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Higher rank automorphic forms live on
G(Z)\G/K

What do Fourier coefficients encode in this case!

@ By the Langlands-Shahidi method, the Fourier coefficients
of Eisenstein series on simple Lie groups (5 give rise to
automorphic L-functions.

@ Fourier coefficients attached to small automorphic representations
play a crucial role in establishing examples of functoriality using
theta correspondences

@ The Fourier coefficients of Eisenstein series also encode
nonh-perturbative effects in string theory!
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String amplitudes

Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetr - Lo
persy Y ) amplitudes have intricate

- U-duality arithmetic structure G(Z)

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity

- non-perturbative effects (black holes, instantons) |

- novel mathematical predictions from physics




Toroidal compactifications yield the chain of U=-duality groups

o—©0

[Cremmer, Julia][Hull, Townsend]

D G K G(Z)

10 SL(2, R) S0(2) SL(2,7)

9 SL(2,R) x R* SO(2) SL(2,7%)

8 | SL(3,R) x SL(2,R) SO(3) x SO(2) SL(3,7Z) x SL(2,Z)
7 SL(5, R) S0(5) SL(5,Z)

6 Spin(5,5,R) (Spin(5) x Spin(5))/Zs Spin(5, 5, Z)

5 Eg(R) USP(8) /Zs E(Z)

! Er(R) SU()/22 B (Z)

3 Eg(R) Spin(16) /Zs Eg(Z)

Physical couplings are given by automorphic forms on

G(Z)\GR)/K

Green, Gutperle, Sethi,Vanhove, Kiritsis, Pioline, Obers, Kazhdan,Waldron, Basu, Russo,
Cederwall, Bao, Nilsson, D.P, Lambert, West, Gubay, Miller, Fleig, Kleinschmidet,...




Examples

[ V(R [ e DR!

These partition functions are Eisenstein series attached to small

automorphic representations of G.
[Green, Miller,Vanhove][Pioline]

minimal automorphic next-to-minimal automorphic
representation representation
Tmin Tntm

1/2 - BPS 1/4 - BPS



2. Automorphic forms
and representation theory
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Example: Eisenstein series on SL(2, R)

——> a function on H={r=2+iyecC|y >0}

at + b

—> invariant under Ttr2>7% T =
ct +d

—>» converges absolutely for s > 1

—> AHES m— S(S — 1)E8



Example: Eisenstein series on SL(2, R)

But to fit the definition of an automorphic form we must
try to view this as a function on the group SL(2,R)



Iwasawa decomposition: Any element g © SL(Q, R)

can be represented in the form

ok 1 z\ (y'/? cosf)  sind
g = - 1 y~1/2 ) \—sinf cosf



Iwasawa decomposition: Any element g © SL(Q, R)

can be represented in the form

ok 1 z\ (y'/? cosf)  sind
g = - 1 y~1/2 ) \—sinf cosf

ke SO(2)



Iwasawa decomposition: Any element g © SL(Q, R)

can be represented in the form

L 1 z\ [y'/? cosf  sinf
g = nak = 1 y~1/2 ) \—sinf cosf

Acting with g on the point 7 € [H we find

g-1=xz+wy=717¢€cl



Iwasawa decomposition: Any element g © SL(Q, R)

can be represented in the form

L 1 z\ [y'/? cosf  sinf
g = nak = 1 y~1/2 ) \—sinf cosf

Acting with g on the point 7 € [H we find

g-i=z+iy=71€H =SL(2,R)/SO(2)



Iwasawa decomposition: Any element g © SL(Q, R)

can be represented in the form

L 1 z\ [y'/? cosf  sinf
g = nak = 1 y~1/2 ) \—sinf cosf

Acting with g on the point 7 € [H we find
g-i=x+1wy=717¢ecl

Using this fact we can lift the Eisenstein series to a function on SL(2, R) via:

