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To my parents



Der Tanz

Ein Vierviertelschwein und eine Auftakteule
trafen sich im Schatten einer Saule,

die im Geiste ihres Schopfers stand.

Und zum Spiel der Fiedelbogenpflanze
reichten sich die zwei zum Tanze

Fufl und Hand.

Und auf seinen dreien rosa Beinen
hiipfte das Vierviertelschwein grazios,
und die Auftakteul auf ihrem einen
wiegte rhythmisch ihr Gekros.

Und der Schatten fiel,

und der Pflanze Spiel

klang verwirrend melodios.

Doch des Schopfers Hirn war nicht von Eisen,
und die Sdule schwand, wie sie gekommen war,
und so mufite denn auch unser Paar

wieder in sein Nichts zuriicke reisen.

Einen letzten Strich
tat der Geigerich —
und dann war nichts weiter zu beweisen.

CH. MORGENSTERN, aus den Galgenliedern
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Chapter 1

Introduction

CONFORMAL QUANTUM FIELD THEORY has come into the attention of the Phy-
sics community more than fifteen years ago, though many important steps had
been taken much earlier. For the fun of it, let us mention a few of its prominent
outriders. For a survey on the emergence of conformal field theory see [NahOOb].
Already in 1910, Cunningham and Bateman had noticed conformal invariance of
the Maxwell equations [Cunl0, Bat10]. Bessel-Hagen determined the correspond-
ing conserved quantities [BH21] as an application of Noether’s methods [Noel8|.
Pauli showed that the Dirac equation with vanishing mass is conformally invari-
ant [Paud40]. In the context of quantum field theory, Thirring was the first to
write down a consistent conformal quantum theory [Thi58], with a clarification by
Johnson [Joh97], though neither of the two had taken notice of conformal invari-
ance. Indeed, nowadays we know Thirring’s moduli space as the continuous part
of the moduli space of conformal field theories with central charge ¢ = 1 which are
associated to compactification of a boson on a circle.

It took until the mid 1980’s that conformal quantum field theory made it into
the spotlight of modern research. In their fundamental paper [BPZ84], Belavin,
Polyakov and Zamolodchikov combined the representation theory of the Vira-
soro algebra — developed shortly before by Kac [Kac79] and by Feigin and Fuks
[FF83] — with the idea of local operators and thereby constructed completely
solvable conformal theories, the so—called minimal models. Since then, confor-
mal field theories have found important applications in many branches of Phy-
sics. In statistical mechanical systems they describe second or higher order phase
transitions [FQS84, FQS85a, Car89b, ZZ89|, where good experimental data are
at hand, too [BKU"85, CFJW85, CUK86, KC84, MD85, PP87]. In solid state
physics, they occur in two-dimensional phenomena like the Quantum-Hall-effect
[FK91, CTZ93, CTZ94, CDTZ93, FV94|, and in polymer physics [DS87]. There
are integrable systems that can be described by Toda theories as well as hierarchies
of partial differential equations, where conformal invariance plays a fundamental
role [BFFT90, BFO190, BG89, BCDS90]. In superstring theory, the modern and
so far speculative attempt to unify the forces of Nature, conformal field theo-
ries describe possible string vacua, or theories at small string coupling constant

[GSW87, GHMRS85, GHMRR86]. Though often buried beneath heaps of modern
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10 CHAPTER 1. INTRODUCTION

terminology, even “brane physics” is intimately related to perceptions from con-
formal field theory. At least in the context of boundary conformal field theories,
there can be no doubt about this [Car84, Car86a, Car86b, Car89a, RS98].

Apart from its applications in Physics, conformal field theory has developed to
tempting mathematical beauty and among others has applications in topology
[Kon, Wit89], in algebraic geometry (mirror symmetry) [GP90, COGP91, CLS90],
and in the theory of lattices and representations of Kac—Moody algebras [Bor86,
FLM88, DGM90a, DGM90b).

Even if we leave aside all that, conformal field theory is an interesting and challeng-
ing field of its own right. By now, it has been put onto a solid mathematical footing
and can be studied independently from speculative notions that might come from
path—integral methods, string theory, or M—theory. Naturally, a major question
and steady driving force is the search for a complete classification of such theories,
perhaps under certain additional constraints. Any result of this kind can yield
direct implications on the fields mentioned above.

A classification, at least of rational conformal field theories, has only been achieved
for those with central charge ¢ < 1 up to now [BPZ84, FQS84, GKO85, G085,
GKO86, CIZ87b, CIZ87a, Gin88b, DVV88, Kir89, Flo93, Flo94], as well as their
supersymmetric extensions [FQS84, FQS85b, GKO85, GKO86, BFK86, MSS89|.
The situation becomes much more complicated for ¢ > 1 due to the existence of a
continuum of nonequivalent theories. In other words, the conformal quantum field
theories with central charge ¢ > 1 possess continuous parameters. The correspond-
ing deformations can be understood on the basis of Schwinger’s action principle
[Sch58], and thus allow to talk about moduli spaces of such theories.

From the above, it is natural to raise the description of the moduli space M of
conformal field theories with fixed central charge ¢ as a dominant question in the
field. Ultimately, one would like to know M€ as an algebraic space, the partition
functions of theories in M€ as functions on the moduli space and modular functions
on the upper half plane, and an algorithm for the calculation of all operator product
coefficients, depending again on M°.

One can use the known results for ¢ = 1 as a guiding line. The moduli space M! of
unitary conformal field theories possesses two continuous components, associated
to a single boson compactified on a circle (the Thirring phase: see above), and
Zy orbifolds thereof (the Ashkin-Teller phase). These two branches of dimension
one intersect in exactly one point. Moreover, there are three discrete “exceptional”
points in the moduli space [Gin88b, DVV88, Kir89]. The partition function of each
theory in M! is known explicitly [Gin88b, DVV88, Kir89], the operator content,
the generic W-algebra, and all operator product coefficients have been determined
[Nah96].

Little is known for central charge ¢ > 1, even if in general we restrict the discussion
to the moduli space M€ of unitary conformal field theories with central charge c.
An analogous study to the above was initiated for ¢ = 2 in our publication [DW00].
Apart from the component of M? associated to toroidal conformal field theories,
we have found all 26 nonisolated nonexceptional components of the moduli space
that can be obtained by an orbifold procedure from toroidal theories. This part of
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the moduli space already exhibits a complicated graph like structure with a whole
wealth of intersection points between the various branches. This picture gives little
hope for a systematic study of theories with higher central charge, unless we impose
further restrictions.

Here, supersymmetry comes to aid, which severely restricts the admissible repre-
sentations of the Virasoro algebra in a given theory. The case of central charge
¢ = 3/2 has already been studied [DGHS88|, though the well-known picture drawn
there has turned out not to be quite correct (see below). The natural next step
would be the classification of all unitary superconformal field theories with central
charge ¢ = 3. Some observations on this behalf are spread in different chapters
of this thesis, and to obtain a conclusive result seems to be a matter of diligence,
now.

In the present work though, we rather skip this step and directly proceed to the
discussion of N = (2,2) superconformal field theories with central charge ¢ = 6.
In the context of superstring theory (see above), it is natural to impose some
additional assumptions which lead to the study of the moduli space M of N = (4, 4)
superconformal field theories with central charge ¢ = 6. The latter has already been
identified with a high degree of plausibility [Nar86, Sei88, AM94], though a number
of details remain to be clarified. M has two components, M®™ and M%3, one
16-dimensional associated to the four-torus and one 80-dimensional associated to
K3. The superconformal field theories in M®™" are well understood. One also
understands some varieties of theories which belong to M3, including about 30
isolated Gepner type models and varieties which contain orbifolds of theories in
Mt In the literature one can find statements concerning intersections of these
subvarieties, but not all of them are correct. Indeed, their precise positions in M
had not been studied at all up to now. One difficulty is due to the fact that the
standard description of M is based on the odd cohomology of the torus, which
does not survive the orbifolding. As varieties of superconformal theories M®*" and
MHE3 cannot intersect for trivial reasons. As ordinary conformal theories without
Z4 grading intersections are possible and will be shown to occur.

We have tried to assemble the results of our studies in a pedagogical way. There-
fore, this work also contains the author’s reaction to her steady quest through the
literature in search for digestible presentations of the mathematical background
that she needed for a full understanding. Whenever gaps could not be filled in
a satisfactory way by the literature, a paragraph or section has been included to
do so. These parts of the present work might not be of poignant originality but
should serve as recreational caesurae.

An example for such a reaction is our chapter 2. We choose not to repeat standard
general facts about conformal field theories that can be extracted from the text-
books or well accessable review articles [Gin88a, Sch97, FMS96, Gab00]. On the
other hand, much more elementary, as it seems, in the literature we did not find
a conclusive shortlist of all properties obviously assumed in general for conformal
field theories in our every day studies. Since axiomatic approaches to conformal
field theories do not belong to our main research interest, not much effort is put
into minimizing the list in section 2.1. However, it should serve as a stable and
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honest basis for what follows. In view of our general interest in the moduli spaces
of conformal field theories, we open the way for the study of local properties of
such a moduli space by a discussion of deformations of conformal field theories in
section 2.2.

In chapter 3 we very briefly introduce supersymmetry by listing the necessary
properties of superconformal field theories and the corresponding extensions of the
Virasoro algebra. In sections 3.1.1 and 3.2, respectively, we assemble properties
of their representations that are needed later. Two main topics of this chapter
are a detailed discussion of the elliptic genus in section 3.1.2 and the introduction
of Gepner models and Gepner type models in section 3.1.3, without recourse to
orbifold constructions. The latter approach, which is generally not found in the
literature, appears to be much simpler than the traditional one.

Chapter 4 is devoted to the simplest and best understood examples of conformal
field theories, the toroidal ones. We choose a slightly unfamiliar definition in
section 4.1 but point out its equivalence to the well-known one in section 4.2. For
later convenience, two and four dimensional toroidal theories are studied in more
detail in sections 4.3 and 4.4. In particular, SO(4,4) triality is discussed, which is
essential for the determination of Z,; orbifolds within the moduli space of theories
associated to K3. The last two sections of chapter 4 contain our results on rational
conformal field theories: In section 4.5, we arrive at a characterization of rational
toroidal conformal field theories and its geometric interpretation in terms of two
dimensional tori with complex multiplication. Section 4.6 is devoted to the study
of so—called singular varieties and their relation to rational toroidal theories.
From a conformal field theory with extra symmetries one can construct a new
one by the so—called orbifold procedure, which chapter 5 is devoted to. Here, a
vast supply of literature exists [DFMS87, Dix87, DHVW85, DHVW86, FV87], but
the more reasonable it is to briefly summarize the most important features, as is
done in section 5.1. Section 5.2 is concerned with the geometric understanding
of orbifolds, which is only partly explained in the literature. Two special types of
orbifold constructions are studied more closely in section 5.3-5.4, namely crystallo-
graphic orbifolds and orbifolds involving the spacetime fermion number operator.
In particular, the corresponding one loop partition functions are determined in
full generality. The generalized GSO projection and its properties are the topic
of section 5.5. It turns out to be a useful tool for the classification of unitary
superconformal field theories. Applied to tensor products of N = (2,2) minimal
models in section 5.6 it yields the standard construction of Gepner models and a
new interpretation of tensor products of minimal models with ¢ = 3.

Chapter 6 is devoted to the study of the moduli space M? of unitary conformal field
theories with central charge ¢ = 2 that was mentioned above, already. Most of the
results have been published in [DW00]. We give a classification of all nonisolated
nonexceptional orbifold components of the moduli space in section 6.1 and find all
their intersection points and lines in section 6.2. The latter part is very technical,
but the general ideas of proof are summarized at the beginning of section 6.2 and
may be best seen at work in sections 6.2.1 and 6.2.7. Theories obtained as tensor
products of known models with central charge ¢ < 2, in particular the relation of
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our results to those on ¢ = 3/2 superconformal field theories [DGHS88] are discussed
in section 6.3. We also correct the statements on multicritical points on the moduli
space of N = (1, 1) superconformal field theories with ¢ = 3/2 made in [DGH88|.
Section 6.4 ends the chapter with a summary on the picture we have obtained so
far.

Chapter 7 contains our main results, which concern the moduli space M of N =
(4,4) superconformal field theories with central charge ¢ = 6. Most of them are
accepted for publication in [NWO01] or will appear in [Wen01]. In section 7.1 we
briefly review the global description of M in an emended version as compared to
the literature. Generic features of theories in M, more precisely the determination
of a generic part of partition functions, is the topic of section 7.2. In section 7.3 we
discuss the component M%3 of M which consists of theories that are associated
to K 3. After in section 7.3.1 having recalled some of the necessary mathematical
background and having presented its generalization to the situations we discuss
later on, we determine the locations of Z, and more generally Z,, orbifold conformal
field theories within M3 M € {3,4,6}, in sections 7.3.2 and 7.3.4, respectively.
The results enable us to discuss Nahm and Fourier-Mukai transforms from a purely
conformal field theoretic point of view in section 7.3.3, such that we can prove T—
duality and justify our global description of M without leaving this framework.
Moreover, in section 7.3.5 we are able to explicitly locate certain orbifold conformal
field theories in the subvariety of M that contains theories admitting a geometric
interpretation on the Fermat quartic hypersurface. In section 7.3.6 we find the
locations of the Gepner model (2)* and of some of its orbifolds within M by
proving isomorphisms to nonlinear ¢ models. Again, the detailed proofs are quite
technical, but the general idea is summarized in the first subsection. On first
reading it should be no problem to skip the proofs of the subsequent theorems. As
a result of our observations, we identify (2)* with one of the above orbifold models
and thus are able to show that this Gepner model has a geometric interpretation
with Fermat quartic target space. We find a meeting point of the moduli spaces
of Zy and Z, orbifold conformal field theories different from the one conjectured in
[EOTY89]. In section 7.4 we close with a panoramic view of M that summarizes
the results of chapter 7.

Chapter 8 contains a summary of the results obtained within this work and gives
an outlook on those questions that arise from the picture we can draw so far.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Moduli spaces of conformal field
theories (CFTs)

The present chapter is an introductory one which serves to collect general properties
our conformal field theories are assumed to have throughout this work (section 2.1).
In particular, in view of our general interest in the moduli spaces of conformal field
theories, we open the way for the study of local properties of such a moduli space
by discussing deformations of conformal field theories in section 2.2.

We do not even try to present this chapter in a selfconsistent way. In particular,
we expect the reader to be familiar with basic concepts of conformal and supercon-
formal quantum field theory. For useful introductions, see [Gin88a, Sch97, FMS96,
Gab00].

2.1 Unitary conformal field theories in general

We will not delve into the abyss of axiomatic definitions of conformal field theory;
for definitions of vertex algebras and their relation to conformal field theory we refer
to the literature, e.g. [Bor86, DLM98, FHL93, FLM88, GG00, Kac96, Zhu96|.
However, it is definitely worthwhile to linger a bit and assemble a list of those
assumptions, or rather properties, which we must use to discuss conformal field
theories of the type we are interested in. We do not take care of possible overlaps
or discuss minimality of our list. We follow unpublished ideas of Werner Nahm’s
[Nah00Oa] and modify the BPZ axioms [BPZ84, MS89| accordingly.

Property 1
A conformal field theory C (with unique vacuum) possesses a bigraded infinite
dimensional VECTOR SPACE H OF STATES over C,

H=EPV(hh).

Here, each V (h; h) is finite dimensional, dim V (h; h) = 0 if h < —hg or h < —hq for
fixed hg, hy € R}, and V(0;0) = C. The unit element |0) in V(0;0) = C is called
the VACUUM (STATE). The unit element of the dual (V(0;0))* is denoted (0.

15



16 ~CHAPTER 2. MODULI SPACES OF CONFORMAL FIELD THEORIES

The subspaces

W= @V(h;O), W = @V(O;E)

are called HOLOMORPHIC and ANTIHOLOMORPHIC W—-ALGEBRAS*. Moreover, the
vector space ‘H carries a real structure.

We remark that from property 9 below it follows that the sets {h | 3k : V(h; h) #
0} C Rand {h | 3h: V(h;h) # 0} C R do not have accumulation points. It is
sometimes assumed that each V (h;h) is a tensor product V (h;h) = V(h) ® V(h),
but this is not necessary for our approach. In order to avoid tedious repetitions,
the left-right transformed analogue of some statement will often not be mentioned
explicitly.

The basic ingredient to describe our conformal field theory is the notorious operator
product expansion:

Property 2
On ‘H we have an OPERATOR PRODUCT EXPANSION (OPE), namely a map

HOH — H{zZ},

where H{z,z} denotes the space of functions f = f(z,%), f : C — H, that are real
analytic on C* and have the following behaviour around z = 0:

f(z,z) = Z a2 27, (2.1.1)

reR,nEZ

with countable R C R, a,, € H, and only finitely many nonzero coefficients a,,
with r +mn < 0 or r < 0. The OPE is compatible with the gradings of H, where
the degree of (z;%Z) is (—1; —1). It is also compatible with the real structure on H,
i.e. in the OPE of real states all a,, in (2.1.1) are real.

The assumption that only finitely many a,, with r +n < 0 or r < 0 are nonzero
is necessary for the existence of a partition function, which will be required in
property 9. The OPE on W induces a map W — (End ) [z7', 2]] which assigns
a Laurent series ®(z) with finitely many singular terms on each degree to every
state |®) € W, such that |®) = &(0)|0), and analogously on the right hand side
(see property 7 below). This map is known as STATE-FIELD CORRESPONDENCE.
The properties of the OPE are now encoded in the properties of another basic
structure of conformal field theories, the n point functions:

Property 3
Let F(z1,...,2,) denote the space of maps from C" with coordinates z; to C that
are real analytic outside partial diagonals and have a behaviour like (2.1.1) in each

*There is a slight confusion in the literature about the nomenclature of holomorphic states.
They are frequently called CHIRAL STATES, a term that we reserve for elements of the chiral ring
(see section 3.1.1). The structure of an algebra on W, W arises from the properties listed below.
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singularity. For every n € N we have a linear map
E, : /H@m — f(zla ER) Zn)7 ‘q)l) ®...® |qy&>_> <0|(I)1(217 Z1) o (I)n(znvzn)m)

The right hand side above is called an n POINT FUNCTION.

The insertions ®(z;,z;) of an n point function are called FIELDS and can be inter-
preted as families of linear operators ®¢(z;,%;) : H — H, parametrized by z; € C
(see below). Then the statefield correspondence extends to the entire space of
states H.

The tricky part in the definition of a conformal field theory is to give axioms for
the n point functions. We will impose further restrictions on them, so only a subset
of F(z1,...,2,) occurs as set of n point functions of a given theory. It happens
that only for the holomorphic fields we know exactly which subset is to be taken.
For later convenience we include the case of a Zs graded space of states H in the
following property; all states in the present case are even, though.

Property 4
For fields ®7,j € {1,...,n}, of our theory which all are purely even or purely odd
with respect to the Zo grading

Fo (9!, ..., @ &t . ®") =cF, (..., &, & ... o")

with € = —1 if both ®, ®*! are odd, and € = 1 otherwise. Moreover, the following
diagram commutes:

H®2 ® H®k —> .7:(20, ey Zk—l—l)

l

HRQHH 2,2} — Flo,...,2641){2,2}.

Here, the horizontal arrows are given by the n point functions Fy o, Fy.1, respec-
tively, the left vertical arrow is the OPE in the first two factors H®?, and the right
vertical arrow is the expansion around 0 with respect to z = zy — 2z1.

We have now almost completed an axiomatic definition of the OPE and n point
functions, apart from the following condition of closure:

Property 5

Given an n + 1 point function as in property 3, for any fixed ®, ®J the residues in
zij = 2z; — z; = 0 (i.e. all coefficients of singular terms in the expansions around
zij = 0) are n point functions that obey properties 3-5.

By the above, a conformal field theory actually is a representation of its OPE,
where we use

Definition 2.1.1
A REPRESENTATION OF AN OPE V®V — V{z,Z} is a vector space of linear maps
F =®,F,, F, : V®" — F(z1,...,2,) satisfying properties 4 and 5 above.
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If V is Zo graded and the OPE respects the grading, we modify the permutation
invariance as stated in property 4 to define a FERMIONIC REPRESENTATION of the
OPE.

Properties 3-5 show that we can view a conformal field theory as a representation
of its OPE with the vector space of maps F given by multiples of

P @ ... ®|®") — (0|®'(21,21) - - - D" (20, Zn)|0).

For later convenience we rather take a different viewpoint, namely interpret it as
representation of the OPEs of its holomorphic and antiholomorphic W-algebras.
To do so, we need to work a little harder. Firstly, for f € V{z,Z} let [f(2,2)]o0 :=
a0 denote the constant coefficient of f in an expansion of type (2.1.1). Then for
fields ®7, j € {1,2}, of dimensions (h;; h;) in our conformal field theory

(91, 0%) = |1 H12 (0|24 (2,2)2%(0,0)[0) | oo i,

defines a symmetric inner product on H by property 4. Together with the real
structure on H it can be used to define a Hermitean product, since in property 3
we supposed compatibility of OPE and real structure. We assume the following

Property 6
The inner product (-,-) is nondegenerate.

Note that we do not promote the prehilbert space H into a Hilbert space. From
property 4 together with property 6 one can already deduce associativity of the
OPE. Given |®) € H we write (®| € H* if

VIO eH: (B,0)= (D).

So far, we have not introduced the conformal part of the conformal field theory.
Also, nothing has been said about the functional dependence of n point functions
on the parameters of the fields. Both are fixed by

Property 7

The space of fields of a conformal field theory contains a real holomorphic field T'(z),
IT) € V(2;0) whose Fourier components Ly, in T(z) = Y., L,2""? generate a
left-handed VIRASORO ALGEBRA with CENTRAL CHARGE c:

(Lo, L] = (1 — 1) Ly + — (n®

12 — TL) 5m+n,0 .

(n
T is HERMITEAN, ie. (L,)' = L_, for alln € Z. Let |®) € V(h;h) denote
a PRIMARY STATE, i.e. a lowest weight state of the left and the right handed
Virasoro algebra, L,,|®) = 0 and L,,|®) = 0 for m < 0. Then Ly|®) = h|®), and
for any other |U7) € H,j € {1,...,n},
%(0\@(3’,2)\111(,21,21) U2, 2,)|0)

= (O0[(L12)(2,2) ¥ (21, 1) - - - U™ (2, Z0) |0),
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and analogously on the right handed side. The left and right handed Virasoro
algebras commute.

Generally, (h;h) as above are called CONFORMAL DIMENSIONS of a state in the
theory.

Property 7 can be weakened to the assumption that H is a representation of
sl(2,C), generated by Lo, Ly; as above. The vacuum state of property 1 is both
holomorphic and antiholomorphic, so the corresponding field is constant. Hence
L,|0) =0 for m € {0,+1}, and |0) is the unique si(2, C) x sl(2, C) invariant state
with (h;h) = (0;0).

Note that by property 7 one point functions of states in V (h; h) # V(0;0) vanish.
Hence by property 2 the two point function (0|®*(z,z)®%(0,0)|0) with [®7) €
V (h;; hj) has a pole of type z~"1~h2z=h1=h2 for » — 0o, and

(0@ (2,2)®2(0,0)[0) ~ 2 M1—P2z1—h2 ¢ F(3).

