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1 Introduction

This is an introduction to the relation between matrix models and topological strings.
Motivation: intersection theory on Deligne–Mumford moduli space=Kontsevich inte-

gral, double-scaled matrix models. This makes manifest the connection to integrability.
What about the natural generalization, Gromov–Witten theory?
In physics: topological strings in d < 1/bosonic strings in d < 1=matrix model

realizations.

2 Topological strings and GW invariants

2.1 Gromov–Witten invariants

Let X be a complex manifold, and let Q ∈ H2(X,Z) be a two-homology class. We want
to “count” the number of holomorphic maps

x : Σg → X, x∗([Σg]) = Q (2.1)
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The modern way to do this counting is to construct a (virtual) moduli space of such maps
Mg(X,Q).

Remark 2.1. When X = pt,
Mg(pt, Q) = M g, (2.2)

is the Deligne–Mumford moduli space of stable Riemann surfaces of genus g.

Σg

X

x∗([Σg]) = Q

x

ℓs

Figure 1: A map from a Riemann surface Σg to a complex manifold X.

We will focus on the case in which X is a Calabi–Yau threefold. i.e. X is Kähler with
Kähler form ω, and has

c1(X) = 0. (2.3)

In general, Mg(X,Q) has (virtual) dimension

dimMg(X,Q) = (1 − g)(d− 3) +Q · c1(X), (2.4)

where d is the (complex) dimension of X and

Q · c1(X) =

∫

Q

c1(X). (2.5)

This dimension vanishes precisely when X is a CY threefold, and it is possible to define
then

Ng,Q =

∫

Mg(X,Q)

1 (2.6)

which is the Gromov–Witten invariant at genus g and for the class Q. It will be extremely
useful to define a generating functional for such numbers

Fg(t) =
∑

Q∈H2(X)

Ng,Qe−Q·t (2.7)
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where t are called (complexified) Kähler parameters (one for each class in H2(X,Z)). They
correspond to a choice of Kähler form and measure areas of two-cycles. More precisely,
denoting the complexified Kähler class by

J = ω + iB, (2.8)

we have

Q · t =

∫

Q

J =

b2(X)∑

i=1

Qiti, ti =

∫

Σi

J , (2.9)

where {Σi}i=1,··· ,b2(X) is a basis of H2(X,Z), and Qi are nonnegative integers (negative in-
tegers have Ng,Q = 0). For g = 0, the generating function is usually called the prepotential
and it is convenient to add to it a “classical” piece

F0(t) =
1

3!
κijktitjtk +

∑

Q∈H2(X)

N0,Qe−Q·t, (2.10)

where

κijk =

∫

X

ηi ∧ ηj ∧ ηk, (2.11)

and the ηi are 2-forms satisfying ∫

Σi

ηj = δij . (2.12)

2.2 Connections to physics

It turns out that the quantities Fg(t) can be computed in string theory. More precisely,
there is a “toy model” of string theory, called topological string theory, where Fg(t) is a
partition function at genus g of a closed string (no boundaries).

For fixed g, the free energy Fg(t) is obtained by summing over all possible instan-
ton sectors, which are classified topologically by Q ∈ H2(X,Z). Anti-instantons do not
contribute, therefore only non-negative degrees appear. The action of such an instanton
is

AQ =
1

ℓ2s
Q · t, (2.13)

where ℓs corresponds physically to the lenght of the string, so that the action is dimen-
sionless. In fact, ℓ2s plays the role of a Planck constant and we will write

~ws = ℓ2s. (2.14)

In principle, at any given genus, we should have an expansion around a given instanton
of the form ∑

ℓ≥0

cg,Q,ℓ~
ℓ
wse

−AQ . (2.15)
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If we assume, for simplicity, that b2(X) = 1, then the total Fg(t) would look like

Fg(t) =
∑

d≥0

e−dt/~ws

∑

ℓ≥0

cg,Q,ℓ~
ℓ
ws. (2.16)

This is an example of what some people call a trans-series. It is a series in two small
parameters,

~ws, e−t/~ws (2.17)

This kind of series appear for example in the study of asymptotics of nonlinear differ-
ential equations (like for example the WKB method). But in fact, in topological string
theory/Gromov–Witten theory, we have that

cg,Q,ℓ = Ng,Qδℓ,0. (2.18)

In physics, this means that the perturbation theory around a given instanton is trivial,
and the reason is (worldsheet) supersymmetry. The regime in which the above expansion
makes sense (i.e. where weak coupling/semiclassical methods/instanton calculus can be
trusted) is

e−t/~ws ≪ 1 i.e.
ti

~ws
≫ 1, (2.19)

which means large distances/“sizes”. Strong coupling occurs at small size, and the in-
stanton expansion breaks down. We will see however that Fg(t) as a function of t has a
finite radius of convergence, and a nontrivial analytic structure. The GW invariants are
recovered as expansions around the limit t→ ∞.

We can put all genera together by defining the so-called total free energy

F (t, gs) =
∑

Q,g

Ng,Qe−Q·t/~wsg2g−2
s

This theory has now two quantum parameters. We get a new Planck constant in spacetime

~st = gs. (2.20)

Two natural questions appear:
1) In Gromov–Witten theory, computations are perturbative in both e−t/~ws , gs. How do

we go beyond perturbation theory? As we will see, in what concerns the first parameter,
mirror symmetry gives the complete answer. It actually tells us a lot about the analyticity
structure of Fg(t).

2) For the gs parameter, not much is known. But based on our previous discussion of
the trans-series structure, we might expect that the true structure of the total free energy
is

F (t, gs) =
∑

k≥0

e−kA(t)/gs

∑

n≥0

F (k)
n (t)gn

s , (2.21)
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Here, the sum is over spacetime instantons, labeled by k (we have assumed this to be an

integer, but there might be more general labelings), and Φ
(k)
n (t) is the n-th loop correc-

tion around this instanton configuration. Standard topological string theory/GW theory
captures only the perturbative expansion in spacetime, i.e.

F
(0)
n=2g(t) = Fg(t). (2.22)

3 Mirror symmetry

Mirror symmetry asserts that, given a CY threefold X, there is another CY threefold
X̃ where the calculation of F0(t) (genus zero GW invariants) reduces to the study of
variation of complex structures. The basic buiding blocks are the period integrals of the
holomorphic 3-form Ω on X̃,

tI =

∮

AI

Ω,
∂F0

∂tI
=

∮

BI

Ω, (3.1)

where AI , B
I is a symplectic basis of H3(X̃). The Kähler parameters of X are identified

with period integrals of X̃ over a set of cycles. These A-period integrals depend on
the complex parameters of the mirror CY X̃ and it can be seen that they provide a
parametrization of the moduli space of complex structures of X̃. They are sometimes
called flat coordinates. Notice that (3.1) are analogues in higher dimension of the period
integrals of a Riemann surface.

The calculation of Ng,Q in generic CYs (for g > 0) and of their open counterparts
by using mirror symmetry is much more difficult, and there is no complete, algorithmic
solution to the problem. The most general method to find Fg, Fg,h involves writing differ-
ential equations for the generating functionals [7, 38]. But the initial conditions for these
equations are not given and therefore one has to use extra info (not always available).

3.1 The toric case

A very special case of mirror symmetry occurs when X is toric. Toric varieties contain
an algebraic torus

T = (C∗)r ⊂ X

as an open set, and they admit an action of T which acts on this set by multiplication.
This provides r circle symmetries. Notice that a toric CY is always noncompact.

