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Abstract
This paper aims at settling the issue of the validity of the de Jonquières formulas. We

consider the space of divisors with prescribed multiplicity, or de Jonquières divisors, contained
in a linear series on a smooth projective curve. Assuming zero expected dimension of this
space, the de Jonquières formulas compute the virtual number of de Jonquières divisors.
Using degenerations to nodal curves we show that for a general curve equipped with a general
complete linear series, the space is of expected dimension, which shows that the counts are in
fact true. This implies that in the case of negative expected dimension a general linear series
on a general curve does not admit de Jonquières divisors of the expected type.

1 Introduction
In his 1866 memoir [Jon66], de Jonquières computed the number of divisors with prescribed

multiplicities that are contained in a fixed linear series on a given plane algebraic curve.
Almost a century later, and using modern techniques of topology and intersection theory

of cycles on the symmetric product on a curve, MacDonald [Mac62] and Mattuck [Mat65]
recovered the original formula in characteristic zero and arbitrary characteristic, respectively,
and generalised it to linear series of any dimension. However, their work does not address
the vagueness of the classical statements, assuming either that the linear series in question
is sufficiently generic, or that the multiplicities are counted correctly. To address this issue,
Vainsencher [Vai81] described the locus of divisors with prescribed multiplicities as the vanishing
locus of a section of a bundle of the appropriate rank. Using a natural filtration of this bundle,
he computed its Chern classes without making use of the Grothendieck-Riemann-Roch theorem,
and established the enumerative validity of the de Jonquières formula for plane curves and for
some higher dimensional cases.

The aim of this paper is twofold. On the one hand, we settle the issue of the validity of the
de Jonquières formula for linear series of arbitrary degree and dimension on a general curve by
studying the geometry of the respective moduli space. On the other hand, we develop a theory
of degenerations for de Jonquières divisors to nodal curves, which plays a central role as the
main tool of in the study of the aforementioned moduli space.

Aside from being interesting objects in their own right, de Jonquières divisors and their
degenerations are natural generalisations of the concept of strata of abelian differentials which
were first introduced in the context of Teichmüller dynamics and flat surfaces - see the works of
Masur [Mas82] and Veech [Vee82], and more recently, of Bainbridge, Chen, Gendron, Grushevsky,
and Möller [BCGGM16]. These strata are, however, interesting objects also from the point of
view of algebraic geometry, as can be seen in the work of Farkas and Pandharipande [FP18], Chen
and Tarasca [CT16], or Mullane [Mul16]. In fact, the result of Polishchuk [Pol06] concerning
the dimension of the strata inMg,n provides an important clue towards the validity of the de
Jonquières formulas.
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In what follows we fix the notation and describe the objects of interest. Let C be a smooth
projective curve of genus g and denote by Cd its d-th symmetric product. Furthermore, let Grd(C)
parametrise linear series of type grd, i.e.

Grd(C) := {l = (L, V ) | L ∈ Picd(C), V ∈ G(r + 1, H0(C,L))}.

In this paper we focus on the case of Brill-Noether general curves, meaning that Grd(C) is a
smooth variety and its dimension is given by the Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r) ≥ 0. (1)

Moreover it follows that the Hilbert scheme Hilbd,g,r parametrising curves in Pr of degree d and
(arithmetic) genus g has a unique component Hd,g,r, whose general point corresponds to a smooth
curve and which maps dominantly ontoMg. Thus, when we talk about a general curve C with
a general linear series l ∈ Grd(C) we refer to a general point [C l−→ Pr] ∈ Hd,g,r.

We now define the main object of interest in this paper: for a fixed smooth curve C of genus
g with a fixed linear series l = (L, V ) ∈ Grd(C), a de Jonquières divisor of length N is a divisor
a1D1 + . . .+ akDk ∈ Cd such that

a1D1 + . . .+ akDk ∈ PV,

where k ≤ d is a positive integer and the Di are effective divisors of degree di for i = 1, . . . , k
such that N =

∑k
i=1 di. If l is complete (i.e. such that g − d + r ≥ 0), the definition of a de

Jonquières divisor is equivalent to

L ' OC(a1D1 + . . .+ akDk).

Furthermore, if we let µ1 = (a1, . . . , ak) and µ2 = (d1, . . . , dk) be two positive partitions such
that

∑k
i=1 aidi = d, then we denote the set of de Jonquières divisors of length N determined by

µ1 and µ2 by DJr,dk,N (µ1, µ2, C, l).
In the particular case when di = 1 for all i = 1, . . . , k, let n := N = k and the de Jonquières

divisor is of the form
a1p1 + . . .+ anpn,

for some distinct points p1, . . . , pn ∈ C. Here we simplify the notation to

DJr,dk,N (µ1, µ2, C, l) = DJr,dn (µ1, C, l).

It turns out (see Section 2.1) that the space DJr,dk,N (µ1, µ2, C, l) has the structure of a
determinantal variety and its expected dimension (or, equivalently, lower bound for its dimension)
is

expdimDJr,dk,N (µ1, µ2, C, l) = N − d+ r.

The de Jonquières formula (cf. [Mat65] §5) states that, if we expect there to be a finite number
of de Jonquières divisors of length N (so if N − d+ r = 0), then this virtual number is given by
the coefficient of the monomial td1

1 · . . . · t
dk
k in

(1 + a2
1t1 + . . .+ a2

ktk)g(1 + a1t1 + . . .+ aktk)d−r−g. (2)

Substituting r = 1 and d1 = . . . = dk = 1 in formula (2) recovers the number of ramification
points of a Hurwitz cover of C obtained from the Plücker formula. In addition, if C is the plane
cubic, then g = 1, d− r − g = 1 and we recover its 9 flex points. Lastly, taking the linear series
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to be the canonical one, we recover the number of odd theta characteristics on a smooth general
curve. Hence we expect these counts to be true. To settle the issue we must however study the
space DJr,dk,N (µ1, µ2, C, l), establish whether it is empty when the expected dimension is negative,
and when non-empty whether it is smooth, reduced, and of expected dimension.

Luckily, we are able to settle these questions in the affirmative. In fact, the non-emptiness of
the space of de Jonquières when the expected dimension is non-negative follows from an easy
class computation, which we explain in Section 2.2.

The questions regarding the dimension of the space DJr,dk,N (µ1, µ2, C, l) and whether it is empty
when the expected dimension is negative are less straightforward and require the degeneration
techniques. Using limit linear series on nodal curves of compact type, we prove

Theorem 1.1 (Dimension theorem). Fix a general curve C of genus g equipped with a general
complete linear series l ∈ Grd(C). If N − d+ r ≥ 0, the space DJr,dk,N (µ1, µ2, C, l) is of expected
dimension,

dimDJr,dk,N (µ1, µ2, C, l) = N − d+ r.

A direct consequence of the dimension theorem is the non-existence statement for complete linear
series:

Corollary 1.2. Let C be a general curve equipped with a general complete linear series l ∈ Grd(C).
If N − d+ r < 0, the variety DJr,dk,N (µ1, µ2, C, l) is empty.

The validity of de Jonquières’ counts is a direct consequence of Theorem 1.1, and of the
determinantal variety structure of the space of de Jonquières divisors. The latter implies that
DJr,dk,N (µ1, µ2, C, l) is in fact a Cohen-Macaulay variety (Proposition 4.1, Chapter II, [ACGH85]).
As such, if it is zero-dimensional, it consists of a finite number of discrete closed points. This
yields

Corollary 1.3. Let C be a general curve equipped with a general complete linear series l ∈ Grd(C).
If N − d+ r = 0, the variety DJr,dk,N (µ1, µ2, C, l) is a finite collection of reduced points.

We address the issue of the smoothness of DJr,dk,N (µ1, µ2, C, l) by expressing the space as
an intersection of subvarieties inside the symmetric product Cd and obtaining a transversality
condition from the study of the relevant tangent spaces.

Theorem 1.4 (Smoothness result). Let C be a smooth general curve of genus g. Then for any
complete linear series l ∈ Grd(C), the space DJr,dk,N (µ1, µ2, C, l) is smooth, whenever N −d+r > 0.

The proof is also by degeneration to nodal curves and limit linear series, however this time using
a strategy developed in [Far08] .

Finally, we prove the non-existence result for non-complete linear series using a different
degeneration technique, namely compactified Picard schemes for moduli of stable pointed curves.
We obtain

Theorem 1.5 (Non-existence statement). Let C be a general curve equipped with a general
linear series l ∈ Grd(C) satisfying g − d+ r < 0 and let µ be a positive partition of d length n. If
n− d+ r < 0, the variety DJr,dn (µ,C, l) is empty.

These degenerations are only suitable for treating the case of de Jonquières divisors satisfying
d1 = . . . = dk = 1, as they rely on the fact that the points in the support of the divisor are
distinct.
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The paper is organised as follows. In Section 2 we collect some preliminary results about
the space DJr,dk,N (µ1, µ2, C, l) which will form the basis for the arguments in the remainder
of the paper. In Section 2.1 the space DJr,dk,N (µ1, µ2, C, l) is endowed with the structure of a
determinantal subvariety of Cd, while in Section 2.2 an easy argument shows that the space
DJr,dk,N (µ1, µ2, C, l) is indeed non-empty when the expected dimension is positive. Furthemore,
in Section 2.3 we express the space DJr,dk,N (µ1, µ2, C, l) as an intersection of subvarieties of the
symmetric product Cd and establish the condition for this intersection to be transverse.

We then proceed in Section 3 to describe degenerations of de Jonquières divisors for families
of smooth curves with a nodal central fibre. We approach the question from two perspectives:

1. In Section 3.1 we look at the theory of limit linear series, as developed by Eisenbud and
Harris in [EH86], which applies to the case when the central fibre is a curve of compact type. In
particular, we address the question of what it means to say that a limit linear series admits a de
Jonquières divisor. In this context we use a very simple degeneration and an induction argument
to prove Theorem 1.1 in Section 4 and Theorem 1.4 in Section 5.

2. In Section 3.2 we discuss compactifications of the Picard schemes over the moduli space
of stable curves with marked points, following [Cap94] and [Mel11], which come into play for
central fibres that are stable curves. This approach represents our attempt at generalising the
degenerations of abelian differentials, as they appear in [Che17] or [FP18]. Of course, what
distinguishes our case from the case of differentials is that we do not have a readily available
equivalent of the relative dualising sheaf on the family of curves. These degenerations have as
direct practical application the proof by induction of Theorem 1.5 in Section 6.

We conclude the paper in Section 7 with a discussion of the space de Jonquières divisors
where the partition µ1 is allowed to have negative coefficients as well.
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2 The geometry of the space of de Jonquières divisors
In this section we extract as much information as possible about the geometry of the space

DJr,dk,N (µ1, µ2, C, l) of de Jonquières divisors for a fixed curve C equipped with a linear series
l = (L, V ) of type grd, without using any degeneration techniques.

We recall some standard definitions: for a smooth curve C, let Crd be the subvariety of Cd
parametrising effective divisors of degree d on C moving in a linear series of dimension at least r:

Crd := {D ∈ Cd | dim |D| ≥ r},

and W r
d (C) be the associated variety of complete linear series of degree d and dimension at least

r, i.e.
W r
d (C) := {L ∈ Picd(C) | h0(C,L) ≥ r + 1} ⊆ Picd(C).

Allowing the curve to vary in the moduli spaceMg of curves of genus g, we denote by Wr
d the

relative counterpart of W r
d (C).
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2.1 The space of de Jonquières divisors as degeneracy locus

Fix an integer k ≤ d and two vectors of positive integers µ1 = (a1, . . . , ak) and µ2 = (d1, . . . , dk)
such that

∑k
i=1 aidi = d. The space DJr,dk,N (µ1, µ2, C, l) can be described as a degeneracy locus

of vector bundles over Cd as follows: the idea is that the condition

a1D1 + . . .+ akDk ∈ PV

is equivalent to the condition that the natural restriction map

V → H0(C,L/L(−a1D1 − . . .− akDk))

has non-zero kernel. To reformulate this globally in terms of a morphism of two vector bundles
over Cd, let the first bundle E = OCd

⊗V be the trivial bundle. As for the second bundle, consider
the diagram

C × Cd ⊃ U

C Cd

σ τ

where σ and τ are the usual projections and U is the universal divisor defined as

U = {(p,D) | D ∈ Cd and p ∈ D} ⊂ C × Cd.