It now follows from (2.1.1) together with invariance under permutations (property
4) and property 6 that all states must have integer SPIN h — h. We always label
Fourier components of holomorphic fields by the energy, not by its negative, i.e.
for |®) € V(h;0) we write ®(2,2) = D, Pnz" ", such that |®) = ©,]0).
Property 7 shows that n point functions containing holomorphic fields will not
depend on the corresponding antiholomorphic parameters. Then by property 2,
the OPE of holomorphic |®'),|®?) € W is a rational function in z, since the
singularity in z = oo is also at most a pole by the above. More generally, let
&7, j € {1,...,1}, denote holomorphic fields and ¥?,j € {l + 1,...,n}, any other
fields of the theory. Then by property 4, iterated OPE shows that for any fixed
Z1yey 2l Witl, - - - » Wy, the n POINT FUNCTIONS

(08 (21) - - - ' (20) U (wys, Wisr) - - - U (wy, T ) |0) (2.1.2)

are rational functions in the z; which have a well defined Laurent series in z;; :=

zi — zj. They can be continued to meromorphic functions on T with poles only
on partial diagonals or for some z; = co. The space of such meromorphic func-
tions is denoted C(z1, ..., 2). Recall that rational functions on C are completely
determined by their behaviour in the poles. An analogous condition holds for
antiholomorphic fields ®7.

Now we see that by definition 2.1.1 our conformal field theory is a representation
of the OPE of its holomorphic and antiholomorphic W-algebras: The vector space
of maps is @ H®, and F,_; = [V @ ... ® [¥") € H® ! acts on W*! by

Fo:|®HY®...@ 0% (0|®(21) - - @4 (2) U (wig1, Wigs) - - O™ (wy, W,)|0).

This is the standard example of a representation of an OPE and in fact the only
one we will use.

Let us summarize what we have achieved up to now: A conformal field theory
is a representation of its OPE, such that the n point functions as functions of
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the parameters zq, ...,z of the holomorphic fields are meromorphic functions in
C(z1,-..,2). Asfunctions of the parameters w1, . .., w, of nonholomorphic fields,
the n point functions are more complicated. The SI(2,C) invariance of property
7 defines a derivation on the space of n point functions which for parameters of
holomorphic fields agrees with the usual derivation. Properties 2 on the OPE
and 4 on its compatibility with n point functions show that no global monodromy
exists for the corresponding connection. This property is generally referred to as
PAIRWISE LOCALITY of the fields in the theory. For fermionic representations of
the OPE, the monodromy may contribute at most a factor of —1.

All in all, our n point functions now are defined on C = S?, i.e. we are considering
conformal field theories on the Riemann sphere. From property 7 it also follows that
n point functions transform covariantly under conformal transformations. More
precisely, let ®,j € {1,...,n}, denote primary fields in C of conformal dimensions
(hj; h;). Let & = £(¢) denote a global conformal transformation, and &; := £(z;).
Then

(0[@"(21,71) - - ®" (20, Zn) |0)

:@) (d_ﬁ) 0o E) o 0.

dZ ‘Z:Zj dZ |E:Ej

J

This condition already fixes the form of two and three point functions in the theory,
because we can always find a conformal transformation that maps three points
21, 29,23 to 0,1,00, respectively. Two point functions vanish unless both fields
have equal dimensions.

Given all properties of the n point functions listed so far, one can interpret them as
matrix elements of the fields ®(z,z). Their operator product ®(z1,%1) - - - ®(25,Zn)
can also be defined for |z;| > --- > |2,| (“RADIAL ORDERING”) by iterated OPE.
In particular, ®(0,0)[|0) = |®). We have (®| = lim¢_,(0|(®(¢,¢))f, and for real
primary |®) one checks with the help of (2.1.3)

(®(2,7)) 74P = (cp(,z,z),zhzh)T oy (;, —) 7 hyh,

zZ Z

It follows that a real holomorphic field ®(z) is Hermitean with respect to the inner
product of property 6, iff (®(2))" = ®(z), or equivalently (®,)f = ®_,. Up to a
sign, this is nothing but CPT invariance.

We now see that the representation of the OPE introduced above can also be
viewed as the space of maps isomorphic to W*@ W, and F = (®|® |¥) € W* QW
acts by

E, (@ ..., 0") = (DD (21,21) - - - B" (20, Z0) | T).

From property 6 together with property 7 it also follows that ¢ > 0 and ¢ > 0.
We now add a kind of “universality condition” for the OPE:
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Property 8

If the space of states H together with the n point functions H®" Iny F (21,5 2n)
satisfying properties 2-7 belong to a CONFORMAL FIELD THEORY C, then for any
other space of states H' with n point functions F] satisfying properties 2-7 the
following holds:

Given a map A : H — H' which maps the Virasoro fields in H, H' onto each other
such that for all n point functions F) the map F), o A®™ is an n point function of
C, then A is an isomorphism which respects the gradings of H and H'.

In this work, we shall consider UNITARY CONFORMAL FIELD THEORIES, i.e. we
assume the inner product of property 6 to be positive definite and each repre-
sentation of the Virasoro algebra in A to be unitary with respect to this inner
product. Apart from the fact that the additional assumption of unitarity means a
simplification, one can argue on physical grounds why this property is a sensible
requisite:

In field theory, unitarity is equivalent to conservation of probability and therefore is
fundamental. In statistical mechanical systems, unitarity is expressed by reflection
positivity and can only be expected to hold for the associated effective theory, if
at all it exists. By assuming unitarity, we also ensure that H splits into a direct
sum of irreducible representations of the left and right handed Virasoro algebras.
Above, we have considered conformal field theories on the Riemann sphere S2 = C.
We want to study conformal field theories on the torus, however, which are also
defined on the sphere. Property 9 below will ensure that this is well defined.
Our assumptions then suffice to give a consistent theory on Riemann surfaces of
arbitrary genus [Son88|. So let us describe Euclidean theories on the torus with
parameter ¢ in the upper half plane. The world sheet coordinates are called &, &, €
[0,1], and & := 27 (& + 0&y) parametrizes the worldsheet torus =Z(o). Imaginary
and real part of £ are interpreted as imaginary time and space coordinates on the
worldsheet of a string, respectively. We frequently use RADIAL COORDINATES 2z =
e,z € Z, to parametrize the worldsheet on an annulus Z C C* and deliberately
switch between the two parametrizations. Note that time ordering then translates
into radial ordering.

We assume that in our theory the two point functions of all components of the
energy momentum tensor are Lorentz invariant, conserved quantities. This leads
to the condition that the left and right handed central charges of the theory agree
[Gin88a, §3.1]. ¢ = ¢ can also be deduced from cancellation of local gravitational
anomalies [AGW84|, in other words is an assumption we need anyway if we want
to generalize to a conformal field theory defined on Riemann surfaces of arbitrary
genus.

The modes (Ly)z(,) of the Virasoro field on the torus Z(o) transform by

(L")E(U) =Ly - i 1,05 (ZH)E(J) = Zn - ﬁ5n,0

to those on the annulus Z. On Z(0), imaginary time translation of Im(&) by its
period 2oy is accompanied with spatial translation of Re(§) by 2moy. Since in the
operator formalism spin is measured by P = (Lo — Lo)=(s) = Lo — Lo, and energy is
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measured by H = (Lo + Lo)z(s), the operator that describes propagation of states
along =(o) is

e—2mo2H 2mio1 P _ q(Lo)aa)q(Zo)s(a) _ qLo—c/24qfo—c/24 —. O(q,ﬁ),

where ¢ := €?™° q := ¢ 2™, The VACUUM CORRELATOR (0|O(q,q)|0) on the
torus therefore is a trace over the entire space of states with respect to a graded
basis, the ONE-LOOP PARTITION FUNCTION

Z(0) = try O(q,7) = (q7) "/ try g7

If the theory contains a left and a right handed U(1) current J and J, as for
example is the case for N = (2,2) superconformal field theories, left and right
handed charges are denoted (Q; Q). Then we use a U(1) equivariant version of O
and thus of the partition function. Namely*, with y := €?™?, 7 := e 2% we set
O(q,y;3,9) =y g™ </*gro~/* and

Z(0,2) =ty O(q,4;3,7) = (q@)~“** tra y°7 0 g 0q"™. (2.1.4)
As a final property, we now assume

Property 9

The n point functions on the torus, computed as traces, exist and are modular
covariant. This in particular holds for the vacuum correlator (2.1.4), the partition
function of the theory, which is also assumed to depend analytically on each of the
parameters h, h, (Q, Q) that occur as eigenvalues of Ly, Ly, (Jo, Jo).

Property 9 implies that the partition function (2.1.4) is assumed to be convergent
for all values of ¢ in the upper halfplane H := {( € C |Im( > 0}. The latter
restriction is a remnant of the radial ordering. Note that it follows from property
9 that the set of dimensions (h; k) cannot have an accumulation point. If the set of
representations of the holomorphic fields in the theory is finite, i.e. for RATIONAL
CONFORMAL FIELD THEORIES (see definition 3.1.13), convergence of Z can also be
deduced from a weaker finiteness condition [Zhu96].

From a conceptual point of view it would be favorable to deduce modular covariance
of the correlation functions from first principles. This is obviously possible for
theories described by functional integrals (once they are defined), since we have
assumed property 8. For rational conformal field theories it has been proven in
[Nah91, Zhu96] under some assumptions on the analytic properties of the operators
in the theory. The proof can certainly be extended to the quasirational case, where
the representations of the holomorphic W-algebra form a measurable set with
respect to an appropriate measure. A general proof seems out of reach, though.
A main step in the proof [Nah91] of modular invariance for rational conformal field
theories is the following: Firstly, Euclidean n point functions Z7 (o) on the torus,
or more precisely

ZL(0)(®, ..., ") (21, .-, 2n) i= tryg, (O(¢, Q)@ (21,71) - - - ©" (20, Zn))

*The coinciding notation z for the radial coordinate z € Z on one hand and the parameter
measuring charge on the other should not lead to confusion, since the respective meaning is
always clear from the context.
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transform into one another under the modular group PSL(2,Z). Denote by S,T
the generators of PSL(2,7),

S, T € PSL(2,Z),( € H : S:Cl—)—%, T:(—(+1, (2.1.5)

and by {Z7},¢r the set of such n point functions. Then

Zy(So) = 257 (o), Z3(To) Z Sy Zoi (

Y el Yer

The matrices S , T are constant, in particular independent of o. This fact is tacitly
used throughout the literature, though it is far from obvious a priori.

We will also have to assume that a moduli space of conformal field theories ex-
ists, this can not be derived from first principles. In particular, we assume the
perturbation series in conformal field theory to converge. All data that describe
the neighbourhood of a conformal field theory in the moduli space are encoded in
the n point functions of the theory itself in terms of the perturbation series and
depend analytically on the dimensions and charges of the fields in the theory. This
is one reason for our additional assumptions in property 9.

2.2 Deformations of conformal field theories

Let us now discuss deformations of a unitary conformal field theory that preserve
the infinite conformal symmetry and the central charge c. This is a delicate subject,
since no axiomatic notion of such a deformation has been formulated whatsoever,
and to develop one exceeds the scope of this thesis. However, the framework given
in section 2.1 can be seen as a first step towards such a development. Namely, a
conformal field theory is viewed as a particular representation of the OPE whose
properties are encoded in the n point functions. In other words, a conformal field
theory is a space of specific maps, a description that is close to algebraic geometers’
notion of an algebraic variety. Once this interpretation is better understood, in
particular once we know exactly what kind of maps we have to restrict our n point
functions to, one can hope to formulate a consistent definition of deformations
of conformal field theories similar to Kodaira—Spencer theory or more generally
motivic approaches. The structures we will meet below indeed are reminiscent of
these mathematical objects.

Here we will use L.P. Kadanoff’s approach to deformation theory [Kad79, KB79]
(see also [DVV87] for a very clear account on this subject). It is motivated by sta-
tistical mechanical methods and goes back to Schwinger’s action principle [Sch58].
In the following, let {Cs}scr denote a smooth family of unitary conformal field
theories with central charge c. By this we mean that the spaces of states of Cs
form a vector bundle over {60 € R}, such that n point functions are sections in
C*>-bundles with respect to §. All quantum numbers of fields ®; are assumed to
depend analytically on §. Omission of § will always mean that we are discussing
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the theory C = Cy. If Cy is governed by an action S; as proposed in Schwinger’s
action principle [Sch58], by our assumption that the data of a conformal field the-
ory also encode the geometry of its neighbourhood in moduli space, we can find a
field D(z,Z) in the theory C which generates the deformation along Cs. Namely, the
partition function Zs(o) of Cs is the path integral [ e 5 over the space of solutions
to the equations of motion given by Sy, and

Ss=85— (5/ dzdzD(z,Z).
z

By dimensional analysis it is clear that D has to have conformal dimensions (h; h) =
(1;1). Such fields are called MARGINAL. One can also deduce h+h = 2 for D from
the computation of the 3 function of the theory and the interpretation of the moduli
space of conformal field theories as the set of fixed points under the renormalization
group flow [Car87]. Since h = h = 1, D cannot be a derivative of another field
in the theory and so automatically is QUASIPRIMARY, i.e. L ;D = 0,L_;D = 0.
In order for D to generate a deformation of the theory, it must also stay marginal
along the family Cys. If this is true, D is called EXACTLY MARGINAL. One remark
of caution is in place here: It seems tempting to directly interpret exactly marginal
operators as tangent vectors of the moduli space of unitary conformal field theories
with given central charge. Though this indeed is possible in almost all examples
we discuss in this thesis, the general structure of conformal field theories does not
provide this interpretation. Namely, the conditions for exact marginality worked
out in conclusion 2.2.1 are not linear in D. Therefore the set of marginal fields will
not form a vector space in general, and the moduli space cannot be expected to
be a manifold. If it is, on the other hand, by property 6 the two point functions
of exactly marginal operators define a natural Riemannian metric on the moduli
space, the ZAMOLODCHIKOV METRIC [Zam86].

To check whether D is exactly marginal we have to make sure that it does not
change its conformal dimensions under deformation and does not mix with other
(1;1) fields. Conditions for exact marginality are read off from the generic form of
the n point functions that is implied by (2.1.3). Without loss of generality we can
assume that the set {®’} of primary fields in C is orthonormal with respect to the
Hermitean product of property 6, such that

(0] (2, 2)07 (0, 0)[0) = —2F_

Zth 5217*7;

We will now present the calculation [Kad79] for the change of dimensions (h;h)
of a primary field ® in C under a deformation generated by D. A dot will denote

%‘ 50" Then by the above formula
d = . R ConoF
- ({012(2,2)2(0,0)[0)%) ,_, = -2 (Amz+hmz) 22z 24

where we omit terms that have no logarithmic singularity in 2z = 0. On the other
hand,
(0]®(2,2)®(0,0)|0)% = (0[@(z,2)®(0,0) /2 #=4P2)|g),
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SO up to renormalization

9 ((0/(2,2)8(0,0)/0)%)

ds /ddeOI@(z,z)D(w,m)cb(o, 0)0).

16=0 —
We see that D must be Hermitean in order to preserve the real structure on H
[Sch58]. The integral is logarithmically divergent in w = z and w = 0, since D
is actually associated to an infinite number of deformations which are all equiva-
lent by wave function renormalization (see below) but are all summed over in the
above integral. To regularize, we introduce a cutoff ¢ around the singularities by
integration over G, . := {w € C||lw| > ¢,|w — z| > €}. Then we pick a particular
renormalization (2.2.1) of D, such that the dependence on the cutoff drops out.
We now use (2.1.3) with w(¢{) = ZCTZC and denote by G, . the image of éz,s, so for z
large, € small, G, = {w € Cle < |w| < %} Then comparison of the logarithmic
singularities in the above expressions gives

hlnz+hinZ = —1/ dwdw (P| Doo |®) = —7(P|Dy | P) lnﬁ
T2 /a, w2 "0 =

Here and in the following, given a marginal field ¥ we define operators ¥,, ,, on
|®) € H for m € N by

\Ilm,m

®) = lim |2>72"V(z,Z)|®).
z2—0

Then analogously

d _
As already mentioned, we can ignore the € dependence in the above expressions if

we use wave function renormalization, e.g. for ® =D

2
— 97(D|Wgo|D) In

16=0 o2

D+ D+ dnlne® ((D|Dyo|D)D + (D|¥ D) V). (2.2.1)

If D is exactly marginal, its left and right dimensions must not change along Cs, i.e.
(D|Dyo|D) = (D_1,-1|Dy0|D1,1) = 0. Moreover, the wave function renormalization
(2.2.1) must not mix D with other fields ¥ of dimensions (1;1), i.e. (D|¥q,|/D) =0
for all such fields. The conditions for the dimensions of D not to change to higher
order deformation theory are now deduced by the same reasoning. In general,
n + 2 point functions will occur as nth order obstructions to exact marginality.
We assume that renormalization works similarly to (2.2.1), but now apart from
wave function renormalizations of type (2.2.1) mixing of the fields with 1 produces
divergent terms that do not contribute to the variation of dimensions. This means
that only the “connected part”

<(I)|D(w1’w1) U D(wkawk”@)conn

of an n point function is to be taken into account [Car87]. It is determined by
subtracting all contributions from the ordinary n point function that come from
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complete factorizations into n’ point functions, n' < n, i.e. correspond to discon-
nected Feynman diagrams. Generalizing Kadanoff’s result [Kad79] we therefore
find:

Conclusion 2.2.1
If D is an operator in the conformal field theory C which generates a deformation of
C that preserves conformal symmetry and the central charge, then D has conformal
dimensions (1;1). Moreover, for any other field ¥ with dimensions (1;1) of the
theory,

(D[¥o,0|D) =0,

and for k € N with

Gz,e = {(wla"'awk) < Ck ‘ 8|wZ+Z‘ < |Z‘27E‘wi+z| < |’LUZZ‘,

elwi + 2||w; + 2| < |2 |w; — wy| }

the integral
/ dwldwl e dwkd@k(@m(wl, El) R D(wk, Ek)|<1>)cmm
Gz,s

for ® = D has no logarithmic singularity in z = 0. If the latter is true for an
arbitrary primary field ® of C, ® does not change its dimensions along Cs.

As an example one can study any theory with left and right handed U(1) currents
j,7- Since the relevant expectation value vanishes for an odd number of insertions,
by Wick’s theorem it suffices to determine

. : . 1 1 1
F(wy, wp) = (jo1](w1)j(we) j1) = w2 + w2 + m
i 2

The relevant expression for the (1;1) field D = 57 then is
sz,e dwldwldwgdﬁg <D‘D(w1, El)D(wQ, mg) ‘D>conn

1 1 1
:/ dwldwldUJQdEQ (‘F(wlaw2)|2 - - )
Gz,e

_\w1\4 [wao|* wy — wal*

Gze wiw;  (w—wy)? \W{ W

which has no logarithmic singularity in z. This is true more generally, as long as
F above is a real analytic function where all singularities are of type Z%—i— regular
terms [Car87]. Thus D is exactly marginal iff it does not mix with other (1;1)
fields.

We can now use conclusion 2.2.1 to find conditions for holomorphic primary fields
® in C to remain holomorphic along Cs. Since the three point function we have
to compute by conclusion 2.2.1 contains a one point function of the antiholomor-
phic part of D which vanishes, holomorphicity is always maintained to first order
deformation theory. This of course shows that already to understand the con-
tinuous part of the moduli space of unitary conformal field theories with ¢ = 1




2.2. DEFORMATIONS OF CONFORMAL FIELD THEORIES 27

[DVV88, Gin88b| which is described by compactification of a single boson on a
circle of radius R, we need second order deformation theory. These models are
the one dimensional cases of bosonic toroidal conformal field theory that will be
introduced in section 4.1. Anticipating this discussion, we remark that the space
of states of such a theory is generated by a holomorphic field of dimensions (1;0),
i.e. a U(1) current j as above, its antiholomorphic analog, and an infinite number
of ground states |m,n), m,n € Z, which have charges Qm,n,@mm = %(mR + %)
with respect to the currents j,7 and dimensions (h;h) = (%2, %2) Holomorphic
vertex operators therefore exist for rational R> = L with h, = t’rs,t € Z, and
|m,n) = |ts,tr). As to the change of their dimensions along the line parametrized
by R, ,

0 0

ﬁht(RhR:g =0, R
Clearly, the fact that none of the holomorphic vertex operators exists for generic
R is visible only in second order deformation theory. The deformation of R is
generated by D = 57 as in our above example, and we may compute

112
§Qts,tr

wiwe (W, — Wa)?'

ht (R) |R=2 = Q?s,tr‘

8

(ts, tr|D(wy, w1)D(wa, Wa)|tS, tT) conn =

For large |z| we can simplify the relevant expression in conclusion 2.2.1 with respect
to polar coordinates w; = r;e"¥ by performing the r; integration over the domain
{e<r; < %, |11 — re| > €} to see that integration over G, . gives an In |z| type
singularity. This is in accord with our above observation that |ts,¢r) does not
remain holomorphic to second order deformation theory.

It might seem that also in general it is simple to derive conditions for holomorphic
|®) € V(h;0) to remain holomorphic along Cs. The relevant four point function

(0|®(21)D (w1, w1 )D(wa, Wa)P(22)]0)

behaves as zi_?’” for z; — oo, and as \wi|’4 for w; — oo. If we assume the OPE
®(21)D(wy,w;) to have leading singularity of order S we find that the integrand
of the crucial integral in conclusion 2.2.1 for second order deformation theory is

Pas (wi, ws)
wigwég|w1 - w2|4

with a homogeneous symmetric polynomial psg of degree 2S. By the substitution

v; = wfiz we see that second order perturbation theory is entirely encoded in the

In z type singularities of the integrals

d’l)ldﬁld’l)zdﬁg U1 “ Vo — 2 . Vo N v —Z “
Ia = |lv;—z|>e,|vi|>e 4 . + . ’
el I |v1 — vy Vg vy — 2 vy Vg — 2
a € N, which we unfortunately have no closed formula for. Above, we showed that
I; has an In z type singularity.
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We have also tried to apply conclusion 2.2.1 to a nontrivial example. Since we
do not want to present any details, here we anticipate some properties of the
relevant model that will be discussed later in this work. We consider the Gepner
type model (2)* (see theorem 3.1.18) with ¢ = 6. By theorem 7.3.29, it has a
nonlinear ¢ model description as Z, orbifold of a toroidal conformal field theory
on the torus T* = R* /A with lattice A = D,. Now let C; denote the deformation
of (2)* corresponding to a simultaneous blow up of all 16 singularities of type Zs
in the orbifold T*/Z, (see [Cve87, CLO88] for a discussion of related questions
from the string theoretic point of view, mainly on Calabi-Yau threefolds). With
conclusion 2.2.1 we are able to prove that of the generic su(2)? Kac-Moody algebra
that every Zs orbifold of a superconformal toroidal theory with ¢ = 6 has (7.3.17),
only su(2); = su(2)***¥ of section 7.1 survives along Cs. This of course was to be
expected, since Cs does not stay within the subspace of Z, orbifold conformal field
theories in the moduli space. On the other hand, using the fact that the energy
momentum tensor of (2)* must remain holomorphic along Cs, we can deduce that

I, — 2L

does not have Inz type singularities, but a direct analytic argument is lacking.
Summarizing one may say that conclusion 2.2.1 seems not yet to be formulated in
a way that is useful for applications.

We close this chapter by introducing an idea advocated in [Zam87al for the deter-
mination of generic holomorphic fields in some moduli space of unitary conformal
field theories. Assume that a quasiprimary field ®, |®) € V(h;0), of C is deformed
to a family ®° of fields along Cs. If ®° is not holomorphic for § # 0, the family L, ®°
has dimensions (h% ’) with &’ > 1. Then ¥ := lim;_,o L;®° € V (h; 1), but clearly
U £ L;® = 0. Moreover, U is quasiprimary, so the irreducible representation of
the Virasoro algebra, which |®°) is a lowest weight state of, must split into smaller
ones at 6 = 0. It follows that dim V' (h;0) — dimlims_o(L,Vs NV (h; 1)) fields are
generically holomorphic with dimensions (h;0) along Cs. In particular, there must
exist generic holomorphic fields in V'(h;0) if dim V' (h;0) > dimV'(h;1). Another
signal for the existence of generic holomorphic fields is a jump in the number of
quasiprimary fields in V' (h%;1) at § = 0.