Example 3.1. The total spaces of the bundles

K−1 → S, (3.2)

where S is a rational complex surface (for example P2) and K its canonical line bundle.
These CYs are sometimes called local surfaces.
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The non compact, toric Calabi-Yau threefolds that we will study can be described as
symplectic quotients. Let us consider the complex linear space CN+d, described by N + d
coordinates z1, · · · , zN+d, and let us introduce N real equations of the form

µA =
N+3∑

j=1

Qj
A|zj |2 = tA, A = 1, · · · , N. (3.3)

In this equation, Qj
A are integer numbers satisfying

N+d∑

j=1

Qj
A = 0. (3.4)

Furthermore, we consider the action of the group GN = U(1)N on the z′s where the A-th
U(1) acts on zj by

zj → exp(i Qj
A αA)zj .

The space defined by the equations (3.3), quotiented by the group action GN ,

X =
N⋂

A=1

µ−1
A (tA)/GN (3.5)

turns out to be a Calabi-Yau manifold. It can be seen that the condition (3.4) is equivalent
to the Calabi-Yau condition. The N parameters tA are Kähler moduli of the Calabi-Yau.
This mathematical description of X appears in the study of two-dimensional linear sigma
model with N = (2, 2) supersymmetry [39]. The theory has N + 3 chiral fields, whose
lowest components are the z’s and are charged under N vector multiplets with charges
Qj

A. The equations (3.3) are the D-term equations, and after dividing by the U(1)N gauge
group we obtain the Higgs branch of the theory.

Example 3.2. Resolved conifold. The simplest Calabi-Yau manifold is probably the
so-called resolved conifold, which is the total space of the bundle

O(−1) ⊕O(−1) → P
1. (3.6)

This manifold has a description of the form (3.5), with N = 1, d = 3. There is only one
constraint given by

|z1|2 + |z4|2 − |z2|2 − |z3|2 = t (3.7)

and the U(1) group acts as

z1, z2, z3, z4 → eiαz1, e
−iαz2, e

−iαz3, e
iαz4. (3.8)

Notice that, for z2 = z3 = 0, (3.7) describes a P1 whose area is proportional to t. Therefore,
(z1, z4) can be taken as homogeneous coordinates of the P1 which is the basis of the
fibration, while z2, z3 can be regarded as coordinates for the fibers.
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The GW invariants of the resolved conifold can be computed in closed form at all
genera. One finds,

F0(t) = Li3(e
−t) =

∞∑

n=1

e−nt

n3
,

F1(t) = − 1

12
log(1 − e−t),

Fg(t) =
|B2g|

2g(2g − 2)!
Li3−2g(e

−t).

(3.9)

Example 3.3. Local P2. Let us now consider a more complicated example, namely the
non-compact Calabi-Yau manifold O(−3) → P

2. This is the total space of P
2 together

with its anticanonical bundle, and it is often called local P2. We can describe it again
as in (3.5) with N = 1. There are four complex variables, z0, · · · , z3, and the constraint
(3.3) reads now

|z1|2 + |z2|2 + |z3|2 − 3|z0|2 = t. (3.10)

The U(1) action on the zs is

z0, z1, z2, z3 → e−3iαz0, e
iαz1, e

iαz2, e
iαz3. (3.11)

Notice that z1,2,3 describe the basis P2, while z0 parameterizes the complex direction of
the fiber.

Example 3.4. Local curves. These are the bundles

Xp = O(−p) + O(p− 2) → P
1. (3.12)

As CY manifolds, they have one single Kähler parameter t corresponding to the size of
P1. The GW invariants of these CY manifolds have to be defined equivariantly [11]. The
appropriate group action is the two- torus

T = C
∗ × C

∗ (3.13)

defined by scaling the line bundles over P1. The resulting invariants are defined in the
localized equivariant cohomology ring defined by T, and generated by s1 and s2. There is
a special case, called equivariant CY case, which corresponds to the antidiagonal action
s1+2 = 0. In this case, the GW invariants are independent of the si and can be computed
in closed form by using for example the topological vertex. One finds,

F
Xp

0 (t) = (−1)pe−t +
1

8
(2 p2 − 4 p+ 1)e−2t +

(−1)p

54
(1 − 6 p+ 3 p2)(2 − 6 p+ 3 p2)e−3t

+ O(e−4t),

F
Xp

1 (t) = −(−1)p

12
e−t +

1

48
(p4 − 4 p3 + p2 + 6 p− 2)e−2t

+
(−1)p

72
(−2 + 14 p− 19 p2 − 20 p3 + 45 p4 − 24 p5 + 4 p6)e−3t + O(e−4t),

(3.14)
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Example 3.5. Simple Hurwitz numbers. One interest of the theory on local curves is
that it contains the theory of simple Hurwitz numbers of P1 as a special case [11] (see
also [14]). The Hurwitz number

HP1

g,d(1
d), (3.15)

counts (connected) coverings of P1, with degree d, by a Riemann surface of genus g,
and with simple branch points. We recall that a simple branch point is a point whose
associated partition is of the form µ = (2, 1d−2), i.e. it has one ramification point in Σg,
and by the Riemann–Hurwitz formula there must be 2g−2+2d such points. This theory
of simple Hurwitz numbers can be obtained from GW theory of local curves by taking
the limit

lim
p→∞

p2−2gFXp

g (t) = FH
g (tH) (3.16)

where
e−tH = (−1)pp2e−t (3.17)

is kept fixed. The resulting free energy FH
g (tH) can be written as

FH
g (tH) =

∑

d≥0

HP
1

g,d(1
d)

(2g − 2 + 2d)!
Qd, Q = e−tH . (3.18)

In that sense, the theory of simple Hurwitz numbers can be regarded as one of the simplest
examples of topological string theory/GW theory.

The total free energy is known to satisfy a Toda-like equation [37],

exp
(
FH(gs, tH + gs) + FH(gs, tH − gs) − 2FH(gs, tH)

)
= g2

se
t∂2

tH
FH(gs, tH), (3.19)

and this will be useful in order to have a hint of the nonperturbative structure beyond
perturbation theory.

3.2 Mirror symmetry in the toric case

We will now discuss the mirrors of toric CY manifolds. There are many ways to think
about mirror symmetry in the toric case. The subject was initiated in the papers [30, 29],
and we will follow the presentation in [27, 3]. As shown by Hori and Vafa [27], the linear
sigma model describing a CY manifold has a mirror which is a Landau–Ginzburg model
for N + d variables

Yi, i = 1, · · · , N + d (3.20)

satisfying the periodicity condition

Yj ≡ Yj + 2πi (3.21)
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and the linear constraints

N+d∑

j=1

Qj
AYj + tA = 0, A = 1, · · · , N. (3.22)

Equivalently, one can think about this as an algebraic variety defined by the variables

ξi = eYi , i = 1, · · · , N + d, ξ ∈ C
∗. (3.23)

Notice that the constraints (3.22) have a d-parameter family of solutions. One of them is
trivial in the CY case, and corresponds to a shift

Yj → Yj + c, (3.24)

which leaves the equation unchanged due to (3.4). Therefore, we can always put one of the
Yj to zero, and parametrize the space of solutions by d− 1 coordinates (this corresponds
to a projectivization of the coordinates ξi). Notice that, in the case of d = 3, the CY
threefold case, this means that the mirror LG model depends on only two coordinates. In
this case we will write

Yj = Yj(u, v) = aju+ bjv + τj(tA). (3.25)

