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Abstract

The aim of this paper is to provide another perspective on secant varieties on
algebraic curves by reformulating the problem in terms of refined de Jonquières
divisors, that is divisors on the curve with prescribed multiplicities and dimensions
of their spaces of global sections. We are able to both recover some already known
results and to obtain some new statements concerning the dimension theory of secant
varieties. We do this via the study of the dimension theory of refined de Jonquières
divisors in some relevant cases and degeneration arguments.

1 Introduction
Secant varieties to algebraic curves are some of the most studied objects in classical

algebraic geometry. Their enumerative geometry has been of particular interest, with
Castelnuovo [3], Cayley [4], and later MacDonald [1] providing various formulas predicting
the number of secant k-planes to a curve embedded in a projective space of some fixed
dimension.

Despite their long history, it was only quite recently that the validity of these enumerative
formulas has been verified in most cases, independently by Cotterill [6] and Farkas [10].
More precisely, for a general curve C of genus g equipped with a linear series l of degree d
and dimension r, denote by V e−f

e (l) the variety of effective divisors of degree e on C that
impose at most e− f conditions on l. In other words, a divisor D belonging to V e−f

e (l)
has the property that the series l −D has degree d− e and dimension at least r − e+ f .
The space V e−f

e (l) has the structure of a determinantal subvariety of the e-th symmetric
product Ce of C and as such it has an expected dimension

exp dimV e−f
e (l) = e− f(r + 1− e+ f).

In [10, Theorem 0.1] it is shown that V e−f
e (l) is empty for all l of degree d and dimension

r if
exp dimV e−f

e (l) < −ρ(g, r, d),

where ρ(g, r, d) := g− (r+ 1)(g− d+ r) is the Brill-Noether number of l. As a consequence
of this result, we have (cf. [10, Corollary 0.3]) that if the variety V e−f

e (l) is non-empty,
then it is equidimensional and of expected dimension e− f(r + 1− e+ f) ≥ 0.

The issue of non-emptiness of secant varieties when the expected dimension is non-
negative is unfortunately not as easily established. The cycle class of V e−f

e (l) computed
by MacDonald displays positivity features only in the case of a non-special linear series
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l, however new results by Cotterill, He, and Zhang [7] indicate that formulas with better
positivity properties can be found in some cases. An older result of Coppens and Martens
[5, Theorem 1.2] already addresses the non-emptiness in a different context and states that
if d ≥ 2e− 1 and

e− f(r + 1− e+ f) ≥ r − e+ f, (1)

then V e−f
e (l) is not empty, for any curve C and linear series l. Moreover [10, Theorem 0.5]

also provides non-emptiness results for certain ranges of the parameters.
The purpose of this article is to offer another perspective on secant varieties via the

notion of refined de Jonquières divisors.
In the classical study of algebraic curves de Jonquières divisors on a curve C are divisors

with prescribed multiplicities belonging to a linear series l of degree d and dimension r (see
for example [1, Chapter VIII, Section 5]). More precisely, we say that an effective divisor D
belonging to l is a de Jonquières divisor of length N if there exist positive integers a1, . . . , ak
and d1, . . . , dk with

∑k
i=1 aidi = d and

∑k
i=1 di = N such that D =

∑k
i=1 aiDi, for some

effective divisors Di of degree di. We shall refer to those de Jonquières divisors where we
fix not only the degrees di of each of the Di, but also the dimension of their spaces of
global sections, as refined de Jonquières divisors. Thus, if we additionally fix non-negative
integers r1, . . . , rk ≤ r, a refined de Jonquières divisor of length N is a de Jonquières divisor
a1D1 + · · · + akDk ∈ Cd of l such that h0(C,OC(Di)) ≥ ri + 1, for i = 1, . . . , k. In this
paper we shall investigate the geometry of spaces of refined de Jonquières divisors on a
general curve, with particular emphasis on their dimension theory. We shall use it to
recover some of the already known results concerning secant varieties and to also provide
some new insights into their study.

The connection between refined de Jonquières divisors and secant varieties arises from
two distinct observations.

On the one hand, consider the example found in [13, Remark 5.1] that describes a
situation where the expected dimension of V e−f

e (l) is zero, the residual linear series KC − l
is a pencil of degree d− e, and r − e+ f = 1, i.e. a divisor D ∈ V e−f

e (l) imposes at most
r − 1 conditions on l. Nevertheless we find that there are no divisors D ∈ Ce satisfying
D′ + D = l, where D′ is an effective divisor belonging to KC − l. The situation there
gives rise to a refined de Jonquières divisor 2D′ +D of the canonical bundle KC , where
h0(C,OC(D′)) = 2. Using dimension theoretical considerations, one may then easily check
that the canonical bundle does not admit refined de Jonquières divisors of that type.

Inspired by this, we use the framework of refined de Jonquières divisors to produce
similar examples for linear series l of any dimension. More precisely, we have

Proposition 1.1. Let C be a general curve of genus g equipped with a complete linear
series l1 of degree d and dimension r with g < d+1 and its residual l2. There is no effective
divisor D ∈ C2g−2−2d such that l1 +D = l2.

We remark here that the example found in [13, Remark 5.1] may also be recovered as a
special case of Proposition 1.1. Furthermore, note that the above result does not imply that
the corresponding secant variety V g−d−1

2g−2−2d(l2) is empty within the stated parameter bound.
It does however emphasise the point that the expected non-emptiness of secant varieties
cannot be used as a test for the existence of effective divisors D satisfying l1 +D = l2, for
some fixed linear series l1 and l2.
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On the other hand, suppose the linear series l admits a refined de Jonquières divisor
D′ +D, where D ∈ Ce, D′ ∈ Cd−e, and h0(C,OC(D′) ≥ r+ 1− e+ f . This in turn means
that D is an element of the secant variety V e−f

e (l). Hence, the non-emptiness of the space
of such refined de Jonquières divisors implies the non-emptiness of the corresponding secant
variety. In this way we are able to establish the following

Theorem 1.2. Let C be a general curve of genus g and l a complete linear series of
degree d and dimension r. Assume furthermore that e, f are non-negative integers with
0 ≤ f < e ≤ d. If

e− f(r + 1− e+ f) ≥ (g − d+ r − 1)(r − e+ f),

then the secant variety V e−f
e (l) is non-empty.

This result recovers some already known existence statements about secant varieties, and
it provides some new (to us) instances of the non-emptiness of secant varieties when
their expected dimension satisfies the lower bound from Theorem 1.2. For example, when
g − d+ r = 1 we recover one of the few cases where the MacDonald formula is easily seen
to be positive, while for g − d + r = 2 we are in the situation of the Coppens-Martens
result mentioned above.

Finally, as we explained above, if D is an effective divisor of degree e ≤ d such that
D′ + D is a refined de Jonquières divisor with h0(C,OC(D′)) ≥ r − e + f , then D also
belongs to V e−f

e (l). Elements D of the secant variety V e−f
e (l) that originate from refined

de Jonquières divisors give rise to a distinguished subvariety Ṽ e−f
e (l) of V e−f

e (l) and we
are establish the following

Theorem 1.3. Fix a general curve C of genus g equipped with a complete general linear
series l of degree d and dimension r. Assume also that e, f are non-negative integers with
0 ≤ f < e ≤ d and that e− f(r+ 1− e+ f) < min(r− e+ f + 2, (g− d+ r− 1)(r− e+ f)).
If

1. ρ(g, r, d) = 0 and e < 2r or if

2. ρ(g, r, d) > 0 and e < r,

then the subvariety Ṽ e−f
e (l) of V e−f

e (l) is empty.