1 =z 1/2 cos) sind .
B et =ee (1) ("7 o) (Sonp mmg)) =Bt



Iwasawa decomposition: Any element g € SL(2,R)

can be represented in the form

ok — 1 z\ (y/? cos  sinf
g = Ak = 1 y~1/2 ) \ —sinf cos@

Acting with g on the point 2 € H we find

g-1=xz+wy=717¢€cl

Using this fact we can lift the Eisenstein series to a function on S L(2, R) via:

1 =z 1/2 cos) sind .
Ev— vp(g) = ¢E (( 1) (y y_1/2> (_Sing cos9)> = E(s,z +1y)
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Suppose that instead we start with a holomorphic modular form of weight &

F(E) = e+ @t

ct + b

Can we lift this to an automorphic form on SL(Q, R) 4

This is now invariant under SL(2,7Z): ¢(79) = ¢¢(9) WE?;ht'

section of a line function on SL(2,R):

Pf




Suppose that instead we start with a holomorphic modular form of weight &

F(E) = e+ @t

ct + b

Can we lift this to an automorphic form on SL(Q, R) 4

This is now invariant under SL(2,7): ¢y (v9) = rf (9) WE?;ht'
cost) sin6
—sinf cos0

Under the action of < ) € SO(2) we now pick up a phase:

first hint of some

cos 0 sin 0 _ ike representation theory
rf (g (— sinf cos 9)) = (9) underlying

modular forms
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Automorphic representations

A (G(Z)\G(R)) = {space of automorphic forms on G(R)}

The group (7 acts on this space via the right-regular representation:

(p(h)p) (g) = p(gh)

for p € A and h,g € G

[Gelfand, Graey, Piatetski-Shapiro][Langlands]...
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Toy model: Fourier analysis on Z\R = S*

Any function f € C°°(Z\R) can be decomposed into a Fourier series:

fx) = cribr(x)

keZ
Y Z\R — U(1) Vp(x) = ™ kcZ, xR

Moderate growth: restrict to square integrable functions

L*(Z\R) = {f € C=(Z\R) | ) |ex|* < o0}

k€ oo

9 “automorphic
L (Z\R) — 4;@ representation”

keZ




Automorphic representations

A(G(Z)\G(R)) — Adiscrete D Acontinuous

w»  Ajiserete - generated by cusp forms

(and residues of Eisenstein series)

all unipotents

p(ug)du =0
/U<Z>\U<R> ved

w A ontinuwous - generated by Eisenstein series



Adelic framework

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,

rather ungainly objects that nevertheless, once familiar,

spare much unnecessary thought and many useless calculations.

— Robert P. Langlands



Adelic framework

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,

rather ungainly objects that nevertheless, once familiar,

spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Compute
Adelic Eisenstein series >

Adelic Fourier coefficient

I Lift l Restrict

Eisenstein series Fourier coefficient
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Adelic framework

For each prime number p

Euclidean norm

Q __— R real numbers Qe =R
= Q, p-adic numbers
p-adic norm
The adeles are then defined as global local

/o

/
A =R x H Q, T = (Too; T2, T3,L5,...) €A

p prime <oo

much easier to work with
Q — A Q C A since () is a field.

q— (¢;9,q9,q,... ) analogous to:  Z C R
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Adelic framework

It is desirable to formulate all this instead in terms of the adeles

/
_ restricted
A=Rx || @

direct product
p<oo

® Q C A diagonal embedding is discrete (c.f. Z C R)

® GA)=GR)x ][] ¢@,)

p<oo

® Ky=K4 X H G(Z,) maximal compact subgroup

pP< OO

® A(G(Z)\GR)) - A(G(Q)\G(A))
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Adelic framework

(completed) Riemann zeta function:

£(s) = 7T (s/2)¢(s) = */T'(s5/2)

[

p prime <oc

—/ — \az\"da: H /

p prime <20

z)|z|dx

1 —p— 5




Adelic framework

(completed) Riemann zeta function:

6) =m0 =) [ 1

P prime <oo

= fetar T1 [ sl

p prime <o
— [ m@lolide
A

In his famous thesis, Tate gave elegant new proofs of the functional
equation and analytic continution of ér usmg these techniques
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_et (7T, V) be an automorphic representation.