Alternatively, identifying Cd with the Hilbert scheme C [d] of d points on C, one defines U as the
universal family U ⊂ C × C [d]. For the second bundle, consider the sheaf:

Fd(L) = τ∗(σ∗L⊗OU ),

By cohomology and base change Fd(L) is indeed a vector bundle. The fibre of Fd(L) over any
point D ∈ Cd is given by the d-dimensional vector space H0(C,L/L(−D)).

Finally, let Φ : E → Fd(L) be the vector bundle morphism obtained by pushing down to Cd
the restriction σ∗L→ σ∗L⊗OU . Moreover let

Σk,N (µ1, µ2) =
{
E ∈ Cd | E =

k∑
i=1

aiDi for some D1 ∈ Cd1 , . . . , Dk ∈ Cdk
}.

The space DJr,dk,N (µ1, µ2, C, l) is defined as the r-th degeneracy locus of Φ, i.e. the locus in
Σk,N (µ1, µ2) where rk Φ ≤ r.

Lemma 2.1. For every point D ∈ DJr,dk,N (µ1, µ2, C, l), one has

dimDDJ
r,d
k,N (µ1, µ2, C, l) ≥ N − d+ r.

Proof. From the description of DJr,dk,N (µ1, µ2, C, l) as a degeneracy locus, its codimension in
Σk,N (µ) is at most

(rk E − r)(rkFd(L)− r) = (r + 1− r)(d− r) = d− r.

Since dim Σk,N (µ1, µ2) = N , the dimension estimate follows.
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Finally, we record here an easy result that forms the base case for the induction argument in
the proof of Theorem 1.5.

Lemma 2.2. Let C be any smooth curve of genus g with a general linear series l ∈ Grd(C). Fix
an integer k ≤ d and two vectors of positive integers µ1 = (a1, . . . , ak) and µ2 = (d1, . . . , dk) such
that

∑k
i=1 aidi = d and N − d+ r < 0.

1. If g − d+ r = 0, then DJr,dk,N (µ1, µ2, C, l) = ∅.

2. If g − d+ r < 0 and N < g, then DJr,dk,N (µ1, µ2, C, l) = ∅.

Proof. (1): Consider the following restriction of the Abel-Jacobi-type map:

u : Σk,N (µ1, µ2)→ Picd(C)
a1D1 + . . .+ akDk 7→ OC(a1D1 + . . .+ akDk).

In the non-special regime Picd(C) = W r
d (C). Moreover the image of ϕ is closed and dim imu ≤

N < g = dimPicd(C). Thus a general line bundle L ∈ Picd(C) is not contained in the image of
u whence we conclude that the divisor a1D1 + . . .+ akDk is not contained in a general linear
series l of type grd, i.e. DJ

r,d
k,N (µ1, µ2, C, l) = ∅. This is Corollary 1.5 for non-special linear series.

As a consequence, for all r′ < r, a general linear series l′ in Gr′
d (C) also has

DJr
′,d
k,N (µ1, µ2, C, l

′) = ∅.

To see this, let c : Gr′
d (C)→Wr′

d ⊂ W r
d (C) be the forgetful map (L, V ) 7→ L. Note that a line

bundle L ∈ W r
d (C) \ imu does not admit de Jonquières divisors of length N . Now, since c is

continuous (as the projection morphism from a Grassmann bundle), c−1(Wr′
d (C) \ imu) is also

open in Gr′
d and nonempty. Hence no l′ ∈ c−1(Wr′

d (C) \ imu) admits a de Jonquières divisor of
length N and our claim is proved.
(2): Set r1 = d− g so that g − d+ r1 = 0 and r < r1. We conclude from the discussion above
that if N < g, then DJr,dk,N (µ1, µ2, C, l) = ∅ for a general linear series l. The non-existence for
n ≥ g for DJr,dn (µ,C, l) follows by an induction argument explained in Section 3.2.

2.2 Existence of de Jonquières divisors

Luckily, the question of existence is easily answered in a manner similar to that of the first
proofs of the existence part of the Brill-Noether theorem ([Kem71] and [KL72]). The idea is
to simply look at the class of DJr,dk,N (µ1, µ2, C, l) and establish its positiveness. Consider the
diagonal mapping for Cd:

ε : Cd1 × . . .× Cdk
→ Cd

D1 + . . .+Dk 7→ a1D1 + . . .+ akDk.

It is well-known (see for example chapter VIII §5 of [ACGH85]) that the image, via ε of the
fundamental class of ε(Cd1 × . . .×Cdk

) is equal to the coefficient of the monomial td1
1 · . . . · t

dk
k in

∑
a≥b

(−1)a+b

b!(a− b)!

(
1 +

k∑
i=1

aiti

)N−g+b(
1 +

k∑
i=1

a2
i ti

)g−b
xd−N−aθa,
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where θ is the pullback of the fundamental class of the theta divisor to Cd and x the class of the
divisor q + Cd−1 ⊂ Cd. Evaluating this formula on a linear series l of degree d and dimension r,
and using that θ | l = 0, we obtain the following expression for the class of DJr,dn (µ,C, l):

(
1 +

k∑
i=1

aiti

)N−g (
1 +

k∑
i=1

a2
i ti

)g
xd−N [l].

If N − d+ r ≥ 0, this class is clearly positive and yields the non-emptiness of DJr,dk,N (µ1, µ2, C, l).

2.3 Transversality condition

We deal here only with the case of complete linear series l ∈ Grd(C) such that |D| = l for some
D ∈ Cd. Consider the alternative description of the space DJr,dk,N (µ1µ2, C, l) as the intersection

DJr,dk,N (µ1, µ2, C, l) = Σk,N (µ1, µ2) ∩ |D|.

The condition for transversality of intersection is:

TD(Cd) = TD(Σk,N (µ1, µ2)) + TD(|D|), (3)

for D =
∑k
i=1 aiDi, for divisors Di ∈ Cdi

and fixed vectors of strictly positive integers µ1 =
(a1, . . . , ak) and µ2 = (d1, . . . , dk) satisfying

∑k
i=1 akdk = d.

Recall that TD(Cd) = H0(C,OD(D)), as shown for instance in [ACGH85] chapter IV, §1.
Moreover its dual is T∨D(Cd) = H0(KC/KC(−D)) and the pairing between the tangent and
cotangent space is given by the residue.

To compute TD(Σk,N (µ1, µ2)), let Di denote the diagonal in the ai-th product Cdi
× . . .×Cdi

so that Σk,N = D1 × . . .×Dk/Sd. Hence

TD(Σk,N (µ1, µ2)) = Ta1D1D1 ⊕ . . .⊕ TakDk
Dk.

Since T Di = T Cdi
for all i = 1, . . . , k,

TD(Σk,N (µ1, µ2)) = TD1Cd1 ⊕ . . .⊕ TDk
Cdk

' T(D1,...,Dk)Cd1 × . . .× Cdk

' TD1+...+Dk
CN

= H0(C,OC(D1 + . . .+Dk)/OC)
' H0(KC(−D1 − . . .−Dk)/KC(−D))0,

where the superscript 0 denotes the annihilator of a vector space (or more precisely the ort-
hogonality with respect to the natural pairing given by the residue mentioned above). The
last isomorphism follows from the following argument: consider the following exact sequence of
sheaves:

0→ OC(D1 + . . .+Dk)/OC → OC(D)/OC → OC(D)/OC(D1 + . . .+Dk)→ 0.

We then immediately get that

H0(C,OC(D)/OC(D1 + . . .+Dk)) = H0(C,OC(D)/OC)
/
H0(C,OC(D1 + . . .+Dk)/OC).
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Dualising, we obtain

H0(C,OC(D)/OC(D1 + . . .+Dk))∨ ' H0(C,OC(D1 + . . .+Dk)/OC)0.

Furthermore, Serre duality applied to the long exact cohomology sequence of the sequence

0→ OC(D1 + . . .+Dk)→ OC(D)→ OC(D)/OC(D1 + . . .+Dk)→ 0

yields

H0(C,OC(D)/OC(D1 + . . .+Dk))∨ ' H0(KC(−D1 − . . .−Dk)/KC(−D)).

Thus, we conclude that

TD(Σk,N (µ1, µ2)) ' H0(KC(−D1 − . . .−Dk)/KC(−D))0.

To determine TD|D|, consider the following restriction of the Abel-Jacobi map:

u : Crd →W r
d (C)

with differential given by
δ : im(αµ0)0 → im(µ0)0,

where δ denotes the restriction of the coboundary map

H0(C,OD(D))→ H1(C,OC)

of the Mittag-Leffler sequence to TDCrd = im(αµ0)0, while

α : H0(C,KC)→ H0(C,KC ⊗OD)

is the restriction mapping and

µ0 : H0(C,KC −D)⊗H0(C,OC(D))→ H0(C,KC)

the cup-product mapping (see Chapter IV of [ACGH85] for details).
Let D ∈ Crd . Then |D| ⊂ Crd and u(D) ∈W r

d (C) with u−1(u(D)) = |D|. Since δ is surjective
by definition,

TD|D| = TD(u−1(u(D))) = ker δ = im(α)0,

where the dual map δ∨ is the restriction of α to (im(µ0)0)∨ = coker(µ0).
The transversality condition (3) translates to

TDCd = H0
(
C,KC

(
−

k∑
i=1

Di

)
/KC(−D)

)0
+ im(α)0

which is equivalent to:

H0
(
C,KC

(
−

k∑
i=1

Di

)
/KC(−D)

)
∩ im(α) = 0.

We conclude that the transversality condition (3) ca be reformulated as:

H0(C,KC −D −D1 − . . .−Dk) = 0. (4)

Note that the condition (4) is immediately satisfied by non-special and canonical linear
series therefore proving Theorem 1.1 in these cases. There are actually a few more cases where
transversality follows without using degenerations to nodal curves.
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2.3.1 The case r = 1

The argument in this case is similar to the one in Section 5 of [HM82]. The idea is to consider
the map

π : C → P1

given by the de Jonquières divisor D =
∑k
i=1 aiDi and its versal deformation space V . Moreover,

let V ′ ⊂ V be the subvariety of maps given by divisors with the same coefficients as D. Then the
tangent space to V at π is TπV = H0(C,N ), where N is the normal sheaf of π defined by the
exact sequence

0→ TC → π∗TP1 → N → 0,

where TC is the tangent sheaf of C and TP1 the tangent sheaf of P1.
Consider also the forgetful map β : V →Mg, with differential β∗ given by the coboundary

map
H0(C,N )→ H1(C, TC)

of the exact sequence above. We now identify the tangent space to V ′ with the subspace of
H0(C,N ) of sections of N that vanish in a neighbourhood of the points in the support of
D1 + . . .+Dk, i.e. the sections of the sheaf N ′ defined by the sequence

0→ TC → π∗TP1(−(a1 − 1)D1 − . . .− (ak − 1)Dk)→ N ′ → 0.

Since π is a point in the general fibre of β|V ′ , from Sard’s theorem it follows that the differential
β∗ restricted to Tπ(V) is surjective. This in turn means that the map β′ below is surjective:

H0(C,N ′) β′−→ H1(C, TC)→ H1(C, π∗TP1(−(a1 − 1)D1 − . . .− (ak − 1)Dk))→ 0.

Now, note that TP1 ' OP1(2) and moreover π∗OP1(1) = OC(D). Therefore

0 = H1(C,OC(2D − (a1 − 1)D1 − . . .− (ak − 1)Dk))
= H0(C,KC −D −D1 − . . .−Dk)

as desired.

2.3.2 The case r = 2

For the case of plane curves we reformulate the transversality of intersection in terms of the
dual plane (P2)∨ and closed subschemes of symmetric powers of P2.

Note first that a divisor belongs to the intersection Σk,N (µ1, µ2) ∩ |D| if and only if the
points in its support are collinear. Denote by Zd the (d + 2)-dimensional smooth subvariety
of the d-th symmetric product of P2 corresponding to collinear length d zero-cycles in P2 and
let PM := PH0(P2,OP2(d)) be the space parametrising all plane curves of degree d, where
M =

(d+2
2
)
− 1. Let ∆ denote the locus in Zd of zero-cycles of the form a1D1 + . . .+akDk, where

the Di are collinear length di zero-cycles,
∑k
i=1 di = N , and

∑k
i=1 aidi = d. We immediately get

that ∆ is isomorphic to ZN . Consider the following morphism:

ϕ : PM ×(P2)∨ → Zd

given by the intersection product and denote by Γ the preimage ϕ−1(∆). Moreover, we have the
following equivalent description of Γ:

Γ = {([C], [H]) | H ∩ C = a1D1 + . . .+ akDk} ⊂ PM ×(P2)∨.
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Note that ([C], [H]) ∈ Γ if and only if the line H is determined by an element of ∆. Moreover, for
each such element of ∆, the points in the supports of the D1, . . . , Dk (with multiplicity) impose
d independent conditions on PM . Hence we see that

dim Γ = (M − d) + (N + 2) = M +N − d+ 2.