The theorem is a direct consequence of the result concerning the expected dimension of
the space of refined de Jonquières divisors of the type D′ +D, with D ∈ Ce and D′ ∈ Ce
with h0(C,OC(D′)) ≥ r + 1− e+ f .

The paper is organised as follows. In Section 2 we lay out the precise definitions of the
objects of interest for this article. We begin the study of the space of refined de Jonquières
divisors in Section 3 and we state the main results concerning its dimension. In Section
4 we explain how to use refined de Jonquières divisors to make statements about secant
varieties. Thus, section 4.1 is dedicated to the proof of Proposition 1.1 and Section 4.2
to the proof of Theorem 1.2. Finally, in Section 5 we use induction and degeneration
techniques to study the dimension theory of the space of refined de Jonquières in certain
relevant cases which then directly yields the content of Theorem 1.3.
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2 Definitions and conventions
Let C be a smooth projective curve of genus g. For a divisor D on C, let |D| be the

linear series of all effective divisors linearly equivalent to D and s(D) be the index of
speciality of D, equal to g − d+ dim |D|. Denote by Grd(C) the space parametrising linear
series of type grd on C, i.e.

Grd(C) := {l = (L, V ) | L ∈ Picd(C), V ∈ Gr(r + 1, H0(C,L))}.

We focus on the case of Brill-Noether general curves, which means that Grd(C) is a smooth
variety of expected dimension given by the Brill-Noether number ρ(g, r, d). Furthermore,
call the following sequence

0 ≤ a0(l, p) < a1(l, p) < · · · < ar(l, p) ≤ d,

where the ai(l, p) are the orders with which non-zero sections of l vanish at a point p ∈ C
the vanishing sequence of l at a point p. Associated to it we also have the ramification
sequence of l at p:

α(l, p) := 0 ≤ α0(l, p) ≤ α1(l, p) ≤ · · · ≤ αr(l, p) ≤ d− r,

where αi(l, p) = ai(l, p)− i. For a general pointed curve (C, p), the variety Grd(C;α(l, p))
parametrising grd-s l with prescribed ramification sequence at least α(l, p) at p is also
reduced and of expected dimension given by the adjusted Brill-Noether number ρ(g, r, d)−∑r
i=0 αi(l, p).
Let Crd be the subvariety of the symmetric product Cd parametrising effective divisors

moving in a linear series of dimension at least r:

Crd = {D ∈ Cd | dim |D| ≥ r}.

It is a well-known fact (cf. [1, Chapter IV]) that for a general curve, the variety Crd is of
expected dimension ρ(g, r, d) + r at a point D ∈ Crd \ C

r+1
d .

As mentioned in the Introduction, V e−f
e (l) is the variety of effective divisors D ∈ Ce

imposing at most e− f conditions on l, i.e.

V e−f
e (l) = {D ∈ Ce | dim(l −D) ≥ r − e+ f} ⊂ Ce,

where l −D denotes the linear series
(
L⊗OC(−D), V ∩H0(C,L⊗OC(−D))

)
and f < e

are non-negative integers smaller than d.
Lastly, let C be a smooth curve of genus g equipped with a linear series l = (L, V ) ∈

Grd(C) and r1, . . . , rk ≤ r non-negative integers, for some positive integer k ≤ d. A refined
de Jonquières divisor of length N is a divisor a1D1 + · · ·+ akDk ∈ Cd such that

a1D1 + · · ·+ akDk ∈ PV,
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where the Di ∈ Cridi and
∑k
i=1 di = N .

Now fix the following vectors of non-negative integers µ = (r1, . . . , rk), ν = (a1, . . . , ak),
and λ = (d1, . . . , dk) satisfying

∑k
i=1 aidi = d,

∑k
i=1 di = d and ri ≤ r for all i = 1, . . . , k.

Denote by DJλ,µ,ν(C, l) the space of refined de Jonquières divisors of length N belonging
to l and determined by the three vectors λ, µ, ν. Note that if ri = 0 for all i = 1, . . . , k,
we recover the usual de Jonquières divisors of length N . Furthermore, for a general curve
C, one must choose the parameters in such a way that the inequality ρ(g, ri, di) ≥ 0 is
satisfied for all i = 1, . . . , k.

3 Dimension theory of refined de Jonquières divisors
As usual, let C be a general curve of genus g with a linear series l = (L, V ) ∈ Grd(C).

We begin the study of the space of refined de Jonquières divisors DJλ,µ,ν(C, l) by first
expressing it as a degeneracy locus of a vector bundle map over Cd. Let E = OCd ⊗V
be the trivial vector bundle. Furthermore, let Fd(L) = τ∗(σ∗L⊗OU) be the d-th secant
bundle.

Consider the restriction map σ∗L→ σ∗L⊗OU and its pushdown via τ to Cd. After
intersecting with PV , we obtain the desired vector bundle morphism which we denote by
Φ : E → Fd(L).

Furthermore set

∆λ,µ,ν := {E ∈ Cd | E =
k∑
i=1

aiDi for some D1 ∈ Cr1
d1
, . . . , Dk ∈ Crkdk} ⊂ Cd.

It is easy to see that dim ∆λ,µ,ν ≥
∑k
i=1(ρ(g, ri, di) + ri). If moreover each Di belongs to

Cridi \ C
ri+1
di

, then

dim ∆λ,µ,ν =
k∑
i=1

(ρ(g, ri, di) + ri).

Putting everything together, we see that DJλ,µ,ν(C, l) is the degeneracy locus of the
vector bundle map Φ over ∆λ,µ,ν . Thus, if DJλ,µ,ν(C, l) is non-empty, then for every point
D ∈ DJλ,µ,ν(C, l) we have that

dimDDJλ,µ,ν(C, l) ≥ dim ∆λ,µ,ν − d+ r. (2)

We focus on the relevant case for our problem, namely

∆λ,µ,ν = {E ∈ Cd | E = D +D′ for some D ∈ Ce and D′ ∈ Cr−e+fd−e },

where now λ = (e, d− e), µ = (0, r− e+ f), and ν = (1, 1). To ease notation, from now on
we shall refer to the space ∆λ,µ,ν with this particular choice of parameters as ∆r,d

e,f and the
corresponding space of refined de Jonquières divisors as DJe,f (C, l). From the discussion
in the Introduction it follows that if DJe,f (C, l) is non-empty, then so is V e−f

e (l).
Furthermore, [1, Chapter IV, Lemma 1.7] shows that no component of Crd is entirely

contained in Cr+1
d . We are thus interested in the dimension theory of the space DJe,f (C, l)

at a point E = D +D′, where D ∈ Ce and D′ belongs to a linear series l′ ∈ Gr−e+fd−e (C).
In this case, the expected dimension of DJe,f (C, l) at a point D is given by

dimDDJe,f (C, l) ≥ e− f(r + 1− e+ f)− (s− 1)(r − e+ f), (3)
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where s denotes the index of speciality of l.
A large part of the paper is dedicated to proving the following dimensionality result.

Theorem 3.1. Fix a general curve C of genus g and a general complete linear series
l ∈ Grd(C) with index of speciality s. Let e, f be non-negative integers with 0 ≤ f < e ≤ d
and e− f(r + 1− e+ f) ≤ r − e+ f + 2. If

1. ρ(g, r, d) = 0 and e < 2r or if

2. ρ(g, r, d) > 0 and e < r,

and if moreover the space DJe,f (C, l) is non-empty, then it is of expected dimension
e− f(r + 1− e+ f)− (s− 1)(r − e+ f).