et 0 be an irreducible representation of K 4

Definition: (7,V) is called admissible if dim V]o] < oo

Theorem [Flath]: For (7, V') admissible we have the Euler product:

(m, V) = ®(7Tp7 Vp)

p

® The action of Hecke operators naturally encoded in the local
representations 7T, of G(Q,)

@® Many calculations reduce to simpler local calculations

@ Functional relations more natural in adelic picture

(c.f. Tate’s adelic treatment of the Riemann zeta function)
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Eisenstein series
» (G simple Lie group over QQ (G = S5L(n,Q))

» B = AN Borel subgroup

} quasi-character: x : B(Q)\B(A) — C~
x(na) = x(a) := PN = 1Ty, (a,)
p

H:A—b Aebh*xC

} x(9) = x(nak) = x(a) spherical



} induced representation (principal series)

I(x) =1{f: G(A) = C| f(bg) = x(b)f(g), b€ B(A)}



} induced representation (principal series)

I(x) =1{f: G(A) = C| f(bg) = x(b)f(g), b€ B(A)}

} Gelfand-Kirillov (functional) dimension

GKdim(/) = dimg G(R) — dimg B(R) = dimg N (R)
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Eisenstein series

The theory of Eisenstein series givesa G(A) -equivariant embedding

E: I(0) — A(GQ\G(A))

defined by

B\, g) = Z o AP H(v9)) Aeh*®C
YEB(Q\G(Q)

It converges absolutely in the Godement range

(AMHgy) > 1, Va € 11

Can be continued to a meromorphic function on h* ® C [Langlands]
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Whittaker-Fourier coefficients
Introduce a unitary character ¢ : N(Q)\N(A) — U(1)
} Y([N,N]) =1 sinceitis a group homomorphism

} 1 is thus only non-trivial on the abelianization [N, N]\N

} P(n) = P(exp Zua — 2™ 2aen Mala Mmeq € Q

a>0

Uy € A
} We say that 1) is:

genericif ~ ma#0 Vaell

degenerate if Mo 70 for some (but not all) « € II
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we have the Whittaker-Fourier coefficient
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Whittaker=Fourier coefficients

For such a unitary character ¢ : N(Q)\N(A) — U(1)

we have the Whittaker-Fourier coefficient

Walhg) = [ E(A, ng) 9(n) dn
N(Q)\N(A)

} Wy (nak) — w(n)ww (a) determined by its

restriction to A

W (A, g) € Why (A CIndG(A) unique Whittaker model
} w( g) w( ) N(A)w TN 2 Why (0

[Gelfand, Graev][Jacquet, Langlands][Piateski-Shapiro][Shalika][Rodier]



Whittaker=Fourier coefficients

For such a unitary character ¢ : N(Q)\N(A) — U(1)

we have the Whittaker-Fourier coefficient

Walhg) = [ E(A, ng) 9(n) dn
N(Q)\N(A)

} When @D is generic we say that Wy, is a generic coefficient

} When w is degenerate we say that sz is a degenerate coefficient

[Moeglin,Waldspurger][Matumoto]
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' <<1 f)) — qp(e"Fa) = g2mime

reR  me?Z

w generic <«—> m # O



Holomorphic modular form f(7) TreH=SL(2,R)/U(1)

()i W= [ e

1

r e R m € Z )
:C(m)€ TTLINT

Y generic <«—» M #* 0



Holomorphic modular form f(T)

N

r e R m € 7,

1 generic <«—» M # 0

Non-holomorphic Eisenstein series

S

B Y
E(S’T) o Z ‘m_|_n7-‘25

(m,n)€Z2
(m,n)=1

reHe SL(2,R)/U(1)

1
_ T —2mimu
) = /0 f(r+1)e du

:C(m)€27rim7'
s e C
T=x+1yc H



Holomorphic modular form f(7) TreH=SL(2,R)/U(1)