Let π1 : Γ → PM be the projection onto the first factor. From the existence of de Jonquières
divisors when N − d+ 2 ≥ 0, we see that the restriction to Γ of π1 is dominant. We conclude
that for a general point in PM , the fibre is smooth and has dimension N − d + 2. Hence we
conclude that for a general plane curve, the space of de Jonquières divisors DJr.dk,N (µ1, µ2, C, l) is
smooth and of expected dimension.

2.3.3 The case g − d+ r = 1

Let D =
∑k
i=1 aiDi be a de Jonquières divisor such that l = |D| is a grd with g−d+r = 1 and,

as usual, let L denote the corresponding line bundle. This means that the residual linear series
KC − l is an isolated divisor E ∈ C2g−2−d such that KC = OC(D + E). Consider the subspace

Pd = {L ∈ Picd(C) | h1(C,L) = 1} ⊂ Picd(C),

which, by the previous observation, has dimension 2g − 2− d. Now consider the space

Q = {(E,D1 + . . .+Dk) ∈ C2g−d−2 × CN | OC(E + a1D1 + . . .+ akDk) = KC}.

Polishchuk [Pol06] shows that this space is smooth and such that

dimQ = N + g − d− 1.

Hence, for a general fixed isolated divisor E ∈ C2g−d−2, the space

Q′ = {D1 + . . .+Dk ∈ CN | OC(a1D1 + . . .+ akDk) = OC(KC − E)}

is also smooth and of dimension

(N + g − d− 1)− (2g − d− 2) = N − g + 1 = N − d+ r,

which immediately implies the same for the space DJr,dk,N (µ1, µ2, C, l) for a general linear series l
with g − d+ r = 1.

We can in fact do better than this and prove transversality for an arbitrary linear series l
with g − d+ r = 1. From Polishchuk’s result we have that the intersection

Σ = {E +D ∈ C2g−2 | D ∈ Σk,N (µ1, µ2)} ∩ |KC |

is transverse, i.e.
TE+D(Σ) + TE+D|KC | = TE+D(C2g−2).

Using the fact that

TE+D(Σ) = TE(C2g−d−2)⊕ TD(Σk,N )
TE+D(C2g−2) = TEC2g−d−2 ⊕ TD(Cd)
TE+D|KC | = TE |E| ⊕ TD|KC − E| = TD|L|,

we obtain
TDΣk,N (µ1, µ2) + TD|L| = TDCd,

which is the sought after transversality condition.
Therefore, in order to prove Theorem 1.4, it remains to check the transversality condition (4)

for r ≥ 3 and g − d+ r ≥ 2. We do this using degenerations in Section 5.
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3 De Jonquières divisors on nodal curves of compact type
In the case of nodal curves, the usual correspondence between divisors and line bundles breaks

down. Most significantly for our problem, the Abel-Jacobi map

Cd → Picd(C)

does not make sense any more, even though the two spaces Cd and Picd(C) are still defined.
As a simple example of this failure, the sheaf of functions with one pole at one of the nodes is
not a line bundle, while the sheaf of functions with two poles at the node has degree 3. We
therefore first need to make sense of the statement that a linear series on a nodal curve admits
a de Jonquières divisor. We do this in a variational setting, by considering families of smooth
curves degenerating to a nodal curve and analysing what happens on the central fibre to limits
of line bundles admitting de Jonquières divisors. As mentioned in the introduction, we approach
this issue from two points of view: limit linear series for central fibres of compact type in Section
3.1 and compactified Picard schemes for stable central fibres in Section 3.2.

3.1 Limit linear series approach

3.1.1 Review of limit linear series

We recall a few well-known facts. Consider a smooth, projective 1-parameter family π : X →
B of curves of genus g over B = Spec(R) with a section, where R is a discrete valuation ring
with uniformising parameter t. Denote by 0 the point corresponding to the maximal ideal of
R and by η, η̄ the the generic and geometric generic point of B, respectively. Finally, let the
special fibre X0 be a reduced nodal curve of compact type, while Xη̄ is assumed to be a smooth,
irreducible curve of the same genus.

Now let (Lη̄,Vη̄) be a grd on Xη̄. In [EH86] Eisenbud and Harris show how this gives rise
to a limit series on the special fibre X0, after possibly replacing some nodes of X0 by smooth
rational curves via base change. We summarise the main ideas of their construction that are
needed in the course of our paper. After the base change, one may assume that (Lη̄,Vη̄) comes
from a linear series (Lη,Vη) of type grd on Xη, which in turn determines a grd on each irreducible
component Y of X0 as follows: because X is smooth, the line bundle Lη extends to a line
bundle L on X . The extension line bundle is not unique, as L ⊗OX (C) is also an extension
of Lη, for any Cartier divisor C supported on X0. Hence there exists an extension LY of Lη,
unique up to isomorphism, with the property that deg(LY |Y ) = d and for any other irreducible
component Z 6= Y of X0, deg(LY |Z) = 0. By setting VY := (Vη ∩ π∗LY )⊗ k(0), we get that

VY ' π∗LY ⊗ k(0) ⊆ H0(LY |X0)

is a vector space of dimension r + 1 which we identify with its image inside H0(LY |Y ). The pair
(LY |Y ,VY ) is thus a grd on Y and is called the Y -aspect of (Lη,Vη). We call the limit of (Lη,Vη)
the collection of aspects

l = {(LY |Y ,VY ) | Y component of X0}.

For a nodal curve X of compact type, a collection

l = {lY ∈ Grd(Y ) | Y component of X}

together with certain compatibility conditions on the vanishing sequence

0 ≤ a0(lY , p) < a1(lY , p) < · · · < ar(lY , p) ≤ d

11



at a point p ∈ Y , where the ai(lY , p) are the orders with which non-zero sections of lY vanish at p,
is called a crude limit linear series. The compatibility conditions are: if Z is another component
of X0 such that Y ∩ Z = p, then for all i = 0, . . . , r,

ai(lY , p) + ar−i(lZ , p) ≥ d. (5)

If we have equality in (5), then l is called a refined limit linear series. Since refined limit linear
series are in fact the ones playing the role of ordinary limit series on smooth curves, we shall
usually drop the adjective “refined” unless necessary. It was proved in [EH86] that limit linear
series indeed arise as limits of ordinary linear series on smooth curves.

Unfortunately, it is not always true that a limit linear series on a nodal curve X0 occurs as
the limit of linear series on a family X of smooth curves specialising to X0. While on the one
hand there are examples of limit linear series that cannot be smoothed, on the other there are
techniques for proving the smoothability of certain series, under some assumptions. For details,
see Section 3 of [EH86].

In the subsequent sections we shall also need the concept of a ramification sequence at a
point p ∈ Y :

0 ≤ α0(lY , p) ≤ α1(lY , p) ≤ · · · ≤ αr(lY , p) ≤ d− r,

where αi(lY , p) = ai(lY , p)− i.

3.1.2 De Jonquières divisors on a single nodal curve of compact type

We now make precise what we mean by saying that a limit linear series has a de Jonquières
divisor. We use the notation of the previous section.

Definition 3.1 (De Jonquières divisors on a nodal curve of compact type). Let X be a nodal
curve of compact type equipped with a refined limit linear series l of type grd. Fix an integer
k ≤ d and two vectors of positive integers µ1 = (a1, . . . , ak) and µ2 = (d1, . . . , dk) such that∑k
i=1 aidi = d. The divisor

∑k
i=1 aiDi with Di ∈ Cdi

on X is a de Jonquières divisor for l
if for each irreducible component Y ⊂ X, its corresponding grd lY has a section vanishing on∑
Di,Y ⊂Y aiDi,Y , where Di,Y denotes the restriction of the divisor Di on the component Y . We

denote the space of de Jonquières divisors for a limit linear series l on X by DJr,dk,N (µ1, µ2, X, l).

The sections above will also vanish at the nodes of X belonging to Y , and in such a way that
equality in (5) is satisfied. Hence we can give an equivalent description for de Jonquières divisors
corresponding to a refined limit linear series l on X which will be useful later in the paper. We
say that

∑k
i=1 aiDi is a de Jonquières divisor for l if:

• for each irreducible component Y ⊂ X with only one node q ∈ Y , the series lY admits the
de Jonquières divisor

k∑
i=1

aiDi,Y +
(
d−

k∑
i=1

aidi,Y

)
q,

where di,Y = degDi,Y ;

• for each irreducible component Y ⊂ X with at least two nodes, the series lY admits the de
Jonquières divisor

k∑
i=1

aiDi,Y +
∑

q∈Sing(X0),q∈Y

( k∑
i=1

aidi,Zq

)
q,

where Zq is the irreducible component of X0 attached to Y at the node q ∈ Y .
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We therefore have a way to go from de Jonquières divisors on a nodal curve of compact type
to de Jonquières divisors on its smooth components, where the coefficients of the nodes must of
course satisfy the equality in (5).

Now assume that the limit linear series l in Definition 3.1 is smoothable, that is there exists a
family of curves π : X → B and a grd (Lη,Vη) as in Section 3.1.1 whose limit is l. Fix Y ⊂X0
an irreducible component of the central fibre X0. Let Dη = (σ) ∈ |Lη| be a divisor on Xη, where
σ is a section of Lη. To find the limit of Dη on X0, we multiply σ by the unique power of t ∈ Bη
so that it extends to a holomorphic section σY of the extension LY on the whole of X and so
that it does not vanish identically on X0. The limit of Dη on X0 is then the divisor (σY |Y ).
Thus limits of de Jonquières divisors are exactly the de Jonquières divisors for limit linear series
described in Definition 3.1.

In what follows we describe the space of de Jonquières divisors on families of nodal curves of
compact type and endow it once more with the structure of a degeneracy locus with the help of
the construction of spaces of limit linear series due to Osserman [Oss].

3.1.3 Degenerations of de Jonquières divisors

Let X → B be a flat, proper family of curves, where B is a scheme. Fix a partition
µ = (a1, . . . , an) of d and let p1, . . . , pn : B →X be the sections corresponding to the markings
on each fibre Xt, for t ∈ B. By making the necessary base changes we ensure that the markings
specialise on smooth points of the central fibre X0.

Before discussing degenerations of de Jonquières divisors, we recall some facts about moduli
spaces of (limit) linear series, following the work of Osserman [Oss06] and the exposition in [Oss].

To begin with, let π : X → B be a proper family of smooth curves of genus g with a section.
Following Definition 4.2.1 in [Oss], the functor G r

d (X /B) of linear series of type grd is defined
by associating to each B-scheme T the set of equivalence classes of pairs (L ,V ), where L is
now a line bundle on X ×B T with degree d on all fibres, and V ⊆ π2∗L is a subbundle of rank
r + 1, where π2 denotes the second projection from the fibre product. For the precise definition
of the equivalence relation, we refer the reader to [Oss]. This functor is represented by a scheme
Grd(X /B) which is proper over B.

Assume now that the fibres of the family π : X → B are nodal curves of genus g of compact
type such that no nodes are smoothed. Hence all fibres have the same dual graph Γ. For each
vertex v of Γ, let Y v

t denote the irreducible component of Xt corresponding to v. Thus for each
v we have a family Y v of smooth curves over B with fibres given by Y v

t . In this case the functor
G r
d (X /B) of linear series of type grd is defined as follows. Consider the product fibred over B∏

v

G r
d (Y v/B).