We immediately obtain the following

Corollary 3.2. Fix a general curve C of genus g and a general complete linear series
l ∈ Grd(C) with index of speciality s. Let e, f be non-negative integers with 0 ≤ f < e ≤ d
and e− f(r + 1− e+ f) ≤ r − e+ f + 2. If

1. ρ(g, r, d) = 0 and e < 2r or if

2. ρ(g, r, d) > 0 and e < r,

and if e − f(r + 1 − e + f) < min((s − 1)(r − e + f), r − e + f + 2), then DJe,f (C, l) is
empty.

The statement of Theorem 1.2 is a direct consequence of the above Corollary and the
discussion above.

The strategy for the proof of Theorem 3.1 is to first consider the case of the canonical
linear series KC and that of non-special linear series. This is done in Section 3.1 below, by
means of a tangent space computation. We then use this as a base case for an induction
argument that we explain in Section 5. Along the way we describe what happens to a
family of refined de Jonquières divisors that degenerates to a nodal central fibre. We focus
in particular on the case of a nodal curve of compact type with one node. We remark here
that the bounds e < 2r and e < r are artefacts of the induction step and the particular
degeneration that we use.

Finally, to obtain Corollary 3.2 we need to establish the emptiness of the space
DJe,f (C, l) when l is a non-special linear series (so with s = 0) and when l = KC . The
latter is discussed at the beginning of the next section, while for the former we have:

Lemma 3.3. Fix a general curve C of genus g, a linear series l ∈ Grd(C) with index of
speciality s = 0, and non-negative integers e, f with 0 ≤ f < e ≤ d. If e − f(r + 1 − e +
f) + (r − e+ f) < 0, then DJe,f (C, l) is empty.

Proof. Consider the Abel-Jacobi map u : ∆r,d
e,f → Picd(C), E 7→ OC(E). Since s = 0,

we have Picd(C) = W r
d (C). Moreover, imu is a closed subset of Picd(C) and dim imu ≤

dim ∆r,d
e,f . Thus if dim ∆r,d

e,f < g = d− r, then a general L ∈ picd(C) (i.e. such that s = 0)
does not lie in the image of u and hence its corresponding space of refined de Jonquières
divisors DJe,f (C,L) is empty. One then easily verifies that dim ∆r,d

e,f < d− r is equivalent
to the inequality in the statement of the lemma.
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3.1 Tangent space of refined de Jonquières divisors

We begin with an elementary argument which shows that Theorem 3.1 holds for the
canonical linear series KC . We then prove that in fact DJλ,µ,ν(C,KC) is always of expected
dimension by looking at its tangent space.

Consider the special case of refined de Jonquières divisors corresponding to l = KC ,
λ = (d− d2, d2), µ = (0, r2), and ν = (1, 1), that is

∆λ,µ,ν = {E ∈ Cd | E = D1 +D2, for some D1 ∈ Cd−d2 , D2 ∈ Cr2
d2
}. (4)

From Riemann-Roch we immediately obtain that dim |D1| = g − d2 + r2 − 1. Thus, up to
linear equivalence, we get that for each D2 ∈ Cr2

d2
, there is a (g − d2 + r2 − 1)-dimensional

family of divisors D1 such that D1 +D2 = KC . Thus in this case we have

dimDJλ,µ,ν(C,KC) = ρ(g, r2, d2) + g − d2 + r2 − 1
= (ρ(g, r2, d2) + r2) + (d− d2)− d+ r,

which is exactly the expected dimension of the space of refined de Jonquières divisors
from (2), with d = 2g − 2 and r = g − 1. Thus Theorem 3.1 holds for KC and we may
also at the same time conclude that if the expected dimension is negative then the space
DJλ,µ,ν(C,KC) is empty.
Remark 3.1. Assume now that D2 belongs to a linear series l2 of type gr2

d2
with prescribed

ramification sequence at least α(l2, p) at a general point p ∈ C. By appropriately modifying
the expression in (4) to include this further restriction, we see that the dimension of the
space DJλ,µ,ν,α(C,KC) of refined de Jonquières divisors with prescribed ramification at a
general point p ∈ C for KC is

dimDJλ,µ,ν,α(C,KC) = (ρ(g, r2, d2)−
r2∑
i=0

αi(l2, p) + r2) + (d− d2)− d+ r. (5)

Remark 3.2. In proving Theorem 3.1 we shall in fact need to consider refined de Jonquières
divisors of type DJe,f (C, l) where the corresponding linear series l′ ∈ Gr−e+fd−e (C) has
ramification at least α at a general point q ∈ C. From now on we denote the space of
such refined de Jonquières divisors by DJe,f,α(C, l) and note that its expected dimension
is given by

dimDJe,f,α(C, l) ≥ e− f(r + 1− e+ f)− (s− 1)(r − e+ f)−
r−e+f∑
i=0

αi.

We expect that DJλ,µ,ν(C,KC) is of expected dimension for a more general choice of
parameters λ, µ, and ν than the one appearing in Theorem 3.1. This is indeed what we
find by means of a tangent space computation, which we now discuss.

Let l ∈ Grd(C) be a complete linear series and let D ∈ Cd be a divisor such that |D| = l.
We can rewrite DJλ,µ,ν(C, l) as the intersection

DJλ,µ,ν(C, l) = |D| ∩∆λ,µ,ν .

Thus, the space DJλ,µ,ν(C, l) is smooth and of expected dimension at a point D if and
only if the above intersection is transverse, i.e.

TDCd = TD|D|+ TD∆λ,µ,ν .
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Recall that TDCd = H0(C,OD(D)) (see for example §1, Chapter IV of [1]). Its dual is
T∨DCd = H0(C,KC/KC(−D)) and the pairing between the tangent and cotangent space is
given by the residue. From now on we shall use the superscript ⊥ to denote orthogonality
with respect to this pairing. Moreover, we have that

TD|D| = ker δ = im(α)⊥,

where δ : im(αµ0)⊥ → im(µ0)⊥ is the differential of the restriction of the Abel-Jacobi map
u : Crd →W r

d (C), the map α : H0(C,KC)→ H0(C,KC ⊗OD) is the restriction, and

µ0 : H0(C,KC −D)⊗H0(C,OC(D))→ H0(C,KC)

is the cup-product mapping. We also used the fact that TDCrd = im(αµ0)⊥ and denoted
by W r

d (C) the subvariety of Picd(C) parametrising complete linear series of degree d and
dimension at least r, that is W r

d (C) = {L ∈ Picd(C) | h0(C,L) ≥ r + 1}. To establish the
expression for the tangent space of ∆λ,µ,ν , let Di denote the diagonal in the ai-th product
Cridi × · · ·C

ri
di
. Thus ∆λ,µ,ν = D1 × · · · × Dk/Sd and so

TD∆λ,µ,ν = TD1C
r1
d1
⊕ · · · ⊕ TDkC

rk
dk

= im(α1µ01)⊥1 ⊕ · · · ⊕ im(αkµ0k)⊥k ,

where µ0i and ⊥i denote the cup-product mapping and orthogonality with respect to the
residue pairing corresponding to each divisor Di, for i = 1, . . . , k. Thus the transversality
condition becomes

im(α1µ01)⊥1 ⊕ · · · ⊕ im(αkµ0k)⊥k + im(α)⊥ = TDCd. (6)

Note that if |D| = KC , then condition (6) is immediately satisfied. We have therefore
proved the following:

Lemma 3.4. Fix a general curve C with a linear series l. If l = KC or l is non-special,
then if DJλ,µ,ν(C, l) is non-empty, then it is smooth and of expected dimension.