If we require that the periodicity (3.21) leads to the same periodicity for u, v, we need aj ,
bj to be integers. Finally, there is a symmetry group acting on the solutions as

(
u
v

)
→

(
a b
c d

) (
u
v

)
,

(
a b
c d

)
∈ G (3.26)

where

G = SL(2,Z) ×
(

0 1
1 0

)
, (3.27)

is the group of 2 × 2 integer matrices with determinant ±1. If we denote

X1 = eu, X2 = ev, (3.28)

this is the group that preserves the symplectic form

∣∣∣∣
dX1

X1
∧ dX2

X2

∣∣∣∣ (3.29)

on C∗ × C∗. The action of G on X1,2 is given by

(X1, X2) 7→ (Xa
1X

b
2, X

c
1X

d
2 ). (3.30)

Notice that, since X1,2 ∈ C∗, we are allowed to invert the coordinates.
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The LG potential for this model is

W =

N+d∑

j=1

eYj . (3.31)

Notice that under the symmetry (3.24), the potential changes by an overall function

W → ecW. (3.32)

Since we have a big symmetry group in our choice of coordinates, we must require that
the quantities that we compute are invariant under the symmetries. As we will see, this
is the case. We will give in a moment a geometric interpretation for this model, in terms
of a mirror CY. For the moment being, we notice that

W (X1, X2) = 0 (3.33)

defines an algebraic curve in C∗ × C∗, which we will denote by Σ. Let us first discuss
some examples.

Example 3.6. Resolved conifold. The constraint is here

Y1 + Y2 − Y3 − Y4 + t = 0. (3.34)

We set Y4 = 0, say, and solve in terms of Y1 = v, Y3 = u. We obtain then,

Y2 = −t+ u− v, (3.35)

and the superpotential reads

W (u, v) = ev + eu + e−t+u−v + 1 (3.36)

After shifting Yj → Yj + v, which corresponds to multiplying by X2, we obtain in terms
of X1, X2,

W (X1, X2) = X2
2 +X2(1 +X1) + ztX1. (3.37)

Notice that W = 0 is a curve of genus zero which can be solved as

X2 = −1 +X1 ±
√

(1 +X1)2 − 4ztX1

2
. (3.38)

This curve has two branch points obtained from

(1 +X1)
2 − 4ztX1 = 0, (3.39)

which are
X±

1 = 2zt − 1 ± 2
√
zt(zt − 1) (3.40)
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Example 3.7. Local P2. The constraint is here

Y1 + Y2 + Y3 − 3Y0 + t = 0. (3.41)

We set Y1 = 0,
Y0 = u, Y2 = v, Y3 = 3u− v − t, (3.42)

so that the superpotential is

W = 1 + eu + ev + zte
−v+3u. (3.43)

Again, after a global shift we obtain

W (X1, X2) = X2
2 + (1 +X1)X2 +X3

1zt, (3.44)

whose zero locus is a cubic curve with four branch points (one of them at infinity).
As in this example, in most of the cases of interest, the locus W (X1, X2) = 0 can be

described as

v(x) = log

[
a(x) +

√
σ(x)

c(x)

]
, σ(x) =

2s∏

i=1

(x− xi). (3.45)

where
v = logX2, x = X1. (3.46)

This can be further rewritten as,

v(x) =
1

2
log

[
a2(x) − σ(x)

c2(x)

]
+ tanh−1

[√
σ(x)

a(x)

]
(3.47)

As we will see in a moment, only the second term is relevant in the analysis of the theory.

Example 3.8. Local curves. The mirror geometry can not be obtained with the standard
techniques, but an algebraic curve describing the geometry has been proposed in [32],
based on [14]. It can be written as,

v(x) = tanh−1

[√
(x− x1)(x− x2)

x− x1+x2

2

]
− p tanh−1

[√
(x− x1)(x− x2)

x+
√
x1x2

]
, (3.48)

where x1, x2 are known functions of t,

x1 = (1 − ζ)−p(1 + ζ
1

2 )2, x2 = (1 − ζ)−p(1 − ζ
1

2 )2, (3.49)

and
(−1)pe−t = (1 − ζ)−p(p−2)ζ. (3.50)
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Example 3.9. Hurwitz theory. The curve for Hurwitz theory can be obtained as a limit
of the previous curve,

y(h) = 2 tanh−1

[
2

√
(a− h)(b− h)

2h− (a+ b)

]
−

√
(a− h)(b− h), (3.51)

where
b =

(
1 + χ

1

2

)2
, a =

(
1 − χ

1

2

)2
. (3.52)

and
χe−χ = e−tH , (3.53)

3.3 Periods

So far, from the above construction we obtain a function or LG superpotential W (X1, X2),
defined up to an overall rescaling, whose zero locus defines an algebraic curve Σ in C

∗×C
∗.

The CY mirror corresponding to the LG superpotential, which I will denote by X̃Σ, might
be written as

F (U, V,X1, X2) = U2 + V 2 −W (X1, X2) = 0, (3.54)

This is a threefold. In order to proceed with the standard construction of mirror symmetry,
we need a holomorphic 3-form Ω. This is taken to be

Ω = ResF=0

(
dUdV

F (U, V,X1, X2)

dX1

X1

dX2

X2

)
. (3.55)

Notice that this form respects all the symmetries of the model. A shift (3.24) acts on the
coordinates U, V as

U, V → ec/2U, ec/2V, (3.56)

and leads to
F → ecF, (3.57)

but Ω is invariant under it. Similarly, since we are using the symplectic form (3.29), we
have invariance under (3.27).

We now want to integrate this 3-form over 3-cycles in the geometry. There is a natural
class of 3-cycles which can be obtained from one-cycles in Σ. In order to see this, let us
first study a particular example (see [28] for a very useful discussion of this issue, and a
detailed analysis of the periods for the mirror of local P2).

Example 3.10. Let us consider the geometry of the resolved conifold, given by (3.37),
which can be written as

W (X1, X2) =
1

4

[
(2X2 + 1 +X1)

2 − (1 +X1)
2 + 4ztX1

]
= X̃2

2 − σ(X1)
2 (3.58)
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where

X̃2 = X2 +
1 +X1

2
, σ(X1)

2 =
(1 +X1)

2 − 4ztX1

4
=

1

4
(X1 −X+

1 )(X1 −X−
1 ). (3.59)

We then have
F (U, V,X1, X2) = U2 + V 2 − X̃2

2 + σ(X1)
2. (3.60)

Let us now take U , V , X1 to be real, and X̃2 = iX̂2 to be imaginary and let us consider
values of zt for which X±

1 are real (negative zt will do the job). Restricted to this “real
slice,” the defining equation of our manifold can be written as

U2 + V 2 + X̂2
2 +

1

4
(X1 −X+

1 )(X1 −X−
1 ) = 0 (3.61)

This is, up to a rescaling of the X1 coordinate, a 3-sphere S3 of radius

R2 =
1

4
(X+

1 −X−
1 )2 = 4zt(zt − 1) > 0 (3.62)

in the space
R

4 = (ReU,ReV,ReX1, Im X̃2) (3.63)

It can be also regarded as a fibration of a two-sphere S2 over the interval

[X−
1 , X

+
1 ] (3.64)

which degenerates at the endpoints, see Fig. 2.

