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Higher rank automorphic forms live on 

G(Z)\G/K

What do Fourier coefficients encode in this case?  



By the Langlands-Shahidi method, the Fourier coefficients
of Eisenstein series on simple Lie groups      give rise to 
automorphic L-functions.

G

The Fourier coefficients of Eisenstein series also encode 
non-perturbative effects in string theory!

Higher rank automorphic forms live on 

G(Z)\G/K

What do Fourier coefficients encode in this case?  

Fourier coefficients attached to small automorphic representations
play a crucial role in establishing examples of functoriality using 
theta correspondences
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String amplitudes
Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetry

- U-duality

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity

- non-perturbative effects (black holes, instantons)
- novel mathematical predictions from physics

amplitudes have intricate 
arithmetic structure G(Z)



Toroidal compactifications yield the chain of U-duality groups
[Cremmer, Julia][Hull, Townsend]

Physical couplings are given by automorphic forms on

G(Z)\G(R)/K

Green, Gutperle, Sethi, Vanhove, Kiritsis, Pioline, Obers, Kazhdan, Waldron, Basu, Russo, 
Cederwall, Bao, Nilsson, D.P., Lambert, West, Gubay, Miller, Fleig, Kleinschmidt,…
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These partition functions are Eisenstein series attached to small 
automorphic representations of     .G

minimal automorphic
representation

next-to-minimal automorphic
representation

[Green, Miller, Vanhove][Pioline]
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2.  Automorphic forms
and representation theory



real simple Lie group SL(n,R)(e.g.                  )

Data:

G(Z) ⇢ G SL(n,Z)(e.g.                  )

G(R)

arithmetic subgroup



An automorphic form is a smooth function                       satisfying 

Definition:
' : G �! C

1. Automorphy: 8� 2 G(Z), '(�g) = '(g)

2. ' is an eigenfunction of the ring of inv. di↵. operators on G

3. ' has well-behaved growth conditions

Data:

real simple Lie group SL(n,R)(e.g.                  )

G(Z) ⇢ G SL(n,Z)(e.g.                  )

G(R)

arithmetic subgroup
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Example: Eisenstein series on SL(2,R)

E(s, ⌧) =
X

(m,n)2Z2
(m,n) 6=(0,0)

ys

|m⌧ + n|2s s 2 C

But to fit the definition of an automorphic form we must 
try to view this as a function on the group SL(2,R)
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Automorphic representations

A (G(Z)\G(R)) = {space of automorphic forms on G(R)}

(⇢(h)') (g) = '(gh)

for ' 2 A and h, g 2 G

Definition: An automorphic representation      of ⇡ G
is an irreducible representation in the decomposition of A
under the right-regular action. 

[Gelfand, Graev, Piatetski-Shapiro][Langlands]…

The group      acts on this space via the right-regular representation: G
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k21
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 k : Z\R ! U(1)  k(x) = e2⇡ikx k 2 Z, x 2 R

“automorphic 
representation”

Moderate growth: restrict to square integrable functions

L2(Z\R) =
M

k2Z
C k



Automorphic representations

A(G(Z)\G(R)) = Adiscrete �Acontinuous

Adiscrete : generated by cusp forms

Acontinuous : generated by Eisenstein series

(and residues of Eisenstein series)

Z

U(Z)\U(R)
'(ug)du = 0

U ⇢ G

all unipotents



An efficient, but abstract, way to approach the subject of 
automorphic forms is by the introduction of adeles,  
rather ungainly objects that nevertheless, once familiar,  
spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Adelic framework



An efficient, but abstract, way to approach the subject of 
automorphic forms is by the introduction of adeles,  
rather ungainly objects that nevertheless, once familiar,  
spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Eisenstein series

Adelic Eisenstein series Adelic Fourier coefficient

Fourier coefficient

Compute

Lift Restrict

Adelic framework



Adelic framework

Q R
Euclidean norm

Qp
p-adic norm

For each prime number p

p-adic numbers
Q1 = Rreal numbers

completions of Q









It is desirable to formulate all this instead in terms of the adeles  
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It is desirable to formulate all this instead in terms of the adeles  

A = R⇥
0Y

p<1
Qp

restricted 
direct product

Q ⇢ A diagonal embedding is discrete (c.f. Z ⇢ R)

G(A) = G(R)⇥
0Y

p<1
G(Qp)

A
�
G(Z)\G(R)

�
A
�
G(Q)\G(A)

�

maximal compact subgroupKA = K1 ⇥
Y

p<1
G(Zp)

Adelic framework
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Let                be an automorphic representation.