These conditions suffice to show that in the Zs orbifold component of the moduli
space of unitary conformal field theories with ¢ = 1 there is a generic part V' (4;0)
of the space of states. Together with the energy momentum tensor it generates the
generic W-algebra W(2,4) of this branch of the moduli space [Nah96].

As we will see in section 7.2, Zamolodchikov’s method unfortunately does not give
any insight for the case of conformal field theories on K3.



Chapter 3

Superconformal field theories

(SCFTs)

We shall begin this chapter with a list of further properties that are presumed if
we work with superconformal field theories. Section 3.1 is devoted to N = (2,2)
superconformal field theories. In section 3.1.1 we discuss chiral rings and the
spectral flow. Section 3.1.2 contains a more detailed discussion of the elliptic
genus, whereas section 3.1.3 introduces an important class of (rationall) N =
(2,2) superconformal field theories, namely the minimal models, Gepner models,
and Gepner type models. In section 3.2 we briefly discuss properties of N =
(4,4) superconformal field theories we will need in chapter 7. More precisely,
we consider N = (2,2) superconformal field theories, where the superconformal
algebra is linearly extended to the N = (4,4) superconformal algebra studied by
T. Eguchi and A. Taormina [ET87, ET88a, ET88b, ET88c, Ta090]. In section 3.2.1
we present a free field realization of this algebra, whereas in section 3.2.2 we list
the characters of its irreducible representations and give some of their properties
found in joint work with Anne Taormina.

Let us now turn to the axioms of superconformal field theories, again following
unpublished ideas of Werner Nahm’s [Nah].

Property 10
An N = (1,1) superconformal field theory C possesses a bigraded infinite dimen-
sional vector space H of states as in property 1 of section 2.1 which is also Ziy X Zo
graded,

H :Hb@Hf, Hy :/HIZCVSEB'H,IE,k € {b,f}.

‘Hy contains the purely BOSONIC STATES, and Hy the purely FERMIONIC STATES.
NS stands for NEVEU-SCHWARZ SECTOR, and R for RAMOND SECTOR.
‘H carries a real structure which induces a real structure on each of the sectors

H% € {b,f},S € {NS, R}.

It is should be understood that the latter assumption is equivalent to the require-
ment that each sector is invariant under conjugation.

If the conformal field theory arises from a string theory, the Neveu—Schwarz sector
corresponds to spacetime bosons, and the Ramond sector to spacetime fermions.

29
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We will return to this issue in the context of spectral flow in section 3.1.1.
An N = (1,1) superconformal field theory is best understood as an extension of
an ordinary conformal field theory as defined in section 2.1:

Property 11

The bosonic part Hy, = H})S @ HE of the space of states is itself the space of states
of a conformal field theory. Its OPE is compatible with the Z, grading of Hy,
where Neveu-Schwarz states are regarded as even, and Ramond states as odd.

With property 11 one can show that HJ* generates the entire space H;, by OPE,
ie. HE @ HE — H]5{z,7}, and the fields in the image of the OPE are in 1 : 1
correspondence to states in H}'5. Abbreviating this, we simply say that FUSION
reads [HfY] x [HE] = [H)S]. Namely, [H] x [H{] contains the vacuum state since
HE is invariant under conjugation. Then the assertion follows from the fact that
HE is a representation of H}'¥ and property 8. As to the other sectors contained in
a superconformal field theory by property 10, the state-field correspondence (see
the discussion below (2.1.3)) extends to H}*:

Property 12

For each state |¥) € H{® there is a field ¥(z,%) such that ¥(0,0)|0) = |¥). The
OPE of property 2 extends to ’HN S and is compatible with the Z, grading on
HNS = H)S ® HYS, where bosomc states are even and fermionic ones are odd.
The Neveu Schwarz sector HN® of the space of states is a fermionic representation
of the OPE of H}'® (definition 2.1.1). The generators of the left and right Virasoro
algebras act as in property 7, extending the n point functions to functions of
n complex parameters as explained in section 2.1. Moreover, fusion is given by

[HF] x [H7*] = [H°].

We remark that due to the additional signs in fermionic representations of the OPE,
states |¥) € H}YS have half integer spin h — h. If ¥ is a holomorphic fermionic
field of dimension A in the Neveu—Schwarz sector, then its mode expansion is
U(z) = ZreZH—l 2"

The remaining sector of the space of states in property 10 is now constructed by
fusion from the others:

Property 13
The OPEs on H, and H™® can be extended to a nonlocal OPE ’HNS R HE —
H{{{2,7}}, where H{{2,Z}} denotes the space of functions f = f(z, z) f:C—

H, that are real analytic on C* and have the following behaviour around z = 0:

with countable R C R, a,, € H, and only finitely many singular terms. Properties
3-7 can be adjusted accordingly to n point functions that contain arbitrary fields in
‘H. In particular, the action of fermionic Neveu—Schwarz fields on bosonic Ramond
states is well defined and maps them surjectively into the fourth sector of the space
of states: [H}'°] x [H] = [H]].
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By our assumptions fermionic fields act on the entire Ramond sector. Consistency
of the OPE shows that a fermionic holomorphic field ¥ of (half integer!) dimension
h on this sector is represented by the operators ¥, in its mode expansion ¥(z) =
> nez U, 2" " A fermionic field ¥ is never single valued in the Ramond sector:
U(e¥Miz e 2m7) = —U(2,2).

By properties 1-13 we have actually defined a FERMIONIC CONFORMAL FIELD
THEORY. In general, the entire set of states in # is not pairwise local (rather
SEMILOCAL, i.e. local up to signs), and the partition function of the fermionic
conformal field theory is defined to be that of its bosonic subtheory with space
of states Hp. This is a conformal field theory of its own right by the properties
listed in section 2.1. We now introduce the FERMION NUMBER OPERATOR (—1)"
to be the unitary operator with eigenvalues +1 that commutes with bosonic fields
and anticommutes with fermionic ones and such that (—1)¥|0) = |0). Then we
can decompose partition functions of superconformal field theories into four parts,
with z = 0 if no U(1) currents .J, J exist:

Z = %(ZNS+ZN§+ZR+Z§)’
Zns(o,2) == trys [qLO—iqfo_iyJogjo} |
Zyg(o,2) = tryg |:(_1)FqL072L4§foi2%yJ0yjoi| | -
Zr(o,2) = trg [qLofiEEO*ﬁyJOyFO} |
Zg(o,2) = trg [(_1)FQL°_2C_4§ZO—2°—4yJog70] |

Recall that the transition from worldsheet coordinates (&, &1) to radial coordinates
(2,Z) exchanges twisted and untwisted boundary conditions on the fermions. In
terms of the worldsheet torus Z(o), the insertion of (—1)" in the above vacuum
correlators results in a trace over the sector where fermionic fields obey untwisted
boundary conditions in direction of imaginary time. Modular transformations act
on the worldsheet torus and can be interpreted as permuting the fermionic bound-
ary conditions. In particular, Z3 is the trace over fermionic fields with untwisted
boundary conditions on both worldsheet coordinates and so transforms modular
covariantly on its own.

The simplest and quite instructive example for a fermionic conformal field theory
is the ISING MODEL which describes a single Majorana fermion ¢ and its antiholo-
morphic counterpart ¢. The ground states of irreducible representations of the
holomorphic W-algebra are denoted [0), 1), 1), |¢), |o), |i) and have conformal
dimensions (h; h) equal to (0;0), (3;0), (0;3), (3;3), (55: 15), (55 75), respectively.
The bosonic ground states are |0), |¢), |0). From the fusion rules (see e.g. [Gin88a,
(7.20)]) one reads that the four sectors of property 10 are given by

Hy® = spanc(|0),le)), Hy = spanc(|o)),

NS - R (3.2)
Hy® = spanc(|y), [¥)), Hy = spanc(|u)).
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Note that H;* = HF, but fusion is governed by the fact that the OPE must be
compatible with the Zy x Zy grading: [[i)] x [|)] = [I0)] + [le)]; [|m)] x [lo)] =
[|¥)] + [|¥)]. The partition function of the Ising model reads

) : (3.3)

U3(0)
n(o)

Here, 9;(0,2),7 € {1,...,4}, are the classical Jacobi theta functions (see appendix

A), and n(o) is the Dedekind eta function. For ease of notation we will write

n=n(c),9;(z) =9;(o, z), and ¥; = 9,(o,0) in the following.

The Ising model of course is not an N = (1, 1) superconformal field theory. It fails

to obey our last property:

192(0')
n(o)

194 (0’)
n(o)

1
leing(a) = 5 (

Property 14

The Neveu-Schwarz sector HN® contains an N = (1,1) superconformal algebra,
i.e. apart from the bosonic Virasoro field T(z) there is a fermionic holomorphic
field G(z) of dimension h = 3/2, such that G(z) = Y G,2"73/%, and the

operators G, satisfy

T€L+}

[Lm: Gr] = (T - %) Gm—H"a
{G,,G,} = 2L+ £(r® = 1) 610

G is Hermitean, i.e. (G(2))! = G(z) or equivalently (G,)' = G, and there is an
analogous field G' on the right handed side.

To end the axiomatic part of this thesis, we remark that a superconformal field
theory is not uniquely defined by its bosonic sector ;. We will meet examples of
this phenomenon in section 6.3, and remarks 7.3.26, 7.3.30.

3.1 N = (2,2) Superconformal field theories

By definition, an N = (2,2) superconformal field theory C is an N = (1,1) su-
perconformal field theory, where the supercurrent G of property 14 splits into two
fields G = 5(G*+G") in the Neveu-Schwarz sector such that (G (2))" = G~ (2).
Moreover,

[Lons Gic] = (T - %) Grjr:z-l-ra
{GF.Gi} = {G;.G;}=0,
{GFG;} = 2Ls+ (s —1)Jrps + £ (12— 1) 6rps0,
Ly Jn] = mdgn,  [Jn, G] = iG;tn—H"’ [Ty In] = §10m-4n,0,

(3.1.1)

so there are fields in C that realize the linear extension of the N = (1,1) super-
conformal algebra to the N = (2,2) superconformal algebra. The moding is given
by m,n € Z,r,s € Z + % in the Neveu—Schwarz and m,n,r,s € Z in the Ramond
sector. We do not discuss the twisted N = (2,2) superconformal algebra [CFT75].
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The U(1) currents (J;J) measure the charges (Q; Q). It is of considerable impor-
tance that the U(1) charges can be decoupled from any field ® of the theory. To do
so, we bosonize .J,.J to J = iy/S0H,.J = iy/S0H. Then any field ® with charges
(Q; Q) can be written as

¢ = :ei\/g(QH_QiH)P(J; J): @, (3.1.2)

where up to a cocycle factor P(J;.J) is a polynomial in J,.J, and its derivatives,
and ® commutes with J,J, and H, H [Sen86, Sen87, DFMS87].

To discuss moduli spaces of N = (2,2) superconformal field theories, we have
to consider deformations of such theories which preserve the supersymmetry. In
section 2.2 we explained that by standard conjectures a deformation of a conformal
field theory C is generated by some field D(z,z) in C. In order to preserve conformal
symmetry and the central charge, D(z,Z) must be exactly marginal. Using the
BRST formalism one can show that the deformation generated by a field D(z, Z)
of dimensions (h; h) = (1;1) preserves N = (1,1) supersymmetry iff it is the top
component of an N = (1, 1) multiplet [FMS86]. By Kadanoff’s criterion (conclusion
2.2.1) one can check that in case that the N = (1,1) superconformal algebra is
extended to an N = (2,2) superconformal algebra, such fields are automatically
exactly marginal [Dix87] and preserve the N = (2, 2) superconformal algebra. Thus
we find

Conjecture 3.1.1

Deformations of an N = (2,2) superconformal field theory C that preserve the
superconformal structure correspond to the fields d(z,%) of dimensions (h;h) =
(3;1) and charges |Q| = |Q| = 1inC. Application of the appropriate supercurrents
G* produces an exactly marginal operator D(z,Zz) that generates the deformation
as discussed in section 2.2.

In particular, we see that the moduli space of N = (2,2) superconformal field
theories appears to have a well defined tangent space isomorphic to the vector

space spanned by fields with quantum numbers h = h = 1 and |Q| = |Q| = 1.
If no further supersymmetry is present, this decomposes into a product of spaces
corresponding to (%, %) fields with Q = @ or Q = —(@Q, respectively. The moduli

space then locally decomposes into a product, too.

3.1.1 Chiral rings and spectral flow

To discuss chiral rings, we take a short detour to the study of irreducible unitary
representations of the N = 2 superconformal algebra (3.1.1). Here, the central
charge ¢ is assumed to take arbitrary values. At special values, namely for the
minimal series, different character formulas hold, see e.g. section 3.1.3. A generic
representation with lowest weight state |®) of dimension A and charge @ can be
built as Fock space representation by acting with creation operators L,,,m >
0, Jym,m > 0,GE,7 > 0 on |®). The generic character in the NS sector therefore is
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given by [BFKS86]

Xno(0,2) = ¢"y%xpan(o, 2),
. T 1 . 5731 U5(2)
Xpn(0,2) = ¢ H [[A-¢)7 (1 + yq"‘i) (1 + y’lq"’ﬁ) S :
n=1 n n
(3.1.3)

The above is the correct character, as long as no NULL VECTORS |¥) € H : V |¥') €
H (V'|¥) = 0 occur, which is true generically. Unitarity imposes restrictions on
the possible values of (h, @), and precisely at the unitarity bound it may happen
that additional null vectors appear. The simplest example of this phenomenon
arises from the observation that by (3.1.1), in the NS sector,

{GI%,G;%} - 2L0:F JO,

which is a nonnegative operator since (G;")" = G~,. In other words, h > % in the

NS sector, and precisely at the bound h = @ the Fock space representation built
on |®) will contain additional null vectors and split into smaller irreducible repre-
sentations. States with h = j:% are called CHIRAL or ANTICHIRAL, respectively,
and are automatically primary. In general, the domain of unitarity in the (h, Q)
plane is surrounded by a convex polygonal curve. If (A, @) hits the unitary bound
in a corner which can correspond to a double or triple intersection point of edges,
additional null vectors do occur. The characters then are

h,,Q
II,NS _ q'y NS
Xh,,Q (U’ Z) - 1+ ysignmq|m|—% Xgen(07 Z)
h,@Q
III,NS q"y%(1 —q)
or Xh,Q (0’, Z) = . 1 . 1 XfJ\Qz (0’, Z)
(1 + ys1gnmq|m|*§> (1 + ys1gnmq|m|+§>

(3.1.4)

for a double or a triple intersection point, respectively, where m € Z [Dob87]. The
corresponding representations are called MASSLESS as opposed to the MASSIVE
generic representations (3.1.3) above. We see that for general chiral or antichiral
states m = £1 in the first formula of (3.1.4), corresponding to a double point. On
the other hand, the same reasoning as for Gli/2 now applied to G:—,Jf/2 leads to the
bound h < ¢ for chiral and antichiral states. If A = ¢ for an (anti-)chiral state,
the second line in (3.1.4) applies, again with m = +1. Note that by (3.1.2) there
can be at most one chiral and one antichiral state [®) with h = ¢ since all parts of
® that commute with H must have vanishing dimension.
It is not hard to see that the OPE of chiral fields ®!, > cannot contain singular
terms and that their normal ordered product lim, ,o ®'(2)®%(0) is a chiral field
again. Hence the normal ordered product defines a multiplication on the sets of
(anti—)chiral fields, turning them into rings, the so—called CHIRAL and ANTICHIRAL
RINGs. Recalling left and right handedness, we find four interesting rings in every
unitary conformal field theory C, denoted by (c, ¢), (a, ¢), (¢, a), (a, a), respectively.
In fact, since h,h < ¢ and dimensions may not have an accumulation point by
property 9 of section 2.1, these rings are finite.
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Since the vacuum character of the N = 2 superconformal algebra (3.1.1) is

Xo(o, 2) =
(

l1—g¢
1 1 X_f]\ifb(a’z)i
1+ yqi) (1 + y*lcﬁ)

it is easy to compute quantum dimensions for generic unitary representations:

Definition 3.1.2

Let {x;}icr denote the set of characters of the holomorphic W-algebra W of a
unitary conformal field theory C. The unique irreducible representation of W
containing the vacuum is called VACUUM REPRESENTATION, and its character is
denoted xo. Then the representation with label 1 has QUANTUM DIMENSION

iel: d;:=lim Xi(o)
o—0 XO(U)

By definition, the quantum dimension of the vacuum representation is 1, and the
same is true for the generic representation in a triple point at the unitarity bound.
All other generic quantum dimensions are oo, so quantum dimensions appear not
to be a good means to characterize generic irreducible unitary representations of
the N = 2 superconformal algebra, and in particular the (anti-) chiral rings. It
proves useful [Nah| to introduce RELATIVE QUANTUM DIMENSIONS

¢ = lim X0)_
70 Xgen (0)

Now, the generic massive representations have relative quantum dimension 1, and
massless representations have relative quantum dimension % or 0, if they correspond
to a double or triple point, respectively. Since we assume all data of the conformal
field theory to depend analytically on parameters of deformation, this observation
in particular proves the following standard folk-lore on chiral rings:

Theorem 3.1.3

The number of fields with given left and right charges in the (c, c), (a, ¢), (¢, a), (a, a)
rings of unitary N = (2, 2) superconformal field theories with fixed central charge
is constant over generic points of each component of the moduli space. It can only
increase in nongeneric points.

Since by conjecture 3.1.1 the fields with h = h = % in the direct sum of these rings
are in 1 : 1 correspondence with tangent vectors of the moduli space, theorem
3.1.3 in particular implies that a tangent sheaf to the moduli space can indeed be
defined.

Above, we have concentrated on the NS sector of our superconformal field theory.
An analogous situation of course occurs in the Ramond sector, where the expecta-
tion value of {G{, Gy} imposes the bound & > £ on all states. At the unitarity
bound we find the RAMOND GROUND STATES, and the analog of theorem 3.1.3
applies to the set of Ramond ground states in an N = (2,2) superconformal field

theory.
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The similarity of the two sectors is not an accident; if our superconformal field
theory arises from string theory the structures are isomorphic, in fact. The reason
is that (3.1.1) actually describes a one parameter family of N = 2 superconformal
algebras if we allow r € R for the moding of GF. More precisely, for every

¥ € [—3, 3) the modes L?, J? GY,
L? =L, +0J, + 21925”,0, T = J, + gﬁén,o, G? =G, (3.1.5)

generate an N = 2 superconformal algebra. ¥ = —%, ¥ = 0 give the representations
in the NS and the R sector in (3.1.1). Hence each representation of the N = 2
superconformal algebra in the Ramond sector with character x* can be obtained

from a representation in the Neveu-Schwarz sector with character yV° such that

%). (3.1.6)

X0, 2) = grrys x5 (o, 2 +
(3.1.5) is generated by a U(1) gauge transformation, which for ¥ = £ is known
as SPECTRAL FLOW with operator

Uy :::ei\/gﬁH:, ve{xi}, (3.1.7)

where we have bosonized the U(1) current J = i\/fﬁﬂ as for (3.1.2). If the ver-
tex operators U1 of (3.1.7) are realized as fields in our theory, they act on the
irreducible representatlons of the Virasoro algebra contained in C by transforming
NS representations into R ones and vice versa. Since [U% ] x [U_1] = [1], this is
an isomorphism, and because in the context of string theory states in the NS and
R sectors correspond to spacetime bosons and fermions, respectively, spectral flow
gives the action of SPACETIME SUPERSYMMETRY on the conformal field theory. In
order not to destroy the left-right coupling we generally use the left-right symmet-
ric combinations of spectral flows. Then spectral flow acts on a state with quantum
numbers (h, Q; h, Q) in our theory by

Ulﬁl
3 *3

(h,Q; 7,Q) (hi%+§,@ig;ﬁi§+ﬁ,@i§)- (3.1.8)

In particular, U 1 U% maps antichiral states to Ramond ground states and Ramond
ground states to chiral states, and a ring structure isomorphic to the (¢, ¢) ring can
be imposed on the set of Ramond ground states of our theory. Moreover, (¢, ¢) and
(a,a) rings are isomorphic, and the (¢, a) ring is isomorphic to the (a, ¢) ring.

By our Z, x Zs grading in the space of states of a superconformal field theory, the
operators of spectral flow must belong to states in the Ramond sector. By locality
it now follows from (3.1.2) that the operators of spectral flow can only belong to
the theory if the charges (Q; Q) of all states in H obey Q—Q € Z, and Q—Q is even
for those in H,. Vice versa, if this condition on the charges holds for all states of a
superconformal field theory C, then the operator of spectral flow is semilocal to all
fields in the theory and local exactly to the bosonic ones. Hence the representation
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of the OPE of our theory C can be extended to the corresponding representation
of the N = 2 superconformal algebra built on U, 1 Ui 1. In property 8, however,
we have assumed that C cannot be contained in another consistent theory with the
same central charge. It follows that the spectral flow fields are already realized as
fields in C.

By the above, Ui%U +1 are realized as fields in our theory iff the unitary operator

eim(Jo—Jo) only has eigenvalues +1 on states of our theory. Since
eiﬂ'JOG:I:(Z)e—iﬂ'Jo — _G:I:(Z),

and the vacuum has (h, @; h, Q) = (0,0;0,0), we can then set (—1)F = e"(Jo=Jo),
and from (3.1.8) we see that Ui%Ui% are bosonic. It is a simple task to write down
the relations between the four parts of the partition function introduced in (3.1).
Summarizing, we have

Theorem 3.1.4

An N = (2,2) superconformal field theory is invariant under (left-right symmet-
ric) spectral flow, iff all states in the theory have charges (Q; Q) with Q —Q € Z
such that they are bosonic iff Q — @ is even. In this case, the fields that gen-
erate the spectral flows are realized as fields in the theory. Moreover, given the
Neveu—-Schwarz part Zygs already the entire partition function of the theory can
be determined:

Zr(0,2) = (q0)*1(y))5 Zns(o, 2+ 5),

(3.1.9)
Zys(o,2) = Zns(02+3), Zi(0,2) = Zn(o, 2 + §).

Finally we remark that by [Dix87] the N = (1,1) superconformal algebra of a
theory that is invariant under spectral flow is automatically extended to the N =
(2,2) superconformal algebra (3.1.1).

3.1.2 Witten index and elliptic genus

In theorem 3.1.3 we observed that the number of fields with given charges in
the (c,c) ring of a unitary N = (2,2) superconformal field theory is fixed over
generic points of the moduli space. The numbers may increase over nongeneric
points, however, and therefore do not give good invariants on the moduli space.
That one can construct a combination of characters, the elliptic genus, which
remains invariant on each irreducible component of the moduli space of N = (2,2)
superconformal field theories was first pointed out by Witten and will be the object
of this section. We assume that our theories are invariant under spectral flow
throughout this section, and set (—1)F = em(/o=0),

Let us start by introducing the Witten index, a special case of the elliptic genus
which is also defined for every character of a representation of the N = 2 supercon-
formal algebra. Consider such a representation in the Ramond sector with space
of states H; and character x2. If for |®) € H; we have G§|®) # 0, then by (3.1.1)



38 CHAPTER 3. SUPERCONFORMAL FIELD THEORIES (SCFTS)

(|®), G§|®)) form a pair of states with identical dimensions but charge shifted by
1. The same reasoning applies to G;. On the other hand, as was discussed in
section 3.1.1, G§|®) = G, |®) = 0 iff |®) is a Ramond ground state, i.e. obeys
h = g;. Hence the expression

I = try, e"oglo s = R0, 2 = 3) (3.1.10)

counts Ramond ground states, weighted by their charge, and in particular is a
constant. This motivates

Definition 3.1.5
The WITTEN INDEX [ of a representation of the N = 2 superconformal algebra in
the Ramond sector with character x® is defined by (3.1.10). For a Neveu-Schwarz

sector representation with character xN°, one has to apply spectral flow (3.1.6) to

define _ +1
I:= 621’50in21."5(0’2 =7 5 ).

