left(\left(_{1}^{1}\right.\right.\right. \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

$$
F_{\psi_{U}}(1)=\frac{2}{\xi(2 s)} \sigma_{2 s-4}(k)|k|^{2-s} K_{s-2}(2 \pi|k|)
$$

Example for $S L(5, \mathbb{A})$

$$
\begin{gathered}
P=L U \\
\\
\psi_{U}\left(\left(\left(^{1} \begin{array}{lll}
1 & & \\
& 1 & \\
& & * \\
& & 1
\end{array}\right.\right.\right. \\
\\
\\
\end{gathered}
$$

$$
F_{\psi_{U}}(1)=\frac{2}{\xi(2 s)} \sigma_{2 s-4}(k)|k|^{2-s} K_{s-2}(2 \pi|k|)
$$

For $s=3 / 2$ this captures the contributions from M2-brane instantons in M-theory compactified on T^{4}
[Green, Miller,Vanhove]
Instanton measure:

$$
\sigma_{2 s-4}(k)=\sum_{d \mid k} d^{2 s-4}
$$

4. Outlook

Hasse diagram for E_{7}

Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]

 Let G be a semisimple, simply laced Lie group.Then all Fourier coefficients of $\varphi \in \pi_{n t m}$ are completely determined by degenerate Whittaker vectors of the form

$$
\begin{aligned}
W_{\psi_{\alpha}}(\varphi, g) & =\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha}(n)} d n \\
W_{\psi_{\alpha, \beta}}(\varphi, g) & =\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha, \beta}(n)} d n
\end{aligned}
$$

where (α, β) are commuting simple roots.

This generalises earlier results of [Ginzburg, Rallis, Soudry][Miller, Sahi]

Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]

 Let G be a semisimple, simply laced Lie group.Then all Fourier coefficients of $\varphi \in \pi_{n t m}$ are completely determined by degenerate Whittaker vectors of the form

$$
\begin{aligned}
W_{\psi_{\alpha}}(\varphi, g) & =\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha}(n)} d n \\
W_{\psi_{\alpha, \beta}}(\varphi, g) & =\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} \varphi(n g) \overline{\psi_{\alpha, \beta}(n)} d n
\end{aligned}
$$

where (α, β) are commuting simple roots.

Hasse diagram for E_{7}

Hasse diagram for E_{7}

Hasse diagram for E_{7}

Hasse diagram for E_{7}

\bigcirc	$\stackrel{\sim}{ \pm}$	出	H	2 2	ça	\propto	$\stackrel{8}{\circ}$	s	\ldots

Thank you!

