
Mixed Hodge Modules for Generic Vanishing

1 Why MHM for generic vanishing?

Recall Hacon’s proof for the generic vanishing in the canonical case. Let X be a smooth complex
projective variety and A := Alb(X) its Albanese variety. Denote by

a : X→ A

the corresponding Albanese mapping and by Â = Pic0(A) the dual abelian variety. Using Kollár’s result
on the splitting of the direct image

Ra∗ωX

in Db
coh(OA) and some other technical results, one concludes that it is enough to prove that

codim Vl(Ria∗ωX) ≥ l (1)

for all i = 0, 1, . . . , k = dim X − dim a(X). Expressed in terms of the Fourier-Mukai transform

Rφp : Db
coh(OA)→ Db

coh(OÂ),

the inequality (1) is equivalent to
codim SuppRlφp(Ria∗ωX) ≥ l, (2)

for all i = 0, 1, . . . , k. Using the fact that the sheaves Ria∗ωX satisfy a Kodaira-type vanishing theorem and
that Â is an abelian variety, we have that Ria∗ωX is the dual of a sheaf Fi on Â, in other words

Rφp(Ria∗ωX) ' RHom(Fi,OÂ).

Therefore
codim SuppRlφp(Ria∗ωX) = Extl(Fi,OÂ) ≥ l.

the inequality is now a consequence of a theorem on regular local rings. Thus we have generic vanishing
for topologically trivial line bundles.

The idea is now to get generic vanishing for general objects of Hodge-theoretic origin. The strategy
is as follows:

• use Saito’s decomposition theorem instead of Kollár’s

• use a Kodaira-type vanishing theorem for MHM (also thanks to Saito), which becomes useful on
abelian varieties. This allows one to generalise the second part of the proof to any coherent sheaf
of Hodge-theoretic origin on an abelian variety.

2 Hodge structures

The basic idea of Hodge theory is that the cohomology of an algebraic variety has more structure
than one sees when viewing the same object as a bare topological space.

Recall that a (polarised) pure Hodge structure of weight k consists of
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• a finite dimensional Q-vector space HQ satisfying the decomposition

H := HQ ⊗ C =
⊕
p+q=k

Hp,q

and
Hp,q = Hq,p,

where the conjugation is relative to the real structure on H.

• a polarisation, i.e. a quadratic form Q on HQ satisfying the following Hodge-Riemann relations

Q(u, v) = (−1)mQ(v,u)
Q(Hp,q,Hr,s) = 0 unless p = s, q = r
√

−1p−qQ(u, ū) > 0 for u ∈ Hp,q,u , 0.

Example 1. The cohomology of an n-dimensional projective algebraic manifold X satisfies the Hodge
decomposition, and its polarised part is given by

Hprim := ker(Hn(X)→ Hn(Y)),

where Y is a smooth hyperplane section.

An equivalent notion to the Hodge decomposition is the Hodge filtration

Fp =
⊕

i≥p

Hi,k−i

which satisfies, for a weight-k structure, the relation

H = Fp
⊕ Fk−p+1.

Note that the Hodge filtration is not just book keeping! It turns out that for a family of projective
algebraic manifolds the Hodge filtration varies holomorphically, while the Hodge decomposition does
not.

Example 2. In the case of a Riemann surface (i.e. an algebraic curve) we have

F0 = H1,F1 = H1,0

and moreover H1 = H1,0 + H0,1, or equivalently.

H = F1 + F1 = F1 + H0,1.

Deligne extended this theory to the case of singular varieties. The key notion here is that of a mixed
Hodge structure. This consists of a triple (H,F·,W·) such that

• H is a finite dimensional Q-vector space

• F· is a finite decreasing filtration

• W· is a finite increasing filtration
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and
(
GrW

k H := Wk/Wk−1,F·
)

is a pure Hodge structure.

Example 3. We illustrate the concept with a nodal curve S0 of genus 1. In its homology, we have an
obvious choice of 1-cycles

• one cycle going through the node

• two cycles going through the genus.

