From de Jonquières’ Counts to Cohomological Field Theories

Mara Ungureanu

Women at the Intersection of Mathematics and High Energy Physics
9 March 2017
What is Enumerative Geometry?

How many geometric structures of a given type satisfy a given collection of geometric conditions?
What is Enumerative Geometry?

Appolonius’ problem (approx. 200 BC)

8 circles tangent to 3 other circles
What is Enumerative Geometry?

- **3264** conics tangent to 5 given conics (1864 Chasles)
What is Enumerative Geometry?

- **3264** conics tangent to 5 given conics (1864 Chasles)
- **27** lines on cubic surface (1849 Cayley-Salmon)
What is Enumerative Geometry?

- **3264** conics tangent to 5 given conics (1864 Chasles)
- **27** lines on cubic surface (1849 Cayley-Salmon)
- **2875** lines on a quintic threefold (1886 Schubert)
What is Enumerative Geometry?

- **3264** conics tangent to 5 given conics (1864 Chasles)
- **27** lines on cubic surface (1849 Cayley-Salmon)
- **2875** lines on a quintic threefold (1886 Schubert)
- **609,250** conics on a quintic threefold (1985 Katz)
What is Enumerative Geometry?

- **3264** conics tangent to 5 given conics (1864 Chasles)
- **27** lines on cubic surface (1849 Cayley-Salmon)
- **2875** lines on a quintic threefold (1886 Schubert)
- **609.250** conics on a quintic threefold (1985 Katz)
- **317.206.375** cubics on a quintic threefold (1991 Ellingsrud-Strømme)
What is Enumerative Geometry?

Question

Number of rational curves of any degree on quintic threefold?
What is Enumerative Geometry?

Question
Number of rational curves of any degree on quintic threefold?

Answer
Mirror symmetry!
1991 Candelas, de la Ossa, Green, Parkes
What is Enumerative Geometry?

Question
Number of rational curves of any degree on quintic threefold?

Answer
Mirror symmetry!
1991 Candelas, de la Ossa, Green, Parkes

- 1995 Kontsevich
- 1996 Givental
- Clemens conjecture?
What is Enumerative Geometry?

Question
How many points in the plane lie at the intersection of two given lines?
What is Enumerative Geometry?

Question
How many points in the plane lie at the intersection of two given lines?

Answer
It depends!
- Lines in general position \Rightarrow exactly one
- Parallel lines \Rightarrow none
- Lines coincide \Rightarrow an infinite number of points
What is Enumerative Geometry?

- Parameter (moduli) space
- Compactify!
- Do excess intersection theory
Ernest de Jonquières
de Jonquières’ multitangency conditions

C smooth, genus g
$f : C \to \mathbb{P}^r$ non-degenerate
Degree of $f = \# \{ f(C) \cap H \} =: d$
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \to \mathbb{P}^r$ non-degenerate

Degree of $f = \# \{f(C) \cap H\} =: d$

\[d = 3 \]
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \to \mathbb{P}^r$ non-degenerate

Degree of $f = \# \{ f(C) \cap H \} =: d$

$d = 3$
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \to \mathbb{P}^r$ non-degenerate

Degree of $f = \# \{ f(C) \cap H \} =: d$

\[
\begin{align*}
 f^{-1}\{ f(C) \cap H \} &= p_1 + 2p_2
\end{align*}
\]
de Jonquières’ multitangency conditions

de Jonquières counts the number of pairs \((p_1, p_2)\) such that there exists a hyperplane \(H \subset \mathbb{P}^r\) with

\[
f^{-1}\{f(C) \cap H\} = p_1 + 2p_2
\]
de Jonquières’ multitangency conditions

de Jonquières (and Mattuck, Macdonald) count the n-tuples

$$(p_1, \ldots, p_n)$$

such that there exists a hyperplane $H \subset \mathbb{P}^r$ with

$$f^{-1}\{f(C) \cap H\} = a_1 p_1 + \ldots + a_n p_n$$

where

$$a_1 + \ldots + a_n = d$$
de Jonquières’ multitangency conditions

The (virtual) de Jonquières numbers are the coefficients of

\[t_1 \cdot \ldots \cdot t_n \]

in

\[(1 + a_1^2 t_1 + \ldots + a_n^2 t_n)^g (1 + a_1 t_1 + \ldots + a_n t_n)^{d-r-g} \]
Constructing the moduli space