Let us compute the Witten indices for the generic representations discussed in
section 3.1.1: From (3.1.3) we directly read I, = 0 for generic representations
without null vectors; for representations at the unitary bound corresponding to
double points, (3.1.4) shows

2mic Q _ _
Iy etz g"ta (e ﬁ (1+¢gMA+¢ ")
h,Q (——1 1 + (Cq%)signmq‘nﬂ—% i (1 — qn)2 .
Hence I;%, will vanish unless m = —1, in which case we are discussing a repre-

sentation built on an antichiral state, since the Witten index is a constant. By
analogous reasoning for triple points
i _rr e2m(%+§)
_%1Q _%7Q ’
and vanishing Witten indices everywhere else. Let us now define the elliptic genus
as it occurs in conformal field theory:

Definition 3.1.6
The CONFORMAL FIELD THEORETIC ELLIPTIC GENUS of a unitary N = (2,2)
superconformal field theory C with Ramond sector of states H® is given by

6(0-7 Z) = trHR(_]-)FyJoqLO_ﬁqfo_ﬁ

From the above, the Witten index of a conformal field theory is just its elliptic
genus evaluated at z = 0. The most important properties of the elliptic genus for
our purposes are summarized by

Theorem 3.1.7
The conformal field theoretic elliptic genus is independent of § and transforms
covariantly under conformal transformations of o, i.e.

Eo+1,2)=E(0,2), E(—2,%) =% E(o,2).

)
o 0
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It is an invariant on each irreducible component of the moduli space of N = (2,2)
superconformal field theories with given central charge c.

Proof:
Modular covariance of € follows from the fact that the R part Zg of the partition
function in (3.1) itself transforms covariantly under modular transformations, and
by definition 3.1.6

E(o,2) = Zg(o,2; 0,2=0). (3.1.11)

Let us decompose the space of states HE into tensor products of left and right
handed representations of the N = (2,2) superconformal algebra:

R _ R R
W= P HIOH}
(G.5*)ed

with corresponding characters Xf, Xﬁ- Then by definitions 3.1.6 and 3.1.5,

E(o,2) = Z XHoz+3)xj(@.z2=13) = Z xFlo,z+ D1, (3.1.12)
(4,5%)€d (4:.5*)€J

which is independent of g. We now insert the generic characters of N = 2 rep-
resentations of section 3.1.1 in (3.1.12) as well as their Witten indices that were
computed above. Hence the only representations that contribute to the elliptic
genus are those which on the right hand side are built on a Ramond ground state.
The quantum numbers (h = 505 @) cannot change over generic points of the moduli
space by theorem 3.1.3 since spectral flow was assumed to act as isomorphism on
each theory. Since Q —Q € Zand h—h € %Z, neither can the quantum numbers
(h, @) change. If on the other hand an additional right handed representation be-
comes massless in a nongeneric point of the moduli space, a massive representation
splits into a number of (three) massless ones, whose Witten indices by the very
definition 3.1.5 still add up to zero. It follows that the net effect on the elliptic
genus is also zero if a massive representation hits the unitarity bound. O

Let us briefly comment on the role of the elliptic genus in theoretical physics.
In [Wit94], Witten pointed out that if the conjectured Landau—Ginzburg descrip-
tion of minimal models [Mar89, VW89] were true, this should be directly visible
in an agreement of their elliptic genera. The conjectured agreement was proven
shortly after in [FY93]. Witten had in particular rederived the free field realization
[FGMP91, FGLS92] of the N = 2 superconformal algebra in Landau-Ginzburg
language, relating the elliptic genus to the index of the supercharge GG, and the
U(1) symmetry of the N = 2 superconformal field theory to the R symmetry of
the Landau—Ginzburg model. The latter observation is also a basic tool in the
proof [FY93]. The interpretation of the elliptic genus as loop space index of a loop
space Dirac operator obtained from a supercharge G had become of importance
in the context of string theory even before [SW86, Wit85, AKMW87, Wit87]. It
fits well into the standard conjectures on chiral rings, based on [LVW89]. Namely,
suppose that in an N = (2,2) superconformal field theory C with central charge
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¢ = 3d/2,d/2 € N, only integer and half integer charges appear both for the left
and the right movers. Then the (c,c) ring of C is strongly believed to be isomor-
phic to the cohomology of a Calabi—Yau manifold of complex dimension d. More
precisely, if C has a nonlinear sigma model interpretation on some Calabi—Yau
manifold X, then the (c,c) ring is isomorphic to H**(X, C). Indeed, the anticom-
mutation relations (3.1.1) of the supercharges G* directly show that we can build
a GT-cohomology on the (c,c) ring [LVW89], and countless evidence in favor of the
conjecture has been collected up to now. In section 5.2.2 we will show that even if
the assumption of left and right handed (half) integer charges is dropped, one may
find geometric interpretations for the chiral rings. As to the elliptic genus, for a lot
of superconformal field theories that satisfy the above assumptions on charges and
central charge the conformal field theoretic elliptic genus agrees with the geometric
elliptic genus of the associated Calabi-Yau manifold [EOTY89, KYY94] with

Definition 3.1.8 [Zag86, Tau89, Hir88, Wit88§]
d

Let X denote an (almost) complex compact manifold of complex dimension §,

and T its tangent bundle. For an arbitrary parameter t and a vector bundle E one
denotes A/ E = Y t'A'E, S;E := Y, 1'S'E, where A'E, S'E are the antisymmetric
and the symmetric tensor products of i copies of E. Then

Epy = Q) Ay T* @ Q) A_y=15:T @ Q) S T* @ Q) Sy T,
n=0 n=0 n=0 n=0

and the GEOMETRIC ELLIPTIC GENUS of X is

Ex(o,2) =y 4 /X ch(E,,)Td(T).

Apart from the fact that the geometric elliptic genus shares all properties of the
conformal field theoretic elliptic genus and in particular is an invariant on the
moduli space of Calabi-Yau manifolds of given topology, we note the following
very useful

Theorem 3.1.9
The geometric elliptic genus £x of a Calabi—Yau manifold X takes the following
special values:

gX(U;Z = O) = X(X)7 SX(OaZ = %) = _U(X) + O(q)’
qi€x(o,2 =) = A(X)+O(g),

where x(X),(X), A(X) denote the Euler characteristic, the signature, and the A
genus of X, well known indices of geometric Dirac operators defined on X.

As to the cases that will become of importance in chapter 7, we remark
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Theorem 3.1.10
The elliptic genus of a complex two torus vanishes, and the elliptic genus of a K3
surface X is

ﬂs(z))z 9% — 94 (Mz))Q

Ex—rs(o,2) = 2425 ) =2

x=k(:2) ( U3 n* n
2

= " (92(2)*9397 + 95(2)*09307 + Va(2)*9593) .

Theorem 3.1.10 can be easily proven by making use of the properties of theta
functions as well as theorem 3.1.9 with known values for x(X) and A(X); we
extensively use the theta function formulas listed in appendix A.

Despite the intriguing geometric interpretation of the conformal field theoretic
elliptic genus, in the proof of theorem 3.1.7 there was no need to make use of
any additional assumptions concerning left and right charges in C, nor of the loop
space index of a supercharge. For later convenience and the sake of completeness
we list some basic properties of the conformal field theoretic elliptic genus that
accordingly hold for the geometric elliptic genus as well:

Theorem 3.1.11

Consider an N = (2,2) superconformal field theory with central charge ¢ =
3d/2,d/2 € N, which is invariant under spectral flow and such that all left and
right charges in the Ramond sector are integer or half integer, depending on c
being even or odd. Then the conformal field theoretic elliptic genus is a theta

function of degree n = ¢ and characteristic (0,0; —2min, b), e’ = q 5, (definition

A1.1) for every fixed parameter o € H.

Proof:
E(o,z+ 1) = E(o, 2) follows directly from our assumption on the charges in C
together with (3.1.12) and

Xoin(0,2) =

as obtained from (3.1.3) together with (3.1.6). On the other hand, spectral flow was
assumed to provide an isomorphism on the space of states H of C. Twofold spectral
flow then gives an isomorphism of H® which in particular leaves the partition
function invariant. Theorem 3.1.4 applied to (3.1.11) then shows

E(o,z+0) = q_%y_%é'(a, 2).
O

By theorem 3.1.11 and the general properties of theta functions discussed in ap-
pendix A we can fix the elliptic genus once we know it for £ = % special values of
z. Theorem 3.1.9 then becomes very useful. It is also worthwhile mentioning that
for the cases discussed in theorem 3.1.11 the elliptic genus is already entirely fixed
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by its leading order behaviour, or more precisely [FY93] by the central charge of C
and the limit lim,_,;o, £(0, 2). In other words, knowledge of the Ramond ground
states and their charges fixes the elliptic genus, which by theorem 3.1.7 is an im-
portant invariant on the respective component of the moduli space of N = (2,2)
superconformal field theories.

We will now state a kind of “inverse” of theorem 3.1.10 which will prove very useful
for the discussion of the moduli space of N = (4, 4) superconformal field theories
with central charge ¢ = 6 in chapter 7:

Theorem 3.1.12

Suppose that C is an N = (2,2) superconformal field theory with central charge
¢ = 6 which is invariant under spectral flow and such that all left and right charges
are integer. Then the conformal field theoretic elliptic genus £ of C is an integer
multiple of%EX:Kg, where Ex_k3 is the geometric elliptic genus of the K3 surface
given in theorem 3.1.10.

Proof:

From theorem 3.1.11 we know that £ is a theta function of degree n = 2 with
characteristic (0,0; —2min,b),e® = ¢ !. By the general properties of theta func-
tions (see appendix A), the space 73(¢ ') of such functions is twodimensional, and

91(2)%,95(2)% € Tz(¢!) are linearly independent. Therefore,

£(0,2) = a(o) (’931’9(:)> +b(0)7(1917§§)) .

Since the Witten index £(o, z = 0) of C must be constant in o, we know that a is
actually independent of o, which justifies the ansatz

E(0,2) = alx—k3(0,2) + f(0) (19175':)) :

The leading order term in M is 1. Hence f is holomorphic in ¢ = 0 since
this is so for £ by definition 3.1.6 together with the bound A > 7% in the Ramond
sector that was discussed below theorem 3.1.3. Since £ by theorem 3.1.7 transforms
covariantly under conformal transformations of o, we find that f(oc + 1) = f(o)
and f(—2) = 0”f(0). Thus f is a modular form of weight two. By the theory of
modular forms f = 0 is the only such function. The assertion of the theorem now
follows from the fact that £ must have integer coefficients by construction. O

An analogue of theorem 3.1.12 was already proven by Gerald Héhn in [H&h].

3.1.3 Minimal, Gepner and Gepner type models

In this section we introduce some of the most important examples of unitary
N = (2,2) superconformal field theories. For central charge ¢ < 1, unitary confor-
mal field theories may only occur at discrete values of c¢. The corresponding su-
perconformal field theories are the MINIMAL MODELS (k), k € N [VPZ86, BFK86,
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ZF86, Qiu87] which have central charges ¢ = 3k/(k + 2). To construct the model
(k) we may start from a Zj parafermion theory and add a free bosonic field. More
precisely, (k) is the coset model

SU12)r @ U(1),
U(1)k+2,diag

(3.1.13)

The primary fields are denoted by ®!, - (z,%), where [ € {0,...,k} is twice the
spin of the corresponding field in the affine SU(2);. As a matter of convenience
we have tacitly specialized to the diagonal invariant by imposing | = [. The
remaining quantum numbers m, m € Zg42) and s, € Z4 label the representations
of U(1)k+2,diag @and U(1) in the decomposition (3.1.13), respectively, and must obey
Il =m+s=m+75 (2). Here, the fields with even (odd) s create states in the
left handed Neveu-Schwarz (Ramond) sector, and analogously for 5 and the right

handed sectors. Moreover, the identification

(I)in,s;m,g(z’ Z) ~ (I)]rc;:k+2,s+2;m+k+2,§+2 (2,2) (3.1.14)
holds. By (3.1.13), the corresponding characters X,ln,s;m,g can be obtained from the

level k string functions cé-,l € {0,...,k},j € Zyy, of SU(2); and classical theta
functions O, p, a € Zg, of level b = 2k(k + 2) by [Gep88, RY87, Qiu87]

Xrln,s;m,g(o-a Z) = le,s(O', Z) : le,g(aa E),

l LB P (3.1.15)
Xm,s(a’ z) = z c4j—|—sfm(0)®2m—(k+2)(4j+s),2k(k+2) (o, k—-|—2) .
7j=1
Modular transformations act by
(1+2)—m? s ¢
! ; !
1 = 2 S
Xm,s(0 +1,2) efcp[ 7r2< i+ T8 Xm,s(0; 2)
I 1 AT+ + D)\ gimm s
—= £ = k (k+2) 2 v (0, 2),
Xm,s ( o’ a) I{( )l,;s’ Sin ( ]{3 + 2 € € Xm sS (0 Z)
(3.1.16)

where k(k) is a constant depending only on k£ and the summation runs over I’ €

{0,..,k},m'e{-k—-1,...)k+2},se{-1,....2 '+ m'+ s =0(2).

Let Wn,s denote a lowest weight state in the irreducible representation of the N = 2

superconformal algebra with character leﬁ. Conformal dimension and charge of
t..s then are

I(1+2)—m? §? . m s
_— 4 — 1 = —— = 2. 1.1
Mkt Tgmedd @n.=gmm —gmod (3:-1.17)

!
hm,s =
The above values for Af, , hold without mod 1 in the domain |m — s| < [; if
(3.1.14) does not suffice to transform into this domain, choose a representative
with m — s = 1 — 2 if it exists, otherwise the one with m —s =1 +2, use k., , as in
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(3.1.17), but add 1. The value for @Q¢, , is taken mod 2 such that [Q!, ;| < 1. The
fusion rules are

min (I4+1',2k—1-1")

[ fn,s:| X [wgﬂ,s’] = Z [ Zn+m’,s+8’} : (3.1.18)

I=[-1]
=1+ (2)

Note that by (3.1.17) and (3.1.18) the operators Ui%,Ui% of left and right handed
spectral flow (3.1.7) are associated to the fields ®%; 11,0 = ¥$, 1) and ®f .1 4, =

wiljﬂ, respectively. To fix which fields are bosonic or fermionic, we use [FKS92,

(4-5)];

oh Q@2 = (—1)alF)(s-5) gl Qe . (3.1.19)

m1,51;M1,51 m2,5231M2,52 m2,52;M2,52 m1,515mM1,81

The minimal model (k) contains only states of the form ®!, . . s—3=0mod 2,

so by construction Q — Q € Z for all states in the theory and Q — Q € 27 exactly
for the bosonic ones. Hence theorem 3.1.4 shows that the minimal model (k) is
invariant under spectral flow U, 1 U +1-

The NS-part of our modular invariant partition function is now given by

Zns(0,2) =5 (0, 2) + X5 (0,2)) (X0(@,2) + Xi2(7,7)) . (3.1.20)

I+m=0(2)

and the entire partition function is obtained by the flows (3.1.9).

In the case k£ = 2 which we mostly employ in this work, the parafermion algebra
is nothing but the algebra satisfied by the Majorana fermion v of the Ising model
(3.3). By inspection of the charge lattice one may confirm that the minimal model
(2) can readily be constructed by tensoring the Ising model with the theory which
describes a bosonic field ¢ compactified on a circle of radius R = 2 (see section 2.2
or 4.1). The primary fields decompose as

mal(7) = s (7) AT ARG
(22 = Flan(a?) = §(€E, &=1,8=1v,

and 2f, = B1, |, B} | = B, denote the ground states |0}, |x) of the two
h=h= % representations of the Ising model. Indeed, the level 2 string functions
are obtained from the characters of lowest weight representations in the Ising model
by dividing by the Dedekind eta function.

Let us now turn to the discussion of Gepner models. We do not choose the usual
approach which uses the orbifold construction (see section 5.6), but rather a defi-
nition based on the FLOW INVARIANT ORBIT TECHNIQUE of [EOTY89], the heart
of which is Gepner’s original 5 METHOD [Gep87, Gep88]. The technique can be
generalized to obtain various Gepner type models, as we shall see below. In short,
we will describe a method to pick a number of tensor products of N = 2 irreducible
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representations with characters (3.1.15) and (a priori) arbitrary left-right coupling,
such that the corresponding theory is well defined in the sense of our properties
1-14.

We begin by recalling some basic facts about rational conformal field theories.

These theories are studied more intensively in section 4.5, so the discussion will be
brief here.

Definition 3.1.13

Let C denote a unitary conformal field theory. Its (anti-)holomorphic W-algebra
is RATIONAL, if it possesses only a finite number of irreducible representations,
which will be denoted by H;, H; with characters x;, x; in the following, i € I,7 € I,
and I, I some index sets. An (anti-)holomorphic W-algebra is QUASIRATIONAL,
if all its quantum dimensions (definition 3.1.2) are finite, or analogously for right-
movers. The conformal field theory C is (QUASI-)RATIONAL, if its holomorphic
and antiholomorphic W-algebras are (quasi—)rational.

For our construction we will make use of the Verlinde formula;:

Theorem 3.1.14 (Verlinde formula [Ver88, MS88, TUY89, Fal94])
Let W denote the W-algebra of a rational conformal field theory C with notations
as in definition 3.1.13. § denotes the S—matrix of C, defined by

xi(S0) = Sijx;(0)

jeI

and S as in (2.1.5). Then S is unitary with S = 8, and §* = C is the charge
conjugation which assigns the complex conjugate to each state. Moreover, S* =
CS = SC, and S diagonalizes the fusion matrices N;, where (N;)¥ = Nf and
[Hz] X [HJ] = Zk Nzl;[?‘lk] We have

SuSiS,
Nijr, = ch:lNilj =) S

lel lel Sou

It is now easy to see that the quantum dimensions (definition 3.1.2) for rational
W-algebras can be calculated by d; = g—é‘; Since fusion in a well defined conformal
field theory must have finite coefficients, every rational W-algebra is quasirational.
By theorem 3.1.14 the first step to find all rational unitary N = (2, 2) superconfor-
mal field theories with holomorphic W-algebra W and isomorphic antiholomorphic
W-algebra is to determine all matrices M with My, = 1 such that the partition
function
Z(0,2) = Y Mixi(0,2)x;(@,2)
ijel

is modular invariant. For the N = 2 superconformal minimal models this has been
achieved by T. Gannon [Gan97], who in particular showed that the standard-
lore of an ADE classification of these matrices [FST97, CZ97] is at best “one—to—
many”. We will mainly use the diagonal invariant M;; = d;; which always works
by theorem 3.1.14, but will be more general wherever possible. It should be noted
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that the above only gives a procedure to classify all modular invariant partition
functions built from a known set of characters; whether consistent theories with
these partitions functions exist remains an open question.

An important property of the S—matrix that is deduced from the Verlinde formula
is the fact that no entry in its first row may vanish: Sy; > Spo > 0 (use N, = ¢!
in theorem 3.1.14). So if we are able to split xo(—2%, %) into a sum of characters
Xi(0,2),i € I, of irreducible representations of the W—algebra W of C, we are
sure to determine all irreducible representations of YW in C. This is possible for
tensor products of representations occurring in minimal models, if YW contains the
N = 2 superconformal algebras of the tensor factors, even with arbitrary left—
right coupling: The representations in general will be sums of tensor products,
and in Xo(—%, 2) we only need to follow the orbit of a single tensor product under
the action of the W-algebra. We remark that by a tensor product of N = (2,2)
superconformal field theories we always mean the FERMIONIC TENSOR PRODUCT,
i.e. we tensorize sector by sector in order to have a well defined Zs x Zs grading for
the resulting theory. On the level of partition functions this amounts to multiplying

the four parts Zys, Z3, Zr, Z; separately.

Definition 3.1.15

Pick positive integers k;,i € {1,...,r}, such that ¢c:=3Y";_, k‘:?’j:2 =3d/2,d/2 € N.
By Weaepner We denote the algebra of holomorphic fields generated by the N = 2
superconformal algebras of each factor theory in the tensor product (ki) ®- - -® (k)

of N = 2 minimal models together with the combined left-handed operators of
twofold spectral flow,
U = ®¢g,2;0,0'
i=1

Note that by (3.1.7) this field has charge § € N, which ensures that the fields in
Weaepner are pairwise local. WGepne,« denotes the analogous algebra on the right
hand side. The diagonal sums J,T,G* of the fields which generate the N = 2
superconformal algebras of the factor theories in (ki) ® --- ® (k,) generate an
N = 2 superconformal algebra A C Wgepner With central charge c. Let x, denote
the character of the representation Weepner 0of A, and decompose XO(_%’ 2) into
a sum of characters x;(o,z),i € I, of irreducible representations H; of Wgepner
by following Weepner Orbits of products of characters (3.1.15) as described above.
Then the space of states of the GEPNER MODEL (ky) - - - (k) is H 1= ®icrH; @ Hi,
and its partition function is given by

Z(0,2) =Y xil0,2)x:(7, 7).

el

The Zy x 7.5 grading is induced by that of the minimal model factors, where U; is
bosonic iff $ is even.

Before we explain how to use the above construction in practice, let us work out
the most important properties of Gepner models:
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Theorem 3.1.16

Let C denote a Gepner model with central charge c. Then C is a rational N = (2,2)
superconformal field theory. The states in C have only integer left and right charges
in the Neveu-Schwarz sector. In the Ramond sector, left and right charges are all
integer or all half integer depending on £ being even or odd. C is invariant under
spectral flow.

Proof:

If we can show that C is a well defined conformal field theory, the first assertion
follows directly from definition 3.1.15. To do so, we need to ensure pairwise (semi-)
locality between the representations H; ® H;. By construction, Ho ® H, is local
to all #; ® H;. Moreover, each representation H; ® H; contains states that belong
to the tensor product (k1) ® --- ® (k,) of minimal models, which itself is a well
defined superconformal field theory. By associativity of the OPE, pairwise (semi-)
locality on the entire space of states H follows.

Recall from (3.1.7) that the Ramond field U; € Wegepner has charge £ € N and that
by (3.1.2) states |®) € H are (semi—) local to Uy iff they have (half) integer charge.
Therefore, all left and right charges must belong to %Z. In the Neveu—Schwarz
sector charges must be integer, whereas in the Ramond sector we have half integer
charges iff £ is odd. This proves the second assertion of the theorem. The last one
follows directly from theorem 3.1.4, since we have just proven that all states in C
have charges (Q; Q) with @ — Q € Z. That Q — Q € 27 exactly for bosonic fields
again follows directly from the fact that this is true for the minimal models, and
U, was assumed to be bosonic iff its charge £ is even. O

Theorem 3.1.16 together with property 8 shows that our definition 3.1.15 of Gepner
models indeed agrees with the standard one [Gep87, Gep88, GVWS89]. There will be
more to say about this in section 5.6. To accomplish Gepner’s entire construction
of a consistent theory of superstrings in 10 — d dimensions we actually would
firstly have to take into account 8 — d additional free superfields representing flat
(10 — d)-dimensional Minkowski space in light-cone gauge, secondly perform the
GSO projection onto odd integer left and right charges (see section 5.5) and thirdly
convert the resulting theory into a heterotic one. However, at the stage described
above we have constructed a consistent conformal field theory with central charge
¢ = 3d/2, which for d = 4 is associated to a K3 surface or a torus (see chapter 7),
so we may and will omit these last three steps of Gepner’s construction. Moreover,
Gepner models satisfy the assumptions of theorem 3.1.11, so the conformal field
theoretic elliptic genus of a Gepner model is already determined by its leading order
terms. In particular, comparison of a graded basis of the (c¢,c) ring of a Gepner
model with the cohomology of a Calabi—Yau manifold suffices to prove agreement
of the elliptic genera. This agreement has been shown for all Gepner models with
¢ =3,6,9 in [FKSS90].