4 Applications to secant varieties
This section is dedicated to explaining how one may use refined de Jonquières divisors

in order to extract information about secant varieties on algebraic curves.
Note that the multiplication map

ε : Cr−e+fd−e × Ce → ∆r,d
e,f

(D,D′) 7→ D +D′,

is a finite morphism. Hence by projecting the preimage ε−1(∆r,d
e,f ∩ |l|) to Ce we obtain a

subvariety Ṽ e−f
e (l) of V e−f

e (l) of dimension equal to at most the dimension of DJe,f (C, l).
At this point it is also important to understand to what extent the varieties V e−f

e (l)
and V e−f−1

e (l) are different. More precisely, we have the following

Lemma 4.1. Let l ∈ Grd(C) be a complete linear series on a general curve C. Then no
component of V e−f

e (l) is entirely contained in V e−f−1
e (l).
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Proof. Out proof is similar to that of [1, Chapter IV, Lemma 1.7]. Let D be a general
point of an irreducible component of V e−f

e (l) and assume towards a contradiction that
dim(l − D) > r − e + f . Let q be a general point of C. Then there exists a divisor
E ∈ Cd−e−1 such that E + q ∈ l −D. Moreover, since q is general (and thus not a base
point of l −D), we obtain dim |E| = dim(l −D)− 1 ≥ r − e+ f . We therefore have that

s(E) = g − (d− e− 1) + (dim(l −D)− 1) = g − d+ dim(l −D) + e ≥ g − d+ r + f,

where s(E) is the index of speciality of |E|. Hence KC −E is effective. Furthermore, if p is
another general point of C, then p is not a base point of |KC−E| so that s(E+p) = s(E)−1.
Riemann-Roch then yields dim |E + p| = dim |E| = dim(l − D) − 1 ≥ r − e + f . Next,
observe that E + p ∼ l −D + p− q. Let D′ be an effective divisor linearly equivalent to
D − p+ q. By the generality of p and q, D′ belongs to the same irreducible component of
V e−f
e (l) as D and moreover dim(l −D′) ≥ r − e+ f , which contradicts the generality of
D.

Thus it is sensible to consider, as we have done already in Section 3 the dimension
theory of DJe,f (C, l) at a point E = D +D′, where D ∈ Ce and D′ ∈ Cr−e+fd−e \ Cr+1−e+f

d−e .
In what follows we shall prove Proposition 1.1 and Theorem 4.2 using the above

considerations and the transversality result in Lemma 3.4. The proof of Theorem 3.1 (and
hence that of Theorem 1.3) requires a degeneration argument which is described in Section
5.

4.1 Proof of Proposition 1.1

As mentioned in the Introduction, the starting point for the present discussion is the
example found in [13, Remark 5.1]. Using the notation of Proposition 1.1, the situation
there can be described as follows: l1 ∈ G1

d(C) is a minimal pencil, i.e. ρ(g, 1, d) = 1. This
means that the general curve C must have genus g = 2d− 3, l2 ∈ Gd−3

3d−8(C), and KC is of
type g2d−4

4d−8. Let D′ be an effective divisor such that |D′| = l1. The idea is that, if there
exists an effective divisor D ∈ C2d−8 with l1 +D = l2, then D = KC − 2D′ ≥ 0. Consider
now the Petri map

µ0 : H0(C,D′)⊗H0(C,KC −D′)→ H0(C,KC).

The base-point-free pencil trick yields that its kernel is given by H0(C,KC − 2D′). Since
for a general curve µ0 is injective, we have that h0(C,KC − 2D′) = 0, from which we
conclude that h0(C,D) = 0. But this contradicts the effectiveness of D, which means that
such a divisor D cannot exist.

To prove Proposition 1.1, assume from now on that l1 ∈ Grd(C) with r ≥ 1. As in
the case of pencils, if there exists an effective divisor D satisfying l1 + D = l2, where
l2 = KC − l1, then KC = 2D′ +D, where D ∈ C2g−2d−2 and D′ ∈ Cd and with |D′| = l1.
Hence 2D′ +D ∈ DJλ,µ,ν(C,KC), where λ = (2g − 2d− 2, d), µ = (r, 0), and ν = (2, 1).

From Lemma 3.4 we know that, if non-empty, the space of refined de Jonquières divisors
DJλ,µ,ν(C,KC) is of expected dimension, i.e.

dimDJλ,µ,ν(C,KC) = (ρ(g, r, d) + r) + (2g − 2d− 2)− (2g − 2) + (g − 1)
= (g − d− 1)(1− r)− r(r + 1).
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Lemma 3.4 also allows us to conclude that, if (g − d − 1)(1 − r) − r(r + 1) ≥ 0, then
DJλ,µ,ν(C,KC) is non-empty. It is however not difficult to check that the inequality is
never satisfied. For r = 1, this is immediately clear. If r > 1, then the inequality is
equivalent to

r(r + 1)
r − 1 ≤ d+ 1− g

which translates to
2r
r − 1 ≤ 1− s,

where, as usual, s = g− d+ r is the index of speciality of l1. However, the above inequality
can never be satisfied for s ≥ 0 and r > 1.

Hence dimDJλ,µ,ν(C,KC) < 0 and we therefore expect that it is empty. We establish
that it is indeed the case for g < d+ 1. By construction l2 = KC − l1 = l1 +D. We may
rewrite this as

gs−1
2g−2−d = grd +D.

Note that if g = d+ 1, then s− 1 = r and 2g− 2− d = d, which yields D = 0. The divisors
D′ are therefore theta characteristics and we recover the fact that there are finitely many
odd ones on a general curve.

Now consider the secant variety relevant to our situation: we have that l2 is a linear
series of type gg−d+r−1

2g−2−d and e = degD = 2g − 2d− 2, which means that

f = r + e− (g − d+ r − 1) = g − d− 1.

Thus the relevant secant variety is V g−d−1
2g−2d−2(l2) which (if it is non-empty) is of expected

dimension
exp dimV g−d−1

2g−2d−2(l2) = (g − d− 1)(1− r) ≥ 0.

Note that for this to make sense, we must have g ≤ d+ 1. Thus we have shown that when
g < d+ 1 and therefore (g − d− 1)(1− r) > 0 holds, the above secant variety is (expected
to be) non-empty, but we find examples of linear series l1 ∈ Grd(C) and l2 = KC − l1 such
that there are no effective divisors D satisfying l1 +D = l2.

4.2 Proof of Theorem 1.2

From the discussion at the beginning of Section 4, we know that if we can establish
the non-emptiness of the subvariety of Ṽ e−f

e (l), then the non-emptiness of V e−f
e (l) follows

automatically. We do this by reducing the problem to the case when l = KC .
More precisely, assume l ∈ Grd(C) is a complete linear series with index of speciality

s = g − d+ r. Then l has a residual linear series KC − l ∈ Gs−1
2g−2−d. Let E be an effective

divisor in |KC − l|. Hence if D+D′ ∈ DJe,f (C, l) such that D′ ∈ Cr−e+fd−e \Cr−e+f+1
d−e , then

D′ +D + E = KC .

Thus D′ + D + E is now a refined de Jonquières divisor corresponding to KC , that is
D′ +D + E ∈ DJe′,f ′(C,KC), where

e′ = e+ 2g − 2− d
f ′ = f + s− 1.
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From Lemma 3.4 we have that

dimDJe′,f ′(C,KC) = e+ 2g − 2− d− (f + s− 1)(r + 1− e+ f)
= e− f(r + 1− e+ f)− (s− 1)(r − e+ f)− (s− 1) + (2g − 2− d)

Note that the terms s− 1 and 2g − 2− d account for the presence of E in the refined de
Jonquières divisors under consideration. We conclude that if the space DJe′,f ′(C,KC) is
non-empty, then so is DJe,f (C, l). We then use Lemma 3.4 for KC once more to see that,
indeed, if e− f(r + 1− e+ f)− (s− 1)(r − e+ f) ≥ 0, then the space DJe,f (C, l) is not
empty.