These cycles generate the whole homology H1 and give a basis for it. Take the dual basis. Note that cannot
carry a Hodge structure of weight 1 because such a structure would have to have an even dimension, as
follows from the Hodge decomposition

H1 = H0,1 + H1,0.

However, it still carries a lot of structure. Consider the normalisation map

p : S̃0 → S0.

It induces a surjective map on cohomology

p∗ : H1(S0)→ H1(S̃0),

whose kernel K is a Z-module generated by γ1. Therefore

H1(S0)/K ' H1(S̃0).

But H1(S̃0) now has a pure Hodge structure determined by the filtration

F1 = H1,0
⊂ H1(S̃0)( or H1(S0)) and F0 = H1.

3 Variations of Hodge Structures

Griffiths first considered Hodge structures in order to study the following geometric situation: let X
and S be two connected complex manifolds and f : X → S a surjective, proper, holomorphic map with
connected fibres everywhere of maximal rank. Then the fibre Xt = f−1(t) ⊂ X is a compact complex
manifold. Suppose moreover that each fibre is a polarised abelian variety so that each fibre comes with
a cohomology class ηn ∈ H2(Xt,Z) of a projective embedding. Therefore the collection {ηn} is a section of
R2 f∗(Z) and so we have a family of polarised algebraic manifolds.

Viewing f : X → S as a C∞-fibre bundle, we also have a flat complex vector bundle Hk
C
→ S with

fibres Hk(Xt,C). We analogously define the subbundles

Hk
Z ⊂ Hk

R ⊂ Hk
C.

Grauert then tells us that there exist subbundles Hp,q
⊂ Hk

C
with fibres Hp,q(Xt) over t ∈ S. The Hodge

filtration gives yet another subbundle

Fp =
⊕

i≥p

Hi,k−i
⊆ Hk

C.

Griffiths showed that in fact Fp are holomorphic vector bundles and moreover they satisfy the
following transversality condition

∀p,∇O(Fp) ⊂ O(Fp−1
⊗Ω1

S),

where O(−) denotes the sheaf of germs of holomorphic sections. It turns out that these properties make
it so that the bundle Fp are the right way of formulating variations of Hodge structure. We now give the
proper definition of the variations.
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Definition 1. A variation of Hodge structure of weight k on a smooth complex variety X is a collection of
the following data:

1. a flat vector bundle (V,∇),

2. a local system VQ of Q-vector spaces with the isomorphism of flat vector bundles

V ' VQ⊗Q

given by the de Rham functor.

3. a decreasing Hodge filtration F• on V satisfying Griffiths transversality

∇(FpV) ⊂ Fp−1V ⊗Ω1
S).

Remark. We note here that the interpretation of Griffiths transversality is that it shows that the filtration
is not flat with respect to ∇ and therefore it does not descend to a filtration of VQ.

Going back to the example at the beginning of this section, we see that in that case we have

VQ = Rk f∗(Q)

V = Rk f∗(Q) ⊗ OS = Hk
dR(X/S).

Of course, the following question arises: what if the family X → S has smooth fibres away from a
closed set V ⊂ S? Then generically Hk(Xs) (or Rk f∗(Q)) underlie a variation of a mixed Hodge structure. But
what do we mean by that exactly?

In the smooth case we used the Riemann-Hilbert correspondence, i.e. the following equivalence of
categories:

{vector bundles with flat connections} ↔ {local systems}

given by the de Rham functor.
In the singular case we have instead an equivalence of derived categories

{regular holonomic D-modules} ↔ {constructible sheaves}

given again by the de Rham functor which in this case has the following form

DR(M) = [M→ Ω1
X ⊗M→ . . .→ Ωn

X ⊗M]

in degrees −n, . . . , 0. Let us now unpack the definitions behind this correspondence.
We start with the constructible sheaves. These are sheaves that can be built up from local systems. More

precisely, let X be a complex manifold. Then a CX-module M is constructible if there exists a stratification⊔
Xi = X

such that each stratum Xi is a connected non-empty set, and the restriction MXi is a local system. In the
derived category, a complex M• is constructible if all its coherent sheaves are constructible. If X were a
smooth variety, then a CX-module M would be constructible if there existed a stratification by algebraic
varieties such that M was a constructible CX-analytic module.