What happens in general is that, for certain values of the parameters definingW (X1, X2),
and for certain “real slices” of the variables X1, X2, the inequality

W (X1, X2) ≥ 0 (3.65)

defines a region homeomorphic to a disc. The boundary of this region intersects the X1

axis at two branch points X+
1 , X−

1 of the curve W (X1, X2) = 0. In the case considered
above, we have

W (X1, X2) = R2 − X̂2
2 − 1

4
(X1 −X∗)

2, X∗ =
1

2
(X−

1 +X+
1 ), (3.66)

and the region (3.65) defines a disc of radius R. We can then construct a sphere S3 in the
geometry by taking

U2 + V 2 = W (X1, X2), U, V ∈ R, W (X1, X2) ≥ 0, X1, X2 ∈ C
∗. (3.67)

This is a fibration of a circle S1 ⊂ R2, with coordinates (U, V ), over the disc defined by
the region (3.65). The radius of the circle vanishes at the boundary W (X1, X2) = 0, and
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X
+

1

S
2

X
−

1

Figure 2: The equation (3.61), which defines an S3, can be regarded as a fibration of S2

over the cut [X−
1 , X

+
1 ].

defines a 3-sphere S
3. The integral of Ω around this 3-sphere can be easily computed. If

we parametrize F by V , we have

dV =
1

2V
dF, (3.68)

therefore

ResF=0

(
dUdV

F (U, V,X1, X2)

)
= ResF=0

1

2

dUdF

F
√
F +W (X1, X2) − U2

=
1

2

dU√
W (X1, X2) − U2

,

(3.69)
and we integrate

1

2

∫

W (X1,X2)≥0

dX1

X1

dX2

X2

∫ √
W (X1,X2)

−
√

W (X1,X2)

dU√
W (X1, X2) − U2

=
π

2

∫

W (X1,X2)≥0

dX1

X1

dX2

X2

(3.70)

Since the region (3.65) is bounded by the two branches of X̃2, as we can see in Fig. 3, and
these branches correspond to the two branches of X2, this integral can be evaluated as

π

2

∫

AI

(logX+
2 − logX−

2 )
dX1

X1
=
π

2

∮

AI

logX2
dX1

X1
, (3.71)

where AI is a cut joining two branch points of the algebraic curve Σ defined byW (X1, X2) =
0, and X±

2 are the two branches of X2.

14



X1

X
+

2

X
−

2

AI

Figure 3: In the compact case, the region W (X1, X2) ≥ 0 encircles a branch cut AI of

the curve W (X1, X2) = 0 and is bounded by the curves X̃±
2 , which correspond to the

branches X±
2 .

One can also find in a natural way noncompact cycles which are dual to the cycles
above. For the same values of zt, assume now that U , V are imaginary, while X̃2 is real.
Then the defining equation can be written as

U2 + V 2 + X̃2
2 = σ(X1)

2. (3.72)

If X1 belonga to any of the intervals,

[X+
1 ,∞), (−∞, X−

1 ], (3.73)

the equation above describes a fibration of an S2 over an infinite interval. The S2 degen-
erates at one of the endpoints, and the resulting geometry is a noncompact S3, see Fig. 4.
The two branches of X̃2 start now at the endpoints of the cut and go to infinity, Fig. 5.

One can then see that the CY periods become, in the local case, the more elementary
periods over Σ of the form

Π =

∮

C
logX2

dX1

X1

, (3.74)

where C is a one-cycle on Σ. If v(x) has the structure in (3.45), in doing the contour
integrals only the second term in (3.45) survives, and we then end up with periods of the
form ∮

C
y(x)dx, (3.75)

where

y(x) =
2

x
tanh−1

[√∏2s
i=1(x− xi)

a(x)

]
. (3.76)
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X
−

1
X

+

1

Figure 4: For other slices of the Calabi-Yau threefold we find noncompact S3s.

X1

X
+

2

X
−

2

AI

Figure 5: In the noncompact case, the region W (X1, X2) ≥ 0 goes from an endpoint of
the branch cut AI of the curve W (X1, X2) = 0 to infinity, and it is bounded by the curves

X̃±
2 , which correspond to the branches X±

2 .

As we have seen, there are two kinds of periods. The first kind corresponds to compact
cycles, and they are related to cuts AI in the spectral curve, while the second kind
corresponds to noncompact cycles, and they are related to cycles BI which go from one
endpoint of an AI cut to infinity. Notice that these two types of cycles are symplectically
dual, since

AI ∩ BJ = δJ
I (3.77)

We expect that one set of these periods gives the mirror map relating the Kähler parame-
ters tI to the complex coordinates of the curve Σ, while the other set gives the derivatives
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of the prepotential, as in (3.1). In practice, the periods are computed by a system of
Picard–Fuchs equations. Let us consider an example.

Example 3.11. Local P2. The PF equation for the mirror of local P2, which is described
by the curve (3.44), can be found to be

θ3Π + 3z(3θ + 2)(3θ + 1)θΠ = 0. (3.78)

where

z = e−t, θ = − d

dt
= z

d

dz
. (3.79)

The solutions to this differential equation can be generated by Frobenius method, which
applies to systems of differential equations of the above type with various variables zi.
One first introduces

̟0(z, ρ) =
∑

n≥0

an(ρ)zn+ρ, (3.80)

where we denoted
zn+ρ =

∏

i

zni+ρi

i (3.81)

as well as the derivatives

̟i1···in(z) =
∂n

∂ρi1 · · ·∂ρin

̟0(z, ρ)
∣∣∣
ρ=0

. (3.82)

In general one has
̟i(z) = ˜̟ i(z) +̟0(z) log zi, (3.83)

where

˜̟ i(z) =
∑

n≥0

dnz
n, dn =

dan(ρ)

dρi

∣∣∣
ρ=0

. (3.84)

It turns out that the periods which are identified to the Kähler parameters of the mirror
manifold are just

−ti(z) =
̟i(z)

̟0(z)
= log zi +

˜̟ i(z)

̟0(z)
. (3.85)

This is often called the mirror map, since it relates the Kähler parameters of the mirror
manifold to the complex coordinate which appears in the algebraic equations describing
the family of CY manifolds.

Let us now define

D(2)
i =

1

2
κijk∂ρj

∂ρk
, (3.86)
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where κijk is the classical intersection number. Then, we have that

∂tiF =
1

̟0(z, ρ)
D(2)

i ̟0(z, ρ)
∣∣∣
ρ=0

=
1

2
κijktjtk +

1

2
κijk

{ ˜̟ (2)
jk (z)

̟0(z)
− ˜̟ j(z) ˜̟ k(z)

̟2
0(z)

} (3.87)

where
˜̟ (2)

jk (z) =
∑

n≥0

∂ρj
∂ρk

an(ρ)
∣∣∣
ρ=0

zn. (3.88)

In our case, we have

an(ρ) = (−1)n Γ(3ρ+ 3n)

Γ(3ρ)

Γ3(ρ+ 1)

Γ3(ρ+ n + 1)
. (3.89)

Notice that, since

Γ(3ρ) =
Γ(3ρ+ 1)

3ρ
, (3.90)

we have that
an(0) = δn1 ⇒ ω0(z) = 1. (3.91)

This is typical of the toric case. The mirror map can be obtained from

ω1(z) = log z +
∞∑

n=1

(3n)!

n · (n!)3
(−1)nzn. (3.92)

We will denote

ω̃1(z) =

∞∑

n=1

(3n)!

n · (n!)3
(−1)nzn (3.93)

Its expansion reads,
ω̃1(z) = −6z + 45z2 − 560z3 + O(z4). (3.94)

We calculate now the remaining period,

ω2(z) = (log z)2 + 2 log z ω̃1(z) + ω̃2(z). (3.95)

where

ω̃2(z) =

∞∑

n=1

18
(−1)n

n!