5 Degeneration and induction argument
This section is dedicated to the study of degenerations of de Jonquières divisors in the

simple case of families of curves where the special fibre is a reducible curve of compact type.
To keep notation to a minimum, we moreover restrict to the case of refined de Jonquières
divisors corresponding to ∆r,d

e,f . We discuss this in Section 5.2 after a brief review in Section
5.1 of the limit linear series tools that are needed. We then use this framework to prove
Theorem 3.1 in Section 5.3.

5.1 Limit linear series review

Let π : X → B be a family of curves of genus g that has a section σ : B → X and
where B = Spec(R) for some discrete valuation ring R with uniformising parameter t.
Moreover, let X be a nonsingular surface, projective over B and let 0 ∈ B denote the
point corresponding to the maximal ideal of R and η the geometric generic point of B.
Furthermore assume that the special fibre X0 is a reduced curve of compact type, while
the generic fibre is a smooth, irreducible curve.

After (possibly) performing a base change, a series (Lη,Vη) of type grd on Xη determines
a grd on each irreducible component Y of X0 as follows: by the smoothness of X , Lη

extends to a (unique up to tensoring with a Cartier divisor supported on X0) line bundle
on X . Denote by LY the extension of Lη with the property that deg(LY |Y ) = d and
deg(LY |Z) = 0 for any irreducible component Z 6= Y of X0. Set VY := (Vη ∩π∗LY )⊗k(0).
One sees that

VY ' π∗LY ⊗ k(0) ⊂ H0(X0,LY |X0)

is a vector space of dimension r + 1 which we shall identify with its image in H0(Y,LY |Y ).
Thus the pair (LY |Y ,VY ) is a grd on Y that we call the Y -aspect of the series (Lη,Vη).
Moreover, we call the collection of aspects

l = {(LY |Y ,VY ) | Y component of X0}

the limit of (Lη,Vη).
Now let X be a curve of compact type and set

l := {lY a grd on Y | Y irreducible component of X}.
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We say that l is a crude limit linear series on X if the following compatibility condition on
the vanishing sequences of the sections belonging to the aspects holds: for any irreducible
component Z 6= Y of X with Y ∩ Z = p and for all i = 0, . . . , r,

ai(lY , p) + ar−i(lZ , p) ≥ d. (7)

If equality holds in (7), then l is called a refined limit linear series. In [8] Eisenbud and
Harris show that the limit (Lη,Vη) above is a crude limit linear series.

Unfortunately, it is not always true that any limit linear series arises as the limit of
a series (Lη,Vη). We can however establish when this holds in certain cases. We record
the relevant results in this direction which are needed for the proof of Theorem 3.1. In
particular, let X = C1 ∪p C2 be a curve of compact type consisting of two irreducible
components C1, C2 of genus g1 and g2. Assume the two pointed curves (C1, p) and (C2, p)
are general. Let l = {(C1, lC1), (C2, lC2)} be a limit linear series of type grd on X, where
each aspect lCi has prescribed ramification α(lCi , p) at p, for i = 1, 2. From [9, Proposition
1.2] it follows that the components (Ci, p) may carry an lCi with prescribed ramification
αi(lCi , p) at p if and only if, for i = 1, 2:

r∑
j=0

(αj(lCi , p) + g1 − d+ r)+ ≤ gi, (8)

where (x)+ = max{x, 0}. In addition, the limit linear series l must be refined in order to
satisfy the hypotheses of the smoothability theorem of Eisenbud and Harris in [8, Theorem
3.4]. This together with the dimension theorem [9, Theorem 1.2] ensure that a refined limit
linear series l on X as above is smoothable.

In what follows we shall also use the limit linear series framework developed by Osserman
in a series of articles starting with [11], which gives rise to equivalent structures in the case
of refined limit linear series. Below we summarise the aspects of this approach that are
most important to us.

Let B be a scheme, T a B-scheme, and X → B a smooth proper family of smooth
curves of fixed genus g with a section. Consider pairs of the form (L ,V ), where L is a
line bundle of relative degree d on X ×B T and V ⊆ π2∗L is a subbundle of rank r + 1
and where π2 : X ×B T → T is the projection. We say that (L ,V ) and (L ′,V ′) are
equivalent if there exists a line bundle M on T and an isomorphism ϕ : L → L ′ ⊗ π∗2M
with the property that π2∗ϕ maps V into V ′. We define the functor G r

d (X /B) of linear
series of type grd by associating to each T the set of equivalence classes of pairs (L ,V )
with respect to the above equivalence relation. This functor is represented by a scheme
Grd(X /B) which is proper over B.

Now suppose X → B is a flat proper family of nodal curves of compact type of fixed
genus g where no nodes are smoothed. All fibres therefore have the same dual graph Γ.
Denote the irreducible component of the fibre Xt corresponding to the vertex v ∈ V (Γ) by
Y v
t . Hence, for each vertex v of Γ we have a family of smooth curves Y → B. To define

the functor of linear series of type grd for the family X , consider the product
∏
v G r

d (Y v/B)
fibred over B, whose T -valued points consist of tuples of pairs (L v,V v) with L v a line
bundle of relative degree d on Y v ×B T and V v ⊆ π2∗L v a subbundle of rank r + 1. For
a line bundle L on X ×B T , denote by L

~d the twist of L that has multidegree given
by the vector ~d = (dv)v∈V (Γ) of positive integers. Let ~dv = (0, . . . , 0, dv, 0, . . . , 0) be the
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vector of integers with entry dv at v and 0 elsewhere. Moreover, given two distinct vectors
~d and ~d′, let f~d,~d′ : L

~d → L
~d′ be the unique map obtained by performing the minimal

amount of bundle twists. We now define the functor G r
d (X /B): consider a T -valued point

of
∏
v G r

d (Y /B), namely a tuple of pairs (L v,V v)v∈V (Γ). Let L be the line bundle on
X ×B T of multidegree ~dv0 induced by L v0 and appropriate twists of L v, for v 6= v0,
where v0 is a fixed vertex of Γ. Then (L v,V v)v∈V (Γ) belongs to G r

d (X /B)(T ) if, for all
multidegrees ~d, the map

π2∗L
~d →

⊕
v

(π2∗L
v)/V v

induced by the f~d,~dv and restriction to Y v has its (r + 1)st vanishing locus equal to all of
T . This functor also is also represented by a scheme Grd(X /B) that is proper over B.

Suppose finally that X → B is a family of curves as above, but with some nodes
that are smoothed. It follows that the dual graph of the fibres is not constant and the
components Y v may not be defined over all of B. Assume therefore that there exists
a maximally degenerate fibre over some b0 ∈ B with dual graph Γ0 and fix a vertex
v0 ∈ V (Γ0). If such a family satisfies additionally certain technical conditions detailed in
[11, Definition 3.1], then it is called a smoothing family. Consider tuples (L , (V v)v∈V (Γ0))
where L is a line bundle of multidegree ~dv0 on X ×B T and the V v are subbundles of the
twists π2∗L

~dv of rank r + 1, for each v ∈ V (Γ0). The functor G r
d (X /B) of limit linear

series of type grd is defined in this case as follows: a T -valued point (L , (V v)v∈V (Γ0)) is in
G r
d (X /B)(T ) if for an open cover {Uk}k∈I of B arising from the enriched structure of the

curves (see discussion in [2]), for all k ∈ I and for all multidegrees ~d, the map

π2∗L
~d|f◦π−1

2 (Uk) →
⊕
v

(
π2∗L

~dv |f◦π−1
2 (Uk)

)
/V v|f−1(Uk),

induced by the local versions of the twist maps and where f is the structural morphism
from T to B, has its (r + 1)st degeneracy locus equal to the whole of Uk. Finally, one can
show that the definition above is independent of choice of open cover {Uk}k∈I , twist maps,
and vertex v0.