We now turn to the D-module side. Our guiding example is the case of a locally free sheaf of OX-
modules of finite rank M. Then M is a sheaf of sections of a vector bundle on V and flat connections on
this vector bundle correspond to D-module structures on M. However, in general, M is not a sheaf of
sections, but we still have the correspondence between D-module structures on M and the existence of
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a C-linear morphisms ∇ : TX → End(M) with the usual properties... Let us now define regular holonomic
D-modules for the case when X is a smooth curve. To begin with, holonomicity refers to the fact that the
system of PDEs determined by the D-module is maximally determined, i.e. there is an equivalence of
categories

{holonomic D-modules} ↔ {systems of PDEs with finite-dimensional space of solutions}.

A holonomic DX-module M is called regular if there exists an open dense set X ⊆ X such that M|U
is a regular integrable connection. What we mean by this is that the meromorphic connection induced
from M|U is regular at every point x ∈ X \ X, where X denotes the smooth completion of X. Even more
precisely, it means that given the open embedding j : X → X, the stalk ( j∗M)x can be endowed with the
structure of a meromorphic connection at x:

∇(m) = dξ ⊗ ∂m,

where (ξ, ∂) are local coordinated for DX and m ∈ ( j∗M)x.
Denote by Db

rh(DX) the derived category of complexes with regular holonomic cohomology and by
Modrh(DX) its full subcategory of regular holonomic D-modules. In fact Modrh(DX) is the heart of Db

rh(DX).
Since the de Rham functor is t-exact, it makes sense to consider its image DR(Modrh). We define perverse
sheaves to be exactly this image of Modrh(DX) under the Riemann-Hilbert correspondence.

4 Hodge Modules

Hodge modules give a generalisation of the variations of Hodge structures. We can think of them
as of a sheaf of Hodge structures on a manifold. In fact one constructs them inductively, using as base
case a variation of Hodge structure on a dense open subset U of X. One also needs some gluing data on
the complements Z = X \U, together with compatibility conditions. Due to technical reasons, this extra
data comes in the form of certain filtrations on the nearby and vanishing cycle complexes of M whose
k-th graded parts are themselves weight k Hodge modules supported on the singular loci. As a word of
caution, we note here that this induction actually constructs the category of Hodge modules, and Hodge
modules are therefore objects of this category.

Essentially, a Hodge module is a filtered regular holonomic D-module M with an underlying rational
structure (a perverse sheaf). Let us first define the notion of rational filtered D-modules. This is a category
closed under Verdier duality and it consists of the following

• a regular holonomic D-module

• a perverse sheaf of Q-vector spaces MQ together with the isomorphisms

DR(M) 'MQ ⊗Q C.

• a good filtration F0 on M.

We will not define exactly what a good filtration is, suffice to say that it is a generalisation of the Griffiths
transversality condition that we saw in the definition of variations of Hodge structures. Recall that
Griffiths transversality of a filtration meant that

∇(FpV) ⊂ Fp−1V ⊗Ω1.

In particular, for a vector field v, we have that

∇v(FpV) ⊂ Fp−1V.
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Then F−p := FpV is an increasing filtration compatible with the sheaf of differential operators D by degree.
This is a prototype for a good filtration.

Example 4. The main example of filtered regular holonomic D-modules is, of course, the variation of
Hodge structure.

In order to perform the induction, we need the notion of strict support:

Definition 2. Let Z ⊂ X be an irreducible subvariety. A D-module M has strict support Z if the support
of every nonzero subobject or quotient object of M is equal to Z.

We now inductively define our object of interest:

Definition 3. The category HM(x,n) of (pure) Hodge modules of weight n is the largest full subcategory of
the category of rational filtered D-modules (plus some other technical things) such that

1. Hodge modules of weight n supported on points are pure (rational) Hodge structures of weight n.

2. For all Zariski open U ⊂ X, f : U→ C a non-constant holomorphic function, and M having support
not contained in f−1(0), if M ∈ HM(X,n), then the weight filtrations of the D-modules of nearby
and vanishing cycles are also Hodge modules of the appropriate weight supported on f−1(0).