Let T be a scheme over B. A T -valued point of the above product consists of tuples of pairs
(L v,V v), where L v is a vector bundle of degree d on Y v×B T and V ⊆ π2∗L v is a subbundle of
rank r+ 1. Denote by L

~d the “canonical” line bundle of degree d and multidegree ~d on X ×B T
obtained as in 4.4.2 of [Oss]. Moreover, a line bundle has multidegree ~dv if it has degree d on the
component corresponding to the vertex v and degree zero on all the other components. Note
also that for two distinct multidegrees ~d and ~d′, there is a unique twist map f~d,~d′ : L

~d → L
~d′

obtained by performing the unique minimal number of line bundle twists. According to Definition
4.4.7 in loc.cit., a T -valued point of

∏
v G r

d (Y v/B) is in G r
d (X /B)(T ) if, for all multidegrees ~d

of d, the map
π2∗L

~d →
⊕
v

(π2∗L
v)/V v
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induced by the restriction to Y v and f~d,~dv has its (r + 1)st degeneracy locus equal to all of T .
With this construction, G r

d (X /B) is also represented by a scheme Grd(X /B) proper over B.
Finally, if π : X → B is a smoothing family (for details, see 4.5 of [Oss]), the irreducible

components Y v
t may not exist for certain t ∈ B and it follows that the dual graph of the fibres of

the family is not constant. We assume from now on that there is a unique maximally degenerate
fibre with dual graph Γ0 (i.e. the family is locally smoothing). We fix a vertex v0 ∈ V (Γ0)
and set ~d0 := ~dv0 . We then replace the tuples of pairs (L v,V v) with tuples (L , (V v)v∈V (Γ0)),
where L is a line bundle of multidegree ~d0 on X ×B T , and for each v ∈ V (Γ0), the V v are
subbundles of rank r + 1 of the twists π2∗L

~dv . Let f : T → B be a B-scheme. A T -valued
point (L , (V v)v∈V (Γ0)) is in G r

d (X /B)(T ) if for an open cover {Um}m∈I of B satisfying certain
technical properties explained in 4.5.2 of [Oss], for all m ∈ I and all multidegrees ~d of d, the map

π2∗L
~d|(f◦π2)−1(Um) →

⊕
v

(
π2∗L

~dv |(f◦π2)−1(Um)
)
/V v|f−1(Um),

induced by the appropriate (local) twist maps, has its (r + 1)st degeneracy locus equal to the
whole of Um.
Remark 3.1. The functor of linear series with points given by tuples (L , (V v)v∈V (Γ0)) is naturally
isomorphic to the linear series functor with points given by tuples of pairs (L v,V v) in the case
of families where no nodes are smoothed (this is Proposition 4.5.5 in loc.cit.).
Remark 3.2. All the constructions can be shown to be independent of the choice of vertex v0,
twist maps, and open covers {Um}m∈I .

Note that all constructions are compatible with base change and moreover, the fibre over
t ∈ B is a limit linear series space when Xt is reducible, and a space of classical linear series
when Xt is smooth. As a last remark, since working with (refined) limit linear series in the sense
of Eisenbud and Harris is more convenient for practical purposes, we generally restrict to those
(see Section 6 of [Oss06] for the connection between the two approaches).

Denote by ` a T -valued point of G r
d (X /B)(T ). In what follows, we construct a functor

DJ r,dk,N (µ1, µ2,X , `), represented by a scheme which is projective over B, and which parametrises
de Jonquières divisors for a family X → B of curves of genus g of compact type equipped with
a linear series `.

Proposition 3.1. Fix a projective, flat family of curves X → B over a scheme B equipped with
a linear series ` of type grd. Let µ1 = (a1, . . . , ak) and µ2 = (d1. . . . , dk) be vectors of positive
integers such that

∑k
i=1 aidi = d. As usual, let N =

∑k
i=1 di. Consider also the relative divisors

Di ⊂X di. There exists a scheme DJ r,dk,N (µ1, µ2,X , `) projective over B, compatible with base
change, whose point over every t ∈ B parametrises pointed curves [Xt,D1(t), . . . ,Dk(t)] such
that

∑k
i=1 aiDi(t) is a de Jonquières divisor of `t. Furthermore, every irreducible component of

DJ r,dk,N (µ1, µ2,X , `) has dimension at least dimB +N − d+ r.

Proof. We construct the functor DJ r,dk,N (µ1, µ2,X , `) as a subfunctor of the functor of points of
the fibre product X N over B. We show that it is representable by a scheme that is projective
over B and which we also denote by DJ r,dk,N (µ1, µ2,X , `).

Let T → B be a scheme over B. Suppose first that all the fibres of the family are nonsingular.
In this case, from the discussion above, a grd on X is given by a pair (L ,V ), where V ⊆ π2∗L
is a vector bundle of rank r + 1 on B. Then the T -valued point [X ,D1, . . . ,Dk] belongs to
DJ r,dk,N (µ1, µ2,X , `)(T ) if the r-th degeneracy locus of the map

V → π2∗L |∑k

i=1 aiDi
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is the whole of T . By construction DJ r,dk,N (µ1, µ2,X , `) is compatible with base change, so it
is a functor, and it has the structure of a closed subscheme, hence it is representable and the
associated scheme is projective.

Alternatively, more explicitly, take the projective bundle PV corresponding to V which
has rank r, with elements in its fibres given by sections σ ∈ H0(L |Xt) up to equivalence with
respect to scalar multiplication. Consider the subscheme DJ ′(X ,V ) in PV cut by the equations
coming from the condition that the sections vanish on Di with multiplicity at least ai. This
imposes in total

∑k
i=1 aidi = d conditions, so the dimension of every irreducible component of

DJ ′(X ,V ) is at least dimB +N − d+ r. Collecting all irreducible components of DJ ′(X ,V )
such that the section σ does not vanish on the whole underlying curve, we obtain the desired
DJ r,dk,N (µ1, µ2,X , `).

Now suppose that some of the fibres have nodes (that may or may not be smoothed by X -
see Remark 3.1). From the discussion above, a grd on X is a tuple (L , (V v)v∈V (Γ0)). Let vj ∈ Γ0
be the vertex corresponding to an irreducible component. Denote by Di,j the specialisation of
Di to vj . Then the T -valued point [X ,D1, . . . ,Dk] belongs to DJ r,dk,N (µ1, µ2,X , `)(T ) if, for all
vertices vj , the r-th degeneracy locus of the map

V vj → π2∗L
~dvj |aiDi,j

is the whole of T . Checking for compatibility with base change (and hence functoriality) is
more delicate than in the previous case because the base change may change the graph Γ0.
However, arguing like in the proof of Proposition 4.5.6 in loc.cit. yields the desired property.
Representability and projectiveness then follow analogously.

Alternatively, if no nodes are smoothed in X , for each vertex v of the dual graph Γ of the
fibres, we have a family Y v of smooth curves with the divisors Di belonging to Y v and additional
sections qj corresponding to the preimages of the nodes. Consider now the space DJ ′(Y v,V v)
defined as in the case of families with smooth fibres by the vanishing at the Di. In addition, we
cut DJ ′(Y v,V v) with the equations corresponding to the vanishing of the sections at the points
qj , subject to the constraints explained in the discussion following Definition 3.1. We denote
the space thus obtained by DJ ′(Y v,V v) as well. Finally, the desired space DJ r,dk,N (µ1, µ2,X , `)
is obtained by taking the fibre product over B of the DJ ′(Y v,V v). The dimension estimate
follows as in the case of smooth fibres. If there are smoothed nodes, for each v ∈ V (Γ0), consider
the subscheme DJ ′(X ,V v) in PV v cut by the vanishing conditions at the divisors Di and at the
nodes. Taking the fibre product over B yields the space DJ r,dk,N (µ1, µ2,X , `) and the dimension
bound.

Remark 3.3. Let φ : DJ r,dk,N (µ1, µ2,X , `)→X be the forgetful map, which is projective by base
change. Then the fibre of φ over a curve Xt is precisely DJr,dk,N (µ1, µ2,X , `).

To conclude the study of the space DJ r,dk,N (µ1, µ2,X , `) of de Jonquières divisors for a family
of curves, we investigate their smoothability.

Proposition 3.2. Suppose the pointed curve [C,D1, . . . , Dk] ∈ B is contained in an irreducible
component U ⊂ DJ r,dk,N (µ1, µ2,X /B, `) with dimU = dimB+N −d+ r. Then the general point
of U parametrises a de Jonquières divisor on a smooth curve.

Proof. We essentially follow the argument in the proof of Theorem 3.4 of [EH86].
Let X̃ → B̃ be the versal family of pointed curves around [C,D1, . . . , Dk] and let f : B → B̃

be the map inducing π : X → B with sections corresponding to the marked points. Moreover,
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let L̃ be the corresponding linear series on X̃ . Let Ũ ⊂ DJ r,dk,N (µ1, µ2, X̃ /B̃, ˜̀) be a component
such that U ⊂ f∗Ũ and denote by C̃ the point of Ũ corresponding to C. By Proposition 3.1,
dim Ũ ≥ dim B̃ + N − d + r. Hence, if Ũ does not completely lie in the discriminant locus
of X̃ → B̃ which parametrises nodal curves, then a general point of Ũ corresponds to a de
Jonquières divisor on a smooth curve. On the other hand, if Ũ lies over a component B̃′ of the
discriminant locus, then

dim Ũ ≥ dim B̃ +N − d+ r > dim B̃′ +N − d+ r,

since B̃′ is a hypersurface in B̃. Therefore every component of f∗Ũ (hence also U) must have
dimension strictly larger than dimB +N − d+ r which contradicts the assumption on dimU .
Hence Ũ cannot lie entirely in the discriminant locus, and we are done.

3.2 De Jonquières divisors on nodal stable curves

Consider now a smooth 1-parameter family π : X → B of curves of genus g over the
one-dimensional scheme B such that the fibres over B∗ = B \ 0 are smooth curves, while the
special fibre is given by a stable nodal curve X0. Denote by I(X0) the set of all irreducible
components of the central fibre and by N(X0) the set of nodes lying at the intersection of distinct
irreducible components, together with their respective supports, i.e.

N(X0) = {(q, C) | q ∈ C ∩ C ′ where C,C ′ ∈ I(X0)}.

Suppose that L ∗ is a line bundle on X ∗ such that the restriction Lt to each fibre Xt is of
degree d for all t ∈ B∗. Then, using Caporaso’s approach [Cap94] we can extend L ∗ over the
central fibre 0 ∈ B such that the fibre L0 is a limit line bundle on X0 (or possibly a quasistable
curve of X0) of degree d. As observed before, this limit is not unique because, for any mC ∈ Z,

L ⊗OX

( ∑
C∈I(X0)

mCC
)

(6)

is also an extension of L ∗ to B. We call the new extension in (6) a twisted line bundle. Observe
also the following “computation” rules

OX ' OX

( ∑
C∈I(X0)

C
)

OX

( ∑
C∈I(X0)

mCC
)∣∣∣
C′
' OC′

( ∑
q∈C∩C′

(mC −mC′)q
)
.

(7)

We encode this information in a twist function:

T : N(X0)→ Z
(q, C) 7→ mC′ −mC

and introduce the following

Definition 3.2. A twist of the line bundle L is a function T : N(X0) → Z satisfying the
following properties

1. Given C,C ′ ∈ I(X0) and q ∈ C ∩ C ′, then T (q, C) = −T (q, C ′).
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2. Given C,C ′ ∈ I(X0) and q1, . . . , qn ∈ C ∩ C ′, then

T (q1, C) = . . . = T (qn, C) = −T (q1, C
′) = . . . = −T (qn, C).

3. Given C,C ′, Ĉ, Ĉ ′ ∈ I(X0), and points qC ∈ C ∩ Ĉ, qC′ ∈ C ′ ∩ Ĉ ′, q ∈ C ∩ C ′, and
q̂ ∈ Ĉ ∩ Ĉ ′, such that

T (qC , C) = T (qC′ , C ′) = 0,
we have that

T (q, C) = T (q̂, Ĉ).

Remark 3.4. The definition for the twist T of a line bundle L on a single curve X is analogous.
Let d denote the multidegree d = (dC)C∈I(X0) of L0 assigning to each irreducible component

C ∈ I(X0) the degree of L0|Cj .
Since we ultimately want to degenerate de Jonquières divisors, we introduce markings: let

the sections p1, . . . , pn : B →X correspond to the n markings on each of the fibres Xt.
We now specify what happens to the limit line bundle L0. We rely on Melo’s construction

of the compactified Picard stack on the moduli stack of curves with marked points described
in [Mel11]. The Caporaso compactification emerges as a particular case (where no markings
are present). We chose to work with this compactification (instead of using rank-1 torsion-free
sheaves) because we want to use an induction procedure involving restrictions of line bundles
on different irreducible components of the nodal curve, as in the arguments from 4.1 and 4.2.
Rank-1 torsion-free sheaves would not allow this, since their restrictions to subcurves are not
necessarily torsion-free themselves.

