Prof. Dr. Katrin Wendland PD Dr. Emanuel Scheidegger Mathematisches Institut Universität Freiburg

Übungsblatt 2

5. Fast komplexe Strukturen

- (a) (2 Punkte) Es sei I eine fast komplexe Struktur auf einem reellen Vektorraum V. Zeigen Sie, daß V in natürlicher Weise die Struktur eines komplexen Vektorraums zulässt.
- (b) (1 Punkt) Zeigen Sie für $V = \mathbb{C}$ mit der standard fast komplexen Struktur, daß I die Multiplikation mit $i = \sqrt{-1}$ induziert.
- (c) (1 Punkt) Es sei $U \subset \mathbb{C}$ offen, und $f: U \to \mathbb{C}$ stetig differenzierbar. Weiter seien für jedes $p \in U$ die Vektorräume T_pU und $T_{f(p)}\mathbb{C}$ mit der standard fast komplexen Struktur I versehen. Zeigen Sie, daß gilt: $\frac{\partial f}{\partial z} \equiv 0$ genau dann, wenn $Df_p \circ I = -I \circ Df_p$ für alle $p \in U$.

6. Hodge-*-Operator

Es sei (V, \langle , \rangle) ein orientierter euklidischer Vektorraum der Dimension d, e_1, \ldots, e_d sei eine positiv orientierte Orthonormalbasis für V. Das Skalarprodukt induziert ein Skalarprodukt auf $\bigwedge^k V$ mit Orthonormalbasis $\{e_{i_1} \wedge \cdots \wedge e_{i_k} \mid 1 \leq i_1 < \cdots < i_k \leq d\}, k = 1, \ldots, d$. Wir bezeichnen $e_1 \wedge \cdots \wedge e_d \in \bigwedge^d V$ mit vol. Schliesslich sei * der Hodge-*-Operator definiert durch

$$\alpha \wedge *\beta = \langle \alpha, \beta \rangle \cdot \text{vol} \qquad \forall \alpha, \beta \in \bigwedge^{\bullet} V.$$

Zeigen Sie, daß gilt:

- (a) (1 Punkt) $*: \bigwedge^k V \to \bigwedge^{d-k} V$ ist wohldefiniert.
- (b) (1 Punkt) Falls $\{i_1, \dots, i_k, j_1, \dots, j_{d-k}\} = \{1, \dots, d\}$, dann ist

$$*(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \varepsilon \cdot e_{j_1} \wedge \cdots \wedge e_{j_{d-k}},$$

wobei $\varepsilon = \operatorname{sgn}(i_1, \dots, i_k, j_1, \dots, j_{d-k})$. Insbesondere ist $*1 = \operatorname{vol}$.

- (c) (1 Punkt) $\langle \alpha, *\beta \rangle = (-1)^{k(d-k)} \langle *\alpha, \beta \rangle \quad \forall \alpha \in \bigwedge^k V.$
- (d) (1 Punkt) $\left(*|_{\bigwedge^k V}\right)^2 = (-1)^{k(d-k)}$.

7. Poincaré-Lemma

- (a) (2 Punkte) Es sei $U \subset \mathbb{C}^n$ offen und $\alpha \in \mathcal{A}^{p,q}(U)$. Zeigen Sie ohne die Koordinatenausdrücke zu verwenden, daß $\overline{\partial \alpha} = \bar{\partial} \bar{\alpha}$. Zeigen Sie, daß daraus insbesondere folgt, daß eine reelle (p,p)-Form $\alpha \in \mathcal{A}^{p,p}(U) \cap \mathcal{A}^{2p}_{\mathbb{R}}(U)$ genau dann ∂ -geschlossen (∂ -exakt) ist, wenn α $\bar{\partial}$ -geschlossen ($\bar{\partial}$ -exakt) ist.
- (b) (2 Punkte) Es sei $B \subset \mathbb{C}^n$ ein Polyzylinder und $\alpha \in \mathcal{A}^{p,q}(B)$ eine d–geschlossene Form mit $p,q \geq 1$. Zeigen Sie, daß es eine Form $\gamma \in \mathcal{A}^{p-1,q-1}(B)$ gibt, so daß $\partial \bar{\partial} \gamma = \alpha$. Wenden Sie dazu zuerst das reelle und dann das holomorphe Poincaré–Lemma und sein komplex Konjugiertes an.

8. Fundamentalform

(4 Punkte) Zeigen Sie, daß $\omega = \frac{i}{2} \sum_{k=1}^{n} \mathrm{d}z^{k} \wedge \mathrm{d}\bar{z}^{k}$ eine Fundamentalform für die Standardmetrik auf \mathbb{C}^{n} mit der standard fast komplexen Struktur ist. Zeigen Sie, daß diese Fundamentalform als $\omega = \frac{i}{2} \partial \bar{\partial} \phi$ für eine positive Funktion ϕ geschrieben werden kann. Bestimmen Sie solch eine Funktion ϕ .

Abgabetermin: Mittwoch, 14. 7. 2014 um 12:00 Uhr.