Billiards, cohomological field theories, and de Jonquières divisors

Mara Ungureanu

Oxford Junior String Seminar
8 June 2017
Billiards in convex polygons

- Ideal billiard ball
- Mass concentrated at one point
- No friction, no spin
- Optical rule
Billiards in convex polygons
Billiards in rational polygons

Rational polygon: all angles are rational multiples of π

- Many tools available
- Connections with algebraic geometry, Teichmüller theory, ...

Motivation: the group generated by the reflections of a rational polygon is finite
Unfolding rational polygons
Surfaces from polygons

Glue identified edges of polygon \Leftrightarrow surface with flat metric away from some (conical) singularities

Singularities arise from corners of polygon

Angle around singularities is integer multiple of 2π
Surfaces from polygons

\[\alpha = \frac{\pi}{8} \text{ and } \beta = \frac{3\pi}{8} \]
Surfaces from polygons

\[\gamma = 2 \times \frac{3\pi}{8} = \frac{3\pi}{4} \]

\[8 \times \frac{3\pi}{4} = 6\pi = 3 \times 2\pi \]
Surfaces from polygons

Gauss-Bonnet type theorem:
- n singularities with angle $(a_i + 1)2\pi$
- $\sum_{i=1}^{n} a_i = 2g - 2$

Take complex coordinate z on surface

$$\omega := p(z)dz$$

ω vanishes at conical singularities with order a_i
Surfaces from polygons

\[\gamma = 2 \times \frac{3\pi}{8} = \frac{3\pi}{4} \]

\[8 \times \frac{3\pi}{4} = 6\pi = (2 + 1)2\pi \]

\[2g - 2 = 2 \Rightarrow g = 2 \]
Strata of holomorphic differentials

\[\mathcal{H}_g(\mu) \]

- Riemann surface \(C \) of genus \(g \)
- \(n \) conical singularities \(p_i \) with angles \((a_i + 1)2\pi \)
- (or with differential \(\omega \) vanishing at \(p_i \) at order \(a_i \))
- \(\mu = (a_1, \ldots, a_n) \) partition of \(2g - 2 \)
Strata of holomorphic differentials

Kontsevich and Zorich: $\mathcal{H}_g(\mu)$ has at most three connected components

Lelièvre, Monteil, Weiss: there are at most finitely many points y on the polygon not reachable by a billiard trajectory from an arbitrary point x
To summarise

- Billiards in polygons
- Riemann surface of genus g with n conical singularities
- Riemann surface of genus g with differential vanishing at n points with prescribed order a_i such that
 \[\sum a_i = 2g - 2 \]
- Strata of differentials $\mathcal{H}_g(\mu)$
Studying $\overline{\mathcal{M}}_{g,n}$

$\mathcal{M}_{g,n} =$ moduli space of Riemann surfaces of genus g with n marked points

$$(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n}$$

- $\dim \mathcal{M}_{g,n} = 3g - 3 + n$
- compactification $\overline{\mathcal{M}}_{g,n}$
Studying $\overline{M}_{g,n}$

$\mathcal{M}_{g,n} =$ moduli space of Riemann surfaces of genus g with n marked points

$$(C; p_1, \ldots, p_n) \in \mathcal{M}_{g,n}$$

- $\dim \mathcal{M}_{g,n} = 3g - 3 + n$
- compactification $\overline{\mathcal{M}}_{g,n}$

Question

What is the cohomology of $\overline{\mathcal{M}}_{g,n}$?
Studying $\overline{\mathcal{M}}_{g,n}$

$\mathcal{H}_g(\mu) \subset \mathcal{M}_{g,n}$

Take closure: $\overline{\mathcal{H}}_g(\mu) \subset \overline{\mathcal{M}}_{g,n}$

Question
What is the fundamental class $[\overline{\mathcal{H}}_g(\mu)]$?

Answer
(potentially) Cohomological field theory!
\(\mathcal{M}_{g,n} \) and 2-dimensional CFT

CFT

- 2-dimensional QFT invariant under conformal transformations
- defined over compact Riemann surfaces

Stick to holomorphic side

CFT = 2-dimensional QFT covariant w.r.t. holomorphic coordinate changes
$\overline{M}_{g,n}$ and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

$$z \mapsto z + \epsilon f(z)$$

Local holomorphic vector field

$$f(z) \frac{d}{dz}$$
\(M_{g,n} \) and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

\[z \mapsto z + \epsilon f(z) \]