An embedding $f : C \to \mathbb{P}^r$ of degree d is given by

A pair (L, V)
- a line bundle L of degree d on C
- an $(r + 1)$-dimensional vector space V of sections of L
An embedding $f : C \rightarrow \mathbb{P}^r$ of degree d is given by

A pair (L, V)

- a line bundle L of degree d on C
- an $(r + 1)$-dimensional vector space V of sections of L

Choose $(\sigma_0, \ldots, \sigma_r)$ basis of V

\downarrow

$f : C \rightarrow \mathbb{P}^r$

$p \mapsto [\sigma_0(p) : \ldots : \sigma_r(p)]$
Constructing the moduli space

Space of all divisors of degree d on C

$$C_d = \underbrace{C \times \ldots \times C}_{d \text{ times}} / S_d$$

For example

$$p_1 + 2p_2 \in C_3$$
Constructing the moduli space

Space of all divisors of degree d on C

\[C_d = \underbrace{C \times \ldots \times C}_{d \text{ times}} / S_d \]

For example

\[p_1 + 2p_2 \in C_3 \]

We define de Jonquières divisors

\[p_1 + \ldots + p_n \in C_n \]

such that

\[f^{-1}\{f(C) \cap H\} = a_1 p_1 + \ldots + a_n p_n \]
Constructing the moduli space

\[D = p_1 + \ldots + p_n \] is de Jonquières divisor

\[\uparrow \]

there exists a section \(\sigma \) whose zeros are

\[a_1 p_1 + \ldots + a_n p_n \]
Constructing the moduli space

\[D = p_1 + \ldots + p_n \] is de Jonquières divisor

\[\iff \]

there exists a section \(\sigma \) whose zeros are

\[a_1 p_1 + \ldots + a_n p_n \]

\[\iff \]

the map

\[\beta_D : V \rightarrow V|_{a_1 p_1 + \ldots + a_n p_n} \]

\[\sigma \mapsto \sigma|_{a_1 p_1 + \ldots + a_n p_n} \]

has nonzero kernel
Constructing the moduli space

the map

$$\beta_D : V \to V|_{a_1p_1 + \ldots + a_np_n}$$
$$\sigma \mapsto \sigma|_{a_1p_1 + \ldots + a_np_n}$$

has nonzero kernel

$$\uparrow$$

$$\text{rank}(\beta_D) \leq \dim V - 1 = r$$
Constructing the moduli space

\[V \xrightarrow{\beta_D} V|_{a_1p_1 + \ldots + a_np_n} \]

\[D = p_1 + \ldots + p_n \in C_n \]
Constructing the moduli space

De Jonquières divisors:

\[DJ_n = \{ D \in C_n \mid \text{rank}(\beta_D) \leq r \} \]

determinantal variety
To summarise...

- Fix curve C of genus g
- Fix embedding given by (L, V)
- $C_n :=$ space of divisors of degree n
- Defined de Jonquières divisors via multitangency conditions
- Described space DJ_n of de Jonquières divisors as determinantal variety over C_n
Analysing the moduli space

\[\dim DJ_n \geq n - d + r \]
Analysing the moduli space

$$\dim DJ_n \geq n - d + r$$

Relevant questions

- $n - d + r < 0 \Rightarrow$ non-existence of de Jonquières divisors
- $n - d + r \geq 0 \Rightarrow$ existence of de Jonquières divisors
- $n - d + r = 0 \Rightarrow$ finite number of de Jonquières divisors
- $\dim DJ_n = n - d + r$
Taking a variational perspective

- Allow C to vary in $\mathcal{M}_{g,n}$
- Vary the de Jonquières structure with it
Taking a variational perspective