Γ(3n)

Γ(1 + n)2

{
ψ(3n) − ψ(n+ 1)

}
zn, (3.96)

and the first terms in the expansion are

ω̃2(z) = −18z +
423

2
z2 − 2972z3 +

389415

8
z4 + · · · . (3.97)
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This is the known value at large radius of the derivative of the prepotential. Notice that
we can write,

ω2(z) = t2 + ω̃2(z) − ω̃1(z)
2. (3.98)

The general formula of mirror symmetry give us the following structure for the derivative
of the prepotential:

∂tF0 =
K

2
ω2(z) =

K

2

(
t2 + ω̃2(z) − ω̃1(z)

2
)
. (3.99)

It turns out that

K = −1

3
(3.100)

in this model. After integrating w.r.t. t we find the expansion,

F0(t) = − 1

18
t3 + 3e−t − 45

4
e−2t +

244

3
e−3t + · · · . (3.101)

This gives the correct instanton ezpansion.

3.4 Global structure of Fg(t)

For simplicity of the discussion, we will assume b2(X) = 1.
Mirror symmetry gives the genus g amplitudes as holomorphic “functions” on a non-

trivial moduli space, parametrized by the periods tI , and therefore it is a nonperturbative
treatment in e−t/~ws . The expansion of Fg(t) around t = ∞ (large radius point) gives back
GW theory. In our calculation above, this corresponds to the z = 0 regular singular point
of the PF system

However, one finds a very rich phase structure as we move in the t-space [39, 6]. The
large radius expansion Fg(t) has a finite radius of convergence e−t∗/ℓ2s , and it breaks down
at small distances since t∗ ∼ ℓ2s. The point t = t∗ is called the conifold point. It can
be easily identified with the regular singular point which is closest to t = ∞ in the PF
system. For example, for local P2 it is located at

z = − 1

27
. (3.102)

One can actually evaluate the value of t corresponding to this value of z [6, 31]. It is given
by

t∗ = Re
G

(
1
3
, 2

3
, 1; 1

)

Γ(1
3
)Γ(2

3
)

∼ 2.9 (3.103)

in units of ℓ2s, where G is the Meijer G-function. This gives the radius of convergence of
the genus zero free energy, and in particular one can check that the GW invariants grow
like

N0,d ∼ edt∗ , (3.104)
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at large d [31].
The conifold point can be understood as a phase transition characterized by the uni-

versal critical behavior of the c = 1 string [13, 7, 24]

Fg(t) ∼
B2g

2g(2g − 2)
µ2−2g, µ ∼ t− t∗ (3.105)

In some toric models the critical behavior is controlled by pure 2d gravity c = 0 [14].
Typically, in the small area region Re(t) < Re(t∗) there are other “special points” (orb-
ifold/Gepner points) where there is a simple, exact CFT description of the theory.

F
conifold

g
∼ (t − t∗)

2−2g

orbifold t → 0, F
orbifold
g =

∑
d N

OGW

g,d t
d

conifold t∗ ∼ ℓ
2

s

large radius t → ∞, F
LR
g =

∑
d N

GW

g,d e−dt

Figure 6: A picture of the global moduli space of a typical CY manifold.

There are many possible parametrizations of the moduli space by the periods, all
related by the symplectic group acting on H3(X̃). Similarly, there are many Fg, related
by suitable actions of the symplectic group. At every special point p (large radius, ...)
there is a preferred “frame” and a set of periods t where the amplitude F p

g (t) has a good
expansion.

This picture was developed and exemplified recently in [1]. They showed, building
on previous work, that Fg(t) are suitable generalizations of almost modular forms for the
symplectic group acting on

τIJ =
∂2F0

∂tI∂tJ

Moreover, the expansion of the preferred F p
g around each special point defines general-

izations of GW theory (albeit so far only the orbifold theories have been constructed in
detail).
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4 The geometry of matrix models

A matrix model for a Hermitian N ×N matrix M and potential V (M) is defined by the
partition function

Z =

∫
dM e−

1

gs
TrV (M) (4.1)

and by the (connected) correlation functions

Fh(z1, · · · , zh) =
〈
Tr

1

z1 −M
· · ·Tr

1

zh −M

〉(c)

(4.2)

When V (M) = M2/2, we have the famous Gaussian ensemble, but in most applications
one considers general polynomials.

The above quantities turn out to have an asymptotic expansion in powers of gs

logZ =

∞∑

g=0

Fgg
2−2g
s (4.3)

and

Fh(z1, · · · , zh) =
∞∑

g=0

g2g+h−2
s Fg,h(z1, · · · , zh)

Notice that the expansion is labeled by a genus g. This is because it is possible to interpret
the contributions at order g in terms of diagrams representing two-dimensional surfaces
of genus g [’t Hooft]. The “leading” term as gs → 0 in the gs asymptotics is called the
genus zero or planar contribution.

MMs in the 1/N expansion have been studied for 30 years now, starting with [BIPZ].
The main result is that all planar quantities in a matrix model can be obtained from a
single object, an algebraic curve y(z) called the classical spectral curve of the MM.

4.1 Planar limit and spectral curve

Let us consider a general matrix model with action V (M), and let us write the partition
function after reduction to eigenvalues as follows:

Z =
1

N !

∫ N∏

i=1

dλi

2π
eN2Seff (λ) (4.4)

where the effective action is given by

Seff(λ) = − 1

tN

N∑

i=1

V (λi) +
2

N2

∑

i<j

log |λi − λj |. (4.5)
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To study the asymptotic expansion in gs, we will study the limit

N → ∞, gs → 0, t = gsN fixed. (4.6)

t is called the ’t Hooft parameter. Notice that, since a sum over N eigenvalues is roughly
of order N , the effective action is of order O(1). We can now regard N2 as a sort of ~−1

in such a way that, as N → ∞ with t fixed, the integral (4.4) will be dominated by a
saddle-point configuration that extremizes the effective action. Varying Seff(λ) w.r.t. the
eigenvalue λi, we obtain the equation

dSeff

dλi
= 0 ⇒ 1

2t
V ′(λi) =

1

N

∑

j 6=i

1

λi − λj
, i = 1, · · · , N. (4.7)

This equation can be given a simple interpretation: we can regard the eigenvalues as
coordinates of a system of N classical particles moving on the real line. The equation
(4.7) says that these particles are subject to an effective potential

Veff(λi) = V (λi) −
2t

N

∑

j 6=i

log |λi − λj | (4.8)

which involves a logarithmic Coulomb repulsion between eigenvalues. For small ’t Hooft
parameter, the potential term dominates over the Coulomb repulsion, and the particles
tend to be in an extremum x∗ of the potential V ′(x∗) = 0. As t grows, the Coulomb
repulsion will force the eigenvalues to be apart from each other and to spread out along
the real axis.

To encode this information about the equlibrium distribution of the particles, it is
convenient to define an eigenvalue distribution (for finite N) as

ρ(λ) = 〈 1

N
Tr δ(λ−M)〉 =

1

N

N∑

i=1

δ(λ− λi), (4.9)

where the λi solve (4.7) in the saddle-point approximation. In the large N limit, it
is reasonable to expect that this distribution becomes a continuous distribution with
compact support. The simplest solution occurs when ρ(λ) vanishes outside an interval C.
This is the so-called one-cut solution. Based on considerations above, we expect C to be
centered around an extremum x∗ of the potential. In particular, as t → 0, the interval C
should collapse to the point x∗.

