
SEMINAR ON LIE GROUPS, LIE ALGEBRAS AND THEIR

REPRESENTATIONS

1. Introduction

The concept of a Lie group arises naturally by putting together the algebraic notion of a
group with the geometric notion of a smooth manifold. A Lie group is a smooth manifold
with a group structure such that the group operations are smooth. Lie groups arise in a
natural way as symmetries of a geometric object. The general linear group GLn(R) is our
guiding example of a Lie group. A representation of a Lie group G on a vector space V
is a group homomorphism ρ : G → GL(V ). Similarly, the notion of Lie algebra appears
naturally. For example, the tangent space g at the identity element of a Lie group G has
this structure. For G = GLn(R), this yields g = MatR(n × n) with the composition rule
given by the commutator [X,Y ] = XY − Y X. A vector space with such a composition
rule is called a Lie algebra.

In this seminar, we will study (matrix) Lie groups, Lie algebras and their representations.
We will introduce the notion of Lie groups and Lie algebras and discuss the correspondence
between them. Since finite dimensional “semisimple” Lie algebras can be viewed as elemen-
tary building blocks of more complicated Lie algebras, we will study them with an emphasis
on the structure theory and their representations. Finally, we will discuss representations
of Lie groups and prove a version of the Peter-Weyl Theorem, which is a statement about
using irreducible representations of a compact Lie group G to study the Hilbert space of
square integrable functions on G with respect to the so-called Haar measure. As a corollary
of the Peter-Weyl theorem, it follows that every compact Lie group can be realized as a
matrix Lie group.

2. Introduction to matrix Lie groups and Lie algebras

2.1. Introduction to matrix Lie groups and Lie algebras. We will introduce matrix
Lie groups and Lie algebras and give examples. We will briefly discuss the exponential of
a matrix which we will use to define the Lie algebra g associated to a matrix Lie group G.
This assignment G 7→ g allows us to construct examples of (matrix) Lie algebras.

Seminar date: 17.04.18

References: [2], Chapter 1, sections 1.1, 1.2.1-1.2.3, Chapter 2, section 2.1, section 2.4,
Theorem 2.11 (without proof), Chapter 3, section 3.1, pages 49-51, section 3.3 and section
3.4, pages 57-58.

Additional References: [5], Chapter 2, section 2.1, pages 30-38 and section 2.2, pages
44-48.
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2.2. Lie group homomorphisms to homomorphisms of Lie algebras. We will intro-
duce the notion of homomorphism of matrix Lie groups and homomorphism of Lie algebras.
Moreover, we will show that a homomorphism Φ : G→ H of matrix Lie groups gives rise to
a homomorphism φ : g→ h of the associated Lie algebras. As an example, we will discuss
the induced Lie algebra homomorphism associated to the Adjoint map, which will give rise
to the so-called adjoint representation. We will also examine how the construction of Lie
algebra homomorphism from a Lie group homomorphism interacts with composition of Lie
group homomorphisms. Finally, we will introduce the notion of the exponential map of
the Lie algebra of a matrix Lie group and we will sketch how the exponential map can be
used to show a Lie group homomorphism Φ : G→ H is uniquely determined by φ : g→ h
when G is connected.

Seminar date: 24.04.18

References: [2], Chapter 3, sections 3.5, 3.7 and 3.8.

Additional references: [5], Chapter 2, section 2.6, pages 78-81.

Note: This talk assumes familiarity with the notion of connectedness of a topological
space. However, we only need a working definition of connectedness which can be dis-
cussed during the preparation of the talk.

2.3. Homomorphism of Lie algebras to Lie group homomorphisms. We saw that
a homomorphism of matrix Lie groups Φ : G → H induces a homomorphism of Lie al-
gebras φ : g → h. In this talk, we will investigate the converse of this statement. Our
main technical tool will be the so-called Baker-Campbell-Hausdorff (BCH) formula which
is roughly a statement about expressing the group structure of G in a small neighborhood
of the identity in terms of Lie algebra structure of g. Finally, we will sketch a proof of
the following statement: Given a homomorphism of Lie algebras φ : g → h, there is a Lie
group homomorphism Φ : G→ H whose induced Lie algebra homomorphism is φ when G
is “simply connected”.

