SS 13

PROF. KATRIN WENDLAND PD EMANUEL SCHEIDEGGER MATHEMATISCHES INSTITUT UNIVERSITÄT FREIBURG

Übungsblatt 5

Krümmung von Kurven im \mathbb{R}^2

17. Kettenlinie

- (a) (2 Punkte) Bestimmen Sie die Krümmung einer regulären \mathcal{C}^2 –Kurve $\gamma:I\to\mathbb{R}^2$ als Funktion eines beliebigen Parameters.
- (b) (2 Punkte) Betrachten Sie nun die Kettenlinie $\gamma:I\to\mathbb{R}^2,\ \gamma(t)=\binom{t}{\cosh t}$. Bestimmen Sie die Krümmung als Funktion der Bogenlänge.

18. Newtonsche Mechanik

Es sei $\gamma: I \to \mathbb{R}^3$ eine parametrisierte \mathcal{C}^2 -Kurve. Zeigen Sie, dass gilt:

- (a) (1 Punkt) Die Beschleunigung γ'' ist genau dann parallel zu γ für alle $t \in I$, wenn $\gamma \times \gamma' = c \in \mathbb{R}^3$ konstant ist, d.h. wenn der Drehimpuls erhalten ist. Wie liegt die Kurve im \mathbb{R}^3 in Abhängigkeit von c?
- (b) (2 Punkte) Für γ von der Form $\gamma(\varphi) = \frac{1}{\sigma(\varphi)} \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}, \varphi \in [0, 2\pi]$ gilt: $\frac{\mathrm{d}^2 \sigma}{\mathrm{d} \varphi^2} + \sigma$ ist genau dann konstant, wenn γ ein Kegelschnitt in Polarkoordinaten mit Brennpunkt in $0 \in \mathbb{R}^3$ ist, d.h. es gilt $\widetilde{y}^2 = \rho^2 2\rho \, \varepsilon \, \widetilde{x} + \left(\varepsilon^2 1\right) \, \widetilde{x}^2$ bei geeigneter Wahl der Koordinaten $(\widetilde{x}, \widetilde{y})$ in der x, y-Ebene und für geeignete Konstanten ρ und ε
- (c) (1 Punkt) Wird ein Kegelschnitt mit Brennpunkt $0 \in \mathbb{R}^3$ so durchlaufen, dass γ'' stets parallel zu γ ist, dann ist $|\gamma''|$ ein konstantes Vielfaches von $|\gamma|^{-2}$. (Newtonsches Gravitationsgesetz).

19. Parallelkurven

Sei $\gamma: I \to \mathbb{R}^2$ eine Bogenlängenparametrisierung einer regulären \mathcal{C}^2 Kurve. Der Normalenvektor N ist eindeutig festgelegt durch die Bedingungen $N \perp \dot{\gamma}$, |N| = 1 und $\det(\dot{\gamma}, N) = 1$. Eine Normale ist eine Gerade in Richtung des Normalenvektors. Die Kurven der Kurvenschar $\bar{\gamma}_u(s) = \gamma(s) + uN(s)$ mit konstantem $u \in \mathbb{R}$ heissen Parallelkurven von γ .

- (a) (2 Punkte) Für welche u ist die Kurve $\bar{\gamma}_u$ regulär? Bestimmen Sie die Tangenten und Normalen von $\bar{\gamma}_u$.
- (b) (2 Punkte) Bestimmen Sie den Tangentenvektor bezügl. der Bogenlänge von $\bar{\gamma}_u$ und die Krümmung von $\bar{\gamma}_u$. Welcher Zusammenhang besteht zwischen den Krümmungsradien ρ von γ und $\bar{\rho}_u$ von $\bar{\gamma}_u$? Was lässt sich über die Brennpunkte der Kurven γ und $\bar{\gamma}_u$ sagen?

20. Evolute

Sei $\gamma: I \to \mathbb{R}^2$ eine Bogenlängenparametrisierung einer regulären \mathcal{C}^2 Kurve mit $\kappa(s_0) \neq 0, s_0 \in I$. Wir betrachten die Evolute γ^* , d.h. die Kurve der Brennpunkte von γ .

- (a) (1 Punkt) Unter welchen Voraussetzungen ist γ^* definiert und regulär? Berechnen Sie die Tangente, Bogenlänge und Krümmung von γ^* , falls γ^* regulär ist.
- (b) (2 Punkte) Zeigen Sie, dass γ^* die Hüllkurve der Normalen von γ ist. Gibt es Kurven γ , für die die Evolute γ^* ein Geradenstück enthält?
- (c) (1 Punkt) Die Krümmung der Kurve γ sei eine monotone Funktion der Bogenlänge. Bestimmen Sie die Bogenlänge eines Evolutenbogens von γ^* für $s_1 \leq s \leq s_2$ durch die Krümmungsradien $\rho(s_1), \rho(s_2)$ von γ .

Abgabetermin: Dienstag, 28. Mai 2013 um 12:00 Uhr