5. ÜBUNGSBLATT -INTEGRALE ÜBER UNTERMANNIGFALTIGKEITEN

MEHRFACHINTEGRALE

IM WS 2014/2015 BEI PD DR. E. SCHEIDEGGER

Abgabe Dienstag, den 10.2.15 bis 18 Uhr in die Postkästen Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Aufgabe 1 -Fläche eines Graphen (4 Punkte)

Welchen Flächeninhalt hat der Bereich $B = \{x^2 + y^2 \le 1\}$ auf der Sattelfläche

$$\{(x,y,z) \in \mathbb{R}^3 \mid z = xy\}?$$

Aufgabe 2 - Volumen eines Torus (1+1+2 Punkte)

Es seien 0 < r < R gegeben. Betrachten Sie die Abbildung

$$F: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(\varphi, \psi) \mapsto ((R - r\cos\psi)\cos\varphi, (R - r\cos\psi)\sin\varphi, r\sin\psi)$$

- (a) Skizzieren Sie $M = \operatorname{im} F$.
- (b) Bestimmen Sie $U \subset \mathbb{R}^2$ so, dass $F|_U$ eine Parametrisierung von M liefert und $M \setminus F(U)$ eine endliche Vereinigung höchstens eindimensionaler Untermannigfaltigkeiten ist.
- (c) Berechnen Sie $vol^2(M)$.

Aufgabe 3 - Reparametrisierung (4 Punkte)

Es seien $U,V\subset\mathbb{R}^n$ offen, $F:U\to\mathbb{R}^{n+1}$ und $G:V\to\mathbb{R}^{n+1}$ Parametrisierungen einer Untermannigfaltigkeit $M\subset\mathbb{R}^{n+1}$ und $H:V\to U$ ein Diffeomorphismus mit $\det(dH(x))>0$ für alle $x\in V$ und $F\circ H=G$. Zeigen Sie: Für jede stetige Abbildung $X:M\to\mathbb{R}^{n+1}$ gilt

$$\int_{V} \det(X \circ G, \frac{\partial G}{\partial x_{1}}, \dots, \frac{\partial G}{\partial x_{n}})(x) d^{n}x = \int_{U} \det(X \circ F, \frac{\partial F}{\partial y_{1}}, \dots, \frac{\partial F}{\partial y_{n}})(y) d^{n}y$$

Aufgabe 4 - Die Sphäre (4 Punkte)

Es sei $S^n \subset \mathbb{R}^{n+1}$ die Einheitssphäre und es sei $F: \mathbb{R}^n \to S^n$ die Abbildung, die einem Punkt $x \in \mathbb{R}^n$ den zweiten Schnittpunkt der Geraden durch $(0, x_1, \dots, x_n)$ und $(1, 0, \dots, 0) \in \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1}$ zuordnet. Zeigen Sie, dass F eine Parametrisierung ist mit $S^n \setminus F(U) = \{(1, 0, \dots, 0)\}$ und geben Sie den Korrekturfaktor $\sqrt{g^F(x)}$ an.