We can now write the saddle-point equation in terms of continuum quantities, by using
the standard rule

1

N

N∑

i=1

f(λi) →
∫

C
f(λ)ρ(λ)dλ. (4.10)
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Notice that the distribution of eigenvalues ρ(λ) satisfies the normalization condition

∫

C
ρ(λ)dλ = 1. (4.11)

The equation (4.7) then becomes

1

2t
V ′(λ) = P

∫

C

ρ(λ′)dλ′

λ− λ′
(4.12)

where P denotes the principal value of the integral. The above equation is an integral
equation that allows one in principle to compute ρ(λ), given the potential V (λ), as a
function of the ’t Hooft parameter t and the coupling constants. Once ρ(λ) is known, one
can easily compute F0(t): in the saddle-point approximation, the free energy is given by

1

N2
F = Seff(ρ) + O(N−2), (4.13)

where the effective action in the continuum limit is a functional of ρ:

Seff(ρ) = −1

t

∫

C
dλ ρ(λ)V (λ) +

∫

C×C
dλ dλ′ ρ(λ)ρ(λ′) log |λ− λ′|. (4.14)

Therefore, the planar free energy is given by

F0(t) = t2Seff(ρ), (4.15)

We can obtain (4.7) directly in the continuum formulation by computing the extremum
of the functional

S(ρ, ξ) = Seff(ρ) + ξ

(∫

C
dλ ρ(λ) − 1

)
(4.16)

with respect to ρ. Here, ξ is a Lagrange multiplier that imposes the normalization condi-
tion of the density. This leads to

1

t
V (λ) = 2

∫
dλ′ ρ(λ′) log |λ− λ′| + ξ, (4.17)

which can be also obtained by integrating (4.12) with respect to λ. The Lagrange multi-
plier ξ appears in this way as an integration constant that only depends on the coupling
constants. It can be computed by evaluating (4.17) at a convenient value of λ (say, λ = 0
if V (λ) is a polynomial). Since the effective action is evaluated on the distribution of
eigenvalues that solves (4.12), one can simplify the expression to

F0(t) = − t

2

∫

C
dλ ρ(λ)V (λ) − 1

2
t2ξ(t). (4.18)
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It is convenient to introduce the effective potential on an eigenvalue as

Veff(λ) = V (λ) − 2t

∫
dλ′ρ(λ′) log |λ− λ′|. (4.19)

This is of course the continuum counterpart of (4.8). In terms of this object, the saddle–
point equation (4.17) says that the effective potential is constant on the interval C:

Veff(λ) = tξ(t), λ ∈ C. (4.20)

The density of eigenvalues is obtained as a solution to the saddle-point equation (4.12).
This equation is a singular integral equation which has been studied in detail in other
contexts of physics (see, for example, [36]). The way to solve it is to introduce an auxiliary
function called the resolvent. The resolvent is defined as

ω0(p) =

∫
dλ

ρ(λ)

p− λ
(4.21)

and it has three important properties. First of all, due to the normalization property of
the eigenvalue distribution (4.11), it has the asymptotic behavior

ω0(p) ∼
1

p
, p→ ∞. (4.22)

Second, as a function of p it is an analytic function on the whole complex plane except on
the interval C, where it has a discontinuity as one crosses the interval C. This discontinuity
can be computed by standard contour deformations. We have

ω0(p+ iǫ) =

∫

R

dλ
ρ(λ)

p+ iǫ− λ
=

∫

R−iǫ

dλ
ρ(λ)

p− λ
= P

∫
dλ

ρ(λ)

p− λ
+

∫

Cǫ

dλ
ρ(λ)

p− λ
, (4.23)

where Cǫ is a contour around λ = p in the lower half plane, and counterclockwise. This
can be evaluated as a residue, and we finally obtain,

ω0(p+ iǫ) = P

∫
dλ

ρ(λ)

p− λ
− πiρ(p). (4.24)

Similarly

ω0(p− iǫ) =

∫

R+iǫ

dλ
ρ(λ)

p− λ
= P

∫
dλ

ρ(λ)

p− λ
+ πiρ(p), (4.25)

One then finds the key equation

ρ(λ) = − 1

2πi

(
ω0(λ+ iǫ) − ω0(λ− iǫ)

)
. (4.26)
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From these equations we deduce that, if the resolvent at genus zero is known, the
planar eigenvalue distribution follows from (4.26), and one can compute the planar free
energy. On the other hand, by using again (4.23) and (4.25) we can compute

ω0(p + iǫ) + ω0(p− iǫ) = 2P

∫
dλ

ρ(λ)

p− λ
(4.27)

and we then find the equation

ω0(p+ iǫ) + ω0(p− iǫ) =
1

t
V ′(p), (4.28)

which determines the resolvent in terms of the potential. In this way we have reduced
the original problem of computing F0(t) to the Riemann-Hilbert problem of computing
ω0(λ). There is in fact a closed expression for the resolvent in terms of a contour integral
[35] which is very useful. Let C be given by the interval b ≤ λ ≤ a. Then, one has

ω0(p) =
1

2t

∮

C

dz

2πi

V ′(z)

p− z

(
(p− a)(p− b)

(z − a)(z − b)

) 1

2

. (4.29)

This equation is easily proved by converting (4.28) into a discontinuity equation:

ω̂0(p+ iǫ) − ω̂0(p− iǫ) =
1

t

V ′(p)√
(p− a)(p− b)

, (4.30)

where ω̂0(p) = ω0(p)/
√

(p− a)(p− b). This equation determines ω0(p) to be given by
(4.29) up to regular terms, but because of the asymptotics (4.22), these regular terms are
absent. The asymptotics of ω0(p) also gives two more conditions. By taking p→ ∞, one
finds that the r.h.s. of (4.29) behaves like c + d/p + O(1/p2). Requiring the asymptotic
behavior (4.22) imposes c = 0 and d = 1, and this leads to

∮

C

dz

2πi

V ′(z)√
(z − a)(z − b)

= 0,

∮

C

dz

2πi

zV ′(z)√
(z − a)(z − b)

= 2t.

(4.31)

These equations are enough to determine the endpoints of the cuts, a and b, as functions
of the ’t Hooft coupling t and the coupling constants of the model.

The above expressions are in fact valid for very general potentials (we can for example
apply them to logarithmic potentials), but when V (z) is a polynomial, one can find a very
convenient expression for the resolvent: if we deform the contour in (4.29) we pick up a
pole at z = p, and another one at infinity, and we get

ω0(p) =
1

2t
V ′(p) − 1

2t

√
(p− a)(p− b)M(p), (4.32)

25



where

M(p) =

∮

∞

dz

2πi

V ′(z)

z − p

1√
(z − a)(z − b)

(4.33)

which can be written as a contour integral around z = 0

M(p) =

∮

0

dz

2πi

V ′(1/z)

1 − pz

1√
(1 − az)(1 − bz)

. (4.34)

These formulae, together with the expressions (4.31) for the endpoints of the cut, com-
pletely solve the one-matrix model with one cut in the planar limit, for polynomial po-
tentials.