Our definition 3.1.15 implies a simple technique to compute the characters of W—
algebra representations for Gepner models as well as the partition function, as
introduced in [EOTY89]. We will describe how to determine the Neveu-Schwarz
part Zyg of the partition function of (k;)--- (k). Theorem 3.1.16 shows that the
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other parts can by obtained with the flows (3.1.9). For explicit examples, see
[Ta090] or [EOTY89], where the models (2)* and (1)® are discussed. We will carry
out the slightly more general calculation for a Gepner type model in theorem 3.1.18
below.
Definition 3.1.15 directly shows how to determine the NS part of the vacuum char-
acter of the Gepner model (k1) - - - (k,), which we denote N.Sy, following [EOTY89]
(then xo = %(NSO-FR[\EO))- One has to take the product of the NS vacuum charac-
ters xg o + X of the minimal models (1), ..., (k-), and add on the images under
twofold spectral flow U;. Since by the fusion rules (3.1.18) U; is a simple current,
this is easy to calculate. We have determined the vacuum characters of all Gepner
models with ¢ = 6 numerically by this technique. The results are listed in ap-
pendix C. The simple structure of the W-algebra of (k;) - - - (k) also implies that
each of the characters y; of its irreducible representations in the Gepner model has
the form of a tensor product of minimal model characters plus its images under
U;. Since Zyg corresponds to the trace over fermions with antiperiodic boundary
conditions on the worldsheet torus in both space and imaginary time directions,
Zns transforms covariantly under the S—transform. To determine the other NS
characters of the theory, it therefore suffices to consider N SO(—%, 2). Its splitting
into expressions of the type (®!_, (minimal model character) + U; orbit) defines
the first row of a matrix (s;k) jk,
1 =z iz
NSJ( o’ 0') = e’

v Z sk N Sk(0, 2),

kel

where the FLOW INVARIANT ORBITS N.S; [EOTY89] are normalized such that at
least one of the tensor products of minimal model characters has coefficient 1 and
all of the coefficients are integer. This normalization ignores combinatorial factors
needed to actually determine the characters Y;, since by permutation symmetries of
the factors each IV.S; appears with some multiplicity D;. In particular, the matrix
(sij)ij is not to be confused with an S-matrix (S;;);, it is not symmetric. The
prefactors are necessary to symmetrize s, i.e. §;; = %j = iDL: for all 7,5 € I. Since
Dy =1, one finds D; = zTOS For the explicit calculations it is easier to determine
D; by a combinatorial argument: M :=lem{k; +2,j = 1,...,r} is the length of
a standard orbit of the operator Uy, since by (3.1.18) UM = 1. It in particular is
the length (the number of summands of minimal model character’s tensor product
type) of NSg. Let [; denote the length of the orbit NS;, and k; the number of
nontrivial permutations of factors of a summand of NS; with coefficient 1. By
construction, k; is independent of the choice of the summand. Then

M
Di=ri—7,  Zns(0,2) = ) " D;NSi(0,2)NSi(7,2).
¢ iel
Definition 3.1.15 cries for a generalization to more general W-algebras:
Definition 3.1.17

Pick positive integers ki, ..., k, as in definition 3.1.15. Let VW denote an exten-
sion of Wgepner by a number of (left handed) operators taken from ®}_,SU(2)x; ®
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U(1)2/U(1)k,+2,diag @s in (3.1.13) but ignoring the restrictions on left-right cou-
plings in the minimal models. Make sure, however, that all fields in VV are pairwise
local. On the right handed side, let W denote the corresponding isomorphic alge-
bra. The character of the representation WW of the N = 2 superconformal algebra
A C W is denoted xo. The irreducible representations of YW whose characters

Xi, ¢ € I, occur in Xo(—% 2) are denoted H;. Then the GEPNER TYPE MODEL

Y

(k1) - -« (k,) has space of states ®;c;H; ® H; and partition function

Z(0,2) =Y xil0,2)x:(7, 7).

el

That Gepner type models give well defined unitary rational N = (2,2) supercon-
formal field theories can be seen in exactly the same fashion as for the Gepner
models in theorem 3.1.16. Gepner models constructed from other than the A-—
invariant for the coupling of 1,1 in the minimal model factors can now be obtained
as Gepner type models. In section 5.6 we will see that those Gepner type models
where W O Wegepner is an extension by simple currents can also be interpreted as
orbifolds of ordinary Gepner models. The condition of pairwise locality of fields in
W translates into the level matching conditions for the orbifold construction.
The flow invariant orbit technique applies literally to our generalization of the Gep-
ner models, as we will now show for an example, namely the model (2)* discussed
in theorem 7.3.29.

Thegrem 3.1.18
By (2)* we denote the Gepner type model obtained by enhancing Wegepner of (2)*
with the simple current

T &0 0 0 0
Jig 1= (I>4,2;o,o ® (1’4,2;0,0 ® (I’o,o;o,o ® (I’o,o;o,o

and all currents obtained by permutations of factors of j;z The flow invariant
orbits of (2)* are

s = (2 (4)) (42) 2 0.

NSi(0,2) = 1(@>4 (193—(2)>2 19505 (ﬁl(z)f — NS (0, 2),

8\ n n ) 4t \ s
1 4 2
NSy(0,2) = E(%) (1937()")) = NSu(0,2) = NSs(0, 2),

and the NS part of its partition function is

Zns = |NSo|* + 8|NS;|* + 12| NSy |* + 16| NS5[ + 48| N S, |* + 96|V S5 .
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Proof:
The relevant characters of the minimal model (2) can be computed with the general
formula (3.1.15):

A= (8ot 30, 2) ::5% v@g%@mzy+v@%h@¢zg,
B = (X(iz’()—i-x(im)(o,z) = % \/§02(20,z)+\/%i191(20,z) ,
C = (Qotxla)loz) = % \/%3(20,2)_\/%7794(20,@),
D = (Bo+x3a)02) = % \/%92(20,@_ %wl@a,z)),
B = (Gotxiaoz) = QQ;’ Lin(20,2+3),
F o= (botxbo)oz) = qiﬁf %wmg).

From (3.1.18) we read that U_; acts by A+ B+ C+— D+~ A E < F, and the
J act by A < C,B <+ D on two factors. Thus the flow invariant orbit technique
gives

NSy = A*+ B* + C* + D' + 6(A’C* + B*D?).

From (3.1.16) we find the following S—transforms (up to prefactors):

2v/2
2v/2
2V/2
2v/2

A+B+C+D
A-B+C-D
A+B+C+D
A-B+C-D

+4(E+F),
— 4i(E - F),
—A(E+ F),
+ 4i(E — F),

S QW
1111

so the other flow invariant orbits read

NS, = E*+F*

NS, = A?B%?+ B?C?+ (C?D?+ D?A?> +4ABCD
NS; = A3C + AC?®*+ B*D + BD?

NS, AB?C + ACD? + A’BD + BC?D

NS, = E*F%

The rest of the proof is pure theta function gymnastics with the help of appendix
A. The correct prefactors D; for the |N.S;|? in the partition function are obtained
from D; = k;7° with (k;) = (1,1,6,4,12,6), (L) = (16,2,8,4,4,1). O



3.2. N = (4,4) SUPERCONFORMAL FIELD THEORIES 51

3.2 N = (4,4) Superconformal field theories

In chapter 7 we will discuss superconformal field theories with central charge ¢ = 6.
More precisely, we will concentrate on theories which possess at least N = (2,2)
supersymmetry, and make the additional assumption that the four operators of
spectral flow (3.1.7), i.e. Up1U 1, Ui;U:F;, are realized as fields of the theory.
Because ¢ = 6, the operators ljil of twofold lefthanded spectral flow have conformal
dimensions (h,h) = (1,0) and enhance the generic u(1) Kac-Moody algebra of
our theory to su(2);. The N = (2,2) superconformal algebra is enhanced to an
N = (4,4) superconformal algebra, a special case of the Ademollo et al algebra
[ABD*76]. More generally, this N = 4 superconformal algebra has been studied
by T. Eguchi and A. Taormina [ET87, ET88a, ET88b, ET88c, Tao90]. It exists
for values ¢ = 6k of the central charge, where k € N is the level of the affine su(2)
subalgebra. The latter is generated by J3, J* with

L, J2] = ndd ., L, Il = ndpin,
202,23 = 2kndming, [J2, 0] = +£Ji.,, (3.2.1)
[J;:Jrj] = kn5m+n,0+2‘]r3n+na [Jria‘];t = 0.

On comparison with (3.1.1) we find J = 2J for the U(1) current J of the N = 2
superconformal algebra with central charge ¢ = 6k. The disagreement in standard
normalizations is a steady source of confusion. In this work, charges will always
be measured with respect to the U(1) current J of the N = 2 subalgebra. If
for level k = 1 we bosonize the U(1) current J = iv/20H as for (3.1.2), we find
JE = ¢XV2H  The N = 4 superconformal algebra contains four fermionic fields
G*,G', and the full algebra is given by

(G£,GF} = 20r—s)JE,  {GG%)
(GOH,GO"} = 2L, £ 2s5-1)J2,

0,
2 (12— 1) dr1s0,

+

L, GE] = (r—2)Gi.,,  [Lw,GF = (r—2)GE,,, (32.2)
J3 G:I: ilG:I: J3 GI:I: _ lG’i o
[m’ r] - 2~ m+r? [m’ r] - :':2 m-r?

[Ji’ G;F] = :tG;zF—I—r’ [Jr:s’ G;t] = 07

(I Gl = FGys [Jm G = 0.

Thus we see that the above N = 4 superconformal algebra with central charge ¢ =
6k contains an N = 2 superconformal algebra with same central charge generated

by J,G*,T.

3.2.1 Free field realization

In this section we present a free field realization of the N = 4 superconformal
algebra (3.2.2) for k = 1. We need four Abelian currents 5!,/ € {1,...,4}, and
four Majorana fermions +!,1 € {1,...,4}. Normalizations are chosen such that for
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PP = T (W2t + 92 Y = \}5 (7271 + %) ,1 € {1,2}, we have the OPEs
i i
(k) 0) - 0 (k) () (D) ~ 0
W) ~ 2 PO~

Then the following fields realize the N = 4 superconformal algebra (3.2.2):

J3 = %(:w<l>¢<n.+.¢<2)w(z>.> JE = 4Oy
¢ = V2 (i) 6t = VR (el -0,

(3.2.3)

T = jsr)j(,l) +: gi’g ( w 1/1(,1):-1-:8170(,1) ELI): + :81/153)1&(,2):4- :81/1(,2) @:) .
From the above fields we can build an additional affine su(2); Kac-Moody algebra:
=1 (:7,/15_1)1#(_1): - :wf)w(f):) , At =4 :wil)wg):. (3.2.4)

Our notation is chosen such that the Dirac fermions 1/)55 ) have charges +1 with
respect to the U(1) current J = 2J° of the N = 2 subalgebra. Moreover, for
ke {1,2},

*) V2 )

G* (20 (w) ~ V22u 40

B w), Gl (w) ~ TG0 ().

Z—Ww zZ—w

3.2.2 Characters of N =4 irreducible representations

The irreducible representations of the N = 4 superconformal algebra at ¢ = 6
with su(2); current algebra have been discussed in [ET87, ET88a, ET88b, ET88c,
Ta090]. We give a short summary of the features which will be needed in this
thesis. States are labelled by their conformal dimension h as well as their charge
@ with respect to a Cartan torus of su(2);. Note that any two Cartan tori are
related by conjugation, hence the spectrum does not depend on the choice of this
torus. The irreducible representations are determined by their lowest weight values
of (h, Q). Similarly to the N = 2 case (section 3.1.1), there are two types of unitary
irreducible representations, MASSIVE and MASSLESS ones, where the latter are those
at the unitarity bound. The structure of null vectors is more complicated in this
case [ET87], and apart from the vacuum representation with (h,Q) = (0,0), the
lowest weight states of massless representations are labelled by (h, Q) = (3,+1) in
the Neveu-Schwarz sector and by (h, Q) = (3, 1) or (h,Q) = (3, 0) in the Ramond
sector. By [ET88c, (18)-(23)], the characters in the Neveu— Schwarz sector are

NS —— m2/2—-1/8 yq" — 1 93(2)
Ch(),O (G, Z) - Z q m 1 + qu_1/2 773

)
mEZ

1 3(2)
chl¥s  o(0,2) = E q™ m*/2-1/8 y™ 3 , 3.2.5
1/2,1/2(0, 2) P 1+ygmn 2 p3 ( )

h—1/8 2
cth,(‘?(o,z) = 2 (193(@) , h>0.

n n
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The transformations into the other sectors as usual are obtained by the flows
(3.1.9). Note that

so a massive representation splits into three massless ones if it hits the unitarity
bound h — 0. We compute the WITTEN INDEX (definition 3.1.5) for each of these
representations using (Al.2) and (3.2.6):

Ih,O = 05

Z m? I+ rp L+ ¢+ (g™
I _ 1 /24m/2 rm 1
L lm ( q C 1+ Cqm n=1 (1 - qn)Z ’

mEZ
Loy = Ino—2L12 = —2.
(3.2.7)
Hence the massless representations are exactly those with nonvanishing Witten
index, and only the massive ones can be deformed continuously with respect to the
value of h. The characters (3.2.5) are closely related to the MORDELL FUNCTIONS

1 —1)m m2/2—1/8 1 m?2/2+m/2
hl(o-) = Z ( ) g 172 hQ(U) = g )
my e~ 1—qmV/ miy == 1+qm
1 qm2/271/8

% me7Z 1 + qm_l/Z,

as we will show below. Note that h; and hs are exchanged if we replace ¢'/? by
—¢'/% in ¢'/%h;,. On expanding hs we find a formal power series in ¢!/,

hy = ¢"/% (2 — 6¢'/* + 169 — 34¢>* + 72¢* — 138¢°* + - - )

with even (odd) powers of ¢'/¢ corresponding to positive (negative) coefficients. A

proof of this observation for the even powers follows from equation (3.2.12) below.
Mordell gave the following relation between hy, h, hy [Mor33, p. 347]:

1/00 do T o) hg(—%) — (o) + h2(—%). (3.2.8)

nJ o  2coshma

From (3.2.5) and (3.2.8) we directly find

~1/8 2 2
hVS(0,0) = (q —2h3) (“#) Y n(,0) = by (“i) |

n n n
q
i) = (Go-m) (5) - wined = n(5)
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Because the N = 4 superconformal algebra contains su(2); we can rewrite the
characters (3.2.5) in terms of the characters of su(2)y,

I &K e 3(20,22)
0 n, 2n 3 3
Xi(o,2) = - "y = ——,
' nn;oo n(0)
1/2 1 - (n+1/2)2, 2n+1 _ (20, 22)
X" (0,2) = - q y = — .
' nn_zoo n(o)

Both X} are theta functions of degree n = 2 and characteristic (0, 0; —27in, b), e’ =
g%, (see appendix A), and so are 9;(z)? and ¥3(z)? (A1.2). Because the space
T2(g™1) of such theta functions is two dimensional this means that the characters
can be written as linear combinations of ¥;(z)? and ¥3(z)? with coefficients that
only depend on o, not on z. From (3.2.7) and (3.2.9) we therefore find

chog (0:2) = 2 (ﬂﬁT(:)fJ“ <q# ‘2h3) (1937(@)2

, ) (3.2.10)
chf;‘g,lﬂ(o, z) = — (191;3)> + hs <1937(Z)> )
3
By (A1.2) we thus have*
194(2)20hf;g,1/2(0a z) — 793(z)20hf;g71/2(0, z+3)
(3.2.11)

93(2)%92(2)2  Y4(2)?91(2)? (43.4)
_BEPUCE PG 0 5,0,
3 3

If we insert z = 0 and use (3.2.9) we obtain

2 92 2 4
n 192 4 N L (7,
h —h = —— = —_— = — —_— .2.12
T 19219%193192 4 (77 ’ (3.2.12)

where we have used (A2.1). Note that this means that we have total control over
the modular properties of the part of h3 given by even powers of ¢*/¢. By (3.2.8)

we also have . A
1/9 1/9
o= () meen=g (%)

*The following observations were obtained in joint work with Anne Taormina, and the last
equality of (3.2.11) was achieved by comparison with results of Sander Zwegers.



Chapter 4

Toroidal conformal field theories

This chapter is mainly devoted to toroidal conformal field theories. Their definition
and general properties are discussed in sections 4.1 and 4.2. The moduli spaces of
toroidal conformal field theories in the two and four dimensional cases are discussed
separately in sections 4.3 and 4.4. In section 4.5, we give a characterization of
rational toroidal conformal field theories and its geometric interpretation in terms
of two dimensional tori with complex multiplication. Section 4.6 is devoted to the
study of so—called singular varieties and their relation to rational conformal field
theories.

4.1 Toroidal theories in arbitrary dimensions

We take a somewhat unusual viewpoint by abstractly defining a (bosonic) toroidal
conformal field theory as follows*:

Definition 4.1.1

A unitary conformal field theory with central charge ¢ = d € N is called TOROIDAL
CONFORMAL FIELD THEORY, if its holomorphic and antiholomorphic W—-algebras
contain a u(1)¢ affine Kac—Moody algebra each. A choice of Abelian currents gen-
erating these algebras will always be denoted j*, ..., %7, ...,7% if it is normalized

to o
75 (2) 3" (w) ~ G-w?

Charges with respect to (j;7) :== (j,...,7%7",...,7%) are denoted p = (p;; p,).

(4.1.1)

Generally, let V[p] denote a primary field with charge p in a toroidal conformal field
theory C. Since by associativity of the OPE charges transform additively under
fusion, we have [V[p]] x [V[p']] = [V[p + pP']]- By the Sugawara form of the energy
momentum tensor of C, for any choice of generators as in (4.1.1)

U

T(z) =1 %% (2), T@ =35> :77 (3) (4.1.2)

k=1 k=1

*In section 4.2, we will explain the relation to the standard point of view, from which it will
also become clear why these theories are called TOROIDAL.

95
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Thus V[p] has dimensions (h; h) = (%’2; %2), and the operator product expansion

for primary fields V[p|, V[p/] in C is given by
Vpl(2,2) VI (w,0) ~ cpp (2 = w)PPi(z = )" Vip + p)(w, @) +--- (4.1.3)

for some coefficients ¢, ,; € C, where the dots replace higher order terms in (z —w)
or (z —w). Note that on the circle (z — w)(z — w) = 1, from which we have
analytically continued our theory after Wick rotating to a Euclidean theory on the
torus, the operator product expansion (4.1.3) is entirely determined by

p-0 = (pi;pr) - (P} P)) := pup) — i, (4.1.4)

which thus is the natural scalar product on the set of charge vectors. The form
(4.1.4) in particular is independent of the choice of generators j* 7. Since the
conjugate of Vp] is V[—p], together with (4.1.3) this shows that the set of charges
occurring in a toroidal conformal field theory C form a lattice, the CHARGE LATTICE
[' ¢ R?¢, In particular, every charge p € I must appear with multiplicity one, since
otherwise by fusing [Vi[p]] X [Vk[—p]] = [1«] we find two fields 11, I, with vanishing
left and right dimensions in contradiction to uniqueness of the vacuum (property
1 in section 2.1).

If we use coordinates o = (p, + p,)/vV2, 8 := (o, — p,)/V/2, then I' C (R%)* @ R¢
with scalar product

(a,8)- (,8') = af' + B (4.1.5)

There is a maximal positive definite d-plane given by a = § or equivalently p, = 0
in (RY)*®R? = R%?. In particular, the WORLDSHEET PARITY TRANSFORMATION
acts by (p;;pr) — (pr;p1) and interchanges this d-plane with its orthogonal com-
plement (p; = 0), plus inducing a sign change of the bilinear form (4.1.5) on R%<.
Rotations O(d) x O(d) in these d-planes relate different choices of generators j*,7*
obeying (4.1.1).

By (4.1.3) and (4.1.4) the condition of locality together with that of integer spin
h — h for all fields in C enforces the charge lattice I' to be an even integer lattice.
Moreover, the irreducible representations of the operator product expansion of C
which are local to all vertex operators V[p|,p € I, in the theory are labelled by
I*/I. We claim I'*/T" = {0}, i.e. that I is self-dual. To see this, let A denote the
algebra generated by the Abelian currents of a toroidal conformal field theory C
with charge lattice I'. By (4.1.2), A in particular contains the left and right moving
Virasoro algebras of our theory. Moreover, the irreducible representations H, of A
are labelled by the charge p = (p;;p,) € ' of their lowest weight state |p) € H,.
Action of the Fourier modes of the Abelian currents in A gives the standard Fock
space representation, so the characters of the irreducible representations of A are

Pp_d _Pr_d 2 2

. Lo—o -To—< _ Q2 24Qq2 4 _ 1 ] p2

XplO try, g% 24 ° 21 = — = g2 qz.
A (1M =g =7g)*  [n

n

pel:

(4.1.6)
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The entire partition function of C therefore is

zr(o):# Y

p=(pi;pr)ET

i
2

M‘:xew

q (4.1.7)
Zr must be modular invariant by property 9 of section 2.1, which shows I'* = T.
Summarizing, we can associate an even self-dual lattice I' of signature (d,d) to

every toroidal conformal field theory C. The converse is true as well [CENTS85,
Nar86|:

Theorem 4.1.2

A toroidal conformal field theory with central charge ¢ = d € N is uniquely de-
termined by its charge lattice I', an even, self-dual lattice with signature (d,d).
The moduli space MY %™ of such theories agrees with the moduli space of even
self-dual lattices with signature (d, d):

MEarain — O(d) x O(d)\O(d, d)/O(T%?), (4.1.8)

where I'%? denotes the standard even self-dual lattice of signature (d, d) and O(I'%?)
its automorphism group. The group O(d)xO(d) describes rotations in the maximal
positive definite d-plane {(c, o) € R*¢} and its orthogonal complement.

The Zamolodchikov metric on MY %" js the group invariant one.

Proof:

Given an even, self-dual lattice I' C R%?, one can construct a toroidal conformal
field theory with charge lattice [' by the vertex operator or a nonlinear sigma model
construction [Nar86], as we will see in section 4.2. Therefore, to prove the above
form of M it remains to be shown that I' determines a toroidal conformal field
theory uniquely. Note that I uniquely determines the operator product expansions
(4.1.3) of primary fields. Therefore, given two consistent sets cf 5,k € {1,2} of
coefficients we must arrange ¢}, ; = ¢ , for all o, § € T' by normalizing the primary
fields appropriately. In other words, we must find constants d, € R for any v € T
such that Vo, 8 € T : daypch 5 = dadgc, 5. This is possible, because having fixed
dy = 1 and c* = 1 for all @ € T" without loss of generality, one can choose

a,—a

d. = d_. =1 for a set of generators {e} of I, and then recursively define d,15 by

da:t/ﬁci,j:ﬂ = dad:f:/ﬁc(lx,:tﬂ

whenever ¢ , 5 # 0. Using the crossing symmetries

1 1 1 2 2 2
Ca,6%9,6C+87+6 _ Ca,8%y,6CatB+6

1 1 1 2 2 2
CanC,6Caty,p+6  CanC8,6Caty,8+5

etc. one shows that this gives a well-defined prescription for all d, with v € I'. For
example, if for g, f, ¢', f' € T one has g+ f = ¢’ + f', use the crossing symmetry
witha=9g—-¢,6=9¢,v=f—f,6=f toshow dyyy =dsip.