We summarise here the most important aspects of this compactification that are relevant
to us. Let X be a semistable curve of genus g ≥ 2 with n marked points. For a subcurve
X ′ ⊂ X, let kX′ = #

(
X ′ ∩X \X ′

)
. A rational tail C of X is a rational proper subcurve with

kX′ = 1, whereas a rational bridge is a rational proper subcurve X ′ of X satisfying kX′ = 2. An
exceptional component of X is a destabilising component without marked points. Finally the
semi-stable curve X is called quasi-stable if the following conditions are satisfied:

• all destabilising components are exceptional;

• rational tails do not contain any exceptional components;

• each rational bridge contains at most one exceptional component.

Definition 3.3. Let Y be a quasi-stable curve (obtained via semi-stable reduction) of the stable
curve X of genus g ≥ 2 with n marked points equipped with a line bunde L of degree d. The
multidegree of L is balanced if

1. If Y ′ ⊂ Y is an exceptional component, then degY ′ L = 1.

2. If Y ′ is a rational bridge, then degY ′ L ∈ {0, 1}.

3. If Y ′ is a rational tail, then degY ′ L = −1.

4. If Y ′ is a proper subcurve whose irreducible components are not contained in any rational
tail or bridge, then degY ′ L must satisfy the following inequality:∣∣∣degY ′ L−

d(wY ′ − tY ′)
2g − 2 − tY ′

∣∣∣ ≤ kY ′ − tY ′ − 2bLY ′
2 , (8)

where wY ′ = 2(gY ′ − 2), tY ′ is the number of rational tails meeting Y ′, and bLY ′ is the
number of rational bridges where the degree of L vanishes and which meet Y ′ in two points.
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Denote by PXd the set of all the pairs (Y,L) of quasi-stable curves Y of X equipped with a
balanced line bundle L of degree d. Let WX

r,d ⊂ P
X
d denote all those pairs where the line bundles

satisfy h0(Y,L) ≥ r + 1.

The compactification P d,g,n of the Picard stack on the moduli stack of stable curves with
marked points is given by the line bundles with balanced multidegrees on quasistable curves.
More pecisely, P d,g,n is a smooth and irreducible Artin stack of dimension 4g − 3 + n whose
objects over a scheme B are families (π : X → B, pi : B →X ,L ) of quasi-stable curves of genus
g with n marked points equipped with a relative degree d balanced line bundle L . The stack
P d,g,n is endowed with a (forgetful) universally closed morphism Ψd,g,n ontoMg,n. If moreover
(d− g+ 1, 2g− 2) = 1, the rigidification (in the sense of [ACV03]) of P d,g,n is a Deligne-Mumford
stack and the morphism Ψd,g,n is proper. For more details, see [Mel11] Definition 4.1, Theorem
4.2, and Section 7.

In what follows we also need the result below (for a proof, see [Ray70] Proposition 6.1.3).

Lemma 3.3. Let B be a smooth curve and let f : X → B be a flat and proper morphism.
Fix a point b0 ∈ B and set B∗ = B \ b0. Let L and M be two line bundles on X such that
L |f−1(B∗) 'Mf−1(B∗). Then

L = M ⊗OX (C),

where C is a Cartier divisor on X supported on f−1(b0).

With all this in mind, we define the notion of de Jonquières divisors for quasi-stable nodal
curves.

Definition 3.4. Fix a quasi-stable curve Y of a stable curve X with n marked points p1, . . . , pn.
The line bundle L with balanced multidegree d on Y admits a de Jonquières divisor

∑n
i=1 aipi if

there exists a twist T such that, for all C ∈ I(Y ),

L|C = OC
(∑
pi∈C

aipi
)
⊗OC

(∑
q∈C

T (q, C)q
)
.

In other words, each restriction of L to the irreducible components C of Y admits the de
Jonquières divisor ∑

pi∈C
aipi +

∑
q∈C

T (q, C)q.

Remark 3.5. If C is an exceptional component, then the de Jonquières divisor has only the nodes
q in the support.
Remark 3.6. If any of the coefficients in the divisor above are negative, we find ourselves in the
situation described in Section 7.
Remark 3.7. Here, our perspective on de Jonquières divisors on quasi-stable curves is naive in the
sense that we ignore the precise vanishing or residue conditions at the nodes. In what follows we
construct a space that not only contains the closure of the space of smooth curves with marked
points and line bundles admitting de Jonquières divisors, but also some “virtual” components
which we keep, in the same vein as the space of twisted canonical divisor of [FP18].

We now define the notion of de Jonquières divisors for a family of stable curves with n marked
points. We work locally so that a Poincaré bundle exists (otherwise we would have to assume
that (d− g + 1, 2g − 2) = 1).
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Definition 3.5. Let (π : X → B, pi : B → X ,L ) be a flat, proper family of quasi-stable
curves of genus g with n marked points equipped with a relative degree d balanced line bundle
L such that Lt ∈W

Xt

r,d . For a fixed partition µ = (a1, . . . , an) of d we say that L admits the de
Jonquières divisor

∑n
i=1 aipi if for all t ∈ B, Lt admits the de Jonquières divisor

∑n
i=1 aipi(t).

Furthermore, define the locus DJ r,dg,n,µ(B) of de Jonquières divisors in P d,g,n by

DJ r,dg,n,µ(B) =
{(
π : X → B, pi : B →X ,L

)
| L admits the divisor

n∑
i=1

aipi
}
.

The content of the following proposition is that, for a one-parameter family of quasi-stable
curves, the limit of de Jonquières divisors is itself a de Jonquières divisor.

Proposition 3.4. The locus DJ r,dg,n,µ(B) is closed in P d,g,n.

Proof. We use the valuative criterion. Take a map ι from B∗ to DJ r,dg,n,µ(B). We must show that
there exists a lift ῑ of ι from B, as shown in the commutative diagram below.

B∗ DJ r,dg,n,µ(B)

B

ι

ῑ

Since a map from B∗ to DJ r,dg,n,µ(B) is the same as a family (π : X ∗ → B∗, pi : B∗ →X ∗,L ∗),
we must show that we can extend this to a family (π : X → B, pi : B →X ,L

)
in DJ r,dg,n,µ(B).

In other words, we must show that if the general fibre (Xt, pi(t),Lt), for t ∈ B∗, is such that Lt

admits the de Jonquières divisor
∑n
i=1 aipi(t), then the central fibre (X0, pi(0),L0) is such that

L0 also admits the de Jonquières divisor
∑n
i=0 aipi(0).

From Definition 3.4, the family admits de Jonquières divisors if there exists a twist Tt for
each fibre Xt, with t ∈ B∗, such that, for all components C ∈Xt and all nodes q ∈ C,

Lt|C ' OC
( ∑
pi(t)∈C

aipi(t)
)
⊗OC

(∑
q∈C

Tt(q, C)q
)
.

By shrinking B, and after possibly performing a base change, we may assume that the fibres
of X are of constant topological type, the twist Tt is the same twist T over B∗, and there is
no monodromy in the components of the fibres over B∗. We must now assign a twist T0 to the
central fibre X0 equipped with L0.

Recall that the twist T0 is a function T0 : N(X0)→ Z. There are two types of elements in
N(X0):

• (q0, C0) where q0 is a node not smoothed by the family Y . Here T0(q0, C0) = T (qt, Ct),
where qt is the corresponding node in the component Ct in the generic fibre over t ∈ B.

• (q0, C0) where q0 is smoothed by the family X . Here the twist T0 must be assigned “by
hand”.

To do so, note also that the component C0 ∈ I(X0) belongs to a connected subcurve X of X0
which consists of all components belonging to the same equivalence class with respect to twists
at the non-smoothed nodes, i.e.

C0, C
′
0 ∈ X ⇔ C0 ∼ C ′0 ⇔ T (q, C0) = T (q, C ′0) = 0,∀q ∈ C0 ∩ C ′0.
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This yields a sub-family of X → B, which we call X ′, whose central fibre is X and whose
generic fibre is given by the corresponding subcurves in Xt. The markings pi which lie on the
fibres of X ′ give sections which we rename p′i : B → X ′, for i = 1, . . . , n′, where n′ ≤ n. The
nodes connecting X ′

t to its complement in Xt also yield sections qj : B →X ′, for q = 1, . . . ,m,
for some m ≥ 1; we emphasize here that the qj(t) are smooth points of X ′. Since the twist
T at the qj(t) is non-zero (by the definition of the equivalence classes), for t ∈ B∗ and for any
component Ct ∈ I(X ′

t ),

Lt|Ct ' OCt

( ∑
p′i(t)∈Ct

aip
′
i(t) +

∑
qj(t)∈Ct

T (qj(t), Ct)qj(t)
)
.

By our previous assumptions, T (qj(t), Ct) is constant for t ∈ B, so in what follows we omit
the terms in the bracket. Hence the line bundles

L and OX ′

( n′∑
i=1

aipi +
m∑
j=1

Tqj

)

are isomorphic over B∗ and they therefore differ by a Cartier divisor C on X ′, supported over
0 ∈ B. This Cartier divisor is a sum of irreducible components of the fibre X ′

0 = X, that is

C =
∑

C∈I(X)
mC0C0, with mC0 ∈ Z.

Since the non-smoothed nodes of the family X ′ all have zero twist, this Cartier divisor yields in
fact the definition of the twist T0 : N(X)→ Z for a node q0 ∈ C0 ∩ C ′0 that is smoothed by X ′:

(q0, C0) 7→ mC′0
−mC0 .

Putting everything together, we obtain a twist T0 : N(X0)→ Z which by construction satisfies
all the conditions of Definition 3.2. Moreover, for t = 0,

L0|C0 = OC0

( ∑
pi∈C0

aipi(0)
)
⊗OC0

( ∑
q0∈C0

T0(q0, C0)q
)

for each irreducible component C0 of X0. By Definition 3.5,

(X → B, pi : B →X ,L ) ∈ DJ r,dg,n,µ(B).

We conclude that DJ r,dg,n,µ(B) is closed.

Remark 3.8. Arguing like in the proof of Lemma 6 of [FP18], one can show that the line bundle
associated to a de Jonquières divisor on a quasi-stable curve can be smoothed to a line bundle
on a nonsingular curve. More precisely, let (X → B, pi : B → X ,L ) be a smoothing of a
quasi-stable curve with marked points [X, p1, . . . , pn] (so X0 = X). Suppose also that for some
(X,L) ∈ PXd ,

OX
( n∑
i=1

aipi

)
= L ∈ PXd ,

Then there exists a line bundle L ′ →X and an isomorphism L ′
0 ' L, which is constructed by

twisting L .
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For the next two results, assume that (d − g + 1, 2g − 2) = 1 so that the definitions of de
Jonquières divisors hold not just locally, but also for families over any scheme B. We give a
lower bound on the dimension of irreducible components of DJ r,dg,n,µ(Mg,n).

Proposition 3.5. Every irreducible component of DJ r,dg,n,µ(Mg,n) has dimension at least 3g −
3 + ρ(g, r, d) + n− d+ r.

Proof. The proof of this statement is the same as the one of Proposition 11 in [FP18]. The only
difference is the dimension bound itself, which we explain below.

Let [X, p1, . . . , pn, L] ∈ DJ r,dg,n,µ(Mg,n) and L = OX (
∑n
i=1 aipi) its associated twisted line

bundle. We drop the markings pi without contracting the unstable components that we obtain.
We then add m new markings to X to get rid of the automorphisms of the unstable components
(see loc. cit. for details) and we obtain a stable pointed curve [X, q1, . . . , qm]. Let V be its
nonsingular versal deformation space. Hence

dimV = dimDef([X, q1, . . . , qm]) = 3g − 3 +m.

Let π : C → V be the universal curve and consider the relative moduli space ε : B → V of line
bundles of degree d on the fibres of π. Let V∗ ⊂ V be the locus of smooth curves and B∗ → V∗
the relative Picard scheme of degree d. Finally, let Wr∗

d ⊂ B∗ be the codimension at most
(r + 1)(g − d+ r) locus of line bundles with dimension of the space of sections r + 1. Let Wr

d be
the closure of Wr∗

d in B. Then

dimWr
d ≥ dimB − (r + 1)(g − d+ r) +m = 3g − 3 + ρ(g, r, d) +m.

This then contributes to the lower bound in the same way as in loc. cit.

