
Torelli’s Theorem for the Cubic Fourfold

Disclaimer: we work exclusively over C.
Torelli’s Theorem for a given family of projective varieties is a result that allows us to distinguish

members of the family by their Hodge structure. The answer is yes for

• Curves - can recover the curve C from its associated ppav (J(C),Θ) (Andreotti)

• Abelian varieties, K3 surfaces (Piateski-Shapiro & Safarevich)

• Cubic threefolds (Clemens & Griffiths)

• Most projective hypersurfaces (Donagi)

and no for certain families of surfaces of general type, such as

• surfaces with q = pg = 0 - here the Hodge structure is always trivial, so we cannot use it to
differentiate them

• surfaces with pg = 1 and K.K = 1 - here the period map has degree at least two.

Actually, the cubic hypersurfaces in P5 were one of the possible exceptions in Donagi’s paper and this
is the case that we shall tackle. The statement we aim to prove is:

Theorem 1. Let X and X ′ be two smooth cubic fourfolds and let

φ : H4(X,Z)→ H4(X ′,Z)

be an isomorphism of polarised Hodge structures preserving the class h2 of a linear section. Then there
exists a projective isomorphism f : X ′ → X such that φ = f∗.

There are a few proofs of this result:

• Voisin ’86 - analyses the geometry of cubic fourfolds containing a plane;

• Looijenga ’06 - analyses the geometry of some specific singular cubic fourfolds;

• Charles ’12 - uses Verbitsky’s global Torelli theorem for irreducible holomorphic symplectic varieties
(the Fano variety of lines of a cubic fourfold is such a variety).

We focus on Voisin’s proof. The idea is to reformulate the statement of Theorem 1in terms of families.
More precisely, we shall describe classifying spaces for cubic fourfolds and for their Hodge structures and
prescribe a map between them, associating to a cubic fourfold a Hodge structure. Theorem 1 will then
be equivalent to the injectivity of this map.

1 The classifying space for cubic fourfolds

The projective space of all cubic fourfolds in P5 is P(H0(P5,O(3))) = P55 in which the smooth cubic
fourfolds form a Zariski open subset U . Two cubic fourfolds are isomorphic if and only if they are
congruent under the action of PGL(5). It turns out (see Mumford’s et al GIT) that the smooth cubic
fourfolds are properly stable and thus the quotient C := U//PGL(5) exists as a quasi-projective variety
and is a coarse moduli space for smooth cubic fourfolds. By a parameter count, C has dimension 20.
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2 The classifying space for Hodge structures

We make a (very short) summary of Griffith’s formalism of Hodge theory, as presented in ”Recent
developments in Hodge theory”.

Definition 1 (Hodge Structure). Let HR be a finite dimensional vector space, containing a lattice HZ

and let H = HR ⊗ C be its complexification. A Hodge structure of weight k consists of a direct sum
decomposition

H =
⊕

p+q=k

Hp,q such that Hq,p = Hp,q.

Definition 2 (Morphism of Hodge structures). A linear map φ : H → H ′ between vector spaces with
Hodge structures is a morphism of Hodge structures if it is defined over Q, relative to the lattices HZ

and H ′Z , and if φ(Hp,q) ⊂ H ′p,q. More generally, φ is a morphism of type (l, l) if φ(Hp,q) ⊂ H ′p+l,q+l.

Consider now a nondegenerate bilinear form (, ) on H (symmetric if k is even, skew if odd).

Definition 3 (Polarisations of Hodge structures). The Hodge structure is polarised by (, ) if

1. (Hp,q, Hp′,q′) = 0 for p 6= q′, q 6= p′,

2. (
√
−1)p−q(v, v̄) > 0 for a nonzero v ∈ Hp,q.

The prototypical example is the decomposition according to Hodge type of the k-th complex coho-
mology group of a compact Kähler manifold X.