We remark here that all constructions from above are compatible with base change
and the fibre over a point t ∈ B is a space of refined Eisenbud-Harris limit linear series
when Xt is nodal and a space of usual linear series when Xt is smooth.

5.2 Refined de Jonquières divisors for reducible curves with one node

Let l be a refined limit linear series on a curve of compact type with only two components
X = C1∪pC2. Assume furthermore that this linear series is smoothable, that is there exists
a family of curves π : X → B with central fibre X0 = X and a linear series (Lη,Vη) of
type grd whose limit is l. Let Y ⊂ X be an irreducible component of X and Eη = (σ) ∈ |Lη|
a divisor on Xη, where σ is a section of Xη. Multiply σ by the unique power of t ∈ Bη so
that it extends to a holomorphic section σY of the extension LY to the whole of X and
so that it does not vanish identically on X0. We find that the limit of the divisor Eη on X
is the divisor (σY )|Y .

Now assume that Eη is a refined de Jonquières divisor in ∆r,d
e,f for Lη on Xη. In other

words, Eη = Dη + D ′η, where Dη is an effective divisor of degree e on Xη that cuts out a
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sublinear series

(L ′
η,V

′
η ) := (Lη ⊗OXη(−Dη),Vη ∩H0(Xη,Lη ⊗OXη(−Dη)))

of type gr−e+fd−e on Xη and that contains the effective divisor D ′η. More precisely we use
the identification |D ′η| = PH0(Xη,L ′

η) to say that D ′η is an element of PV ′. Note that
after possibly performing a base change and resolving the resulting singularities, the pair
(L ′

η,V
′
η ) also induces a refined limit linear series l′ of type gr−e+fd−e on X.

We want to understand what the refined de Jonquières divisors on the central fibre X
look like. To this end we make the following

Definition 5.1. Let X = C1 ∪p C2 be a nodal curve of compact type with a refined limit
linear series l of type grd. The divisor E = D +D′ on X with smooth support and such
that D ∈ Xe and D′ ∈ Xd−e is a refined de Jonquières divisor of type ∆r,d

e,f for l if for each
irreducible component Ci, where i = 1, 2 both conditions below hold:

i) The aspect lCi has a section vanishing on Ei = Di + D′i, where Ei, Di, D′i denote
the restrictions of the divisors E, D, D′, respectively to Ci.

ii) There exists a sub-limit linear series l′ of l of type gr−e+fd−e such that each aspect l′Ci
has a section vanishing on D′i, for i = 1, 2.

We denote space of such refined de Jonquières divisors by DJe,f (X, l).

The sections corresponding to the aspects lCi and l′Ci will also vanish at the node p of
X on each component Ci in such a way that equality in (7) is satisfied. Using this we can
give an alternative description of refined de Jonquières divisors as in Definition 5.1 that is
more useful in practice. Thus we call E = D +D′ a refined de Jonquières divisor of type
∆r,d
e,f for a refined limit linear series l of type grd on X = C1 ∪p C2 if:

a) for each Ci, the aspect lCi admits the refined de Jonquières divisors of type ∆r,d
e,f

given by
Di +D′i + (d− degDi − degD′i)p,

b) where D′i + (d− e− degD′i)p belongs to a subseries of type gr−e+fd−e of lCi , and

c) Di + (e− degDi)p ∈ (Ci)e.

Using the Osserman approach to limit linear series, we construct a representable
functor whose corresponding scheme parametrises refined de Jonquières divisors for a
family X → B of curves of genus g of compact type.

Proposition 5.1. Let X → B be a smoothing family of curves of compact type with a linear
series ` of type grd. There exists a scheme DJ e,f (X /B, `)→ B proper over B, compatible
with base change, whose point over every t ∈ B parametrises tuples [Xt,Dt,D ′t] of curves
and divisors Moreover, every irreducible component of DJ e,f (X /B, `) has dimension at
least dimB + e− f(r + 1− e+ f)− (s− 1)(r − e+ f).
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Proof. Step 1). To begin with, we construct a subfunctor Xd−e,`′ of the functor of points
of the symmetric product Symd−e(X /B) parametrising those divisors D ′ belonging to a
linear series `′ of type gr−e+fd−e on X . We use a degeneracy locus construction from which
it follows that it is representable by a scheme that is proper over B and compatible with
base change.

Let T be a B-scheme. Suppose that all the fibres of the family are nonsingular. Thus
`′ of type gr−e+fd−e on X /B is given by a pair (L ′,V ′) as described at the end of Section
5.1. Denote by U ⊂ X ×B Symd−e(X /B) the universal family and let UT = U ×B T .
Consider the diagram below

(X ×B T )×B Symd−e(X /B) ⊃ UT

X ×B T T

τ1 τ2

where τ1, τ2 are the usual projections. We say that the T -valued point [X ,D ′] belongs to
Xd−e,`′(T ) if the (r− e+ f)-th degeneracy locus of the map V ′ → τ2∗(τ∗1 L ′ ⊗OUT ) is the
whole of T . By construction, Xd−e,`′ is compatible with base change and has the structure
of a closed subscheme, hence it is a functor represented by a proper scheme.

Next, suppose that the family X has nodes that are not smoothed and denote by Γ the
dual graph of the fibres. Then, from Section 5.1 we have that `′ is a tuple (L ′v,V ′v)v∈V (Γ),
where L ′ is a line bundle of degree d on Y v ×B T , for all components Y v of X and V ′v

is a subbundle of L ′v of rank r+ 1 on T satisfying certain conditions discussed above. Let
X ′(Y v,V ′v) ⊂ Symd−e(Y v/B) be defined as follows: a T -valued point [Y v,D ′v] belongs
to X ′(Y v,V ′v) if the (r− e+ f)-th degeneracy locus of the map V ′v → π2∗(τ∗1 L ′v ⊗OUT )
is the whole of T , where τ1, τ2, and UT are defined for Y v in the same way as for the case
of only smooth fibres. Now let D ′v denote the specialisation of the divisor D ′ on X to
the component Y v and qvi the preimages of the nodes belonging to Y v. Therefore, we say
that a T -valued point [X ,D ′] belongs to Xd−e,`′(T ) if, for all vertices v ∈ Γ, the T -valued
points [Y v,D ′v, qvi ] belong to X ′(Y v,V ′v), where the qvi may appear with multiplicity.

Finally, let X → B be a smoothing family. As previously discussed, let Γ0 be the dual
graph of the maximally degenerate fibre of X and fix a v0 ∈ V (Γ0). Let L ′ be a line
bundle on X ×B T of degree d− e on the component corresponding to v0 and 0 otherwise
and V ′v subbundles of rank r+ 1 of the twists π2∗L ′~dv satisfying the conditions mentioned
in Section 5.1. Hence we know from before that `′ is a tuple (L ′, (V ′v)v∈V (Γ0)). Let
b0 ∈ B be the point corresponding to the maximally degenerate fibre and, for a T -valued
point [X ,D ′] ∈ Symd−e(X /B)(T ), denote by vi the vertices of Γ0 corresponding to the
components of Xb0 which contain points of the support of D ′. We call the corresponding
components Y vi . We define the T -valued points of Xd−e,`′ in the same way as for the
non-smoothing case, only now we need the degeneracy locus of a different bundle map,
namely V ′vi |Y vi → τ2∗(τ∗1 L ′~dvi |Y vi ⊗OUT ).