Seminar date: 08.05.18

References: [2], Chapter 5, sections 5.3-5.7.

Additional references: [5], Chapter 2, section 2.6, pages 81-83.

Note: This talk is slightly challenging. It also requires familiarity with simply connected-
ness of a topological space.

3. Finite dimensional Lie algebras and their representations

3.1. Basics of Lie algebras and Nilpotent Lie algebras. We will introduce some basic
objects such as ideals, center, centralizer and normalizer which are useful to study a Lie
algebra. We will discuss abelian and nilpotent Lie algebras. Finally, we will prove Engel’s
theorem which states that if g is a Lie algebra consisting of nilpotent endomorphisms on a
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finite dimensional vector space V 6= {0}, then there is a nonzero v ∈ V such that X(v) = 0
for all X ∈ g. From this it follows that, in a suitable basis of V , all X ∈ g can be represented
as strictly upper triangular matrices. In particular, g is a nilpotent Lie algebra.

Seminar date: 15.05.18

References: [3], Chapter I, sections 1.1, 1.2, 2.1, 2.3, 3.2, 3.3; [4], Chapter I, section 2,
pages 7-9 and section 6.

3.2. Solvable Lie algebras. In this talk, we will discuss solvable Lie algebras. We will
prove Lie’s theorem for a solvable Lie algebra g which is a Lie subalgebra of gl(V ) of a finite
dimensional complex vector space V . Lie’s theorem says that if g is a solvable Lie algebra
as in the previous line, then V contains a common eigenvector for all X ∈ g. Consequently,
all X ∈ g can be represented as upper triangular matrices in a suitable basis of V .

Seminar date: 29.05.18

Reference: [3], Chapter I, section 3.1 and Chapter II, section 4.1; [4], Chapter I, section
5.

3.3. Simple and Semisimple Lie algebras. We will introduce simple and semisimple
Lie algebras. Our main goal will be to prove Cartan’s semisimplicity criterion which states
that semisimplicity of a finite dimensional complex Lie algebra g is equivalent to nondegen-
eracy of the so-called Killing form which is a symmetric bilinear form on g. We will discuss
Cartan’s criterion for solvability, which we will need in the proof of Cartan’s semisimplic-
ity criterion, for a Lie subalgebra of gl(V ) where V is a finite dimensional complex vector
space. We will sketch a proof of the following statement: A finite dimensional complex Lie
algebra g is semisimple if and only if it can be written as a direct sum (of Lie algebras)
of simple (as Lie algebra) ideals. We will also give examples of simple and semisimple Lie
algebras.

Seminar date: 05.06.18

Reference: [3], Chapter II, sections 4.3, 5.1 and 5.2; [4], Chapter I, section 3, pages 13-14
and section 7, pages 24-30.

Note: This talk is slightly challenging because the proof of Cartan’s solvability criterion
is slightly technical. We will also need the Jordan decomposition theorem for this talk
which we will use without proof. However, we will need the notion of semisimple elements
of gl(V ) which we will introduce during the talk.

3.4. Structure theory of semisimple Lie algebras (root space decomposition).
For this talk, we assume that g is a finite dimensional semisimple complex Lie algebra. We
will discuss structure theory of g. The main goal will be to show that g has a root space
decomposition. The root space decomposition plays a central role in the classification of
semisimple Lie algebras. We will introduce the notion of toral subalgebras of g and we will
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see that a toral algebra of g is always abelian. We will show that if g 6= {0}, then it has
a nontrivial toral subalgebra h. We will use a maximal toral subalgebra h to show that g
has a root space decomposition: g = ⊕α∈∆gα, where ∆ is a finite of subset of h∗ and gα is
the “eigenspace” associated to the “root” α. Finally, we will show that g0 = h.