Let       be an irreducible representation of � KA

Definition:              is called admissible if dim V [�] < 1

Theorem [Flath]: For            admissible we have the Euler product: (⇡, V )

(⇡, V )

(⇡, V ) =
O

p

(⇡p, Vp)

(⇡, V )

The action of Hecke operators naturally encoded in the local 
representations         of⇡p G(Qp)

Many calculations reduce to simpler local calculations

Functional relations more natural in adelic picture

(c. f. Tate’s adelic treatment of the Riemann zeta function)



Eisenstein series

simple Lie group over G Q
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simple Lie group over G Q

Borel subgroupB = AN

(G = SL(n,Q))

� : B(Q)\B(A) ! C⇥

�(na) = �(a) := eh�+⇢|H(a)i =
Y

p

�p(ap)

H : A ! h � 2 h? ⌦ C

�(g) = �(nak) = �(a) spherical 



induced representation (principal series)

I(�) = {f : G(A) ! C | f(bg) = �(b)f(g), b 2 B(A)}
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induced representation (principal series)

Gelfand-Kirillov (functional) dimension

GKdim(I1) = dimR G(R)� dimR B(R) = dimR N(R)

I(�) = {f : G(A) ! C | f(bg) = �(b)f(g), b 2 B(A)}

= IndG(A)
B(A)� =

Y

p

Ip(�p)
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Eisenstein series
The theory of Eisenstein series gives a            -equivariant embedding G(A)

defined by 

E(�, g) =
X

�2B(Q)\G(Q)

eh�+⇢|H(�g)i
� 2 h? ⌦ C

E : I(�) �! A
�
G(Q)\G(A)

�

It converges absolutely in the Godement range     

Can be continued to a meromorphic function on h? ⌦ C

h�|H↵i > 1, 8↵ 2 ⇧

[Langlands]



Introduce a unitary character  : N(Q)\N(A) ! U(1)

Whittaker-Fourier coefficients
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Whittaker-Fourier coefficients

For such a unitary character  : N(Q)\N(A) ! U(1)

we have the Whittaker-Fourier coefficient

W (�, g) =

Z

N(Q)\N(A)
E(�, ng) (n) dn

W (nak) =  (n)W (a)
determined by its 
restriction to A

unique Whittaker modelW (�, g) 2 Wh (�) ⇢ IndG(A)
N(A) 

[Gelfand, Graev][Jacquet, Langlands][Piateski-Shapiro][Shalika][Rodier]

I(�) ⇠= Wh (�)



Whittaker-Fourier coefficients

we have the Whittaker-Fourier coefficient

When       is degenerate we say that         is a degenerate coefficient W 

When       is generic we say that         is a generic coefficient W 

For such a unitary character  : N(Q)\N(A) ! U(1)

W (�, g) =

Z

N(Q)\N(A)
E(�, ng) (n) dn

[Moeglin, Waldspurger][Matumoto]
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(modified) Bessel function
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Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

W (�, g) =

Z

N(A)
�(w0ng) (n) dn =

Y

p

W p

W p =

Z

N(Qp)
�p(w0nap) p(n) dn

W 1 =

Z

N(R)
�1(w0na1) 1(n) dn



Theorem [Shintani, Casselman-Shalika]:
The (unramified) p-adic Whittaker function          is given by the Weyl character 
formula of the Langlands dual group LG