Local meromorphic vector field

\[f(z) \frac{d}{dz} \]
\(M_{g,n}\) and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

\[z \mapsto z + \epsilon f(z) \]

Local meromorphic vector field

\[f(z) \frac{d}{dz} \]

\[\Downarrow \]

Virasoro algebra:

\[L_n = -z^{n+1} \frac{d}{dz} \Rightarrow [L_n, L_m] = (m - n)L_{m+n}, n \in \mathbb{Z} \]

dec...
$\overline{M}_{g,n}$ and 2-dimensional CFT

Local meromorphic vector field

$$f(z) \frac{d}{dz}$$

\updownarrow

Infinitesimal deformation of complex structure

\updownarrow

Infinitesimal deformation of an algebraic curve
$\overline{\mathcal{M}}_{g,n}$ and 2-dimensional CFT

$\vec{\lambda} = (\lambda_1, \ldots, \lambda_n)$ representation labels

$V_{\vec{\lambda}}(C; p_1, \ldots, p_n)$ space of conformal blocks
$\overline{M}_{g,n}$ and 2-dimensional CFT

$(C; p_1, \ldots, p_n) \in \overline{M}_{g,n}$

$\vec{\lambda} = (\lambda_1, \ldots, \lambda_n)$ representation labels

$V_{\vec{\lambda}}(C; p_1, \ldots, p_n)$ space of conformal blocks
$\overline{\mathcal{M}}_{g,n}$ and 2-dimensional CFT

$(\tilde{C}; p_1, \ldots, p_n, q_+, q_-) \in \overline{\mathcal{M}}_{g,n+2}$

$\tilde{\lambda} = (\lambda_1, \ldots, \lambda_n, \lambda, \lambda^\dagger)$ representation labels

$V_{\tilde{\lambda}}(\tilde{C}; p_1, \ldots, p_n, q_+, q_-)$ space of conformal blocks
\(\overline{\mathcal{M}}_{g,n} \) and 2-dimensional CFT

Verlinde bundle

\[\mathcal{V}_{\vec{\lambda}} \to \overline{\mathcal{M}}_{g,n} \]

Each fibre is given by space of conformal blocks

\[V_{\vec{\lambda}}(C; p_1, \ldots, p_n) \to (C; p_1, \ldots, p_n) \]
The characters $\text{ch}(\mathcal{V}_\chi)$ define a CohFT on $\overline{\mathcal{M}}_{g,n}$!
The characters $ch(V_{\chi})$ define a CohFT on $\overline{M}_{g,n}$!

A CohFT

- a vector space of fields U
- a non-degenerate pairing η
- a distinguished vector $1 \in U$
- a family of correlators

$$\Omega_{g,n} \in H^*(\overline{M}_{g,n}, \mathbb{Q}) \otimes (U^*) \otimes n$$

satisfying gluing...
Quantum multiplication \(*\) on \(U\)

\[
\eta(v_1 \ast v_2, v_3) = \Omega_{0,3}(v_1 \otimes v_2 \otimes v_3) \in \mathbb{Q}
\]

\((U, \ast)\) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius algebra
$\overline{M}_{g,n}$ and CohFT

$\mathcal{H}_g(\mu) = \{(C; p_1, \ldots, p_n) \text{ such that differential vanishes at } p_i \text{ to order } a_i\}$

$[\overline{\mathcal{H}}_g(\mu)] = ?$

Maybe $[\overline{\mathcal{H}}_g(\mu)]$ is one of the $\Omega_{g,n}$
\(\overline{\mathcal{H}}_g(\mu) \) and CohFT

\[[\overline{\mathcal{H}}_g(\mu)] \] is not a CohFT class!

Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one Witten \(R \)-spin class

\[W^R_{g,\mu} \in H^{2g-2}(\overline{\mathcal{M}}_{g,n}, \mathbb{Q}) \]
de Jonquières’ divisors

\[\mathcal{H}_g(\mu) = \{(C; p_1, \ldots, p_n) \text{ such that differential vanishes at } p_i \text{ to order } a_i \} \]

\[= \{(C; p_1, \ldots, p_n) \text{ such that } \Omega^1_C \text{ has section that vanishes at } p_i \text{ to order } a_i \} \]

What if \(L \neq \Omega^1_C \)?
Ernest de Jonquières
Disclaimer
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \rightarrow \mathbb{P}^r$ non-degenerate

Degree of $f = \#\{f(C) \cap H\} =: d$

\[d = 3 \]
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \to \mathbb{P}^r$ non-degenerate