Suppose the Kähler metric of X is induced from the Fubini-Study metric by a projective embedding,
we have that the Lefschetz operator L is defined over Q on the level of cohomology. Now, the Kähler
form ω is of type (1, 1), so L is a morphism of Hodge structures of type (1, 1). Thus the Hodge structure
of Hk(X,C) restricts to a Hodge structure on the primitive cohomology Hk(X,C)0. Introduce also the
Hodge bilinear form:

(, ) : Hk(X,C)0 ×Hk(X,C)0 → C

([α], [β]) = (−1)
k(k−1)

2

∫
ωn−k ∧ α ∧ β.

The Hodge-Riemann bilinear relations immediately imply that (, ) polarises the Hodge structure on the
primitive part of the cohomology groups.

We are interested of course in the case when X is a cubic fourfold. Its Hodge diamond has the form:

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0

We focus on the middle cohomology i.e. H4(X,Z) since all the non-trivial Hodge information is
contained there. It is not too hard to see that

H4(X,Z) ' (+1)⊕21 ⊕ (−1)⊕2,

i.e. (, ) is diagonalisable over Z with entries ± along the diagonal. To see why, note that Poincaré
duality implies that the bilinear form (, ) is unimodular. The Riemann bilinear relations tell us that
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the signature of H4(X,Z) is (21, 2). So we can view H4(X,Z) as a unimodular lattice of signature
(21, 1). Moreover, if h ∈ H1,1(X) is the hyperplane class, then the induced class h2 ∈ H4(X,Z) has
self-intersection (h2, h2) = 3, so the lattice is odd. The decomposition then follows from the theory of
indefinite quadratic forms.

One can check also that H4(X,Z)0 is the orthogonal complement of h2. Furthermore, H4(X,Z)0 is
generated by elements with self-intersection 2, so this lattice is even.

Now take any odd unimodular lattice Λ of signature (21, 2), and η ∈ Λ such that (η, η) = 3 and with
even orthogonal complement Λ0.

There exists therefore an isometry
ϕ : H4(X,Z)→ Λ

that sends h2 to η. Such an isometry is called a marking. Given such a marking, we can identify H4(X,Z)0

with Λ0
C = Λ0 ⊗Z C.

From Hodge theory, H3,1(X,C) is a distinguished subspace of Λ0
C, in the following sense:

1. H3,1(X,C) is isotropic, i.e. it is spanned by a form α such that (α, α) = 0;

2. The hermitian form −(α, β) is positive on H3,1(X,C).

Consider the quadric hypersurface Q ⊂ PΛ0
C defined by vanishing of (, ), i.e. (α, α) = 0. Let U

be the topologically open subset of Q where −(α, β) > 0. The real Lie group SO(Λ0
R) = SO(20, 2) acts

transitively on U . Moreover, this group has two components, one of which acts by exchanging H3,1(X,C)
and H1,3(X,C). Thus the two connected components of U parametrise the subspaces H3,1(X,C) and
H1,3(X,C). We denote the first one by D̃. It is a 20-dimensional open complex manifold, called the local
period domain for cubic fourfolds with markings. So the marking associates to X an element of D̃ (its
period point). This is the classifying space for polarised Hodge structures arising from cubic fourfolds
that we were looking for.

Let Γ be the automorphism group of H4(X,Z) which preserves (, ) and the class h2. In particular,
take Γ+ ⊂ Γ to be the subgroup that stabilises D̃.

Definition 4. The orbit space C := Γ+ \ D̃ is called the global period domain.

Indeed one even has

Proposition 2. The global period domain for cubic fourfolds is a 20-dimensional quasi-projective variety.

Since each cubic fourfold determines a point in D, we have

Definition 5. The map
P : C → D

associating to each cubic fourfold its corresponding point in the global period domain is called the period
map.

By Hodge theory, this is a holomorphic map of analytic spaces, etc (in fact, it is even algebraic).
Moreover, Hodge theory also shows that it is a local isomorphism. In this context, Theorem 1 is equivalent
the following

Theorem 3. The period map for cubic fourfolds is injective.