Seminar date: 12.06.18

Reference: [3], Chapter II, sections 8.1-8.2.

3.5. Structure theory of semisimple Lie algebras (orthogonality of root spaces).
In this talk, we will study the root space decomposition g = ⊕α∈∆gα of a finite dimensional
complex semisimple Lie algebra g associated to a maximal toral Lie subalgebra h in detail.
We will examine interactions between a root space decomposition and the Killing form of
g. We will show that gα is one dimensional for nonzero α. As an example, we will also
discuss the root space decomposition of sl(2,C). Finally, we will explain in what sense g
contains many copies of sl(2,C) and briefly outline how sl(2,C) can be used to study roots
and root spaces of g.

Seminar date: 19.06.18

Reference:: [3], Chapter II, sections 8.3-8.4; [4], Chapter II, section 4, pages 94-100.

3.6. Representations of a Lie algebra. We will introduce representations (modules)
of a Lie algebra g and the notions of irreducible representations and completely reducible
representations. We will discuss Schur’s lemma. We will also discuss the Casimir element
of a finite dimensional representation. Both Schur’s lemma and the Casimir of a represen-
tation will be used in proving Weyl’s theorem which states that every finite dimensional
complex representation of a finite dimensional complex semisimple Lie algebra g is com-
pletely reducible. This means that irreducible finite dimensional complex representations
of g are the building blocks for finite dimensional complex representations of g.

Seminar date: 26.06.18

Reference:: [3], Chapter II, section 6.1-6.3; [4], Chapter V, section 1, proposition 5.1 and
corollary 5.2, section 4, pages 241-243.

3.7. Weight space decomposition and representations of sl(2,C). We will introduce
the notion of weights and weight spaces of a representation of a Lie algebra. We will show
that a complex representation of a finite dimensional complex semisimple Lie algebra g
always has weight space decomposition. We will then discuss representations of sl(2,C), in
particular, we will classify it’s finite dimensional irreducible representations. We will briefly
indicate how the representation theory of sl(2,C) plays a crucial role for the classification
of irreducible representations of all semisimple Lie algebras.
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Seminar date: 03.07.18

Reference: [3], Chapter II, section 7; [4], Chapter I, section 9, Chapter II, section 2, page
86 and Chapter V, section 2, pages 225-226.

4. Representation of Compact Lie groups

4.1. Representations of a compact Lie group. In this talk, we will discuss represen-
tations of a Lie group G. We will mainly concentrate on representations of a compact Lie
group. We will introduce the notion of character of a representation of G and discuss their
orthogonality relations with respect to the so-called Haar measure on G. We will show
that a representation of G is determined up to isomorphism by its character.

Seminar date: 10.07.18

Reference: [1], Chapter II, section 1, section 3 and section 4; [4], Chapter IV, section 2.

Note: This talk requires some knowledge of measure theory, in particular the L2 space
of a measure on a measurable space. We will use the existence of the Haar measure on a
compact Lie group as a fact (without proof). We also will use the following fact without
proof: If V is a representation of a compact Lie group G, then V possesses a G-invariant
inner product.

4.2. Peter-Weyl Theorem. The main goal of this talk is to prove the Peter-Weyl theorem
for a compact Lie group. The theorem says that the characters of irreducible representa-
tions generate a dense subspace of L2(G) the Hilbert space of square integrable functions
with respect to the Haar measure on G. We will recap necessary ingredients from Analysis
and give a detailed sketch of a proof. As an application of this theorem, we will show that
a compact Lie group can be realized as a matrix Lie group.

Seminar date: 17.07.18

Reference: [1], Chapter III, section 2 and section 3; [4], Chapter IV, section 3.

Note: This talk is challenging, it requires good knowledge of Analysis e.g. compact oper-
ators on a Hilbert space.
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