A useful way to encode the solution to the matrix model is to define

y(p) = V ′(p) − 2t ω0(p) = M(p)
√

(p− a)(p− b). (4.35)

This is an algebraic curve which is usually called the spectral curve of the matrix model.
Notice that it is related to the density of eigenvalues as

y(p) = 2πitρ(p), p ∈ [a, b], (4.36)

and the normalization condition for ρ (4.11) reads, in terms of y(p),

t =
1

4πi

∮

C
y(p)dp. (4.37)

Let us now consider the interval BΛ = [b,Λ], where b is the endpoint of the cycle C and
Λ ≫ b. One can show that

∂F0(t)

∂t
=

∫

BΛ

y(λ)dλ, (4.38)

where in the right hand side we take the finite part regularization as Λ → ∞ (this depends
on the choice of Λ due to logarithmic terms). Notice that (4.37) and (4.38) are very similar
to the structure we found in (3.1) (and in particular in local mirror symmetry).

Example 4.1. The Gaussian matrix model. Let us now apply this technology to the
simplest case, the Gaussian model with V (M) = M2/2. Let us first look for the position
of the endpoints from (4.31). Deforming the contour to infinity and changing z → 1/z,
we find that the first equation in (4.31) becomes

∮

0

dz

2πi

1

z2

1√
(1 − az)(1 − bz)

= 0, (4.39)

where the contour is now around z = 0. Therefore a+b = 0, in accord with the symmetry
of the potential. Taking this into account, the second equation becomes:

∮

0

dz

2πi

1

z3

1√
1 − a2z2

= 2t, (4.40)
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and gives
a = 2

√
t. (4.41)

We see that the interval C = [−a, a] = [−2
√
t, 2

√
t] opens as the ’t Hooft parameter grows

up, and as t→ 0 it collapses to the minimum of the potential at the origin, as expected.
We immediately find from (4.32)

ω0(p) =
1

2t

(
p−

√
p2 − 4t

)
, (4.42)

and from the discontinuity equation we derive the density of eigenvalues

ρ(λ) =
1

2πt

√
4t− λ2. (4.43)

The graph of this function is a semicircle of radius 2
√
t, and the above eigenvalue distri-

bution is the famous Wigner-Dyson semicircle law. Notice also that the equation (4.35)
gives in this case

y2 = p2 − 4t. (4.44)

This is the equation for a curve of genus zero, which resolves the singularity y2 = p2.
We then see that the opening of the cut as we turn on the ’t Hooft parameter can be
interpreted as a deformation of a geometric singularity.

We now compute ξ(t) in the Gaussian case. For λ = 0, we have

ξ(t) = −2

∫
dλρ(λ) log |λ| =

1 − log t

2
(4.45)

and

− t

4

∫
dλρ(λ)λ2 = −t

2

4
. (4.46)

Therefore,

F0(t) =
1

2
t2 log t− 3

4
t2. (4.47)

We can also use the regularized integral,

∂F0

∂t
=

∫ Λ

2
√

t

dx
√
x2 − 4t = t(log t− 1) − 2t log Λ +

1

2
Λ2 + O(1/Λ2). (4.48)

The finite part gives t(log t− 1), which is indeed the right result.
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4.2 Multicut solutions

We have so far considered the so-called one cut solution to the one-matrix model. This is
not, however, the most general solution, and we now will consider the multicut solution
in the saddle-point approximation.

Recall from our previous discussion that the cut appearing in the one-matrix model
was centered around a minimum of the potential. If the potential has many minima, one
can have a solution with various cuts, centered around the different minima. In fact, one
can formally consider cuts centered around any critical point of the potential. The most
general solution has then s cuts (where s is generically equal to the number of critical
points of the potential), and the support of the eigenvalue distribution is a disjoint union
of s intervals

C = ∪s
I=1AI , (4.49)

where
AI = (x2I−1, x2I) (4.50)

and x1 < · · · < x2s. In order to solve this case, we introduce the filling fractions

ǫI =
NI

N
=

∫

AI

dλ ρ(λ), I = 1, · · · , s. (4.51)

Notice that
s∑

I=1

ǫI = 1. (4.52)

A closely related variable are the partial ’t Hooft parameters

tI = tǫI = gsNI , I = 1, · · · , s. (4.53)

Notice that there are only g = s− 1 independent filling fractions, but the partial ’t Hooft
parameters are all independent.

We now extremize the functional with the condition that the filling fractions are fixed,

S(ρ, ǫI) = Seff(ρ) +
∑

I

ΓI

(∫

AI

dλ ρ(λ) − ǫI

)
, (4.54)

where ΓI are Lagrange multipliers. If we take the variation w.r.t. the density ρ(λ) we
find the equation

1

t
V (λ) = 2

∫

C
dλ′ρ(λ′) log |λ− λ′| + ΓI , λ ∈ AI . (4.55)

which can be rewritten as
Veff(λ) = tΓI , λ ∈ AI . (4.56)
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By taking a derivative w.r.t. λ we get again the equation (4.12). It is easy to see that
the way to have multiple cuts is to require ω0(p) to have 2s branch points corresponding
to the roots of the polynomial V ′(z)2 − R(z). Therefore we have

ω0(p) =
1

2t
V ′(p) − 1

2t

√√√√
2s∏

k=1

(p− xk)M(p), (4.57)

which can be solved in a compact way by

ω0(p) =
1

2t

∮

C

dz

2πi

V ′(z)

p− z

( 2s∏

I=1

p− xI

z − xI

) 1

2

. (4.58)

In order to satisfy the asymptotics (4.22) the following conditions must hold:

δℓs =
1

2t

∮

C

dz

2πi

zℓV ′(z)
∏2s

I=1(z − xI)
1

2

, ℓ = 0, 1, · · · , s. (4.59)

In contrast to the one-cut case, these are only s + 1 conditions for the 2s variables xk

representing the endpoints of the cut. For s > 1, there are not enough conditions to
determine the solution of the model, and we need extra input to determine the positions
of the endpoints xk. To do that, we can consider the filling fractions as fixed data, and
solve for the position of the endpoints in terms of them. This gives again s−1 conditions
(since there are s − 1 independent filling fractions), so at least formally, in the 1/N
expansion, the model is well–defined. It is however quantum–mechanically unstable.

Notice that the spectral curve is now of the form

y(p) = M(p)

√√√√
2s∏

k=1

(p− xk), (4.60)

and the partial ’t Hooft parameters can be written as

tI =
1

4πi

∮

AI

y(λ)dλ. (4.61)

We can also define cycles BI
Λ which go from the endpoint of the AI cycle to the point Λ,

and one can show that
∂F0(t)

∂tI
=

∫

BI
Λ

y(λ)dλ. (4.62)

Notice that this structure is the same we found in our discussion of local mirror symmetry.
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4.3 Higher amplitudes

One simple consequence of the analysis above is that, in order to compute the planar free
energy, all the information needed is encoded in y(x). It turns out that this is true beyond
the planar level as well:

There is a recursive algorithm to compute all the correlation functions and free en-
ergies of the theory, at all orders in the 1/N expansion, which only relies on geometric
information encoded in the spectral curve.