With this definition, HM(X,n) is an abelian category, and moreover

HM(X,n) =
⊕
Z⊂X

HMZ(X,n),

where HMZ(X,n) is the category of Hodge modules with strict support on Z.
We mentioned earlier that Hodge modules are generalisations of variations of Hodge structures.

More precisely, Saito proves that any weight m variation of Hodge structures over an open subset of a
closed subset

U
j
−→ Z i

−→ X

can be extended to a Hodge module in HMZ(X,n) ⊂ HM(X,n), where n = dim Z + m. The underlying
perverse sheaf of the extension is the associated intersection cohomology complex

i∗ j∗!L[dim U],

where L is the perverse sheaf of the variation.

Example 5. For an easy example, consider the trivial Hodge module QH[n]. The underlying D-module
is OX and it has the trivial filtration F0OX = OX. The perverse sheaf Q[n] is the constant local system in
degree −n.

5 Mixed Hodge Modules

As in the case of pure Hodge modules, we describe the category of mixed Hodge moduleson X,
denoted MHM(X). Instead of constructing it from scratch, we give its most important properties:

1. There exist forgetful functors

MHM(X)→ Perv(X,Q)
MHM(X)→Modrh(X)

compatible with the Riemann-Hilbert correspondence.
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2. The objects in MHM(X) admit a weight filtration W• such that grW
k M ∈ HM(X, k).

3. MHM(pt) is the category of (polarisable) mixed Hodge structures.

4. Since the construction is also inductive, we need some properties pertaining to the gluing data.
For this, consider first the Tate Hodge structure (of weight 0) QH

∈ MHM(pt). Then the map
f : X → {pt} induces a complex f∗ f ∗QH of mixed Hodge modules which means that we have a
mixed Hodge structure on the cohomology H∗(X,Q).

6 The Decomposition Theorem

We now return to pure Hodge modules. Let f : X→ Y be a projective morphism. Then Saito proves
that if M is a Hodge module, then

1. Rk f∗M is a Hodge module of weight n + k on Y.

2. Hard Lefschetz analogue: the Lefschetz operator induces the isomorphism

R−i f∗M→ Ri f∗M[i].

3. The primitive part of R−i f∗M is a polarised Hodge module.

We recall also Deligne’s result which shows that the Hard Lefschetz implies

R f∗M '
⊕

i

Ri f∗M[−i].

The last ingredient needed for the decomposition is a structure theorem for polarisable Hodge
modules: again, Saito proves that any polarisable Hodge module of weight n on X is an intermediate
extension of a variation of Hodge structures of weight n − dim Z on a smooth open subset of Z for some
closed subvariety Z ⊂ X.

Given a variation of Hodge structure V on an open subset of Z, denote by ICZ(V) the intermediate
extension as a Hodge module on X.

Theorem 1. Let f : X→ Y be a projective morphism. Then

R f∗ICX(V) =
⊕

i

Ri f∗ICX(V)[−i]

Ri f∗ICX(V) '
⊕
Z⊂X

ICZ(Vi
Z)

for some variation of Hodge structure Vi
Z.

We also have the following vanishing results, also due to Saito. The proof follows after a reduction
to perverse sheaves.

Theorem 2. Let L be an ample line bundle on X a smooth projective variety, and consider the pair (M,F) ∈
MHM(X). Then

Hi(X, grF
k DR(M) ⊗ L) = 0,∀i > 0

Hi(X, grF
k DR(M) ⊗ L−1) = 0,∀i < 0.
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Example 6. Let us consider the trivial case M = QH[n] on X with M = OX. Then we have

grF
−nDR(OX) = ωX,

and the vanishing theorem is simply Kodaira vanishing. On the other hand

grF
−pDR(OX) = Ω

p
X(n − p)

and the vanishing theorem reduces to Nakano vanishing.
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