W p

Theorem [Jacquet, Langlands]: The generic Whittaker coefficient is Eulerian

W (�, g) =

Z

N(A)
�(w0ng) (n) dn =

Y

p

W p



Example: G = SL(n,Qp)
LG = SL(n,C)

aJ =

0

B@
pj1

. . .
pjn

1

CA 2 A(Qp)/A(Zp) J = (j1, . . . , jn) 2 Zn

�(aJ) =
nY

i=1

p�siji si 2 C
A� =

0

B@
p�s1

. . .
p�sn

1

CA 2 LA(C)

Satake-Langlands parameter

W (�, a
J) =

⇢
] chJ(A�) j1 � · · · � jn

0 otherwise



3. Small representations: main results
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General Fourier coefficients

P = LU standard parabolic of G
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P = LU standard parabolic of G

U

unitary character  U : U(Q)\U(A) ! U(1)

F U (g) =

Z

U(Q)\U(A)
'(ug) U (u)du

'For any automorphic form     we have the      -coefficient

General Fourier coefficients

Also known as “unipotent period integrals”.



F U (g) =

Z

U(Q)\U(A)
'(ug) U (u)du

These are not Eulerian in general (no CS-formula)

F U (ug) =  U (u)F U (g) 8u 2 U

Very difficult to compute in general

Idea: consider special types of automorphic representations



Character variety orbits

=

Z

U(Q)\U(A)
'(ug) U (�u��1)du =: F �

U
(g)

F U (�g) =

Z

U(Q)\U(A)
'(��1u�g) U (u)du

Crucial obervation: For any                  we have� 2 L(Q)



Character variety orbits

Hence, Fourier coefficients are organized into orbits under the adjoint 
action of the Levi           on the unipotent  L(Q) U(Q)

Each such Levi orbit can be embedded into a nilpotent      -orbit.G

=

Z

U(Q)\U(A)
'(ug) U (�u��1)du =: F �

U
(g)

F U (�g) =

Z

U(Q)\U(A)
'(��1u�g) U (u)du

Crucial obervation: For any                  we have� 2 L(Q)

Sufficient to determine the coefficient for one representative 
in each Levi orbit of  U



Character variety orbits

=

Z

U(Q)\U(A)
'(ug) U (�u��1)du =: F �

U
(g)

F U (�g) =

Z

U(Q)\U(A)
'(��1u�g) U (u)du

Crucial obervation: For any                  we have� 2 L(Q)

Wavefront set: WF (⇡) = {O |FO 6= 0}

The wavefront set of a representation is the set of nilpotent 
orbits which have non-zero Fourier coefficients



Minimal automorphic representations

Definition:  An automorphic representation 

⇡ =
O

p1
⇡p

is minimal if each factor       has smallest non-trivial ⇡p

Gelfand-Kirillov dimension.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin].…



Minimal automorphic representations

Definition:  An automorphic representation 

⇡ =
O

p1
⇡p

is minimal if each factor       has smallest non-trivial ⇡p

Gelfand-Kirillov dimension.

[Ginzburg, Rallis, Soudry]

' 2 ⇡minAutomorphic forms                 are characterised by having
very few non-vanishing Fourier coefficients.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin].…



The wavefront set of the minimal representation is

WF (⇡min) = Omin

Omin = G · E↵

where              is the smallest non-trivial nilpotent orbit: Omin

↵
simple root

The Gelfand-Kirillov dimension is:

GKdim(⇡min) =
1

2
dim(Omin)



Example: Theta series
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Example: Theta series

✓(⌧) =
X

n2Z
ei⇡⌧n

2

The minimal representation is a generalization of the Weil 
representation, associated with classical theta series

⇢ : SL(2,R) ! L2(R) ⇢

✓✓
1

�1

◆◆
· f(r) = �df(r)

✓(⌧) =
1X

k=1

R2(k)e
2⇡ik⌧Very few Fourier 

coefficients!

f(r) = e�⇡r2

X

n2Z
⇢

✓✓
1 x

1

◆✓p
y

1/
p
y

◆◆
· f(n) = y1/4

X

n2Z
e⇡i⌧n

2

= y1/4✓(⌧)