Step 2). Consider now the following:

{([X ,D ′], `′) | [X ,D ′] ∈Xd−e,`′} ⊂ Symd−e(X /B)× G r−e+f
d−e (X /B).

Using the valuative criterion one immediately sees that the space above is closed. Pro-
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jecting onto the first factor yields therefore a subfunctor X r−e+f
d−e of the functor of points

Symd−e(X /B) parametrising relative divisors of degree d− e belonging to (limit) linear
series of type gr−e+fd−e .

Step 3). We now repeat the construction in Step 1), where we replace `′ of type
gr−e+fd−e with ` of type grd and Symd−e(X /B) by Syme(X /B)×X X r−e+f

d−e . The desired
functor DJ e,f (X /B, `) is then constructed analogously to Xd−e,`′ which endows it with a
degeneracy locus structure and yields also the dimension estimate.

Remark 5.1. As mentioned before (see Remark 3.2), our proof of Theorem 3.1 requires
the use refined de Jonquières divisors in DJe,f (C, l) where the corresponding linear se-
ries l′ has specified ramification at least α at a general point of C. To take that into
account in our construction above, one may simply consider `′ in Step 1) as an element of
G r−e+f
d−e (X /B, {q, α}) parametrising (limit) linear series with prescribed ramification at a

section q of X → B (see [11, Definition 4.5]).
Remark 5.2. Consider the forgetful map φ : DJ e,f (X /B, `)→X and assume X → B is
a smoothing family with central fibre given by the nodal curve X = C1 ∪p C2 from above.
By base change, this forgetful map is a projective map. The fibre of φ over a curve Xt,
with t ∈ B, is precisely DJe,f (Xt, `t), i.e. the space of refined de Jonquières divisors on a
usual linear series if Xt is smooth and the space from Definition 5.1 on the central fibre.

5.3 Proof of Theorem 3.1

The proof of Theorem 3.1 works in a similar way to the proof of the dimension theorem
for usual de Jonquières divisors (Theorem 1.1 in [12]).

5.3.1 Proof of Theorem 3.1 part 1.

The argument is based on an induction on the index of speciality s of the linear series l
while keeping the Brill-Noether number ρ(g, r, d) equal to 0. The base case is the statement
of Theorem 3.1 for the canonical linear series KC , which is the unique linear system with
s = 1 and vanishing Brill-Noether number. The fact that this dimension result holds for
KC follows from the discussion in Section 3.1. In fact, we shall need a more refined version
of the statement of Theorem 3.1, namely the one given in Remark 3.1 that also takes into
account the imposed ramification at a point of the series l′ from Definition 5.1.

We now describe the induction step. We construct aspect by aspect a refined limit
linear series l of type grd and with index of speciality s = g − d + r on a nodal curve of
compact type X = C1 ∪p C2 of genus g, where C1 and C2 are smooth, irreducible curves
of genus g1, g2, with g = g1 + g2 and such that (C1, p) and (C2, p) are general pointed
curves. Set g1 = (s − 1)(r + 1) and g2 = r + 1. On C1 we take the aspect lC1 = l1(rp),
where l1 ∈ Grd−r(C1) and on C2 the aspect lC2 = l2((d− 2r)p) where l2 = Gr2r(C2) is the
canonical bundle. Note that with this choice s(l1) = s− 1, s(l2) = 1, and ρ(g1, r, d− r) = 0
hence the induction works by increasing the index of speciality s− 1 7→ s while keeping the
Brill-Noether number fixed and equal to 0. The induction hypothesis, is a refined version
of the statement of Theorem 3.1 for Ci equipped with li, for i = 1, 2, namely

Induction hypothesis. Under the hypotheses of Theorem 3.1 a), let q ∈ C be a general
point. The dimension of the space of refined de Jonquières divisors of type DJe,f (C, l) such
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that the corresponding linear series l′ of type gr−e+fd−e has ramification sequence at least α at
q is e− f(r + 1− e+ f)− (s− 1)(r − e+ f)−

∑r−e+f
i=0 αi.

The limit linear series l we constructed is indeed smoothable (see [12, Section 4.1] for the
check that (8) is satisfied). Thus there exists a family of curves π : X → B with smooth
generic fibre Xη and central fibre X0 = X equipped with a linear series (Lη,Vη) of type grd
whose limit on the central fibre is the limit linear series l constructed above. As explained in
Section 5.1, we therefore have a linear series ` on X → B specialising to l at 0 ∈ B and to a
usual grd at η ∈ B. Furthermore, the space of refined de Jonquières divisors DJ e,f (X /B, `)
restricts to DJe,f (X, l) at 0 ∈ B. The strategy is to show that, within the parameter bounds
of the statement of Theorem 3.1 a), dimDJe,f (X, l) ≤ e−f(r+1−e+f)−(s−1)(r−e+f).
From the upper semi-continuity of fibre dimension applied to the map φ from Remark 5.2,
it follows that dimDJe,f (Xη, `η) ≤ e− f(r+ 1− e+ f)− (s− 1)(r− e+ f) for a smoothing
of X to a general curve Xη equipped with a general linear series `η. This combined with
the upper bound in (3) yields the statement of Theorem 3.1 a).

From the discussion in Section 5.2 we see that if the limit of a divisor E = D +D′ in
∆r,d
e,f is a refined de Jonquières divisor for the limit linear series l then the following hold

true:

1) On C1 we have a refined de Jonquières divisor for lC1 of the form

D1 +D′1 + (d− degD1 − degD′1)p ∈ lC1 ,

where

D′1 + (d− e− degD′1)p ∈ l′C1 = gr−e+fd−e ,

D1 + (e− degD1)p ∈ Ce.

Recall that l′ is a sub-limit linear series of l, which in turn means that the aspect l′C1
is a

sub-linear series of lC1 . Moreover, by construction we know that the ramification sequence
of lC1 at p is (r, . . . , r). Thus α(l′C1

, p) ≥ (r, . . . , r), since the vanishing sequence of l′C1
is

a subsequence of that of lC1 . Therefore l′C1
− rp ∈ Gr−e+fd−e−r (C1) and we conclude that we

have a refined de Jonquières divisor on C1 for the linear series l1 as well, namely:

D1 +D′1 + (d− r − degD1 − degD′1)p ∈ l1,

where

D′1 + (d− r − e− degD′1)p ∈ l′1 = gr−e+fd−r−e , (9)
D1 + (e− degD1)p ∈ Ce.

Thus from the lower bound on the dimension in (3) and the induction hypothesis we see
that the dimension of the space of such refined de Jonquières divisors is

dimDJe,f (C1, l1) = e− f(r + 1− e+ f)− (s− 2)(r − e+ f).

2) Similarly, on C2 we have a refined de Jonquières divisor for l2 of the form:

D2 +D′2 + (2r − degD2 − degD′2)p ∈ l2,
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where

D′2 + (2r − e− degD′2)p ∈ l′2 = gr−e+f2r−e , (10)
D2 + (e− degD2)p ∈ Ce.

From Lemma 3.4 for the canonical linear series we obtain the dimension of the space of
refined de Jonquières divisors corresponding to l2 to be

dimDJe,f (C2, l2) = e− f(r + 1− e+ f).