Remark. This version of the theorem is called global Torelli Theorem. Other variants exists, which look
for example at whether the period map is an immersion (local Torelli) or generically injective (generic
Torelli).
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One way to prove a result of this type for other kinds of projective hypersurfaces is to consider the
’differential’ of the period map, show that it determines the Jacobian ideal of X and finally prove that
this ideal determines X up to projective automorphism. Unfortunately due to the local nature of the
period map for the cubic fourfold, this method does not work in this case. So one needs to work directly
with the Hodge structure. The main difficulty of this approach is the fact that one does not have much
of a grasp on the integral cohomology classes of type (2, 2). So we need some input from somewhere else,
namely from the geometry of the cubic fourfold.

So let us try to gain more insight into the middle cohomology of X. We take a somewhat indirect
approach, by comparing the cohomology of X to that of its variety of lines.

Definition 6. Let F be the Fano variety of lines of X, i.e. the subvariety of the Grassmannian G(1, 5)
parametrising lines contained in X.

Beauville and Donagi proved that

Proposition 4. F is a simply connected, irreducible symplectic variety of dimension 4.

Its Hodge diamond is

1
0 0

1 21 1
0 0 0 0

1 21 232 21 1

Moreover, in the same paper they also proved the following useful result about the cohomology of F :

Proposition 5. The natural map

Sym2H2(F,Q)→ H4(F,Q)

is an isomorphism of Hodge structures.

Consequently, the cohomology of F is practically determined by H2(F,Z). The next step, therefore,
is to connect this space to the cohomology of X. This is what the Abel-Jacobi map is for.

Consider the following incidence correspondence

Z = {(l, x) ∈ F ×X | x ∈ l} ⊂ F ×X.

Setting p and q to be the corresponding projections,

Z F

X

p

q

we have

Definition 7. The Abel-Jacobi map Φ is defined as the map of cohomology groups

Φ = p∗q
∗ : H4(X,Z)→ H2(F,Z).
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A priori it is not at all clear how the Abel-Jacobi map behaves with respect to the polarisation on
the primitive part of the cohomology, or what this polarisation should even be on H2(F,Z)0.

To answer these questions, let g be the class of a hyperplane on F (using the Plücker embedding
in the Grassmannian). Since Φ(h2) corresponds to the lines meeting a codimension-2 subspace of P5,
then Φ(h2) = g. Let us now define a symmetric bilinear form 〈, 〉 on H2(X,Z)0. Following Beauville
and Donagi, assume that g and H2(X,Z)0 are orthogonal with respect to this form, and set 〈g, g〉 = 6
and 〈u, v〉 = 1

6g
2uv for u, v ∈ H2(F,Z)0. Extending by linearity, we obtain an integral form on the

whole of H2(F,Z). This is actually the canonical polarisation arising from the symplectic structure of F .
Beauville and Donagi prove that the Abel-Jacobi map indeed preserves the bilinear forms on primitive
cohomology:

Proposition 6. The Abel-Jacobi map induces an isomorphism of polarised Hodge structures between
H4(X,Z)0 and H2(F,Z)0. Moreover,

〈Φ(α),Φ(β)〉 = −(α, β).

So we now have access to geometric information from both F and X to solve our problem. To take
advantage of this, Voisin focuses on a certain subvariety of F , constructed as follows.

We restrict our attention to the cubic fourfolds X that contain a plane P . In fact this setup defines
another plane P ′ which parametrises the 3-planes that contain P :

P ′ := {3-planes such that P ⊂ P3 ⊂ P5}.

Such a P3 intersects X in a singular cubic surface P ∪ Q, where Q is a quadric surface. Hence we
have a 2-dimensional (in fact the plane P2) family of quadric surfaces. In fact, the projection

BlPX → P ′

is a quadric surface fibration with generic fibre P1 × P1 and discriminant locus given by a plane sextic
curve C. Now, recall that a smooth quadric surface admits two rulings, while a singular one is a cone so
it admits only one (the lines passing through the singular point). Thus we have the double-cover

r : S := {rulings of the fibres} → P ′

ramified along C. Actually S is a K3 surface: from the theory of double covers we get that

h1(OS) = h1(OP2) = 0

and finally

KS = r∗(KP2 +
1

2
C) = r∗(−3H +

1

2
(6H)) ≡ 0.