()i W= [ e

1
r e R m € Z o
— C(m)e TLrnmT
1 generic <«—» M # 0
Non-holomorphic Eisenstein series
seC
Y -
E = T=x+ 1y € H
(877-) Z ‘m_I_nT‘QS _I_ y

(m,n)€Z2
(m,n)=1

VY
§(2s)

)627r7jm:c

01-25(M) K_12(2m|m|y

T

(modified) Bessel function

1
W (T) :/ E(s, 7+ u)e 2™Mudy =
0

0'1—23(m) _ Zdl—Qs

dlm



Theorem [Jacquet, Langlands]s The generic Whittaker coefficient is Eulerian
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W\, g) = / x(wong) $(n) dn = [ W,

N(A) \ .

wo = longest element of W (g)
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Theorem [Jacquet, Langlands]s The generic Whittaker coefficient is Eulerian

Wy (A, 9) =/

N(A)

x(wong) ¥(n)dn = | [ Wy,

Theorem [Shintani, Casselman-Shalika]s

The (unramified) p-adic Whittaker function Wy, is given by the Weyl character
formula of the Langlands dual group L@



Example: G = SL(n,Q,) LG = SL(n,C)

p31
pjn

(" )

J > SR A= € “AC)
X (a ):Hp iJi s; € C \ p=n )

Satake-Langlands parameter

7y ) dchi(Ay) J1 = 2> n
Wy (x,a”) = { 0 otherwise



3. Small representations: main results
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p P = LU standard parabolic of (3

Example: p_

x
x
x| X K X




General Fourier coefficients

p P = LU standard parabolic of (3

D unitary character Yy : U(Q)\U(A) — U(1)



General Fourier coefficients

p P = LU standard parabolic of (3

D unitary character Yy : U(Q)\U(A) — U(1)

} For any automorphic form ¥ we have the U -coefficient

Also known as “unipotent period integrals”.



® These are not Eulerian in general (no CS-formula)

¢ oy (ug) = QPU(U)Fwy (9) vue U

® Very difficult to compute in general

® Idea: consider special types of automorphic representations



Character variety orbits

Crucial obervation: For any 7 € L(Q) we have

Fy, (vg) = / (v uvg) o (@)du
U(Q)\U(A)
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Character variety orbits

Crucial obervation: For any 7 € L(Q) we have

Fy, (vg) = / (v turyg)y (u)du
U(Q)\U(A)

= / p(ug)u (yuy=t)du =: Fyr (g)
U(Q)\U(A)

Sufficient to determine the coefficient for one representative
in each Levi orbit of Yy

Each such Levi orbit can be embedded into a nilpotent ( -orbit.



Character variety orbits

Crucial obervation: For any 7 € L(Q) we have

Fy, (vg) = / (v uvg) o (@)du
U(Q)\U(A)

— / plug)u (yuy=t)du =: Fyo (g)
U(Q)\U(A)

Wavefrontset: W F (1) ={0O|Fo» # 0}

The wavefront set of a representation is the set of nilpotent
orbits which have non-zero Fourier coefficients



Minimal automorphic representations

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....



Minimal automorphic representations

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....

Automorphic forms ¥ € Tmin are characterised by having
very few non-vanishing Fourier coefficients.

[Ginzburg, Rallis, Soudry]




The wavefront set of the minimal representation is

where Opin is the smallest non-trivial nilpotent orbit:

@7
simple root

Omin =G - Eo

The Gelfand-Kirillov dimension is:

1
GKdim (7,0 ) = §dim(0min)
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Example: Theta series

The minimal representation is a generalization of the Weil
representation, associated with classical theta series

(9(’7') _ Z 672777‘712

nez

p: SL(2,R) = L*(R) P(<_1 1)) F(r) = AF(r)

2

Fixe f(r)=e ™" Then we have
nz:zp ((1 T) (x/? 1/\/@)) f(n) = y1/4n§€:ze7ri7'n2 _ ()