This surprising and beautiful result is the culmination of the work started in [5] to
solve the loop equations of matrix models, and is due to Eynard and collaborators (see
[23] for a synthesis and references). We note for example a formula for F1 for the one-cut
case [5],

F1 = − 1

24
log

[
M(a)M(b)(a − b)4

]
. (4.63)

As we can see, this depends only on the moment function M(p) of the curve, evaluated
at the branch points, and of the branch points themselves. There is a generalization of
this formula to the multicut case [4, 21, 23],

F1 = − 1

24
log

{
∆3(detA)12

2s∏

I=1

y′(xI)

}
, (4.64)

where
∆ =

∏

I<J

(xI − xJ) (4.65)

is the discriminant of the curve, and A is the matrix of A-periods. The derivative in y(x)
means

y′(xI) =
dy(xI)

dzI(xI)
, zI(p) =

√
p− xI . (4.66)

5 Random matrices and mirror symmetry

5.1 A conjecture

The relation between matrix models and topological strings on toric CY manifolds can
be motivated by the following observation. On the matrix model side, we noticed that
the genus zero free energy F0(t) as well as the ’t Hooft parameters t are determined by
period integrals (4.61), (4.62). On the other hand, the genus zero generating functional
in topological string theory on toric CY manifolds is determined by period integrals of
the form (3.75). We then see that, at this formal level, we can establish the following
correspondence between matrix models and topological strings on the mirrors of toric
CYs:
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matrix models topological strings

parameters in the potential complex deformation parameters
filling fractions flat coordinates
spectral curve target CY geometry

planar free energy prepotential
1/N expansion genus expansion

Notice that the “effective” spectral curve involved in (3.76) can be written in the form
(4.60) but with a non–polynomial function M(p):

M(p) =
2

p
√
σ(p)

tanh−1

[√
σ(p)

a(p)

]
. (5.1)

We see that, formally, the prepotential of the topological string is described by a formalism
similar to that encountered in matrix models, although the spectral curve (3.76) is not of
the form found in matrix models with polynomial potentials. It is however not unheard
of: the Chern–Simons (CS) matrix model for S

3 [32]

ZCS =
e−

gs
12

N(N2−1)

N !

∫ N∏

i=1

dβi

2π
e−

P

i β2
i /2gs

∏

i<j

(
2 sinh

βi − βj

2

)2

. (5.2)

which computes the partition function of CS theory on S3 can be solved in the planar
limit by various techniques (see [33] for an exposition) and it is characterized by a spectral
curve of the form

y(p) =
2

p
tanh−1

[√
(1 + p)2 − 4ztp

1 + p

]
, zt = e−t, (5.3)

where t = gsN is the ’t Hooft parameter (in comparing to [33], notice that we have rescaled
p→ etp, so in the above formula p = eβ where β is the original eigenvalue variable in the
CS matrix integral). The 1/N expansion of the above matrix model reproduces the 1/N
expansion of CS theory, and in particular can be obtained with the formalism of matrix
models as applied to the above curve. On the other hand, notice that the above spectral
curve is exactly the curve v(x) for the resolved conifold, compare (3.76 and (3.38). It has
been shown by Gopakumar and Vafa [25] that the total free energy of CS theory, in the
1/N expansion, reproduces the total free energy of the GW theory of the resolved conifold.
It follows that the 1/N expansion of the CS matrix model, which can be obtained from
the curve(5.3) by using the residue calculus of [23], reproduces the gs expansion of the
resolved conifold.

A bold generalization of this observation leads to the following conjecture, which was
put forward in this form in [34].
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Conjecture. The free energies Fg(t) for topological string on toric CY geometries can
be obtained by applying matrix model techniques (in particular the recursion relations of
[23]) to the spectral curve (3.76) defined by its mirror.

At this level we don’t even have to worry about the matrix integral, since in order
to compute the Fg(t) only the spectral curve is needed, and this is provided by mirror
symmetry.

This conjecture has been considerably refined in [8], and in particular it also applies to
the computation of open string amplitudes. It has supporting evidence of different kinds:

• It is closely related to conjecture made by Dijkgraaf and Vafa in [18], which is in
turn based on the large N geometric transition of [12].

• It can be seen that the Fg(t) obtained by using the recursion of [23] satisfy the
holomorphic anomaly equations of [7], which are also obeyed by the topological
string free energies [22].

• It has been argued [19] that the Kodaira–Spencer theory describing topological
string theory on local geometries reproduces the recursion of [23].

• Explicit calculations on both sides agree in all examples that have been considered
so far [32, 8, 9].

5.2 An example

In order to illustrate this conjecture, let us consider the example of local P2. In the “large
radius limit t→ 0 the mirror map was computed in (3.92), and we will write it as

Q = zt exp

[
3
∑

k≥0

(3k − 1)!

(k!)3
(−1)kzk

t

]
, Q = e−t. (5.4)

Its inversion gives

zt = Q+ 6Q2 + 9Q3 + 56Q4 − 300Q5 + 3942Q6 + · · · . (5.5)

The spectral curve of local P2 was written in (3.44). In the form (3.47) it reads,

y =
2

p
tanh−1

[√
p
(
p(p+ 1)2 − 4zt

)

p(p+ 1)

]
, (5.6)

where p = X−1
1 . Of course, doing a computation in terms of p does not change anything,

since X1 → X−1
1 is a symmetry of our problem. It has the advantage however that the
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branch point at infinity is now at x1 = 0. The other branch points are the roots of the
cubic equation

x(x+ 1)2 − 4zt = 0. (5.7)

In terms of

ξ =
(
1 + 54 zt + 6

√
3
√
zt (1 + 27 zt)

) 1

3

(5.8)

they are given by

x2 =
(ξ − 1)2

3ξ
, x3 = −2

3
+

1

3

(
ωξ +

1

ωξ

)
, x4 = −2

3
+

1

3

(
ω∗ξ +

1

ω∗ξ

)
, (5.9)

where ω = exp(2iπ/3). The cuts are (x1, x2), (x3, x4).
We can now compute a simple amplitude, namely the genus one topological string

amplitude F1(t). According to the conjecture above, this is given by the genus one free
energy of a matrix model with spectral curve (5.6), and we will use the formula (4.64).
In the case of local P2 the computation is subtle since the curve (5.6) is singular at the
branchpoint x1 = 0, and the corresponding singularity in y′(x1) leads to a logarithmic
divergence for F1. To make sense of this we should compute instead the derivative of F1

w.r.t. t, since at genus one one needs to insert a puncture and the object which is well
defined is in fact dF1/dt. We have to regularize it by setting x1 = ǫ and then take ǫ→ 0.
One finds,

lim
ǫ→0

1

y′(ǫ)

d

dt
y′(ǫ) = 0, (5.10)

therefore in the appropriately regularized version of (4.64) y′(x1) contributes 1. For the
remaining branchpoints, one finds

y′(xi) = M(xi)
∏

j 6=i

(xi − xj)
1/2, M(xi) =

2

x2
i (xi + 1)

, i = 2, · · · , 4. (5.11)

Finally,the A period matrix can be computed as an integral of the unique Abelian differ-
ential on the spectral curve, and this integral can be written in terms of elliptic functions
as

A =
2√

(x1 − x3)(x2 − x4)
K(k), k2 =

(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
. (5.12)

Putting everything together one obtains,

F1(t) = − 1

24

4∑

i=2

lnM(xi) −
1

2
lnK(k) +

1

8
ln(x1 − x3)

2 +
1

8
ln(x2 − x4)

2

− 1

12

∑

1<i<j

ln(xi − xj)
2 − 1

16

4∑

i=2

log(x2
i )

(5.13)
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Plugging now all the data, and reexpressing the result in terms of the flat coordinate t,
we obtain the instanton expansion

F1(t) = − 1

12
log t+

Q

4
− 3Q2

8
− 23Q3

3
+

3437Q4

16
− 43107Q5

10
+79522Q6 +O(Q7) (5.14)

The coefficients of the Q expansion are Gromov–Witten invariants and count worldsheet
instantons of genus one in the local P

2 geometry. This expansion is in agreement with
the results obtained with other methods, like for example the topological vertex [2] and
the holomorphic anomaly equations (applied to this case in [31]).
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