To determine the Zamolodchikov metric on MY %" note that deformations of
toroidal conformal field theories are given by the operators O,,, = j77",m,n €
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{1,...,d}. Each O,,, is integrable marginal to all orders, which is easily checked
by Kadanoff’s criterion (conclusion 2.2.1) together with Cardy’s trick [Car87| as
discussed in section 2.2. The operator product expansion with any primary field
Vipl,p € T, shows that O,,, acts as the generator

0 0
Xm,n = p:-na—p? + p? ap’,m

(4.1.9)

of O(d,d). Since the Zamolodchikov metric is given by the two point correlators
of Op,, [Zam86], the last statement of the theorem follows immediately. 0

Definition 4.1.3

An N = (1,1) superconformal field theory C with central charge ¢ = 3d/2,d € N
is called TOROIDAL SUPERCONFORMAL THEORY, if the following holds:

C = Cy®Cy, where Cy is a toroidal conformal field theory with central charge d and
Cy is a fermionic conformal field theory as introduced at the beginning of chapter 3.
Each generator j of the left handed u(1)% current algebra in Cy, has a superpartner
¥ in C; of dimensions (h; h) = (3;0), and analogously on the righthanded side.

One now directly deduces the following

Theorem 4.1.4

Assume C = C, ® C; to be an N = (1,1) toroidal superconformal field theory
as in definition 4.1.3. If j1,...,j¢ are Abelian currents with (4.1.1), then their
superpartners ', ..., 1 are d free Majorana fermions,

P w) ~

Z—Ww

with coupled spin structures. The supercharge of C is given by G = Y, : ¢Fj*:,
and the energy momentum tensor is T(z) = £ >, 7775 +1 >, yFoyk..
If d is even, then C also carries N = (2,2) supersymmetry. We define

o= L (i), P = L (P i), ke {l,...,d/2},
(4.1.10)

and
/2 /2

J = Z :pr)w(_k):, G*t = \/§Z 3¢§f)j:(pk):
k=1 k=1

to obtain the U(1) current J and the supercharges G* of the superconformal alge-
bra.

The moduli spaces of toroidal superconformal field theories are given by MZerein
as defined in (4.1.8), as well.

To make contact to our axiomatic approach to superconformal field theories of

section 3 denote by ’H,f’lsmg,S € {NS,R},k € {b, f}, the respective sectors of

the Ising model (3.2) and by ;. the space of states of C,. Then for the toroidal

superconformal field theory C we have Hy = Hior ® (M3 4ing) d
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Note that for d = 4 as explained in section 3.2, the N = 2 superconformal algebra
is enhanced to an N = 4 superconformal algebra. The free field realization (3.2.3)
is in exact agreement with (4.1.10).

Since a free Dirac fermion ¢{ in the Neveu-Schwarz (Ramond) sector has half
integer (integer) modes and charge +1 with respect to the U(1) current J given
in theorem 4.1.4, the partition function of a toroidal superconformal field theory
with charge lattice I is

NS(5 ») — o) - U3(2) ‘ NS(5 ») = o U4(2) ‘
ZF ( ’ ) ZF( ) n d’ Z ( ’ ) ZF( ) n d7 (4'1'11)
202 = zo) |2 2o = (o) |0

Zrp is defined in (4.1.7), and if d is odd, set z = 0.

By (4.1.11), N = (2,2) superconformal toroidal theories are invariant under spec-
tral flow (3.1.8), so (3.1.9) holds.

4.2 Nonlinear sigma models on tori

In this section we give the relation between the abstract definitions 4.1.1 and 4.1.3
of a toroidal (super—)conformal field theory C and Narain’s original construction
[CENTS85, Nar86]. Let us study the data that are encoded in the charge lattice I'
of C. Pick a maximal nullplane Y C R%? = (R%)* @ R? such that Y NT C T is
a sublattice of rank d. Apply an O(d) x O(d) transformation to fix the relative
position of the left and right handed bases of currents {j!,...,j¢} and {7*, ..., 7%},
respectively, such that the equation of this plane becomes g = 0. One factor of
O(d) x O(d) that rotates one of the planes {(a, +a)} suffices to do so. Now put
Y NT = (A*0), where A* denotes the dual of a lattice A C R¢. Next choose
a dual nullplane Y° such that Y @ Y° = R%? and Y°N T C I is a lattice of
rank d, too. Existence of Y? can be shown by a Gram type algorithm. Then Y0 =
{(-B8, B) | B € R?} for some skew matrix B € Skew(d) := Skew(dxd, R). We set
B := ATBA, then different choices of Y'° merely correspond to translations of B by
integral matrices. Thus B can be viewed as an element of Skew(d)/Skew(d x d;Z),
and the choice of parameters (A, B) only depends on the choice of Y. Altogether,
we can now use (A, B) € O(d)\GI(d) x Skew(d) to parametrize toroidal conformal
field theories. Here we identify A € GL(d) with the image of Z? under A. Note
that the choice of coordinates by A € O(d), A — AA, corresponds to the action of
the diagonal of O(d) x O(d) in (4.1.8). Explicitly we find

P=T(AB) = { (il Vipe( V) =

7 (“_E)‘“L)‘;“_E)‘_/\)‘(u,)\)GA*@A}. (4.2.1)
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With respect to coordinates («, 8) as in (4.1.5), we define

S™: O(d)\GL(d) x Skew(d) — O(d) x O(d)\O(d,d) =: T,

S~(A,B) = ( (AT(W))‘1 X ) ( ]é _]1B ) (4.2.2)

Then (4.2.2) is an isometry, and I' = I'(A, B) is the image of the standard lattice
44 under S~(A, B). T%? is the Teichmiiller space of MJarain,
Recall that a u(1) current gives the standard generator of a translation. Since the
charges with respect to the 2d real Abelian currents of a toroidal conformal field
theory C with central charge ¢ = d € N are quantized to be contained in the charge
lattice I' = I'(A, B), these currents must correspond to translations in a compact
manifold of real dimension d. Now it will be easy to see that C has a nonlinear
sigma model description with target space T¢ = R?/A and B-field B.
In general, a NONLINEAR SIGMA MODEL on a compact target manifold X assigns
an action to any twocycle on X. This action is the sum of the area of the cycle for
a given Ricci flat metric plus the image of the cycle under a cohomology element
B € H?(X,R). Since integer shifts of the action are irrelevant, the physically
relevant B-field is the projection of B to H*(X,R)/H?(X,Z). Thus the parameter
space of nonlinear sigma models has the form {Ricci flat metrics} x {B — fields}.
The action for the (bosonic) nonlinear o—model on the torus 7% = R?/A, which
describes d (non-single valued) massless scalar fields ® : Z — T4 k € {1,...,d},
therefore is

Shos = % / dzd% (G + B)dd* (2,200 (2, 7). (4.2.3)

z

where we have set o/ = 1 by choosing a unit of length. Here, the constant symmet-
ric tensor Gy = (A, A;) defines the flat metric on T¢ with respect to real coordi-
nates t!,...,t% along the onecycles \i, ..., \y which generate A = H,;(T% Z). The
antisymmetric tensor By, = — By, determines the B-field flux B = By dtk A
dt* € H?*(T%R) through any twocycle in T Actually, B € H*(T¢ U(1)) =
H?(A,U(1)) = Skew(d)/Skew(d x d;Z) = H*(T¢,R)/H?(T%,7Z) as above. The
B-field degrees of freedom allow for nontrivial phases in the action of the operator
T of translation by lattice vectors Ay € A,J := %()\0; —Xo) € I'(A,0): On the

sector of the space of states built on V[p],p = p(u, A) € T'(A, B), Ts acts by multi-
plication with £(), \g) := e?™P = ¢=2m{BAYo) - Note that ¢ defines a COCYCLE

H*(G,U(1))3e <+ e:GxG—=U(1),

v.gaglaQZahe G : ‘S(glg?,h‘) = €(gl,h)€(gg,h), (424)
e(g,h)e(h,g) = 1, o
e(g,9) = 1

with discrete G and G = A in the present case. This observation due to C. Vafa
[Vaf86] is generalized in the context of orbifold conformal field theories, see sections
5.1 and 5.2.
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Ricci flatness of G' together with dB = 0 ensures conformal invariance of the
quantum field theory governed by (4.2.3). Recall that on a torus every Ricci flat
metric is flat [Bes87, 4.50]. Thus the d? parameters (G, By) in (4.2.3) indeed
exhaust the parameters of a nonlinear sigma model. On the other hand, since every
positive definite symmetric matrix G € Gl(d) possesses a Cholesky decomposition
G = AT A with uniquely determined A € O(d)\Gl(d), the space T%¢ given in (4.2.2)
indeed agrees with the Teichmiiller space of toroidal nonlinear sigma models.

For the supersymmetric nonlinear sigma model on T we also have to introduce d
fermionic fields U* : Z — T4 k € {1,...,d}, and the action is given by

1 _
S = Spos + Sferm, Sferm = % / dzdz le\IJk E\IJZ(Z,Z). (425)
Z

Each ®F in (4.2.3) decomposes into a left- and a rightmoving part ®%(z,z) =
1(¢*(2)+ ¥*(z)) . k € {1,...,d}, and analogously for the ¥* in (4.2.5), U*(z,z) =

: (wk( )+ wk( )) The fields j* = i0¢* are the Abelian left handed u(1) currents

of the theory as in definition 4.1. 1 and the 1* are their superpartners as in theorem
4.1.4. With the expressions for 1/J:|: ,]ﬁf in (4.1.10) the generators of the N = (1,1)
or N = (2,2) superconformal algebra now are read off directly from the action
(4.2.5), in accordance with theorem 4.1.4.

Note that the 1* correspond to the covariantly constant spinors dt* in the Clifford
algebra of T*(T%) which trivialize the spin bundle of the torus. The use of @Z)f ), jik)
induces a choice of complex coordinates and thus of a complex structure on 7¢,
in other words, we have an isomorphism 7¢ = C%2/A. Let us shortly digress to

make the above remark A & H,(T%, Z) more precise: If dz, ..., dzq/2 is a basis of
H(T4,C), then

H(X,R)> Ar— </ dzl,...,/dzd/2> € C/?
A A

defines an isomorphism ([ dz). Set L := ([ dz)(H:(T%Z)), then C¥?/L is the
ALBANESE TORUS of 7% and in particular C%2 /A = T¢ = C%?2 /L [BPdV84, p.35],
thus A & H,(T% 7Z), as remarked before. This observation basically coincides with
the following

Theorem 4.2.1 (Torelli theorem for complex tori [BPdV84, 1.14.2])

Let T, T denote two complex tori of same dimension, and « : HX(T, Z) — H*(T, Z)
an 1som0rpb1sm such that its C—linear extension maps I H'Y(T) isomorphically onto
H(T). Then « is induced by an isomorphism from T to T.

The above remark as well as theorem 4.2.1 will be tacitly used in the following.
We will view H(T?) ¢ H'(T4 R) = RY?%/2 as fixed reference ¢-plane, which
is isotropic with respect to the intersection pairing. The relative position of A* =
H'(T¢,7Z) to H"*(T%) then determines the particular torus uniquely.

Summarizing, we have seen that every toroidal (super—)conformal field theory C in
MEaran with charge lattice I' = (A, B) can be realized as a nonlinear sigma model
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on the (complex) torus 7¢ = R?/A with B-field B. We call a pair of parameters
(A, B) € O(d)\Gl(d) x Skew(d)/Skew(d x d;Z) a GEOMETRIC INTERPRETATION
of C and write C = T (A, B). By abuse of notation 7 (A, B) may denote a bosonic
conformal or a superconformal toroidal field theory, depending on the context.
The ground states |p) for p € I'(A, B) can now be parametrized by pairs (u, A) €
A* @ A such that p = p(u,A) as in (4.2.1). Then, |p) describes a string with
momentum g and winding mode A around the corresponding torus cycles. Note
that spin is measured by P = Ly — Ly and has value pu\ € Z for |p), independently
of the B—field. A B-field flux through a twocycle that |p) winds around only has
influence on the energy h+ h = %12 + %’2“ of |p).

The determination of (A, B) depends on the choice of a nullplane Y, so a given
conformal field theory will have infinitely many geometric interpretations. By the-
orem 4.1.2 we know MpYerain = T4d/O(T%4). As can be deduced from results
in [LP81, Nik80b], O(I'*%) acts transitively on maximal isotropic primitive sub-
lattices of ['“4. Therefore, the set of geometric interpretations of C is an O(I'%9)
orbit in 7%¢, In particular, (4.2.2) shows that lattice automorphisms of A and
integral shifts of B give isomorphic theories. Together with the automorphism
which interchanges the nullplanes Y and Y that fix the geometric interpretation
for a given theory, these symmetries generate a subgroup O+ (I'%¢) C O(T'%4) of
index 2. The latter symmetry is induced by torus T—duality (see section 7.3.3). In
general, the space of maximal positive definite subspaces of a metric space W has
two components, and O (W) denotes the subgroup of elements of O(W) which
do not interchange these components. Note that for positive definite W we have
SO(W) = Ot (W). For a lattice ' ¢ W we put O (T") := O(T') N OF(W). The
space

M = SO(d) x O(d)\O* (d,d)/O*(T*?) = T /O (T4?) (4.2.6)

thus is a double cover of MY Tt will be relevant for the description of Zs
orbifold conformal field theories on K3 in section 7.3.2. To obtain MY we
identify toroidal nonlinear sigma models which are related by target space orienta-
tion change and by theorem 4.1.2 indeed define isomorphic toroidal conformal field
theories. Note that as can be seen from (4.2.1) worldsheet parity change transforms
T (A, B) into T (A, —B), an inequivalent theory for generic values of B.

We now come to a concept which is of major importance in the context of Calabi-
Yau compactification and nonlinear & models, namely the idea of LARGE VOLUME
LIMIT. A precise notion is necessary of how to associate a unique geometric inter-
pretation to a theory described by an even self dual lattice I' when parameters of
volume go to infinity. Intuitively, because of the uniqueness condition, this should
describe the limit where all the radii of the torus in this particular geometric in-
terpretation are large. Because in the charge lattice (4.2.1) A € A and p € A*
are interpreted as winding and momentum modes, the corresponding nullplane Y
should have the property

YT = spang { G5 € Tl < 1

) , - (4.2.7)
C spany, { (p;pr) € F‘ lzll” < 1, |lps]|” < 1} =:T.
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Because ||pi||2 = ||p,||> € Z, for (p;;p.) € T we have ||p||> = ||p,||>. This shows
Y NT =T because any (p;;p,) € Y+ =Y must have large components. Moreover,
if a maximal isotropic plane Y as in (4.2.7) exists, then it is uniquely defined, thus
yielding a sensible notion of large volume limit. Large volume and small volume
limits are interchanged by T—duality.

4.3 Toroidal theories in two dimensions

Since in chapter 6 we will discuss our results on the classification of unitary con-
formal field theories with central charge ¢ = 2, let us study the moduli space of
two—dimensional (bosonic) toroidal theories in greater detail. See also [DVV87] for
a thorough account on this subject.

Since H'(T?) is spanned by one holomorphic differential form dz only, the isomor-
phism A = Hy(T?,Z) is defined by the PERIODS [, dz, [, dz with respect to a sym-
plectic basis (A, B) of H,(T?,Z). The complex parameter 7 := [, dz/ [, dz € H,
is the only entry of the NORMALIZED PERIOD MATRIX [BPdV84, p.38] and thus
defines the complex structure of 72. On the other hand, since every metric on a
two-dimensional torus is Kéhler, and dimg H?(7T?,R) = 1, the volume p, of T2
already specifies the Kahler class of the metric G. This means that we can group
the four real parameters Gy, By; of the theory into two complex ones, 7, p € H, by

T=T1+1T9 1= g;z +1 dg;(fkl), p=p1+ 2p2 = B12 + 7;\/ det(le). (431)
Here 7 is the image of A € GI(2) under the natural projection GI(2) — SI(2)() =
H. If O(2,%R) > I'(A, B) — (7, p), then p € H = SI(2)"), where SI(2)® is the
commutant of SI(2)(™ in O(2,2;R). The decompositon of the Teichmiiller space of
MEarain into H x H also follows from our remark below conjecture 3.1.1. Namely,
theories in MY generically have N = (2,2) supersymmetry, and the tangent
space decomposes into two factors corresponding to (%, %) fields with Q = Q = +1
and Q = —Q = +£1, respectively.

Standard generators Ai, Ay of A are given by

p2 (1 (P2 [ T1 ~ prf 0 -1
— [P2 = /2 B=5 ) 4.3.2
M T2 (0)’ & T2 <7'2)’ and P2 ( 10 ) (43.2)

By (4.3.1) for A = maoA; + miXy € A and p = nopy + nipe € A* as above (4.2.1)
reads

_ 1 {( NoTo ) + < miTo ) + ( Mo + M7y )}
PL= V2T2po —MNoTy + T P —Tmo — M1 Ty P2 m1Te '
(4.3.3)
Instead of V[p] with p = (pi;;p-) (14, A) as in (4.3.3) we also write |mq, mg, ny, na).
If I' =T (A, B), and (A, B) is related to (7, p) by (4.3.1), for the partition function
(4.1.7) we write

1
Z (11, T2, p1, p2) = Zr(o) = W Z q%(Pz(u,A))Qq%(pr(u,A)V' (4.3.4)

HEA* AEA
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In terms of the new parameters (7, p) the duality group O(I'*?) in (4.1.8) trans-
lates into the group generated by PSL(2,Z) x PSL(2,Z), which acts by M&bius
transformations on each factor of H x H, and the dualities

UV HxH->HxH U(rp) = (p,7), V(,p):= (-7, —p). (4.3.5)
In terms of the parameters (7, p) the moduli space (4.1.8) therefore is
MYarain _ (H/PSL(2,Z) x H/PSL(2,Z)) /(Zs x Zs). (4.3.6)

By the above interpretation of 7 and p the duality U interchanges complex and
(complexified) Kéahler structure of 72 and is known as MIRROR SYMMETRY. In
view of our comment about the decomposition of the Teichmiiller space into H x H
it corresponds to the transformation (@Q; Q) = (Q; —Q), indeed mirror symmetry
[GP90], as already mentioned in [Dix87] and [LVW89] (see theorem 5.6.3). Com-
pared to the description (4.1.8) of the moduli space by equivalence classes of lat-
tices, V' corresponds to conjugation by diag(—1,1, —1,1) on O(2) x O(2)\O(2, 2; R)
which is target space orientation change. Now world sheet parity (A, B) — (A, —B)
is given by (7, p) — (7, —p), not a duality symmetry.

Using either (4.1.9) or (4.3.3) it is not hard to see that the Zamolodchikov metric
on MJarain jg induced by the product of hyperbolic metrics on each of the factors
H in (4.3.6).

We now show that the partition function (4.3.4) obeys a remarkable triality sym-
metry:

Theorem 4.3.1 [DVV87, Dij95]

Consider a toroidal conformal field theory with central charge ¢ = 2, which is
specified by parameters (1,p) € H x H for the target space T?. As usual, the
modulus of the world sheet torus is 0. Then the partition function obeys the

identity
n(@)|* Z(r, p)(0) = [n(T)|* Z(p,0)(7).

Proof:
Since from (4.3.3) it is obvious that the partition function Z(7, p) is invariant under
mirror symmetry U : 7 < p, it will suffice to show that |n(c)|*Z (7, p)(o) is invariant
under 7 <> ¢ as well. This will follow from a rederivation of the expression for the
partition function in the path integral formalism* (compare with [Gin88a, §8.1]).
We start from the bosonic action (4.2.3) and give the solutions of the classical
equations of motion 00®, = 0:

1 P2

D (2,Z) = %, \ 7 (61(75 —7Z) +ex(z0 — 26)) , ek €ELOLT.

The corresponding contributions to the path integral are computed from (4.2.3),

™ _ —
5(61,62) = @ {IO|€1 + 620"2 — p\el + 620"2} .

*We thank N. Obers for this hint.
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Therefore with g, := €*™,q, := e *™ we have

le;+e2al®  leg+eaa|?

eI 2= D, a5

e1,e2€ELDLT

which is obviously invariant under 7 <+ o. O

The above triality should be remembered carefully: The expression |n|*Z gives
the spectrum of % BPS states; theorem 4.3.1 asserts that for them worldsheet and
target space tori are interchangeable.

4.4 Toroidal theories in four dimensions

In chapter 7 we will discuss the moduli space of superconformal field theories with
central charge ¢ = 6. There, an appropriate description of toroidal superconformal
field theories will be needed. In particular, for the discussion of orbifold conformal
field theories in sections 7.3.2 and 7.3.4 the description given in sections 4.1 and 4.2
in terms of the first cohomology group of the torus will prove not appropriate, since
H'(T* R) never survives the orbifold procedure. Therefore the aim of this section
is to give an alternative description of the moduli space of toroidal superconformal
field theories in dimension d = 4.

Here, a version of the celebrated D, TRIALITY comes to aid. Triality considerations
have a long history in superstring and supergravity theories, see for example [Sha80,
Cur82, GO86]. Concerning recent work, as communicated to us by N. Obers,
SO(4,4) is crucial in the conjectured duality between heterotic strings on the four—
torus and type ITA on K3 [OP00a, KOPO0O]. In connection with the calculation
of G(Z) invariant string theory amplitudes one can use triality to write down
new identities for Eisenstein series [OP00a, OP00b]. The results of this section,
however, have been obtained by Werner Nahm and are accepted for publication in
our joint work [NWO01].

In addition to its defining representation, the double cover of the group SO (d, d)
also has half-spinor representations, namely its images in SOT(H°¥(T,R)) and
in SOT(H®*"(T,R)). For d = 4 one has the obvious isomorphism SO (4,4) &
SO*(H®(T,R)), which together with SO*(4,4) = SO*(H®*"(T,R)) yields D,
triality [LM89, 1.8]. Indeed, for Spin(4,4) representations on R** there is the
same triality relation as for Spin(8) representations on R®, i.e. an S3 permuting
the vector representation, the chiral and the antichiral Weyl spinor representation.
By hi,...,hs we denote generators of the Cartan subalgebra of so(4,4). We will
now construct an automorphism of 7** which is induced by the triality automor-
phism that acts on the Cartan subalgebra by

hothig 4 A ghi—h3
h1 F—)%(h1+h2+h3+h4), hQF—) %(h1+h2—h3—h4),
h3+-)%(h1-h2+h3—h4), h4P—) %(hl—hg—h3+h4) : ha=hs

ho—ha
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Since V := |det A| is the volume of the torus 7 = R?/A, we can decompose
O(4)\GL(4) = SO(4)\SL(4) x RT by A — (Ay, V). Now let Ty, = R*/Ay, where
Ao is a lattice of determinant 1 and is viewed as element of SL(4). Consider the
induced representation p of SL(4) on the exterior product A?(R*) which defines
an isomorphism A?(Ag) & Hy(T),,Z) for every Ay € SL(4). Because p commutes
with the action of the Hodge star operator x and ** = 1 on twoforms, SL(4) is
actually represented by SO™(3,3). In terms of coordinates as in (4.2.2) and with
A =VY4As = (A1, ..., \s) we can write

p(Mo) = VT2 A X, AL A A, M A A, A A A, A A e, Ao A Xg)
€ SO" (Hy(T,R)) = SO™(3,3).
(4.4.1)
From (4.2.2) one checks that we can choose h; such that it generates dilations of the
radius R; of our torus T*/A in direction of the generator ); of A. Since exp(9h;)
scales VE/2 by e*%/2_ it is easy to see that

viz| o 0

ST(A,0) — S*FA,0 = | 0 |pAe)| 0

0 0 |V-1/2

is induced by the above triality automorphism. It will now suffice to extend this
to an automorphism of 7**. To do so, we use Skew(4) = R*? which will simply
be written Skew(4) > B — b € R*? in the following. Then,

Virz| o 0 1 0 |0
ST(A,B)— STAB)=| 0 |p(Ag)| O b 1 |0
—1/2 2
0 0o |V LTy
(4.4.2)

is the seeked map. By (4.4.2) the geometric interpretation of a superconformal
field theory is translated from a description in terms of the lattice of the un-
derlying torus, i.e. in terms of A = Hy(Tx,Z), to a description in terms of
Hy(Ty,Z) =2 A*(A). This translation will be essential for understanding the embed-
ding of orbifold conformal field theories in the moduli space of theories associated
to K3 that will be discussed in sections 7.3.2 and 7.3.4.