\(\mathcal{M}_{g,n} \) = moduli space of smooth curves of genus \(g \) with \(n \) marked points

\[(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n}\]

- \(\dim \mathcal{M}_{g,n} = 3g - 3 + n \)
- compactification \(\overline{\mathcal{M}}_{g,n} \)

What is the cohomology of \(\mathcal{M}_{g,n} \)?
Taking a variational perspective

\[\mathcal{M}_{g,n} = \text{moduli space of smooth curves of genus } g \text{ with } n \text{ marked points} \]

\[(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n} \]

- \(\dim \mathcal{M}_{g,n} = 3g - 3 + n \)
- compactification \(\overline{\mathcal{M}}_{g,n} \)

Question
What is the cohomology of \(\overline{\mathcal{M}}_{g,n} \)?
Taking a variational perspective

\[L = K_C = \text{bundle of differential forms on } C \]
\[(L, V) = (K_C, \Gamma(C, K_C))\]
Now \(d = 2g - 2 \) and \(r = g - 1 \)
Taking a variational perspective

\[L = K_C = \text{bundle of differential forms on } C \]
\[(L, V) = (K_C, \Gamma(C, K_C))\]
Now \(d = 2g - 2\) and \(r = g - 1\)

Fix partition \(\mu = (a_1, \ldots, a_n)\) of \(2g - 2\)

\[\mathcal{H}_g(\mu) = \{(C; p_1, \ldots, p_n) \text{ such that } K_C \text{ admits the de Jonquières divisor } a_1p_1 + \ldots + a_np_n\} \]
Taking a variational perspective

\[\mathcal{H}_g(\mu) \subset \mathcal{M}_{g,n} \text{ determinantal subvariety} \]

- flat surfaces, dynamical systems, Teichmüller theory: Masur, Eskin, Zorich, Kontsevich,... Bainbridge-Chen-Gendron-Grushevsky-Möller ('16), ...
- algebraic geometry: Diaz ('84), Polishchuk ('03), Farkas-Pandharipande ('15)
Taking a variational perspective

\[\mathcal{H}_g(\mu) \subset \mathcal{M}_{g,n} \]
Take closure: \(\overline{\mathcal{H}_g(\mu)} \subset \overline{\mathcal{M}}_{g,n} \)

Question
What is the fundamental class \([\overline{\mathcal{H}_g(\mu)}]\)?

Answer
(potentially) Cohomological field theory!
$\mathcal{M}_{g,n}$ and 2-dimensional CFT

CFT
- 2-dimensional QFT invariant under conformal transformations
- defined over compact Riemann surfaces

Stick to holomorphic side

CFT = 2-dimensional QFT covariant w.r.t. holomorphic coordinate changes
\[M_{g,n} \text{ and 2-dimensional CFT} \]

Infinitesimal change of holomorphic coordinate

\[z \mapsto z + \epsilon f(z) \]

Local holomorphic vector field

\[f(z) \frac{d}{dz} \]
\(\mathcal{M}_{g,n} \) and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

\[
z \mapsto z + \epsilon f(z)
\]

Local meromorphic vector field

\[
f(z) \frac{d}{dz}
\]
Infinitesimal change of holomorphic coordinate

\[z \mapsto z + \epsilon f(z) \]

Local meromorphic vector field

\[f(z) \frac{d}{dz} \]

\[\Downarrow \]

Virasoro algebra:

\[L_n = -z^{n+1} \frac{d}{dz} \Rightarrow [L_n, L_m] = (m - n)L_{m+n}, n \in \mathbb{Z} \]

etc...
\(\overline{M}_{g,n} \) and 2-dimensional CFT

Local meromorphic vector field

\[f(z) \frac{d}{dz} \]

\(\uparrow \)

Infinitesimal deformation of complex structure

\(\uparrow \)

Infinitesimal deformation of an algebraic curve
\(\overline{\mathcal{M}}_{g,n} \) and 2-dimensional CFT

\[
(C; p_1, \ldots, p_n) \in \overline{\mathcal{M}}_{g,n}
\]