The idea is now to give an upper bound to the dimension of DJe,f (X, l) by using the
two spaces of refined de Jonquières divisors corresponding to l1 and l2. We observe first
that

dimDJe,f (X, l) ≤ dimDJe,f (C1, l1) + dimDJe,f (C2, l2)
= 2(e− f(r + 1− e+ f))− (s− 2)(r − e+ f).

In order to obtain a more accurate bound one must take into account the fact that the
glueing point p is in fact a base point of the linear series l′1 = gr−e+fd−r−e and l′2 = gr−e+f2r−e on
C1 and C2, respectively. To see this, we now show that the coefficient of p in both (9) and
(10) is always strictly positive. Let di = degDi and d′i = degD′i, for i = 1, 2. Assume first
that

d− r − e− d′1 ≤ 0 and 2r − e− d′2 ≤ 0. (11)

Combining this with the fact that d1 + d2 = e and d′1 + d′2 = d− e yields

d− r − d1 − d′1 ≤ d2,

2r − d2 − d′2 ≤ d1.

Adding up the two above inequalities gives d + r ≤ d′1 + d′2 = d − e, which cannot hold.
Hence at least one of the coefficients of p in (9) and (10) must be strictly positive. So
assume now that d′1 = d − r − e − x, for some strictly positive x and that the second
inequality in (11) remains unchanged. We then have that

d− r − d1 − d′1 = d2 + x,

2r − d2 − d′2 ≤ d1,

which added up yield x ≥ e+ r. Hence

d′1 ≤ d− r − e− e− r = d− 2r − 2e.

In addition, since d1 ≤ e, we obtain

d1 + d′1 ≤ d− 2r − e. (12)

However, note that if all the points in the supports of D and D′ specialise on only one
component Ci, then this would contradict the imposed ramification condition at p on the
aspect lCi . Indeed, we must have

d− 2r ≤d1 + d′1 ≤ d− r,
r ≤d2 + d′2 ≤ 2r.
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But this gives rise to a contradiction with the inequality in (12) and we conclude that the
coefficient of p in (10) must also be strictly positive. A similar computation gives the same
conclusion if we start with the assumption that d′2 < 2r − e and d− e− r − d′1 ≤ 0.

Thus p is a base point of the two series l′1 and l′2 on C1 and C2, respectively, so it follows
that both α(l′1, p) and α(l′2, p) are at least (1, 1, . . . , 1). This together with the induction
hypothesis yield the following bound for the dimension of DJe,f (X, l):

dimDJe,f (X, l) ≤ e− (r + 1− e+ f)− (s− 2)(r − e+ f)−
r−e+f∑
i=0

αi(l′1, p)

+ e− f(r + 1− e+ f)−
r−e+f∑
i=0

αi(l′2, p)

≤ 2(e− f(r + 1− e+ f))− s(r − e+ f)− 2. (13)

Hence, if e− f(r + 1− e+ f) ≤ r − e+ f + 2, then from (13) we get

dimDJe,f (X, l) ≤ e− f(r + 1− e+ f)− (s− 1)(r − e+ f).

In addition, for a general point q belonging to any of the components Ci at which the
aspect l′i has ramification sequence at least α, we have that

dimDJe,f,α(X, l) ≤ e− f(r + 1− e+ f)− (s− 1)(r − e+ f)−
r−e+f∑
i=0

αi.

Thus, using upper semi-continuity of fibre dimension and the lower bound for the dimension
of refined de Jonquières divisors with imposed ramification at a point q from Remark 3.2
we see that DJe,f,α(C, l) is indeed of expected dimension for a general curve (C, q). This
concludes the induction step.

5.3.2 Proof of Theorem 3.1 part 2.

The proof for the second part of the theorem is also by induction and follows the same
idea as the for Theorem 3.1 part 1. The only difference is that this time, the induction
step increases the Brill-Noether number ρ(g, r, d) while keeping the index of speciality s
fixed. The base case is the statement of Theorem 3.1 1. and Lemma 3.4.

The induction step works as follows: as before, we construct a refined linear series l
of type grd on a nodal curve of compact type X aspect by aspect. We take X = C1 ∪p C2
of genus g, where (C1, p) and (C2, p) are general pointed curves of genus g1 = g − 1 and
g2 = 1, respectively. On C1 consider the aspect lC1 = l1(p) with l1 ∈ Grd−1(C1) and on
C2 the aspect lC2 = l2((d − r − 1)p) with l2 ∈ Grr+1(C2). Note that now s(l1) = s while
ρ(g − 1, r, d− 1) = ρ(g, r, d)− 1. Thus the induction increases the Brill-Noether number
ρ(g, r, d)− 1 7→ ρ(g, r, d) while keeping the index of speciality s fixed (this follows because
s(l1) = (g − 1)− (d− 1) + r = s = s(l)). The induction hypothesis is analogous to the one
from the proof of Theorem 3.1 part 1.

As before, one can easily check that the limit linear series l is smoothable (see [12,
Section 4.2]) so that there exists a family of curves X → B with smooth generic fibre
Xη and central fibre given by our X and equipped with a linear series (Lη,Vη) whose
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limit on X is l constructed above. The strategy is to again show that DJe,f (X, l) ≤
e − f(r + 1 − e + f) − (s − 1)(r − e + f) and conclude via upper semi-continuity that
dimDJe,f (Xη, `η) ≤ e− f(r + 1− e+ f)− (s− 1)(r − e+ f) for a smoothing of X to a
general curve Xη with a general `Grd(Xη). The statement of Theorem 3.1 part 2. then
follows.

As before, we have that if the limit of E = D +D′ ∈ ∆r,d
e,f is a refined de Jonquières

divisor for l if the following are satisfied:

1) On C1 we have a refined de Jonquières divisor for lC1 of the form

D1 +D′1 + (d− degD1 − degD′1)p ∈ lC1 ,

where

D′1 + (d− e− degD′1)p ∈ l′C1 = gr−e+fd−e ,

D1 + (e− degD1)p ∈ Ce.

Since l′C1
is a sub-linear series of lC1 , we immediately have that α(l′C1

, p) ≥ (1, 1, . . . , 1).
Thus l′C1

− p ∈ Gr−e+fd−1−e(C1) and we therefore have a refined de Jonquières divisor on C1
for l1:

D′1 + (d− 1− e− degD1 − degD′1)p ∈ l1,

where

D′1 + (d− 1− e− degD′1)p ∈ l′1 = gr−e+fd−1−e ,

D1 + (e− degD1)p ∈ Ce.

Hence, using the induction hypothesis, we obtain:

dimDJe,f (C1, l1) = e− f(r + 1− e+ f)− (s− 1)(r − e+ f).

2) Analogously, on C2 we have the following refined de Jonquières divisor for l2:

D2 +D′2 + (d− r − 1− degD2 − degD′2)p ∈ l2,

where

D′2 + (r + 1− e− degD′2)p ∈ l′2 = gr−e+fr+1−e
D2 + (e− degD2)p ∈ Ce.

Lemma 3.4 for non-special linear series then yields

dimDJe,f (C2, l2) = e− f(r + 1− e+ f) + r − e+ f.

Arguing like for the previous case, one sees that p is a base point of the linear series l′1 and
l′2 and this implies that both α(l′1, p) and α(l′2, p) are at least (1, 1, . . . , 1). Thus, from the
induction hypothesis we obtain the same bound for the dimension of DJe,f (X, l) as before,
namely:

dimDJe,f (X, l) ≤ 2(e− f(r + 1− e+ f))− s(r − e+ f)− 2.

We then argue just like in the previous case to conclude the induction step.
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