We remark that SL(4)/Z, = SO*(3,3) and SO(4) = SO(3) x SO(3)/Zy show
SO(4)\SL(4) = 733 such that all in all the isomorphism p in (4.4.1) gives

(4.2.2)

T4 2" O(4)\GL(4) x Skew(4) 2 T3 x Rt x R*>®, (4.4.3)

This isomorphism can be generalized, as we will see in (7.1.5).
Recall from section 4.2 that we obtain the 2 : 1 cover M{" of the moduli space
MEYaran if we do not identify theories that are related by target space orientation
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change, and that world sheet parity is not a symmetry of toroidal conformal field
theories. Consider the four—fold cover SO(4) x SO(4)\SO*(4,4)/SO*(T'**) of
MPEarain - The transformations which exchange its sheets are given by target space
orientation change and T—-duality, as can be read off from equation (4.2.1). Now the
outer automorphisms of SO™(4,4) related to worldsheet parity and target space
orientation are interchanged by the triality automorphism (4.4.2). This shows that
we must use MY rather than MY %" je keep target space orientation for
the description of the orbifold conformal field theories within the moduli space
of theories with ¢ = 6 in sections 7.3.2 and 7.3.4. We also want to keep the
left-right distinction in the conformal field theory. Torus T-duality just yields a
reparametrization of the theory and should be divided out of the moduli space.

4.5 Rational conformal field theories
and CM tori

In this section we discuss the notion of RATIONAL CONFORMAL FIELD THEORY
and give necessary and sufficient conditions for a toroidal conformal field theory to
be rational. Rational conformal field theories are completely understood for central
charges ¢ < 1 since the work of Belavin, Polyakov and Zamolodchikov’s, namely
their construction of the minimal series [BPZ84]. The situation is rather different
for ¢ > 1, which has been the object of intensive study so far. One starting point
was the work of E. Verlinde’s, who proposed his celebrated VERLINDE FORMULA
[Ver88] (theorem 3.1.14), the proof of which has promoted renowned mathematical
results [TUY89, Fal94]. G. Anderson and G. Moore [AMS88]| and independently
C. Vafa [Vaf88] proved that rational conformal field theories have rational central
charge and all fields must have rational dimensions. Whether these conditions are
sufficient remains an open problem; for toroidal conformal field theories they are,
as we will also see below. Steps towards a classification of rational conformal field
theories have been taken by S. Mukhi, A. Sen, and collaborators (S.D. Mathur,
S. Panda) in the line of thought of Verlinde’s formula [MMS88, MMS89, MPS89]:
Characters of such theories are classified by employing the restrictions imposed
by modular invariance as well as the usual conditions on their coefficients and
normalizations. In principle, a classification of all rational conformal field theories
with a given finite number of characters and zeroes of the Wronskian in the interior
of the moduli space is possible by these methods. However, they do not lead to a
conceptually new perception of the meaning of rationality. A different viewpoint
is taken by T. Gannon and A. Coste who approach the problem from a study of
affine Kac-Moody algebras. In [Gan97|, a classification of all possible modular

invariant partition functions for the algebras m and su(2) @ u(1)™ is presented
which in particular corrects the standard lore of an ADE classification for N = 2
superconformal minimal models (see also section 3.1.3). Properties of characters
of rational conformal field theories are discussed in [CG]. One should note that
already the discussion of unitary conformal field theories with central charge ¢ =1
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shows that the condition of rationality probably must be generalized in order to
make use of this concept in a general setting. Steps in this direction have been
taken in [Nah94, Nah96]; this, however, is not the object of the present section.

The definition of rationality is diverse in the literature (see, e.g., the appendix of
[HMV88]), in this work we follow [Nah96] and [Gan97] and use definition 3.1.13.
If C is a toroidal conformal field theory C = T (A, B) with space of states H (see
definition 4.1.1), then by our discussion in section 4.1 a lowest weight vector |p) €
‘H of an irreducible representation of W with charge p € I'(A, B) has conjugate
| —p) € H. We use +p € I as labels for the corresponding representations. Since
[V[p]] x [V[-p]] = [1], and quantum dimensions d; (definition 3.1.2) transform
multiplicatively under fusion, d, - d_, = 1. On the other hand, fusion of a lowest
weight vector with itself shows d? > 1Vi € 1, so all quantum dimension in C are
equal to 1.

For the rest of this section let C denote a toroidal conformal field theory with charge
lattice I' = T'(A, B), A C R¢, and central charge ¢ = d. Tts holomorphic W-algebra
is W, and we write W = W(hq,...,hy) if W is generated by N holomorphic
fields of dimensions hq,...,hy. By definition 4.1.3 of toroidal superconformal
field theories and definition 3.1.13 of rational conformal field theories, to discuss
rational toroidal theories it will be sufficient to restrict ourselves to purely bosonic
theories. Holomorphic and antiholomorphic vertex operators are characterized by
the condition p, = 0 or p; = 0, respectively, and thus by (4.2.1) are parametrized
by lattices

A9 ::{(M,A)eA*®A\u:(§iﬂ)A}

(recall from section 4.2 that B = (AT)~'BA~!). Their images in the charge lattices
are denoted I'Y and T, i.e.

= {i\/§>\|)\eA: u:(éiﬂ)AeA*}. (4.5.1)

Note that I'? and I'? are even integer lattices, and that for any (u, \), (1, \') € A
or A? we have 2(\,\') € Z. By I';, we denote the projection of ' onto left and
right moving parts:

T, = {%(M—E)\j:/\) | (u,)\)eA*@A}.

1
r

The following lemma will directly lead to a first formulation of a criterion for
rationality of our conformal field theory. That condition iii. below is equivalent to
rationality of the corresponding conformal field theory was already mentioned in
[HMV88], but with restriction to vanishing B-field, see also [Gan97].*

*Indeed, the author did enjoy proving this not completely trivial statement!



4.5. RATIONAL CONFORMAL FIELD THEORIES AND CM TORI 69

Lemma 4.5.1
The following conditions on the lattice A are equivalent:
i tk A) =d.
ii. tk A = d.
iii. G:=ATA € GI(d,Q), and B € Skew(d) N Mat(d, Q).
iv. S7(A,B)T"S(A, B) € GI(2d,Q).
v. (T))*=T? and (T,)* =TY.

Proof:

1.=ii.

Denote by (ug, \x),k € {1,...,d}, generators of the lattice AY. Let L,M €
Mat(d, Z) N Gl(d, Q) denote the matrices defined by

(AL, -- ) = AL, (p1, ..o, pa) = (AT) M.
Then, by definition (4.5.1) of A, we have
(AT)"'M = (B+ 1)AL. (4.5.2)

Thus for any (u, A), (1, \') € AY we have (), (B+1)X) = (\, i) € Z. Moreover,
2(N\i, \j) € Z for any 1i,j, since the corresponding vertex operators are pairwise
local, and AL € Gl(d,R). Hence

(45.2)

Q:= (AL)"'(B+1)AL (AL)™MAT)"'M € Gl(d, Q). (4.5.3)

Moreover,
G:=A"A=MQ'L™" €GId,Q),

the first assertion in iii. On the other hand (4.5.3) together with L € Gl(d,Q)
shows B
B=A"BA=GLQL"'-G €GId,Q),

our second assertion in iii.

i, =>iii. N ~

is shown by replacing I'! by T'Y and (B + 1) by (B — 1) everywhere in the above
argument.

iii.=i.

Given G = ATA € GI(d,Q) and B € Mat(d,Q), we can choose a diagonal matrix
L € Mat(d,Z) N Gl(d, Q) such that

M:=(B+G)L € Mat(d,Z). (4.5.4)

Since B is antisymmetric we see that B + G = B + ATA is nonsingular, so also
M € GI(d,Q). But (4.5.4) is equivalent to (4.5.2), so the columns of (A7) ' M and
AL each define d linearly independent vectors pi,...,uq € A" and Ay,..., g € A
satifisfying ur = (B + 1)\;. Thus we have found d linearly independent vectors
(p, A) € A? proving rk AY = d.
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111.=11.

is shown by replacing A? by A? and (B + 1) by (B — 1) everywhere in the above

argument.

iii.<iv. is clear by (4.2.2).

With the above notation, we have d linearly independent vectors (ug, \g),k €

{1,...,d}, generating the lattice Ay, so V2, k € {1,...,d}, are generators of T.
1

For any p = ﬂ(u — B)\ + A) € Ty, where p € A*, A € A, we find

(V2M,p) = (Mki— BA+ 1)
= (e 1) + (B, A) + (i — BAe, AY = (i, 1) + (g, A) € Z.

This shows I'Y C (I';)*.
On the other hand, v € (I';})* means

1 ~
Vue A",V eA: —{(u—(B-—1L)\v)€Z. 4.5.5
p 5= (B=1A) (455)

So in particular from setting A = 0 we see that v = V2Xo, Ao € A. Then for
to := (B + 1)\ setting = 0 in (4.5.5) shows

~ 1 -

VAeA: (p,\)=((B+1),\) =—=v,—(B-1)\) € Z,

\/5

ie. gy € A*. But then v = %(Mo — (B—1))o) €I'Y, our first assertion in v.
The second assertion is proven by replacing I'9 by I'® and (B + 1) by (B ¥ 1)
everywhere in the above argument, which is possible since we have already shown
that i.=ii.
V.=l
is clear since rk I'! = rk (T';)* = d, thus also rk A} = d. O

By definition 4.2.2, ' = T'(A, B) is the image of the standard lattice I'*¢ under
S~(A, B). Thus S~(A, B)TS™(A, B) is the metric matrix of T, if this is understood
as lattice in R?? with the standard Euclidean metric.

Theorem 4.5.2

Let C = T(A, B) denote a toroidal conformal field theory with central charge

c = d. Then C is a rational conformal field theory iff G := ATA € Gl(d,Q) and

B € Skew(d) N Mat(d,Q) (or equivalently S=(A, B)"S~(A, B) € Gl(2d,Q), by

lemma 4.5.1). C then has W-algebra W(1,...,1,|\1|%, |\i|?, - .., | Aal?, | Aa|?), where
d

e,k € {1,...,d}, denote generators of AJ.

In particular, rational conformal field theories are dense in MY,

Proof:
Let j°, 70,1 € {1,...,d}, denote the left and right moving Abelian currents of C as in
definition 4.1.1, and v/2)\;, v/2 X; the generators of I') and I'?, respectively, where
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ke{l,...,K},ke{1,...,K}. The holomorphic W-algebra W of C is generated
by the j* and the vertex operators V[iﬂAk] with charges 1/2), and analogously
for the antiholomorphic W—algebra. Recall from the discussion of section 4.1 that
a lowest weight vector |p) of an irreducible representation of W with charge p € T’

2
and p; € I'; with respect to j has dimension A = %, and that fusion is given by

[V[£V2XM]] % [V[p]] = [V[p£ v2)\e]]. This shows that the characters of irreducible
representations of W are

1 1 2
L .:_E 5(@+7) 4.5.6
Xplo): q , 9.
p() n(o)? (4:5:9)

YEL

where L = T") and p € L* (compare to (4.1.6)). Analogously we see that the
characters of irreducible representations of W are given by the same formula (4.5.6),
now setting L = T'% With A% := A2+ A) C A* @ A the irreducible representations
of W and W are labelled by p; (110, \g) and p, (1o, Ao) respectively, where (1o, Ag) €
(A* @A) /A®. We see that W and W are rational, iff A’ has maximal rank 2d,
i.e. tk A? = rk A? = d or equivalently S—(A, B)TS™ (A, B) € Gl(2d,Q) by lemma
4.5.1, which completes the proof of the theorem. O

We remark that the partition function (4.1.7) of a rational toroidal theory decom-
poses as follows:

Zr(o) = #zd Z Z 3 P10 20)+2) 55 (pr (10, 20)4+X)°
MO o o)éronyae  rerp rere

0 0

r ro *
- Z szl(uo)\o)(a) (Xpr(uo,/\o))) (0)

(A%u0)e(A* @A) /A0

As a result of theorem 4.5.2 we see that a toroidal conformal field theory is rational
iff the extension of the operator product expansion to parameters (z,z) € C? is
represented on a Riemann surface with finitely many sheets. Equivalently, all
dimensions of fields in the theory must be rational.

We now wish to make contact to the geometry of the underlying torus in a toroidal
conformal field theory. To do so, we need the following

Definition 4.5.3
A complex torus T = C%?/A has COMPLEX MULTIPLICATION, iff there is an
a € C — R such that aA C A. The torus T¢ then is called CM TORUS.

It is easy to see that we can define a complex structure on 7? = R? /A such that 7%
is a CM torus, iff vATA € GI(2, Q) for some v € R. Equivalently, 72 with modulus
7 is a CM torus, iff 7 € Q[v/—D] for some D € N. For later convenience we also
introduce the notion of rational CM tori:

Definition 4.5.4
A twotorus T? = R? /A is a RATIONAL CM TORuUS, if ATA € GI(2,Q), or equiva-
lently T? has modulus 7 € H and volume V € R" such that V? € Q and 7 € Q[iV].
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We can now formulate a geometric criterion for rationality of a toroidal conformal
field theory as follows:

Theorem 4.5.5

Let C = T (A, B) denote a toroidal conformal field theory with even integer central
charge ¢ = d. Then C is a rational conformal field theory iff B € Skew(d) N
Mat(d, Q) and T¢ = R? /A possesses a finite cover which is the product of ¢ rational
CM tori.

Proof:

By theorem 4.5.2 it remains to be shown that G := ATA € GI(d,Q) iff we can
find M € GI(d,Q) such that for A = A°M we have A = diag(A‘f,...,Ag/Q),
AY € GI(2,R), and T := R?/A) is a rational CM torus for k € {1,...,4}.
Firstly, assume G € Gl(d, Q). We pick generators of A such that the corresponding
matrix A is upper triangular. Then the pairwise scalar products of the vectors Iy

in AT = (I1,...,1y) are all rational. Therefore, a Gram type algorithm can be used
to construct M’ € Gl(d,Q), such that A° = AM’ obeys A° = diag(AY, ..., Ag/Q),

0 dp dyr” 0\T A0
Ay = w |- (Ax) Ap € GlU2,Q).

In other words, T := R?*/A] is a rational CM torus for all k € {1,...,%}, and the
above condition is satisfied for M~! = M.

Vice versa, if A = A°M with A° as above, in particular (A°)TA° € Gi(d,Q), so
G = ATA = MT(AYTAM € Gi(d, Q). 0

From theorem 4.5.2 and with (4.3.2) it is straightforward to directly deduce the
following corollary, which was first found by G. Moore in [Mooa, Moob)].

Corollary 4.5.6
Let C = T (A, B) denote a toroidal conformal field theory with central charge ¢ = 2.

Then C is a rational conformal field theory iff it has parameters (1,p) € H x H
such that 7, p € Q[v/—D] for some D € N.

By the results of theorem 4.5.5 and corollary 4.5.6 the twodimensional case seems
to be the only one where the notion of CM tori is indeed adequate to give a criterion
for rationality of toroidal conformal field theories. Namely, in theorem 4.5.5 we
necessarily have to make use of the fairly clumsy notion of rational CM tori. In
particular, for even d > 4, T(A,0) with A = EBZ/leg, A corresponding to rational
CM tori with different fields Q[/—Dy] is a rational theory, but the torus R%/A is
not a CM torus.
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4.6 Singular varieties and rational conformal
field theories

This section is devoted to the discussion of rational toroidal superconformal field
theories with central charge ¢ = 6. The general result of theorem 4.5.2 shows that
these theories are dense in the moduli space of toroidal superconformal field theo-
ries. Therefore, one can expect the criterion of rationality for a toroidal conformal
field theory to be related to the criterion of the underlying torus being singular or
having complex multiplication [KN]. The result of theorem 4.6.7 below in compar-
ison to theorem 4.5.2 is less encouraging, however, since it shows that the notion of
a rational conformal field theory is much coarser than that of singular tori as well
as CM tori. In any case, the idea is a good excuse to introduce some notions from
complex geometry that we will need later as well as some of the standard lore in
string theory. For more details, see [GH78, BPdV84], where most of the definitions
below are taken from.

In the following, let X denote a complex manifold with dim¢ X = g. We assume
that a complex structure has been chosen, in particular we have a decomposition
of the de Rham cohomology of X into H"(X) = H"(X,C) = @1 H?(X). On
X we have the exponential sequence of sheaves,

exp

0— Zyx L5 0x £ 0% — 0.
The corresponding long exact sequence is very frequently used:

-+ — H(X,Z) — HYX,0x) — HYX,0%) —

Sy B2(X,2) L HAX,0x) — -

Here, H'(X, O%) is naturally isomorphic to the set of holomorphic line bundles
on X which gains the structure of a group if equipped with the tensor product
as multiplication. Then for a holomorphic line bundle £ € H'(X, O%) one finds
d(L) = ¢1(L) [Hir66, Th.4.3.1]. Moreover, j* is the PERIOD MAP.

Definition 4.6.1

The group of holomorphic line bundles on X is called PICARD GROUP and denoted
Pic(X) =2 HY(X, O%). The set of algebraic cocycles NS(X) := Im(6) = ker(5*) C
H?(X,Z) is called NERON-SEVERI GROUP, its rank p(X) := tk NS(X) is the
PICARD NUMBER of X.

Note that NS(X) = Pic(X)/Pic®(X), where Pic®(X) := ker(d) is also known as
P1cARD TORUS or JACOBIAN of X and parametrizes flat vector bundles on X, or
equivalently divisors which are algebraically equivalent to zero.

Definition 4.6.2

Suppose that dim¢ X = 2, then p, := dim¢ H*(X, Ox) is the GEOMETRIC GENUS
of X. Consider Hx := H?*(X,Z)/(torsion), which is a Euclidean lattice. Let
NS(X) denote the image of NS(X) in Hx, a primitive sublattice. Its orthogonal
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complement Tx := NS(X) N Hy is the TRANSCENDENTAL LATTICE parametriz-
ing transcendental cocycles on X.

The case of main interest to us is much simpler than the general one described
above. Namely, in chapter 7 we will discuss moduli spaces of certain superconfor-
mal field theories with central charge ¢ = 6. Though a clean proof is lacking, it is
generally assumed that the additional assumptions we will make there ensure that
all theories in the moduli space admit a nonlinear sigma model description by a gen-
eralization of the construction introduced in section 4.2. In general, suppose that
an N = (2,2) superconformal field theory C has a nonlinear sigma model descrip-
tion on a compact manifold X. The condition of conformal invariance of C implies
that X must carry a Ricci flat Einstein metric. N = (2,2) supersymmetry enforces
X to be a complex Kihler manifold [Zum79]. Altogether, we can restrict our at-
tention to compact Kéhler manifolds with ¢;(X) = 0, also known as CALABI-YAU
MANIFOLDS*. Since central charge ¢ = 6 = 3d/2 corresponds to complex dimen-
sion d/2 = dim¢ X = 2, there are only two topologically distinct manifolds to be
discussed. Namely, if the FIRST BETTI NUMBER b;(X) = dimg H!(X,R) of X
vanishes, X is a K3-SURFACE by definition [Bes87, p. 365]. If b;(X) # 0, the
Poincaré—Hopf theorem [BGV92, Th.1.56] shows x(X) = 0, so X is a complex
torus. In both cases the geometric genus (definition 4.6.2) is p, = 1, and H?*(X,Z)
is torsion free. Then NS(X) = H“(X) N H?*(X,Z) is also known as PICARD
LATTICE. In the K3 case, NS(X) = Pic(X).

If X is an algebraic complex surface, NS(X) has signature (1, p(X) — 1), and
the transcendental lattice Ty has signature (2p,, h"*(X) — p(X)). In particular,
p(X) < hb(X). Complex surfaces where the latter inequality becomes an equality
are of special interest:

Definition 4.6.3

A compact complex surface X is called SINGULAR', iff its Picard number p(X)
is maximal, in other words p(X) = hY'(X). Equivalently, X is singular iff the
complex structure given by the twoplane H*°(X) @& H29(X) C H?(X) is defined
over Q, i.e. real and imaginary parts of a generator of H*°(X) span a twoplane

QO =Tx ®R C H*(X,R) generated by elements of H*(X,Z).

We remark a first relation between singular complex surfaces and the notion of
CM tori as introduced in definition 4.5.3. Namely, if X is a singular Calabi-Yau
twofold, then Cx := H?*(X,Ox)/j*H?*(X,Z) has the structure of a CM torus of
complex dimension 1. For singular fourtori we have

Theorem 4.6.4
If X is a singular torus and dim¢ X = 2, then X is a CM torus.

*Some authors, especially in the physics literature, add the condition H!(X,Ox) = 0 for
0 < i < d to the definition of Calabi-Yau manifolds. Since we understand the name as a
reference to the celebrated Calabi-Yau theorem [Yau78] we will not follow this fashion.

tWe thank Noriko Yui and Yasuhiro Goto for drawing our attention to the relevant literature
concerning singular K3 surfaces.
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Proof:
By [SM74, Th.4.1], X is singular iff X = C; x Cy, where C;,Cy are mutually
isogenous elliptic curves with complex multiplication. Equivalently, X = R*/A,
where

1 T ‘ 0 "
AZUAO AOZ 0 T2 d » 1 :(7—2) EQ? (461)
’ ! ) .0.
0 ‘ d dr Qlin] = Qlir}).
)

In particular, one can find A 0, B0 C’(’) D € Z such that « = A+B1t = A'+B'7’,
70 = T() -+ 17'2( ,and (AY) + B(’)T(’)) =CO 4+ D70 je oA C Aand X is a
CM torus. O

We stress that the product C; x C5 of two arbitrary CM tori need not be singular
by theorem 4.6.4. This can also be checked directly from (4.6.1).

For K3 surfaces, the following theorem is a simple consequence of the proof of the
density theorem [BPdV84, Cor.VIIL8.5]:

Theorem 4.6.5
Singular complex structures form a dense subset of the moduli space of complex
structures on K3.

On the other hand, we are in the happy situation that the singular Calabi-Yau
twofolds are completely classified:

Theorem 4.6.6
Singular Abelian varieties of complex dimension 2 are uniquely determined by
the quadratic form on their transcendental lattice. In other words, they are in

1 : 1 correspondence to positive definite even quadratic forms modulo SL(2,7)
conjugation [SM74, Th.3.1]. The same holds for singular K3 surfaces [SI77, Th.4].

To get acquainted with structure and terminology it is a good exercise to compute
the transcendental lattices for a couple of singular tori. We list the results for
three examples that will also be needed later on. In general, we define a real
fourtorus T* by specifying the lattice A such that T* = R*/A, or equivalently
giving the flat metric G = ATA on T*. We use the following convention to fix
a complex structure on T* compatible with the hyperkihler structure given by
G (see section 7.1): Let m1,..., 74 denote real coordinates on 7% = R*/A, then
A = >, Awdx; are generators of A. As described in definition 4.6.3, we can fix
the complex structure of T* by specifying a twoplane 2 C H?(X,R). Here, Q is
spanned by dx; A dzs + dxy A dxo, dxy A dxy + dxo A drs, and the Kahler form is a
multiple of dx; Adzs + dxs Adzy. The quadratic form on the transcendental lattice
Tx for X = T* is denoted by Tx as well. The root lattice of a simply laced Lie
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algebra A,, D,, E, is denoted by the same letter. Then we find*:

X = T°xT% T = C/(L,i): Tx = (2 0),

0 2
A 2 0
X = RYA, AT = Dy: Tx = (ég)

Although by theorem 4.6.6 the first two tori in (4.6.2) carry the same complex
structure, they are not equal as Einstein manifolds. They differ by their Kahler
form, if we stick to the conventions introduced above.