Moreover, we also obtain an upper bound for the dimension of certain irreducible components
of DJ r,dg,n,µ(Mg,n) supported on the locus of marked quasi-stable curves with at least one node.

Proposition 3.6. Let Z ⊂ DJ r,dg,n,µ(Mg,n) be an irreducible component supported entirely on the
locus of quasi-stable curves with n marked points and at least one node. Then Z has dimension
at most 4g − 4 + n− d+ r at a point (X, p1 . . . , pn, L) with L ∈WX

r,d \W
X
r+1,d.

Proof. Denote by ΓZ the dual graph of the curve X. By the definition of Z, the set E of edges
of ΓZ has at least one element. Denote by v the vertices of ΓZ and their set by V (with |V | ≥ 1).
By definition, each v corresponds to an irreducible component of X whose genus we denote by
gv. Recall the genus formula:

g − 1 =
∑
v∈V

(gv − 1) + |E|. (9)

The strategy in what follows is to bound the dimension of the space of (X, p1, . . . , pn, L) ∈ Z with
graph exactly ΓZ . Now X is equipped with a line bundle L of degree d with strictly balanced
multidegree d = (dv)v∈ΓZ

) and h0(X,L) = r + 1. Denote by Lv the restriction of L to the
irreducible component corresponding to the vertex v and by nv the number of the marked points
on it. Thus, for a fixed vertex v of Γv and assuming the result of Theorem 1.4, the dimension of
the space of de Jonquières divisors of length nv on the component corresponding to v is at most
3gv − 3 + ρ(gv, rv, dv) + nv − dv + rv, where rv := h0(Lv)− 1. The dimension bound is obtained
by summing over the vertices

dimZ ≤
∑
v∈V

(3gv − 3 + ρ(gv, rv, dv) + nv − dv + rv)

≤ 3
∑
v∈V

(gv − 1) + n+ 2|E| − d+
∑
v∈V

rv +
∑
v∈V

ρ(gv, rv, dv),
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where we used the fact that
∑
v∈V nv ≤ n+ 2|E|. The surplus of 2|E| comes from the preimages

of the nodes on each component in case the twist from the definition of de Jonquières divisors is
nonzero. From (9) we have

dimZ ≤ 3g − 3 + n− d− |E|+
∑
v∈V

rv +
∑
v∈V

ρ(gv, rv, dv).

To estimate
∑
v∈V rv, let X1 and X2 be two connected subcurves of X intersecting each other at

k nodes. From the Mayer-Vietoris sequence

0→ H0(X,L)→ H0(X1, L|X1)⊕H0(X2, L|X2)→ Ck

we obtain h0(X1, L|X1) + h0(X2, L|X2) ≤ r + 1 + k. Consider in turn the same Mayer-Vietoris
sequence for two connected subcurves of X1 and of X2, etc. , until we are left only with irreducible
components. Working backwards and adding up the dimensions of the spaces of global sections
for all irreducible components of X, we obtain∑

v∈V
h0(Lv) = h0(X,L) + |E| ⇔

∑
v∈V

(rv + 1) = r + 1 + |E| ⇔

∑
v∈V

rv = r + 1 + |E| − |V |.

For the sum of Brill-Noether numbers, we use the bound
∑
v ρ(gv, rv, dv) ≤

∑
v∈V gv, which in

turn yields, using (9),
∑
v∈V gv = g − 1− |E|+ |V |. Hence dimZ ≤ 4g − 3 + n− d+ r − |E| ≤

4g − 4 + n− d+ r.

4 The dimension theorem for complete linear series
We now give a proof of the dimension theorem (Theorem 1.1) for complete linear series

(i.e. those with s = g − d + r ≥ 0) that makes use of the framework of limit linear series as
discussed in Section 3.1.

We construct a nodal curve X = C1 ∪pC2 of genus g out of two general pointed curves (C1, p)
of genus g1 and (C2, p) of genus g2, where g1 + g2 = g. Furthermore, we equip X with a limit
linear series of type grd which we construct from the corresponding aspects grd1

(b1p) on C1 and
grd2

(b2p) on C2, where b1, b2 ∈ Z≥0. The genera gj , the degrees dj , and the multiplicities bj are
chosen in such a way as to allow for a convenient induction step, where the induction hypothesis
is the dimension theorem for grdj

on Cj for j = 1, 2. We do this in two steps:

1. The proof for series with s ≥ 2 and ρ(g, r, d) = 0 works by induction on s (while keeping
ρ(g, r, d) = 0 fixed), with base case given by the canonical linear series on a general smooth
curve (which has s = 1 and ρ(g, r, d) = 0). This is done in Section 4.1.

2. The proof for linear series with ρ(g, r, d) > 0 works by induction on ρ(g, r, d) (and keeping
s constant), with base case given by the linear series with ρ(g, r, d) = 0 from the previous
step. This is done in Section 4.2.

In choosing the aspects grdj
(bjp) on Cj (with j = 1, 2), one has to take the following restrictions

into consideration, which ensure that the limit we constructed exists and is smoothable:
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• a general pointed curve (Cj , p) ∈Mgj ,1 may carry a grdj
(bjp) with ramification sequence at

least (α0, . . . , αr) at the point p if and only if (cf. [EH87], Proposition 1.2)
r∑
i=0

(αi + gj − d+ r)+ ≤ gj , (10)

where (x)+ = max{x, 0}. In our case, the ramification sequence at p is (bj , . . . , bj).

• the limit grd on X must be refined in order to satisfy the hypotheses of the smoothability
result of Eisenbud and Harris (Theorem 3.4 of [EH83b]). This means that the inequality in
(5) must be in fact an equality, thus further constraining the choice of bj .

Combining these with Theorem 1.1 of [EH87] and Corollary 3.7 of [EH86] we obtain the
smoothability of the limit grd on X. Assume that we are in the setting of Definition 3.1 with
X0 = X. If the limit grd on X admits a de Jonquières divisor

∑n
i=1 aiDi, then each aspect grdj

(bjp)
on Cj (with j = 1, 2) admits the de Jonquières divisor

k∑
i=1

aiDi,Cj +
(
d−

k∑
i=1

aidi,Cj

)
p,

where the following inequality must hold in order to preserve the chosen ramification at p:

d−
k∑
i=1

aidi,Cj ≥ bj . (11)

Removing the base point p from the series grdj
(bjp), we are left with a general linear series

lj := grdj
on Cj (for j = 1, 2), with simple ramification at p and admitting a de Jonquières divisor

k∑
i=1

aiDi,Cj +
(
dj −

k∑
i=1

aidi,Cj

)
p.

The strategy is to prove that dimDJr,dk,N (µ1, µ2, X, l) ≤ N − d + r by using the dimension
theorem for the spaces of de Jonquières divisors of the series lj on Cj . By the upper semicontinuity
of fibre dimension applied to the map φ from Remark 3.3 it follows that

dimDJr,dk,N (µ1, µ2, Xt, lt) ≤ N − d+ r

for a smoothing of X to a general curve Xt equipped with a general linear series lt of type grd.
Combining this with Lemma 2.1, we obtain the statement of the dimension theorem for a general
curve with a general linear series.

4.1 Step 1: proof for ρ(g, r, d) = 0
Having fixed r and s = g − d+ r ≥ 2, the proof in this case works by induction on s. The

base case is given by the dimension theorem for the canonical linear series, (the unique linear
series with index of speciality s = 1 and vanishing Brill-Noether number), on a general smooth
curve of any genus. This follows either from our discussion in Section 2.3 or from Theorem 1.1 a)
of Polishchuk [Pol06] with D = 0. The induction step constructs a curve X of genus g with a
limit linear series l of type grd with index of speciality s and Brill-Noether number ρ(g, r, d) = 0
from two irreducible components: C1 equipped with a linear series l1 with index of speciality
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s1 = s− 1 and Brill-Noether number ρ(l1) = 0 and C2 equipped with its canonical linear series
(with index of speciality s2 = 1). The induction hypothesis at each step is the dimension theorem
for each of the components C1 and C2 equipped with their respective linear series l1 and l2.

We now show how to obtain the curve X. From the condition ρ(g, r, d) = 0, we get

g = s(r + 1),
d = g + r − s.

We start with a general curve C1 of genus (s− 1)(r + 1) equipped with a general linear series l1
of type grg−s. Hence the index of speciality of l1 is

s1 = (s− 1)(r + 1)− g + s+ r = (s− 1)(r + 1)− (s− 1)(r + 1)− r + s− 1 + r = s− 1

and its Brill-Noether number is

ρ((s− 1)(r + 1), r, g − s) = (s− 1)(r + 1)− (r + 1)(s− 1) = 0.

We choose a general point p ∈ C1 to which we attach another general curve C2 of genus r + 1
equipped with its canonical linear series l2 = gr2r. This series has index of speciality s2 = 1 and
Brill-Noether number

ρ(r + 1, r, 2r) = 0.

Thus we obtained a curve X = C1 ∪p C2 of genus g. We construct on X a refined limit linear
series l of type grd aspect by aspect using l1 and l2. On C1 we take the aspect to be the series
l1(rp), which therefore has the following vanishing sequence on C1:

(r, r + 1, . . . , 2r).

Since the limit is refined, the vanishing sequence on C2 must be

(d− 2r, . . . , d− r),

so we take the aspect corresponding to C2 to be the series l2((d− 2r)p). Finally, we check that
the limit series

{(C1, l1(rp)), (C2, l2((d− 2r)p)}

satisfies (10):

on C1 :
r∑
i=0

(r + (s− 1)(r + 1)− d+ r)+ = (r + 1)(s− 1) ≤ (r + 1)(s− 1),

on C2 :
r∑
i=0

(d− 2r + r + 1− d+ r)+ = r + 1 ≤ r + 1.

Hence the limit linear series l on X is smoothable.
We now prove that dimDJr,dk,N (µ1, µ2, X, l) ≤ N − d + r. For j = 1, 2, let Nj =

∑k
i=1 di,Cj

and therefore N1 +N2 = N . As seen in Section 3.1,
∑k
i=1 aiDi ∈ DJr,dk,N (µ1, µ2, X, l) if and only

if ∑
i=1

aiDi,Cj +
(
d−

k∑
i=1

aidi,Cj

)
p

is a de Jonquières divisor of length (at most) Nj + 1 of d of the aspect of l corresponding to Cj ,
where j = 1, 2. We distinguish a few possibilities:
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1. If all points specialise on one of the Cj (with j = 1, 2), then d −
∑k
i=1 aidi,Cj = 0,

contradicting inequality (11). Hence we must have

d− 2r ≤
k∑
i=1

aidi,C1 ≤ d− r,

2r ≥
k∑
i=1

aidi,C2 ≥ r.

2. If
∑k
i=1 aidi,C1 = d− r, then

∑k
i=1 aidi,C2 = r and moreover

k∑
i=1

aiDi,C1 ∈ DJ
r,d−r
k,N1

(µ′1, µ′2, C1, l1) and
k∑
i=1

aiDi,C2 + rp ∈ DJr,2rk,N2+1(µ′′1, µ′′2, C2, l2),

where µ′1 = (ai)Di,C1>0, µ′2 = (di,C1) are the strictly positive vectors corresponding to the
component C1, while µ′′1 = (ai, r)Di,C2>0 and µ′′2 = (di,C2 , 1) are the ones corresponding to
C2. By the induction hypothesis, the following inequalities must be satisfied

dimDJr,d−rk,N1
(µ′1, µ′2, C1, l1) = N1 − d+ 2r =: x ≥ 0

dimDJr,2rk,N2+1(µ′′1, µ′′2, C2, l2) = N2 + 1− r = (N − d+ r)− x+ 1 ≥ 0,

where we used the fact that N1 +N2 = N . Furthermore, note that on C2 we are actually
only interested in the locus in DJr,2rk,N2+1(µ′′1, µ′′2, C2, l2) consisting of divisors with p in their
support. More precisely, consider the incidence correspondence

Γ = {(D, p) | p ∈ D} ⊂ DJr,2rk,N2+1(µ′′1, µ′′2, C2, l2)× C

and let π1, π2 be the canonical projections. The locus we are after is π1(π−1
2 (p)). By

construction, π2 is dominant and since p is general,

dim π1(π−1
2 (p)) = dimDJr,2rk,N2+1(µ′′1, µ′′2, C2, l2)− 1.

