2. ÜBUNGSBLATT - RIEMANN-INTEGRAL

MEHRFACHINTEGRALE

IM WS 2014/2015 BEI PD DR. E. SCHEIDEGGER

Abgabe Dienstag, den 20.1.15 bis 18 Uhr in die Postkästen Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Aufgabe 1 - Volumenänderungen durch lineare Abbildungen (1+1+1+1) Punkte)

Sei $L \in Mat(n \times n, \mathbb{R})$ und $A \subseteq \mathbb{R}^n$ Jordan-messbar. Zeigen Sie, dass dann auch $LA := \{Lx \mid x \in A\} \subseteq \mathbb{R}^n$ Jordan-messbar ist mit $vol^n(LA) = |\det(L)| \, vol^n(A)$. Gehen Sie dazu vor wie folgt:

- (a) Zeigen Sie die Behauptung für den Fall, dass L nicht invertierbar ist.
- (b) Zeigen Sie, dass sich das Volumen jedes Würfels $W \in \mathcal{W}_k^n$ um den gleichen Faktor α_L ändert. Folgern Sie daraus, dass sich auch das Volumen jeder Jordan-messbaren Menge B um den gleichen Faktor α_L ändert.
- (c) Zeigen Sie die Behauptung für den Fall, dass L eine orthogonale Matrix ist. Folgern Sie dazu aus Aufgabe 4 von Blatt 1, dass die Einheitskugel im \mathbb{R}^n Jordan-messbar ist.
- (d) Zeigen Sie die Behauptung für den Fall, dass L eine invertierbare Diagonalmatrix ist.

Der allgemeine Fall folgt dann daraus, dass sich jede invertierbare Matrix darstellen lässt als Produkt einer Diagonalmatrix mit orthogonalen Matrizen.

Aufgabe 2 - Alternative Definition ohne Normierung (4 Punkte)

Analog zum Riemann-Integral betrachten wir zwei Operationen, die geeigneten Teilmengen $A \subset \mathbb{R}^n$ und Funktionen $f : \mathbb{R}^n \to \mathbb{R}$ eine Zahl in \mathbb{R} zuordnen:

- (a) Für Punkte $x_1, ..., x_N \in \mathbb{R}^n$ und reelle Zahlen $r_1, ..., r_N$ definieren wir die gewichtete Summe über A als $\mathcal{F}_A(f) = \sum_{i=1}^N r_i(\mathbf{1}_A \cdot f)(x_i)$.
- (b) Für eine stetige und beschränkte Funktion $\rho : \mathbb{R}^n \to [0, \infty)$ nennen wir f gewichtet integrierbar über A mit $\mathcal{G}_A(f) = \int_{\mathbb{R}^n} (\mathbf{1}_A \cdot \rho \cdot f)(x) d^n x$, wenn das Integral exisiert.

Zeigen Sie für a) oder b), dass die Eigenschaften (1) bis (4) aus Proposition 2.3 gelten.

Aufgabe 3 - Teilmengen und Integrierbarkeit (2+2 Punkte)

Zeigen Sie:

- (a) Es sei f Riemann-integrierbar über $C \subset \mathbb{R}^n$ und $A \subset C$ sei Jordan-messbar, dann ist f auch integrierbar über A. Hinweis: Benutzen Sie Proposition 1.6 und 2.6
- (b) Es sei f Riemann-integrierbar über Jordan-messbare Mengen A und B, dann ist f auch integrierbar über $A \cap B$ und $A \cup B$, und es gilt

$$\int_{A \cup B} f = \int_{A} f + \int_{B} f - \int_{A \cap B} f$$

Aufgabe 4 - Umkehrung der Differentiation in \mathbb{R}^2 (2+2 Punkte)

Zeigen Sie:

- (a) Sind $f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}$ zwei stetig differenzierbare Funktionen, so gibt es genau dann eine zweimal stetig differenzierbare Funktion $F : \mathbb{R}^2 \to \mathbb{R}$ mit $F' = (f_1 \ f_2)$, wenn $\frac{\partial f_2}{\partial x} = \frac{\partial f_1}{\partial y}$.
- (b) Im Fall der Definitionsmenge $D = \mathbb{R}^2 \setminus \{0\}$ hingegen ist diese Aussage falsch : die Funktionen $f_1 \colon D \to \mathbb{R}$ mit $x \mapsto \frac{-y}{x^2 + y^2}$ und $f_2 \colon D \to \mathbb{R}$ mit $x \mapsto \frac{x}{x^2 + y^2}$ erfüllen zwar $\frac{\partial f_2}{\partial x} = \frac{\partial f_1}{\partial y}$, aber es gibt keine zweimal stetig differenzierbare Funktion $F \colon D \to \mathbb{R}$ mit $F' = (f_1 \ f_2)$.