Modulformen I WS 12/13

Dr. Habil. Emanuel Scheidegger Dipl. Phys. Magnus Engenhorst Mathematisches Institut Universität Freiburg

Übungsblatt 13

Modulformen mit Charakter

- 49. Konstruktion von Spitzenformen für $\Gamma(N)$. (4 Punkte) Es seien $N \in \{2, 3, 4, 6, 12\}$ und $k = \frac{12}{N}$. Zeigen Sie, dass $S_k(\Gamma(N)) = \mathbb{C} \cdot \Delta(N\tau)^{\frac{1}{N}}$.
- 50. Dirichlet–Charaktere

Es sei χ ein Dirichlet-Charakter modulo N.

- (a) (1 Punkt) Zeigen Sie folgende Eigenschaften des Dirichlet-Charakters: $\chi(1) = 1$. Wenn $a \equiv b \mod N$, dann ist $\chi(a) = \chi(b)$. Wenn ggT(a, N) = 1, dann ist $\chi(a)$ eine $\phi(N)$ -te Einheitswurzel, wobei $\phi(N)$ die Euler-Funktion ist.
- (b) (1 Punkt) Sei $\chi \colon \mathbb{Z}_N^* \to \mathbb{C}^*$ ein Gruppenhomomorphismus. Zeigen Sie, dass χ zu einem Dirichlet-Charakter modulo N erweitert werden kann.
- (c) (2 Punkte) Zeigen Sie, dass für eine ungerade Primzahl p gilt: Falls ggT(a,p)=1, ist $\left(\frac{a}{p}\right)\equiv a^{(p-1)/2} \, \mathrm{mod} \, p$. Schliessen Sie daraus, dass $\left(\frac{a}{p}\right)$ ein Dirichlet–Charakter modulo p ist.

Verwenden Sie zur Lösung von (b) und (c) den kleinen Satz von Fermat, der besagt, dass für eine Primzahl p und eine ganze Zahl a gilt: $a^p \equiv a \mod p$. (Versuchen Sie diesen Satz zu beweisen.)

51. Quadratische Reziprozität

Es seien p und q ungerade Primzahlen und $\left(\frac{\cdot}{p}\right)$ das Legendre–Symbol.

- (a) (1 Punkt) Es sei $A = \{a_1, \dots, a_{\frac{p-1}{2}}\}$ ein Vertretersystem von $(\mathbb{Z}_p)^*/\{\pm 1\}$. Weiter sei $f: \mathbb{Q} \to \mathbb{C}$ eine \mathbb{Z} -periodische Funktion für die gilt:
 - f(-z) = -f(z) für alle $z \in \mathbb{Q} \setminus \mathbb{Z}$,
 - $f\left(\frac{a}{p}\right) \neq 0$ für alle $a \in \mathbb{Z} \setminus p\mathbb{Z}$.

Zeigen Sie, dass folgende Verallgemeinerung des Gauss-Lemmas gilt:

$$\left(\frac{q}{p}\right) = \prod_{a \in A} \frac{f\left(\frac{a}{p}q\right)}{f\left(\frac{a}{p}\right)}.$$

- (b) (1 Punkt) Zeigen Sie, dass $f(z) = \sin(2\pi z)$ die Bedingungen in Aufgabe (a) erfüllt.
- (c) (1 Punkt) Drücken Sie $\sin(2\pi qz)$ als Polynom in $\sin(2\pi z)$ aus und untersuchen Sie seine Parität und Nullstellen.
- (d) (1 Punkt) Zeigen Sie mit Hilfe von (a), (b) und (c) das Quadratische Reziprozitätsgesetz:

$$\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right).$$

52. Modulformen mit Charakter.

(4 Punkte) Zeigen Sie, dass $(\eta(\tau)\eta(3\tau))^6 \in S_6(\Gamma_0(3))$ und dass $(\eta(\tau)\eta(7\tau))^3 \in S_3(7,\chi)$, wobei $\chi(n)=\left(\frac{n}{7}\right)$.

Abgabetermin: Freitag, 5.2.2013 um 10:00 Uhr.