As mentioned in the introduction, the Torelli theorem is known for K3 surfaces. In order to exploit
this fact, we need to be able to relate the Hodge structures of X and S and to reconstruct X from the
data of these constructions.

Let D ⊂ F be the subvariety of lines that meet P . We can describe it as follows:

D = {(l, s) ∈ F × S | l belongs to the ruling of the quadric r(s), parametrised by s}.

The projection on the first factor embeds D in F . Moreover, D is a fibration over S where the fibres
are the smooth rational curves that are the base curves of the rulings. We denote the corresponding
projection by s : D → S. We now have the following nice consequence on the cohomology
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Proposition 7. Let ZD ⊂ D ×X be the restriction of the incidence correspondence variety to D. Then
the restriction to D of the Abel-Jacobi map is an isomorphism of Hodge structures

Φ : H4(X,Q)→ H2(D,Q).

Proof. We look instead at the dual spaces and the corresponding map

Φt = q∗p
∗ : H2(D,Q)→ H4(X,Q).

The projection q : ZD → X has degree 2: if x ∈ X is not contained in the plane P , and if the quadric
surface determined by x is smooth, then exactly two lines of this quadric will pass through x. Thus, since
the degree of q is finite, the map q∗ : H4(ZD,Q)→ H4(X,Q) is surjective.

Moreover, H4(ZD,Q) = p∗(H2(D,Q) ⊕ H4(D,Q)), and we also have that the map H4(D,Q) →
H4(X,Q) factors through H4(Y,Q), where Y is a hyperplane section of X. Since the image of H4(Y,Q)
is contained in the image of H2(D,Q), we have surjectivity. The result then follows from a dimension
count.

Now, since D is a fibration over S with fibres rational curves, we have that the Hodge structure of D
is inherited from the one of S, and so the period map on the space of cubics containing a plane can be
identified with the period map on F2 (since S has degree 2).

We can make this a bit more precise: abusing notation, let P and Q denote the cohomology classes in
H4(X,Z) of the plane P and of a quadric, respectively, such that P +Q = h2. Denote by L the image in
H2(D,Z) under the restricted Abel-Jacobi map of the orthogonal complement of the subspace spanned
by P and Q.

Proposition 8. The subspace L is contained in s∗(H2(S,Z)0) and for any α, β orthogonal to P and Q,
we have that

(α, β)X = −〈Φα,Φβ〉S .

As for the Hodge structures, first note that H2(S,Z) has a distinguished class k with the property
that

L = {α ∈ H2(S,Z)0 | 〈α, k〉S = 0 mod 2}.

We can view k as a class in H2(S,Z/2Z) inducing morphisms in Hom(H2(S,Z)0,Z/2Z). So different
classes k will induce different such homomorphisms. So k can be obtained by strictly algebraic consider-
ations.

One computes the following products:

(P, P )X = 3, (Q,Q)X = 4, (P,Q) = −2.

Hence the lattice 〈P,Q〉 can be seen as a lattice of rank 2 with bilinear form over Z given by the matrix(
3 −2
−2 4

)
.

Then the idea is that the lattice H4(X,Z) is obtained from the orthogonal sum

〈P,Q〉 ⊕ L.

For this to work we also need that the ring L satisfies L∗/L ' Z/8Z and that we can extend the module
〈P,Q〉 ⊕ L into a unimodular lattice with integer bilinear form.

The only thing left to consider is what happens given two lattices L and L′ determine isomorphic
Hodge structures on the cubic, then the we get an automorphism of H2(S) sending one to the other,
while preserving the Hodge structure and the polarisation. Therefore we proved
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Proposition 9. The Hodge structure on X equipped with the lattice 〈P,Q〉 determine S. Conversely,
the polarised Hodge structure of S together with the distinguished class k determine the Hodge structure
of X.

So we have essentially constructed a morphism from the space of cubics containing a plane to F2.
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