Therefore the dimension estimate for DJr,dk,N (µ1, µ2, X, l) is

dimDJr,dk,N (µ1, µ2, X, l) ≤ dimDJr,d−rk,N1
(µ′1, µ′2, C1, l1) +DJr,2rk,N2+1(µ′′1, µ′′2, C2, l2)− 1

= N − d+ r.

3. If d− 2r <
∑k
i=1 aidi,C1 < d− r, then 2r >

∑k
i=1 aidi,C2 > r and we obtain de Jonquières

divisors of length Nj + 1 on the component Cj , for j = 1, 2. This yields

dimDJr,d−rk,N1+1(µ′1, µ′2, C1, l1) = N1 + 1− d+ 2r =: x ≥ 0

dimDJr,2rk,N2+1(µ′′1, µ′′2, C2, l2) = N2 + 1− r = (N − d+ r)− x+ 2 ≥ 0.

Arguing as in the previous case (for both C1 and C2), we obtain the same upper bound for
the dimension of DJr,dk,N (µ1, µ2, X, l):

dimDJr,dk,N (µ1, µ2, X, l) ≤ dimDJr,d−rk,N1
(µ′1, µ′2, C1, l1)− 1 +DJr,2rk,N2+1(µ′′1, µ′′2, C2, l2)− 1

= N − d+ r.

4. If
∑k
i=1 aidi,C1 = d− 2r, then

∑k
i=1 aidi,C2 = 2r and we get de Jonquières divisors of length

N1 + 1 on C1 and of length N2 on C2. This case is analogous to (1) and we again obtain
the upper bound N − d+ r for dimDJr,dk,N (µ1, µ2, X, l).
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4.2 Step 2: proof for all ρ(g, r, d) ≥ 1
Fix r, s = g − d+ r, and ρ(g, r, d) ≥ 1. We continue with the proof by induction on ρ(g, r, d),

where the base case is given by the dimension theorem for linear series with ρ(g, r, d) = 0 (proved
in Section 4.1). The induction step constructs a curve X of genus g with a linear series l of type
grd from two components: C1 equipped with a linear series l1 and C2 equipped with l2 such that
ρ(l) = ρ(g, r, d) = ρ(l1) + 1. As before, the induction hypothesis at each step is the dimension
theorem for the components Cj and their corresponding linear series lj , with j = 1, 2.

We start with a general curve C1 of genus g−1 equipped with a general linear series l1 = grd−1.
We pick a general point p ∈ C1 and attach to it an elliptic normal curve C2 with its associated
linear series l2 = grr+1. Note that the dimension theorem holds for the elliptic normal curve by
virtue of the fact that l2 is non-special (see the discussion in Section 2.3).

The resulting curve X = C1 ∪p C2 has genus g and we construct on it a limit linear series l of
type grd aspect by aspect. On C1 we take the aspect grd−1(p), hence p is a base point of the grd on
X with vanishing sequence on C1 given by

(1, 2, . . . , r + 1).

Since the limit grd must be refined in order to be smoothable, the aspect on C2 must have the
following vanishing sequence at p

(d− r − 1, . . . , d− 1).

Thus the aspect on C2 is given by the series grr+1((d− r − 1)p).
We check that this limit grd also satisfies (10):

on C1 : (r + 1)(1 + g − 1− d+ r) = (r + 1)s ≤ g − 1,
on C2 : (r + 1)(d− r − 1 + 1− d+ r) = 0 ≤ 1,

where in the first inequality we used the fact that ρ(g, r, d) = g − (r + 1)s ≥ 1. Hence l is a
smoothable limit linear series on X. Moreover, its Brill-Noether number is

ρ(l) = ρ(g, r, d) = g − (r + 1)s

while the linear series l1 = grd−1 on C1 has Brill-Noether number

ρ(l1) = ρ(g − 1, r, d− 1) = ρ(g, r, d)− 1.

Finally, we observe here that the induction step leaves the indices of speciality unchanged since
s1 = (g − 1)− (d− 1) + r = s.

We now show that dimDJr,dk,N (µ1, µ2, X, l) ≤ N − d+ r. The argument is the same as in 4.1.
For j = 1, 2, denote by Nj the length of the divisor

∑k
i=1 aiDi,Cj . As for the ρ(g, r, d) = 0, there

are a few possibilities:

1. If
∑k
i=1 aidi,C1 = d− 1, then

∑k
i=1 aidi,C2 = 1 and moreover

k∑
i=1

aiDi,C1 ∈ DJ
r,d−1
k,N1

(µ′1, µ′2, C1, l1) and
k∑
i=1

aiDi,C2 + rp ∈ DJr,r+1
k,N2+1(µ′′1, µ′′2, C2, l2),

where the vectors µ′1, µ′2, µ′′1, µ′′2 are defined as in 4.1. By the induction hypothesis,

dimDJr,d−1
k,N1

(µ′1, µ′2, C1, l1) = N1 − d+ 1 + r =: x ≥ 0,

dimDJr,r+1
k,N2+1(µ′′1, µ′′2, C2, lC2) = N2 = (N − d+ r) + 1− x.
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As discussed in 4.1, we have the bound

dimDJr,dk,N (µ1, µ2, X, l) ≤ DJr,d−1
k,N1

(µ′1, µ′2, C1, l1)+DJr,r+1
k,N2+1(µ′′1, µ′′2, C2, l2)−1 = N−d+r.

2. If d− r − 1 <
∑k
i=1 aidi,C1 < d− 1, then r + 1 >

∑k
i=1 ai,C2 > 1 and we get de Jonquières

divisors of length N1 + 1 on C1 and length N2 + 1 on C2. Counting dimensions as before
we obtain the upper bound N − d+ r for the dimension of DJr,dk,N (µ1, µ2, X, l).

3. If
∑k
i=1 aidi,C1 = d− r − 1, then

∑k
i=1 aidi,C2 = r + 1 and we have de Jonquières divisors

of length N1 + 1 on C1 and length N2 on C2. We obtain the same upper bound N − d+ r.

5 Smoothness of the space of de Jonquières divisors

We now prove Theorem 1.4 which states that the space DJr,dk,N (µ1, µ2, C, l) is smooth for a
complete linear series l by showing that it arises as a transverse intersection of subvarieties of
the symmetric product Cd. Recall that we already have the result for some cases (see Section
2.3) and it remains to show it for r ≥ 3 and s ≥ 2.

From the transversality condition (4), we have to show thatH0(C,KC−D−D1−. . .−Dk) = 0.
To do this, we prove that

g − (d+N) + r′ < 0,

where r′ = h0(D +D1 + . . .+Dk)− 1 = r + n′, for some integer n′ ≥ 0.
Suppose towards a contradiction that n′ ≥ N − g + d− r.
Consider all flag curve degenerations j : M0,g → Mg and let Z := M0,g ×Mg

CNg , where
Cg =Mg,1. Let U ⊂ Z be the closure of the divisors with r′ = r+n′ and n′ ≥ N−g+d−r on all
curves from im(j) ⊆Mg. By assumption, the map X →M0,g is dominant, hence dimX ≥ g− 3.
Applying Proposition 2.2 of [Far08], there exists a point [R̃ := R ∪E1 ∪ . . .∪Eg, y1, . . . , yN ] ∈ U ,
where R is a rational spine (not necessarily smooth) and the Ei are elliptic tails such that either:

(i) the supports of the divisors D1, . . . , Dk coalesce into one point, or else

(ii) the supports of the divisors D1, . . . , Dk lie on a connected subcurve Y of R̃ of arithmetic
genus pa(Y ) = N and |Y ∩ (R̃ \ Y )| = 1.

Denote by q1, . . . , qg the points of attachment of the elliptic tails to the rational spine.
A short computation using the Plücker formula allows us to immediately dismiss Case (i).

We now deal with Case (ii). By assumption, there exists a proper flat morphism φ : X → B
satisfying:

1. X is a smooth surface, B is a smooth affine curve with 0 ∈ B a point such that the fibre X0
is a curve stably equivalent to the curve R̃, and the fibre Xt is a smooth projective curve of
genus g for t 6= 0. Furthermore, we have the relative divisors Di ∈ X di with Di(0) = Di, for
i = 1, . . . , k.

2. Let X ∗ = X \X0. Then there exists a line bundle L ∗ on X ∗ of relative degree d and with
dimH0(Xt,Lt) = r + 1 for t 6= 0. After (possibly) performing a base change and resolving
the resulting singularities, the pair (L ∗,V ∗ := H0(X ∗,L ∗)) yields a refined limit linear series
m := grd on R̃. The limit linear series m has moreover the property that it admits the de
Jonquières divisor

∑k
i=1 aiDi(0) =

∑k
i=1 aiDi.
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3. The line bundle L ∗ also has the following property: N ∗ := L ∗(∑k
i=1 Di

)
is another line

bundle on X ∗ of relative degree d+N and with h0(X ∗
t ,N

∗
t ) = r+n′+ 1. The pair (N ∗, Ṽ ∗ :=

H0(X ∗,N ∗)) also gives a limit linear series l := gr+n
′

d+N on R̃. Furthermore, the limit linear series
l admits the de Jonquières divisor

∑k
i=1(ai + 1)Di.

The situation can be reformulated as follows: for t 6= 0,

dimH0(X ∗
t ,N

∗
t (−

k∑
i=1

Di(t)) = r.

Then N ∗ ⊗OX ∗(−
∑k
i=1 Di(B \ 0)) induces the limit linear series grd that we started with.

Now, for a component C ⊂ X0, let (LC ,VC) ∈ Grd(Z) be the C-aspect mC of the limit
m = grd. Then there exists a unique effective divisor DC ∈ CN supported only at the points of
(C ∩

⋃k
i=1 Di(B)∩ (C ∩X0 \ C) such that the C-aspect of m has the property that the restriction

map
VC → VC |DC

has non-trivial kernel. For the C-aspect lC of the limit l the situation is analogous, but now we
have an effective divisor D′C ∈ Cd+N with D′C ≥ DC . Moreover, the C-aspect of m is of the form

mC = (MC := NC ⊗OC(−D′C +DC),WC ⊂ ṼC ∩H0(MC)).

Thus, the collection mY := {mC}C⊂Y forms a limit grd on Y , while the collection lY := {lC}C⊂Y
forms a limit gr+n′d+N on Y .

Let p = Y ∩ (R̃ \ Y ) and Z := R̃ \ Y . The vanishing sequence of the limit grd at p is
a subsequence of the vanishing sequence at p of the limit gr+n′d+N . The complement of this
subsequence yields another limit linear series gn′−1

d on Y (see Lemma 2.1 of [Far08]). We
distinguish two cases:

(I) N < g.
To begin with, we list two technical results that help us determine a lower bound for the
ramification sequence at p of the limit linear series gn′−1

d in this case.

Lemma 5.1 (Corollary 1.6 of [EH83a]). Let C ' P1 be an irreducible component of Z such that
qj ∈ C for some j = 1, . . . , N , where qj is the point of attachment of the elliptic tail Ej to C.
Let l be a limit linear series on Z and C ′ be another component of R̃ and q = C ∩ C ′. If q′ is
another point on C, then for all but at most one value of i,

ai(lC , q′) < ai(lC′ , q).

Lemma 5.2. Let {σC | C ⊆ Y irreducible component} be the set of compatible sections corre-
sponding to the divisor D +D1 + . . .+Dk. If q ∈ C, then ordq(σC) = 0.

Proof. The proof works by induction on the components of Y . By construction, the tree curve
Y has at least two components, so the base case is Y = C1 ∪q′ C2. Denote by DC1 and DC2 the
specialisations of the divisor D +D1 + . . .+Dk on the two components C1 and C2. Then σC1

vanishes on DC1 and ordq′(σC1) = d + N − degDC1 = degDC2 and similarly σC2 must vanish
on DC2 and ordq′(σC2) = degDC1 . Hence, if q ∈ C1 is a smooth point, then σC1(q) = 0 and if
q ∈ C2 is a smooth point, then σC2(q) = 0 and we are done.
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Suppose now that Y has m irreducible components denoted C1, . . . , Cm and let DC1 , . . . , DCm

be the specialisations of the divisor D +D1 + . . .+Dk to each component. Let Cm ∩Cm−1 = q′.
Then

ordq′(σCm−1) = d+N − degDC1 − . . .− degDCm−1 = degDCm .

Furthermore,
ordq′(σCm) = d+N − degCm.