Fix: Then we have 
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F number field A = AF adeles (F = Q,A = AQ)

Borel subgroup



Minimal automorphic representations of SL(n,A)

GKdim(⇡min) = n� 1 B = NA

[w/ Ahlén, Gustafsson, Kleinschmidt,  Liu]

' 2 ⇡min

F number field A = AF adeles (F = Q,A = AQ)
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Z

N(F )\N(A)
'(ng)dn+
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X
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Minimal automorphic representations of SL(n,A)

GKdim(⇡min) = n� 1 B = NA

Theorem: For any                  we have the Fourier expansion: 

[w/ Ahlén, Gustafsson, Kleinschmidt,  Liu]

' 2 ⇡min

F number field A = AF adeles (F = Q,A = AQ)

'(g) =

Z

N(F )\N(A)
'(ng)dn+

n�1X

i=1

X

�2�i

Z

N(F )\N(A)
'(n�g) ↵i(n)dn

This is the complete expansion, including all non-abelian coefficients. 

Analogue to the Piatetski-Shapiro-Shalika expansion of cusp forms.

Borel subgroup
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maximal parabolicP = LU ⇢ SL(n,A)

What can we say about the     -coefficient? U

F U (g) =

Z

U(Q)\U(A)
'(ug) U (u)du

Theorem [AGKLP]: For                  we have

rank( U ) > 1

rank( U ) = 1

F U = 0

' 2 ⇡min

F U (g) =

Z

N(F )\N(A)
'(ng) ↵(n)dn

=
Y

p1
Fp

F U 6= WF (⇡min)



Next-to-minimal representations

Wavefront set: WF(⇡ntm) = Ontm



Next-to-minimal representations

Wavefront set: WF(⇡ntm) = Ontm

Theorem [AGKLP]: For                  we have

F U = 0rank( U ) > 2

rank( U ) = 2 F U (g) =
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Next-to-minimal representations

Wavefront set: WF(⇡ntm) = Ontm

Theorem [AGKLP]: For                  we have

F U = 0

=
Y

p1
Fp

rank( U ) > 2

rank( U ) = 2 F U (g) =

Z

C(A)

Z

N(F )\N(A)
'(nwcg) ↵,�(n)dn dc

' 2 ⇡ntm

This generalizes earlier results of [Miller, Sahi]

F U /2 WF (⇡ntm)
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Example for  SL(5,A)

P = LU L = SL(4)⇥GL(1) U =

 U

0

BBBB@

0

BBBB@

1 ⇤
1 ⇤

1 ⇤
1 x

1

1

CCCCA

1

CCCCA
= e2⇡ikx x 2 A, k 2 Q rank( U ) = 1

F U (1) =
2

⇠(2s)
�2s�4(k)|k|2�sKs�2(2⇡|k|)

For                   this captures the contributions from M2-brane 
instantons in M-theory compactified on 

Instanton measure: �2s�4(k) =
X

d|k

d2s�4

T 4
[Green, Miller, Vanhove]

s = 3/2



4. Outlook



Omin
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E7Hasse diagram for  

1/2 BPS
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Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]

Then all Fourier coefficients of                   are completely ' 2 ⇡ntm

determined by degenerate Whittaker vectors of the form

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

W ↵,� (', g) =
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where             are commuting simple roots.(↵,�)

Let     be a semisimple, simply laced Lie group.G
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Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]

Then all Fourier coefficients of                   are completely ' 2 ⇡ntm

determined by degenerate Whittaker vectors of the form

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

W ↵,� (', g) =

Z

N(Q)\N(A)
'(ng) ↵,�(n)dn

where             are commuting simple roots.(↵,�)

Let     be a semisimple, simply laced Lie group.G

This allows to extract instanton effects to 1/4-BPS couplings 
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Omin

Ontm

E7

1/8 BPS-contributions:
New automorphic objects, 

satifying Poisson-type equations

Hasse diagram for  

For example, in D=10:

How do they fit into the representation theory?

[Green, Vanhove][Green, Miller, Vanhove]



Thank you!