\(\vec{\lambda} = (\lambda_1, \ldots, \lambda_n) \) representation labels

\(V_{\vec{\lambda}}(C; p_1, \ldots, p_n) \) space of conformal blocks
$\overline{\mathcal{M}}_{g,n}$ and 2-dimensional CFT

$(C; p_1, \ldots, p_n) \in \overline{\mathcal{M}}_{g,n}$

$\vec{\lambda} = (\lambda_1, \ldots, \lambda_n)$ representation labels

$V_{\vec{\lambda}}(C; p_1, \ldots, p_n)$ space of conformal blocks
$\overline{M}_{g,n}$ and 2-dimensional CFT

$(\tilde{C}; p_1, \ldots, p_n, q_+, q_-) \in \overline{M}_{g,n+2}$

$\vec{\lambda} = (\lambda_1, \ldots, \lambda_n, \lambda, \lambda^\dagger)$ representation labels

$V_{\vec{\lambda}}(\tilde{C}; p_1, \ldots, p_n, q_+, q_-)$ space of conformal blocks
\(\overline{\mathcal{M}}_{g,n} \) and 2-dimensional CFT

Verlinde bundle

\[
\mathcal{V}_{\lambda} \rightarrow \overline{\mathcal{M}}_{g,n}
\]

Each fibre is given by space of conformal blocks

\[
\mathcal{V}_{\lambda}(C; p_1, \ldots, p_n) \rightarrow (C; p_1, \ldots, p_n)
\]
The characters $\text{ch}(\mathcal{V}_\chi)$ define a CohFT on $\overline{\mathcal{M}}_{g,n}$!
The characters $ch(V_{\chi})$ define a CohFT on $\overline{M}_{g,n}$!

A CohFT

- a vector space of fields U
- a non-degenerate pairing η
- a distinguished vector $1 \in U$
- a family of correlators

$$\Omega_{g,n} \in H^*(\overline{M}_{g,n}, \mathbb{Q}) \otimes (U^*)^\otimes n$$

satisfying gluing...
Quantum multiplication \ast on U

$$\eta(v_1 \ast v_2, v_3) = \Omega_{0,3}(v_1 \otimes v_2 \otimes v_3) \in \mathbb{Q}$$

(U, \ast) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius algebra
$\overline{\mathcal{M}}_{g,n}$ and CohFT

$\mathcal{H}_g(\mu) = \{(C; p_1, \ldots, p_n) \text{ such that } K_C \text{ admits the de Jonquières divisor } a_1p_1 + \ldots + a_np_n\}$

$[\overline{\mathcal{H}}_g(\mu)] = ?$

Maybe $[\overline{\mathcal{H}}_g(\mu)]$ is one of the $\Omega_{g,n}$
$\overline{\mathcal{H}}_g(\mu)$ and CohFT

$[\overline{\mathcal{H}}_g(\mu)]$ is not a CohFT class!

Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one Witten R-spin class

$$W_{g,\mu}^R \in H^{2g-2}(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$$
To summarise...

- Tour of enumerative geometry
To summarise...

- Tour of enumerative geometry
- Described de Jonquières divisors on fixed curve C with fixed embedding (L, V)
To summarise...

- Tour of enumerative geometry
- Described de Jonquières divisors on fixed curve C with fixed embedding (L, V)
- Allowed C to vary in moduli
To summarise...

- Tour of enumerative geometry
- Described de Jonquières divisors on fixed curve C with fixed embedding (L, V)
- Allowed C to vary in moduli
- Obtained subspace of $\overline{M}_{g,n}$ for particular case $L = K_C$
To summarise...

- Tour of enumerative geometry
- Described de Jonquières divisors on fixed curve C with fixed embedding (L, V)
- Allowed C to vary in moduli
- Obtained subspace of $\overline{M}_{g,n}$ for particular case $L = K_C$

What if $L \neq K_C$?