O
Very few Fourier O(+) — Ro (k) e2mikT
coefficients! (T) ]; 2( )6
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[w/ Ahlen, Gustafsson, Kleinschmidt, Liu]

GKdim(m,5n) =n — 1 Borel subgroup B = NA

F' number field A = Ap adeles (FF=Q,A=Aq)
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Minimal automorphic representations of SL(n,A)
[w/ Ahlen, Gustafsson, Kleinschmidt, Liu]

GKdim(m,5n) =n — 1 Borel subgroup B = NA

F' number field A = Ap adeles (FF=Q,A=Aq)

This is the complete expansion, including all non-abelian coefficients.

Analogue to the Piatetski-Shapiro-Shalika expansion of cusp forms.
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P=LU C SL(n,A) maximal parabolic

What can we say about the U -coefficient?

Fyo (g) = / o (ug) by (w)du
U@Q)\U(A)

Theorem [AGKLP]: For ¥ € Tmin we have

rank(wU) > 1 FwU — 0 FwU # WF(T‘-mzn)

rank () =1 Ey, (9) = /N(F)\N(A) p(ng)a(n)dn

:HFP

p<oo
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Next-to-minimal representations

Wavefront set: WF(m,m) = Onim

Theorem [AGKLP]: For ¥ € Tntm we have
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Next-to-minimal representations

Wavefront set: WF(m,m) = Onim

Theorem [AGKLP]: For ¥ € Tntm we have

rank(yy) > 2 Fopy, =0 EFypy & WE(Tnim)

rank(¢Yy) =2  Fyy(9) = / / p(nweg)q, g(n)dndc
C(A) JN(F)\N(A)

:HFP

p<oo

This generalizes earlier results of [Miller; Sahi]
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Example for SL(5,A)

L = SL(4) x GL(1)

U
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YU

Example for SL(5,A)
L= SL(4) x GL(1)
\)

*
>1<
* =€
X
1

recA keQ

U

3

f

\

1
1
1
1

= X X X

)

rank(¢yy) =1



YU

Example for SL(5,A)
1 *

L=SL4)xGL(1) U= {( 1112)}
1

)

_ e27rik:c

recA keQ

rank(yy) = 1




Example for SL(5,A)

P=LU L=SL(4) x GL(1) U = {( 111§)}
[t )

Yu 1 0 = e A keQ rank(yy) = 1
\\ 1))

For s =3/2 this captures the contributions from M2-brane
instantons in M-theory compactified on 1’ [Green, Miller,Vanhove]

25—4
Instanton measure: 028—4(k) — Z d=
d|k



4. Outlook
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Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]
Let G be a semisimple, simply laced Lie group.
Then all Fourier coefficients of ¥ € Tntm are completely

determined by degenerate Whittaker vectors of the form

W (1) = / o(ng)dam)dn
N(Q)\N(A)

W . (prg) = / o(ng) P (0)dn
N(Q)\N(A)

where (., 3) are commuting simple roots.

This generalises earlier results of [Ginzburg, Rallis, Soudry][Miller, Sahi]



Theorem: In progress w/ [Gustafsson, Gourevitch, Kleinschmidt, Sahi]
Let G be a semisimple, simply laced Lie group.
Then all Fourier coefficients of ¥ € Tntm are completely

determined by degenerate Whittaker vectors of the form

W (1) = / o(ng)dam)dn
N(Q)\N(A)

W . (prg) = / o(ng) P (0)dn
N(Q)\N(A)

where (., 3) are commuting simple roots.

This allows to extract instanton effects to 1/4-BPS couplings
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For example, in D=10:
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K [Green,Vanhove][Green, Miller,Vanhove]



94

92

90
86

84

52

76
70

64

Hasse diagram for L7

1/8 BPS-contributions:

New automorphic objects,
satifying Poisson-type equations

For example, in D=10:

(A, —12)F(1) = — (B3 a(r))°

¢ * x [Green,Vanhove][Green, Miller,Vanhove]

How do they fit into the representation theory?



Thank you!