Thus, if q ∈ Y is a smooth point belonging to Cm, then σCm(q) = 0. If q ∈ Y belongs to any of
the components of the subcurve C1 ∪ . . .∪Cm−1, then σCj (q) = 0 (with j = 1, . . . ,m− 1), where
we used the induction hypothesis and the fact that DC1 + . . .+DCm−1 + (degCm)q′ is a divisor
of degree d+N on the subcurve C1 ∪ . . . ∪ Cm−1.

Let C ⊂ Z be the irreducible component meeting Y at p. Denote by C ′ the component of Y
containing p. Suppose first that C contains at least one of the points qj of attachment of the
elliptic tails. Let p′ ∈ C be a general smooth point, which therefore has vanishing sequence

ai((gr+n
′

d+N )C , p′) = (0, 1, 2, 3, . . . , r + n′).

By Lemma 5.1 with q = p and q′ = p′, the vanishing sequence at p is

ai((gr+n
′

d+N )C′ , p) ≥ (0, 2, 3, 4, . . . , r + n′ + 1).

By a similar argument,
ai((grd)C′ , p) ≥ (0, 2, 3, 4, . . . , r + 1).

Combining this with Lemma 5.2, we get the following ramification sequence for gn′−1
d :

αi((gn
′−1
d )C′ , p) ≥ (1, 1, . . . , 1).

In fact we obtain a limit linear series gn′−1
d on Y with ramification

αi((gn
′−1
d )Y , p) ≥ (1, 1, . . . , 1). (12)

We check a necessary condition for such a limit series to exist (cf. Theorem 1.1 of [EH87]):

n′−1∑
i=0

α̃i + n′(N − d+ n′ − 1) ≤ N. (13)

Since we assumed n′ ≥ N − g + d− r and using moreover the inequality (12) we obtain that

n′−1∑
i=0

α̃i + n′(N − d+ n′ − 1) ≥ (N − g + d− r)(2N − g − r).

Denoting by s := g − d+ r and using N > d− r, we reformulate the necessary condition (13) as

(N − s)(N − s− r) < N

which is equivalent to the quadratic inequality

N2 − (2s+ r + 1)N + s(s+ 1) < 0.
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This implies that the solution N must be contained in the interval(
2s+ r + 1−

√
(2s+ r + 1)2 − 4s(s+ r)

2 ,
2s+ r + 1 +

√
(2s+ r + 1)2 − 4s(s+ r)

2

)
.

We now show that for s ≥ 2 and r ≥ 3

2s+ r + 1 +
√

(2s+ r + 1)2 − 4s(s+ r)
2 < d− r + 1, (14)

contradicting thus the hypothesis N − d+ r ≥ 1. To do this, first note that a simple calculation
yields

g ≥ (r + 1)s ≥ 2s+ r + 1
for s ≥ 2 and r ≥ 3 which in turn yields

2s+ r + 1 ≤ g − ((r + 1)s− 2s+ r + 1) = g − s(r − 1) + r + 1.

Another simple calculation gives, for r ≥ 3 and s ≥ 2:√
(2s+ r + 1)2 − 4s(s+ r) ≤ (2s+ r + 1)− 4.

Putting it all together, we get a sufficient condition for the inequality (14) to be satisfied, namely:

2g − 2s(r − 1) + 2(r + 1)− 4
2 < d− r + 1

which is equivalent to
(2− r)(s− 1) < 0.

This is clearly satisfied for r ≥ 3 and s ≥ 2 which means (14) is also satisfied for these value
ranges of r and s.

(II) N ≥ g.
In this case Y = R̃ and we check the necessary condition for the existence of a linear series gn′−1

d

on the tree curve Y without specified ramification at a point (also Theorem 1.1 of [EH87]):

n′(g − d+ n′ − 1) ≤ g. (15)

By our assumptions, n′ ≥ N − g + d− r ≥ d− r and we therefore have
n′−1∑
i=0

α̃i + n′(N − d+ n′ − 1) ≥ (d− r)(g − r − 1).

Thus a necessary condition for (15) is that

(d− r)(g − r − 1) ≤ g,

which is equivalent to
g ≤ (r + 1)(d− r)

d− r − 1 .

However, we also know that s = g − d + r ≥ 2 and g ≤ r+1
r (d − r), which immediately give

d ≥ 3r. This in turn yields

g ≤ (r + 1)(d− r)
d− r − 1 ≤ r

2r − 1(d− r) ≤ d− r,

which contradicts the assumption that s = g − d+ r ≥ 2.
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6 Non-existence statement for non-complete linear series
In this section we prove Theorem 1.5 which states that, for a smooth general curve of genus

g, if n− d+ r < 0, the general linear series grd with g − d+ r < 0 does not admit de Jonquières
divisors of length n of the type

a1p1 + . . .+ anpn,

where the points pi in the support are distinct. Recall that in this case, we need only one
partition µ = (a1, . . . , an) of d and we denote the space of de Jonquières divisors by DJr,dn (µ,C, l).
We proceed by induction. The base case is given by the non-existence statement in the case
n− d+ r < 0 and n < g shown in Lemma 2.2. In the induction step we prove non-existence for
n ≥ g.

Consider the following quasi-stable curve Y of genus g ≥ 4 with n ≥ g marked points
consisting of a smooth general curve C of genus g − 1 and a rational bridge with n+ 1 rational
components γj , for j = 1, . . . , n+1. Since the curve is quasi-stable, at most one of the components
of the rational chain is exceptional (i.e. it contains no marks). In our case, since we have n marks,
there must be one such component which we denote by γj′ , while each of the other rational
components γj contains one of the marked points pi. Let C ∩ γ1 = q1, C ∩ γn+1 = qn+2, and
γj ∩γj+1 = qj+1 for j = 1, . . . , n+ 1. The curve Y is equipped with a linear series l = grd = (L, V )
with g − d + r < 0 corresponding to a line bundle L with h0(Y,L) > r + 1. The bundle L
has balanced multidegree d, meaning that degLC = d − 1 and degLγj = 0 for all j 6= j′ and
degLγj′ = 1. An easy Mayer-Vietoris sequence calculation yields that C is also equipped with a
non-complete linear series lC = grd−1.

This configuration gives a de Jonquières divisor on Y corresponding to l = (L, V ) if there
exists a twist T satisfying the following system of linear equations:

T (q1, C) + T (qn+2, C) = d− 1
T (qj , γj) + T (qj+1, γj) +

∑
pi∈γj

ai = 0 for all j 6= j′

T (qj′ , γj′) + T (qj′+1, γj′) = 1.

Note that at least one of the terms T (q1, C) and T (qn+2, C) must be non-zero. There are
therefore two possibilities for solutions of this system:

1. Both T (q1, C) and T (qn+1, C) are non-zero. In this case we have a de Jonquières divisor
T (q1, C)q1 +T (qn+2, C)qn+2 on C of length 2 corresponding to lC . Note that since 2 < g−1
and 2− (d− 1) + r = 3− d+ r < n− d+ r < 0, the induction hypothesis yields that lC
admits no such de Jonquières divisors.

2. Only one of the two terms is non-zero. We then have a de Jonquières divisor of length 1
corresponding to lC . Since 1 < g − 1 and 1− (d− 1) + r < n− d+ r < 0, the induction
hypothesis yields that lC does not admit such de Jonquières divisors.

Hence l does not admit any de Jonquières divisors on Y of length n ≥ g. We now explain
how to conclude the non-existence statement for a general smooth curve with a general linear
series of type grd.

First note that Y is embedded in Pr by l and using the methods of Hartshorne-Hirschowitz
and Sernesi [Ser84] (for the precise details, see for example Lemma 1.5 of [AFO17]) one shows
that it is flatly smoothable to a general curve of genus g and degree d in Pr. Thus we have a
family π : X → ∆ of curves of genus g with central fibre X0 = Y . The family is equipped
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with a line bundle L of relative degree d and such that h0(Xt,Lt) > r + 1 for all t ∈ ∆. Thus
the family (π : X → ∆, pi : ∆ → X ,L ) /∈ DJ r,dg,n,µ(∆). Otherwise, if the smooth fibres of
X → ∆ admitted de Jonquières divisors, then by Proposition 3.4, the central fibre would as
well. However, we have just proven this not to be the case, which concludes the induction step.
Remark 6.1. Y is a quasi-stable curve obtained via semi-stable reduction from the stable
curve X of genus g with no marked points and just one self-intersection node. Since X is
d-general (see Definition 4.13 of [Cap05]), it follows that locally around X the forgetful morphism
Ψd,g,0 : P d,g,0 → ∆ (with ∆ ⊂ Mg) is proper. Moreover, if Ψd,g,0 is proper, then so are
Ψd,g,n : P d,g,n → ∆ (with ∆ ∈ Mg,n - see for example the discussion in Sections 7 and 8 of
[Mel11]) and DJ r,dg,n,µ(∆)→ ∆.

7 Expected dimension for de Jonquières divisors with negative
terms

It is also worthwhile to study de Jonquières divisors whose partition µ of d contains negative
terms. In fact, in Section 3.2 we saw that negative coefficients occur naturally when considering
de Jonquières divisors on nodal stable curves, as the twists T may be negative. For simplicity of
notation, we consider only de Jonquières divisors with distinct points in the support.

Definition 7.1. Fix a curve C equipped with a linear series l ∈ Grd(C) and let

µ = (a1, . . . , an1 ,−b1, . . . ,−bn2)

be a partition of d of length n, where ai, bi are positive integers satisfying
∑n1
i=1 ai −

∑n2
i=1 bi = d

and n1, n2 are fixed positive integers with n1 + n2 = n. We define the space DJr,dn1,n2(µ,C, l) of
de Jonquières divisors with n1 positive and n2 negative terms corresponding to the linear series l
on the curve C by the rule

n1∑
i=1

aipi −
n2∑
i=1

biqi ∈ DJr,dn1,n2(µ,C, l)

if and only if
n1∑
i=1

aipi ∈ DJr
′,d′
n1 (µ′, C, l′),

where pi, qi ∈ C, µ′ = (a1, . . . , an1) is a positive partition of d′ =
∑n1
i=1 ai = d+

∑n2
i=1 bi, and l′ is

the linear series of type gr′d′ given by l′ = l +
∑n2
i=1 biqi.

Theorem 7.1. Fix a general curve C of genus g with a general linear series l = (L, V ) ∈ Grd(C),
and let µ = (a1, . . . , an1 ,−b1, . . . ,−bn2) be a partition of d of length n, where ai, bi are positive
integers and n = n1+n2. Assume that the points qi are general and l′ is complete. If n1−d′+r′ ≥ 0,
then the space DJr,dn (µ,C, l) is of expected dimension n− d′ + r′.

Proof. Set L′ = L(
∑n2
i=1 biqi). We first show that dimDJr,dn1 (µ′, C, l′) ≥ n1−d′+r′. We distinguish

a few cases.

• If d′ = 2g − 2 and L′ = KC , then h0(L′) = g.

• If d′ = 2g − 2, but L′ 6= KC , then h0(L′) = g − 1.

• If d′ > 2g − 2, then h0(L′) = d′ − g + 1.

32



• If d′ < 2g − 2, then h0(L′) = r +
∑n2
i=1 bi + 1, by the generality of the points qi.

Note that apart from the case d′ < 2g − 2, the assumption that the points qi are general was not
used. In all cases however, h0(L′|∑n1

i=1 aipi

)
=
∑n1
i=1 ai = d′. With this in mind, we can describe

the space DJr′,d′n1 (µ′, C, l′) as the locus in Cd′ where the vector bundle map Φ (constructed as in
Section 2.1, but substituting L′ for L) has rank at most h0(L′)− 1 = r′. Hence the lower bound
for the dimension of DJr′,d′n1 (µ′, C, l′) is given by

• n1 − (h0(L′)− r′)(d′ − r′) = n1 − d′ + r′ = n1 − g + 1 if d′ = 2g − 2 and L′ = KC ,

• n1 − (h0(L′)− r′)(d′ − r′) = n1 − g if d′ ≥ 2g − 2 and L′ 6= KC ,

• n1 − (h0(L′)− r′)(d′ − r′) = n1 − d+ r if d′ < 2g − 2.

The fact that
dimDJr

′,d′
n1 (µ′, C, l′) = n1 − d′ + r′

follows as in the case of effective de Jonquières divisors, by replacing the occurrences of L by L′
in the proof of Theorem 1.1. Finally, including the points qi in the dimension count, we get that
the dimension of DJr,dn1,n2(µ,C, l) is indeed n− d′ + r′.
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