Degree of $f = \# \{ f(C) \cap H \} =: d$

$d = 3$
de Jonquières’ multitangency conditions

C smooth, genus g

$f : C \to \mathbb{P}^r$ non-degenerate

Degree of $f = \# \{ f(C) \cap H \} =: d$

\[d = 3 \]
de Jonquières’ multitangency conditions

\[C \text{ smooth, genus } g \]
\[f : C \to \mathbb{P}^r \text{ non-degenerate} \]
\[\text{Degree of } f = \# \{ f(C) \cap H \} =: d \]

\[f^{-1} \{ f(C) \cap H \} = p_1 + 2p_2 \]
de Jonquières’ multitangency conditions

dech Jonquières counts the number of pairs \((p_1, p_2)\) such that there exists a hyperplane \(H \subset \mathbb{P}^r\) with

\[
f^{-1}\{f(C) \cap H\} = p_1 + 2p_2
\]
de Jonquières’ multitangency conditions

de Jonquières (and Mattuck, Macdonald) count the n-tuples (p_1, \ldots, p_n) such that there exists a hyperplane $H \subset \mathbb{P}^r$ with

$$f^{-1}\{f(C) \cap H\} = a_1p_1 + \ldots + a_np_n$$

where

$$a_1 + \ldots + a_n = d$$
The (virtual) de Jonquières numbers are the coefficients of

\[t_1 \cdot \ldots \cdot t_n \]

in

\[(1 + a_1^2 t_1 + \ldots + a_n^2 t_n)^g (1 + a_1 t_1 + \ldots + a_n t_n)^{d-r-g} \]
Constructing the moduli space

An embedding \(f : C \rightarrow \mathbb{P}^r \) of degree \(d \) is given by

A pair \((L, V)\)

- a line bundle \(L \) of degree \(d \) on \(C \)
- an \((r + 1)\)-dimensional vector space \(V \) of sections of \(L \)
Constructing the moduli space

An embedding $f : C \to \mathbb{P}^r$ of degree d is given by

A pair (L, V)

- a line bundle L of degree d on C
- an $(r + 1)$-dimensional vector space V of sections of L

Choose $(\sigma_0, \ldots, \sigma_r)$ basis of V

$$f : C \to \mathbb{P}^r$$

$$p \mapsto [\sigma_0(p) : \ldots : \sigma_r(p)]$$
Constructing the moduli space

Space of all divisors of degree d on C

$$C_d = \underbrace{C \times \ldots \times C}_{d \text{ times}} / S_d$$

For example

$$p_1 + 2p_2 \in C_3$$
Constructing the moduli space

Space of all divisors of degree \(d \) on \(C \)

\[C_d = C \times \ldots \times C / S_d \]

For example

\[p_1 + 2p_2 \in C_3 \]

We define de Jonquières divisors

\[p_1 + \ldots + p_n \in C_n \]

such that

\[f^{-1}\{ f(C) \cap H \} = a_1p_1 + \ldots + a_n p_n \]
Constructing the moduli space

\[D = p_1 + \ldots + p_n \] is de Jonquières divisor

\[\uparrow \]

there exists a section \(\sigma \) whose zeros are

\[a_1 p_1 + \ldots + a_n p_n \]
To summarise...

- Fix curve C of genus g
- Fix embedding given by (L, V)
- $C_n :=$ space of divisors of degree n
- Defined de Jonquières divisors via multitangency conditions

$$DJ_n = \{ D \in C_n \mid D \text{ de Jonquières divisor for } L \}$$
Analysing the moduli space

\[DJ_n = \{ D \in C_n \mid D \text{ de Jonquières divisor for } L \} \]

- determinantal subvariety of \(C_n \) (degeneracy locus)
- if \(DJ_n \neq \emptyset \), then \(\dim DJ_n \geq n - d + r \)
Analysing the moduli space

Relevant questions

- \(n - d + r < 0 \) \(\Rightarrow \) non-existence of de Jonquières divisors
- \(n - d + r \geq 0 \) \(\Rightarrow \) existence of de Jonquières divisors
- \(n - d + r = 0 \) \(\Rightarrow \) finite number of de Jonquières divisors
- \(\dim DJ_n = n - d + r \)
Taking a variational perspective

- Allow C to vary in $\mathcal{M}_{g,n}$
- Vary the de Jonquières structure with it
To summarise...

- Billiards in rational polygons
- Obtained Riemann surface with differential vanishing at marked points
- Looked at strata $\mathcal{H}_g(\mu)$ using CohFT
- Generalised to de Jonquières divisors