Let us now turn to the declared main object of this section, namely the relation
between rational toroidal superconformal field theories and singular tori. We would
like to prove a theorem giving a criterion for rationality in terms of singular or CM
fourtori instead of rational CM twotori as in theorem 4.5.5. Note that the product
X of twodimensional CM tori with moduli 7V, ... 7(#2) ig itself a CM torus iff
™™ € Q[v-D] for all k € {1,...,4} and fixed D € N. For d = 4, this is
also equivalent to X being singular. Therefore, by theorem 4.5.5, rationality of a
toroidal conformal field theory for even d > 4 is a much weaker condition than that
for the geometric interpretation to give a singular torus with possible restrictions
on Kahler form and volume. But vice versa we have:

Theorem 4.6.7

Suppose that T* = R*/A is a singular torus with Kéahler form w = dwy and
wy € H*(T*)Z) ® Q6> € Q. In other words, the threeplane ¥ C H?*(T* R)
spanned by the twoplane ) of definition 4.6.3 and w is defined over Q. Then there
is an ¢ € R with e* € Q, such that T (¢VA, B) is a rational superconformal field
theory for all V € R with V? € Q and all B € Skew(4) N Mat(4, Q).

Proof:

By theorem 4.5.5 we need to show e2ATA € Gi(4,Q) for some ¢ € R, ¢! € Q.
Since T* is singular by assumption, we can suppose A to have the form (4.6.1).
But then, using the conventions introduced above, the associated Kéhler form is

U2 ’1)2
= —= (dQTé)\l A\ )\2 + ’7'2/\3 A )\4)

:—UJ,
\/§ \/57'2 °

where wy € H%(X,Z) ® Q. Hence by the assumptions in the theorem we may
choose ¢ := v to prove the above assertion. O

w 7'226@,

We remark that by the very description of the complex structure on a four-torus
X the notion of X to be singular is naturally formulated in terms of the second
cohomology. On the other hand, the general criterion for a toroidal conformal field
theory to be rational (theorem 4.5.2) is given in terms of the first cohomology. The

*In our coordinates Dy = {z € Z*| Y+, ; = 0(2)} and Dj = Z* + (Z + 1/2)~.
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link between the two descriptions is the triality automorphism (4.4.2). Comparison
of theorem 4.6.7 to the stronger result in theorem 4.5.2 shows that triality is not
compatible with the notion of rationality. By the use of (4.6.1) and the comment
below it is easy to explicitly construct counterexamples to an inverse of theorem
4.6.7.
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Chapter 5

Orbifold conformal field theories

This chapter is devoted to orbifold conformal field theories. We briefly review
their general construction and properties in sections 5.1 and 5.2, where the latter
is basically concerned with the geometric understanding of orbifolds. For good in-
troductions to the subject see also [DFMS87, Dix87, DHVW85, DHVW86, FV87].
The geometric interpretation of Zj, orbifolds of toroidal superconformal field the-
ories with ¢ = 3 is not found in the literature. Two special types of orbifold
constructions are studied more closely in section 5.3-5.4, namely crystallographic
orbifolds and orbifolds involving the spacetime fermion number operator. The
generalized GSO projection and its properties are the topic of section 5.5. It is
applied to tensor products of N = (2,2) minimal models in section 5.6 to yield the
standard construction of Gepner models.

5.1 The orbifold construction

The orbifold construction is a general method to build a new conformal field theory
C/G by modding out a finite symmetry group G of a conformal field theory C. G
is always assumed to be compatible with the conformal symmetry, i.e. leave the
energy momentum tensor of C invariant. The theories C and C/G share those
states of C which are invariant under GG. In particular, they have the same central
charge c. The so—called UNTWISTED SECTOR HY of the space of states of C/G is
therefore obtained from the space of states H of C by projecting with the operator

P = ﬁ 5~ g. We employ the shorthand notation
9€eG

g = try (quo_ﬁﬁfo_;_‘*)
1

to write the untwisted sector partition function as
c _ T c 1
ZG =1try <PqL07ﬂqL07ﬂ) e p— Zg
Gl 2=

One can interpret the box ¢ | as representing the worldsheet torus =(o) of the

1

1
original theory C. The group element attached to either period of Z(o) denotes the

79
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effect of a displacement along the corresponding torus period. In other words, if
‘HY denotes the space of states corresponding to fields ¢ which on the worldsheet of
the original theory are twisted by a g action under time translation, ¢(&+1,&;) =

99(€0,&1), (&0, & + 1) = (&, &), then

_C _Ta—=X
g = trys (qLO 24 qLO 24) .
1

For nontrivial G, Z¢ cannot be modular invariant by property 8 of section 2.1, since
HC contains only a subset of representations of the operator product expansion of
the modular invariant theory C. To construct a new theory, we must add so—called
TWISTED SECTORS Hy, f € G, corresponding to fields which are only well defined
on the world sheet of the original theory up to the action of a nontrivial element
fea:

oy €My = @&+ 1,&) =06, &), ©&,&+1) = fol6,&). (5.1.1)

The field 3 corresponding to a twisted ground state |X¢) in H introduces a cut
from 0 to 0 ~ 0 on the worldsheet torus =(o) to establish the transformation
property (5.1.1), i.e. the correct MONODROMY. The representation of the OPE
with elements of H is given by the induced representation on the twisted sector.
Correlation functions for Zj, twist fields have been studied in great detail in [HV87,
DFMS87, ADGNB8S|.

Whether the theory constructed by blindly adding twisted sectors will be consistent
is not clear in general: We must not destroy locality. It is sufficient to check locality
on the twisted ground states, i.e. ensure that for f of order m the field ¥, has
spin h — h = 0 mod % such that one can project onto an integer spin and G
invariant ground state, and moreover that twist fields have pairwise local OPE.
These conditions are known as LEVEL MATCHING CONDITIONS [DHVWS86, Vaf86].
They ensure existence of physical states in H; and can also be interpreted as
constraints from modular invariance under transformations of Z(o) that leave the
respective boundary conditions invariant [Wit85], see also [Dix87]. We do not
go into details, since by the above level matching conditions are trivially obeyed
for sSYMMETRIC ORBIFOLDS. These are orbifolds C/G where in an appropriate
geometric interpretation GG acts on left and right movers by the same representation,
and therefore h = h and pairwise locality for twisted ground states follow directly.
Though asymmetric orbifold conformal field theories are an interesting issue to
study [NSV8T], this exceeds the scope of the present thesis. In section 6.1.2 we will
see that at least for the determination of nonexceptional irreducible components
of the moduli space of unitary conformal field theories with ¢ = 2 the asymmetric
orbifolds are not needed.

We note that ¢ as in (5.1.1) also obeys

VgeG: gp(é,&+1)=(9fg Ngp(é, &), (5.1.2)

soVg € G: Hy = Hyre1. In the twisted sector H; we again project onto
group invariant states. Since for [g, f] # 0 by (5.1.2) we identify ¢, |¢) € H; with
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99, |9¢) € Hypo-1, to avoid overcounting of the twisted fields the projector with

the correct prefactor is Py := |—1| > g (see also [Dix87]). We again use the
9€G: [g,f]=0
shorthand _
o | =t (quO‘ﬁaL"‘f_‘*)
f

to write the twisted sector partition function as

-~ [ T c 1
Z = Z tryy, (PquOﬂqLoﬂ):@ Z g

€G, f£1 g,f€G,
fea.r# f#1g,f]=0

f

If we interpret the boxes as representing the worldsheet torus =(o) of C, the re-
striction of the sum to commuting elements of GG gives tribute to the relation
ABA™'B~! =[0] for A, B € H,(2(0),Z). The total orbifold partition function is

€ _Tn—C ]-
ZG—orb = E tr?{f (Pqu0_24qL0 24) = @ E 9 , (513)
fee %

where we set Hy := H and Py := P. Modular invariance is most easily checked by

using the worldsheet interpretation of the boxes ¢| | as representing the trace over
f

fields ¢ on Z(0) such that (& +1,&) = gp(&, &) and ¢(&o, & + 1) = fo(&o, &1)-
Namely,

ol (=2)=14] (o), o (o41) =7y [0), (5.1.4)
¢ ] 7 7
from which modular invariance of (5.1.3) follows directly. Vice versa, these equa-
tions simplify the calculation of (5.1.3).

In the simplest example of the orbifold construction, the SHIFT ORBIFOLD of a
toroidal theory C = T (A, B), A C R?, G is generated by a shift Ta = €22 on the
charge lattice I' = I'(A, B). In order for G to be finite, we have to assume DA € T
for some D € N, and then G = Zp. Set

A = {pEF—HA\p-AEZ—{—%}, l,me{0,...,D— 1},
. 1 »_p? 5.1.5
Zrm = W Z q2q-2, ( )
p=(p;pr)ETTY
then
~ di(2) |

D-1 4
2wim
Ta :EGDZPOW%E
m

1 0 i=1

I

(ignore the z-dependent sum in the discussion of bosonic toroidal theories). By
(5.1.4), more generally

-1

D 4
2mwikm
1
k = D =
TR E € ZF;nA 2 E
m

Tl =0 i=1
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Thus if A = (A;;A,), twisted ground states have dimensions (h;h) = (M,

2
M), so in this case level matching conditions have the simple form m?A? € 27
for some m € {1,...,D — 1}. Note that the shift orbifold of a toroidal theory C
is again a toroidal theory by definition 4.1.1, since G = span(7a) leaves invariant

the u(1) currents j* of C. It has charge lattice

F={pel+IA|le{0,....D—1},p-A € Z}. (5.1.6)

Let us return to the general discussion of orbifold conformal field theories. A pri-

ori, g[ |is only defined up to a phase £(g, f), because the same is true for the
/
action of ¢ € G on a twisted ground state of H;. Only if g = f* for some k € Z,

the phase is fixed by (5.1.4), and for all other boxes the choice is restricted by
modular invariance to obey (4.2.4). For closed modular orbits in the twisted sector
there remains an arbitrariness of the phase they contribute with. Here, conjugate
subgroups must account with the same phase in order for the representation of G
on the twisted sector to be consistent with (5.1.2). The remaining phase ambigu-
ity is known as DISCRETE TORSION [Vaf86]. By the above it does not occur for
orbifolds by cyclic groups and in general is parametrized by the group cohomology
H?(G,U(1)), see (4.2.4). In modern language it is interpreted as additional dis-
crete degree of freedom of the B-field on the orbifold, if a geometric interpretation
is at hand, see section 5.2. Discrete torsion will become relevant in the discussion
of crystallographic orbifolds in section 5.3.

For non Abelian G, (5.1.3) can be written as sum over Abelian subgroups of G with
overcounted terms subtracted off. To do so in general, we call a subgroup H C GG
MAXIMAL ABELIAN if there is no Abelian G’ C G such that H & G'. We also

introduce multiplicities ny := #{H C G maximal Abelian |[H' &G H maximal}
and find
1
ZG—orb - ? Z |H|ZH—orb - Z (nH’ - 1)ZH’—07'b
‘ | HCG max. H'CcG:3HCG
Abelian max. Abelian, H/CH
(5.1.7)

An important feature of the orbifold construction is the fact that the modding
out by a solvable group G may be inverted by another G-orbifold [Gin88a, §8.5]:
First note that for any normal subgroup H C G and C' = C/H we have C/G =
C'/(G/H). Therefore we only have to check that cyclic orbifolds can be inverted.
If v is a generator of G = Z,,, then we can define an action of v on the twisted
states in H.,m by multiplication with e>™™/M_ With (5.1.3) one now easily checks

€/G)/G = C.
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5.2 The geometric orbifold construction

If a conformal field theory C possesses a geometric interpretation in terms of a
nonlinear ¢ model on some manifold Y, we can expect the orbifold conformal
field theory C/G to have a geometric interpretation on the (generically) singular
variety Y/G. Geometric objects of this type were first studied mathematically by
I. Satake and called V-MANIFOLDS [Sat57]. Nowadays, the more intuitive notion
ORBIFOLD is also used in the mathematics literature for a singular variety all of
whose singularities are quotient singularities.

The B-field of the orbifold theory is said to take values in H?(Y/G,U(1)), which
may have torsion [Asp99]. It is not clear to us how this is to be interpreted in

general, but for finite G and X := Y/G the nongeometric degrees of freedom of the
orbifold contain the “classical” B—field degrees of freedom in H*(X,R)/H?(X,Z),
and a discrete part H*(G,U(1)). The latter accounts for discrete torsion [Vaf86],
as mentioned above. Note that toroidal conformal field theories as described in
section 4.2 are already an example of geometrically motivated orbifold confor-
mal field theories. Here, Y = R?¢, and G = A C R? is a lattice and acts by
translations, X = 7% = R?/A. In this case from 7;(Y) = 0 one shows by the
Cartan-Leray spectral sequence H*(Y/G,U(1)) = H?(Y,U(1))® ® H?(G,U(1)),
where H?(Y,U(1)) = {0}, and we get the well known B-field degrees of freedom
H?(A,U(1)) 2 H*(TY,R)/H?*(T*, Z).

A closer look at the literature reveals that basically the only nonlinear ¢ models
which are fully understood are the toroidal conformal field theories and orbifolds
thereof. Everything we need in order to give geometric interpretations of orbifold
conformal field theories therefore has already been said in section 4.2. We will
assume C = T (A, B) in the following, a toroidal (super—)conformal field theory
with central charge ¢ = d or ¢ = 3d/2, respectively. In particular, we have d (non—
single valued) massless scalar fields ¢* : 7 — T4 = RY /A k € {1,...,d}, which
describe the embedding of the string worldsheet in 7¢. Let G denote a symmetry
of the conformal field theory which is induced by a geometric symmetry of 7. By
this we mean that G acts on R? by some representation which in the following
is simply denoted g € G,v € R? : v g.v. This induces a left-right symmetric

action on the u(1) currents of the toroidal theory and thus on the charge lattice,
in the notations of definition 4.1.1 and (4.2.1)

g { G 7 = (94597
(pi;p7) — (9-mi;9-pr)
Since G is supposed to act as symmetry of the conformal field theory C, on A it

must act as lattice automorphism. Vice versa, by (4.2.1) an automorphism g of the
lattice A induces a symmetry on the conformal field theory 7 (A, B) iff B = AT BA,

g 'Bg=B in Skew(dx d,R/Z). (5.2.1)

In particular, any automorphism of A induces a symmetry on 7 (vA,0) for all
v € RT, but other values of B may be possible as well. In section 5.3 we will
discuss all possible B-field values for every geometric symmetry of a twotorus.
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Now let us study the corresponding orbifold conformal field theory C/G on X =
T¢/G. In the twisted sector, for |p) € Hy, f € G — {1}, by (5.1.1) we find that
oo := (2 = 0) is a fixed point of f. The ¢* then describe strings that wind around
the fixed point gy € X but are not closed on the covering torus T%. So if f has J
fixed points on 7%, then H; decomposes into J isomorphic copies of spaces ’chj),

jed{l,---,J}.

5.2.1 Zj,; orbifold conformal field theories

The case G = Zj;, d even, is particularly simple and shall now be discussed in
detail. We assume T9¢ = XZ/ZQ 1T(2k) (not necessarily orthogonal), such that T(Qk) is
Zyr symmetric. Since the rotational symmetries of twodimensional lattices are well
known, this restricts the possible values of M to M € {2,3,4,6}. Let v denote a
generator of Z;,. Then the standard Z,, action on jik) = iago(f) as in (4.1.10) is
given by

e ) oy g1 2w/ ) (5.2.2)

It induces a Zjs symmetry of the conformal field theory C = T (A, B) iff (5.2.1)
holds for ¢ = v with respect to this action. Assuming that, we can construct
C/Zyy.

(k)

In the twisted sector Hy for f of order m the ¢y’ have mode expansion

1
W) =aly+i Y ol (5.2.3)
neZ+1/m

Hence the corresponding twisted ground state for a bosonic conformal field theory

has dimensions
- dl1 1
h=h=-— (1 — —) (5.2.4)

(see also [Dix87]).

It is now straightforward to construct the partition functions for Zj, orbifolds of
toroidal conformal theories. This has been achieved in joint work with Werner
Nahm. The formulation of theorems 5.2.1 and 5.2.2 is a generalization of corre-
sponding formulas in [EOTY89]. Sayipjamal Dulat has checked the special case of
Z ) orbifolds of toroidal superconformal theories with ¢ = 3 [Dul00].

Let us give the general construction: Recall that the box 4| |in (5.1.3) is in-
,ym

Lo—c/24gLo=c/24 oyer fields defined on Z(o) up to a 4%, y™

terpreted as trace of ¢
action:

p&+1,&) = ’YZSO({:O,&) + Ao
o0, &+1) = Y06, &)+ A

For (I,m) # (0,0) we see that ¢ may not have winding or momentum modes.

Ao, A1 € A. (5.2.5)
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Therefore by (5.2.2) and (5.2.4) for a bosonic theory with ¢ =d

o0 —d
i o)~ (ag) EHEOCR T (1) (1o g B
m n=1 ;
(qCI) 191 (0_7 %0_+ ﬁ) l,m( )
(5.2.6)

It remains to determine the multiplicity n;,,, the right hand side of (5.2.6) will
occur with in the partition function. It is given by the number of different fixed
points a which are in accord with (5.2.5), i.e.

a=a+X, a=7"a+)\.

Thus,

mm = | [((L=7)7A) N (1 =™ 1A)] /A" for Im # 0,

o = oy = ‘((1 _ ,Yl)—lA) /A|d/2 a2

. (52.7)
= (det(1 —+"))"" = (2sin Z£)".

Clearly, n%d = nﬁ{ld is the number of Z,, = span(y!) fixed points on 72, namely

4,3,2,1 for m = 2,3,4,6. From (5.2.6) and (5.2.7) we find

Theorem 5.2.1 B
Suppose that C = T (A, B), B = ATBA, is a bosonic toroidal conformal field theory

with even ¢ = d such that T% = R /A = XZ/:21T(21¢); and T(Qk) is Zyr symmetric, and

g_lég = B in Skew(d x d,R/Z) for all g € Zy;. Then the orbifold partition
function of C/Zy; for the Zy; action induced by (5.2.2) is

1
Zy0 B (0) = — | Zram @)+ D numbim(o) |,

M
1,me{0,...,M—1},
(1,m)#(0,0)

where Zp(a,p) Is the partition function (4.1.7) of C, by, (o) was defined in (5.2.6),
and nym, Is given by (5.2.7) or equivalently

Vime{0,...,M -1}, (I,m) # (0,0): myo = mnoy = (QSin%)d,

em = Ni4+m = NmM—1-

Modular invariance of the above partition function follows directly from our defi-
nition of the n;,, and the properties of theta functions given in appendix A.

We now turn to the N = (2, 2) supersymmetric case (4.2.5), where also the fermions
have to be twisted. By (4.1.10) we must extend the action (5.2.2) on i identi-
cally to wﬁf ), if we want to preserve supersymmetry. In the sector twisted by 7/,
analogously to (5.2.4) the twisted Ramond ground state for a single Dirac fermion
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ws_f ) has dimensions h = h = %ﬁ (ﬁ — 1) + %. Its charge follows from bosoniza-

tion: The Dirac fermion can be described as boson compactified on a circle of
radius R = v/2 [Gin88a, §8.2]. The Z,; action translates into a shift orbifold in
this language, showing that twisted ground states are given by vertex operators

with h = h = Q?/2 = @2/2 in the Neveu-Schwarz sector. Thus h = h = (ﬁ)2

and Q = Q = (—1)¥-L. The sign (—1)* gives tribute to the fact that ws_f) and

M
E_LkH) are twisted in opposite directions (5.2.2). Generalizing b, in (5.2.6), for

(I,m) # (0,0) we now define

0 _om |U3 (0,2 + Bo+ L
l:gf(bi,NS(O-’ Z) = (yy)M ( mM l M) 9
o (0, 2o+ M)
2
ev,NS | (ot Bo+ L) 05 (0,2 — Bo— L)
o (72 my 4 L)’ ’ (5.2.8)
% (a, 10+ M)
d
ev,NS 4 .
( Lm (o, Z)) if d=0(4)
l],\f‘;zs(o-a Z) = %
l‘fz?’NS(a, 2) ( Z’f,;NS(U, z)) if d=2(4).

Note that the U(1) current J of C = T (A, B) is invariant under the Zys action;

it follows that so are the operators U,1U,1 of spectral flow (3.1.7), i.e. C/Zyy is
invariant under spectral flow by theorem 3.1.4. Then we find

Theorem 5.2.2 B
Suppose that C = T (A, B), B = ATBA, is a toroidal N = (2,2) superconformal
field theory with ¢ = 3d/2 such that T¢ = R/A = x{ T2, and TZ, is Zy
symmetric, and g~ Bg = B in Skew(d x d,R/Z) for all g € Zys. Then C/Zy; with
the Zy action induced by (5.2.2) is an N = (2, 2) superconformal field theory, and
the NS part of its partition function is

T'(A,B),NS 1
2, 0.2 = o [ 2w+ DD mumfii(0,2)
1,me{0,..., M-1},
(1,m)#(0,0)
Here Z[\} py is the NS part of the partition function (4.1.11) of C, f}7(0,2) was
defined in (5.2.8), and ny, is given in theorem 5.2.1.
The orbifold conformal field theory is invariant under spectral flow, and the entire
partition function is obtained from the above by the flows (3.1.9). Effectively, in
the definition offl{V,,f above 193 must be replaced by 94,1,,1, to obtain the NS, R, R

parts of the partition function, respectively.

Unfortunately, the formula in theorem 5.2.2 appears to be quite clumsy and seems
to remain so in general [Dul00]. Exceptions are Zy orbifolds in general and the Z,
orbifold in case d = 4 [EOTY89]. A straightforward but tedious calculation using
appendix A shows:
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Corollary 5.2.3
For a superconformal field theory C = T (A, B) of arbitrary central charge ¢ = 3d/2,
the NS part of the partition function of C/Zy is

d d

4 05094 |* |94 (2
Z%V(i,B) (0,2) =5 (ZF(A,B)(U) 193,5 . 73724 % (5.2.9)
D03 % [095(2)|* 029417 |91 (2) |*
T 9 + B .
U n n n

If C is a superconformal field theory as in theorem 5.2.2 with d = 4 and M = 4,
then the NS part of the partition function of C/Z, is

ZII‘V&i,B) (0’, Z)

793’(94 4 792’(93 4 192794 4 ’193(2) 4
=3[ {3 (Brmon 2 2]+ o) 2
D394 |* [04(2) " [0295]" [02(2) [* |02094]" |01(2) *
+ 2 + 2 + 2
n n n n n n

(5.2.10)

In particular, the Z, orbifold partition function looks like the Zs orbifold partition
function of a theory whose NS partition function is the expression in curly brackets
in (5.2.10). See section 7.3.4 for further comments on this coincidence.

5.2.2 Geometric interpretation for Z;,; orbifolds

For the orbifolds of N = (2, 2) superconformal toroidal theories with central charge
¢ = 3 or ¢ = 6 we can understand the appearance of twisted Ramond ground states
much better. So far, we know that they are lowest weight states in representations
of the super Virasoro algebra that describe a string winding around a fixed point
of the Z,; action. Theorem 5.2.2 shows that the multiplicity every fixed point ac-
counts with is the order of its stabilizer group minus 1. We will now give geometric
arguments for this result.

Since the explanation in case ¢ = 6 is quite common, we treat this first. The
standard complex structure on T* = T7, x T§; is given by the choice of a com-
plex coordinate z; on each T(2k). Then our Zj; action (5.2.2) does not destroy the
complex structure, in other words Z;; acts as ALGEBRAIC AUTOMORPHISM on T
(see definition 7.3.1). Since there are no invariant onecycles on 7% it follows that
X =Tt /Zyy is the orbifold limit of a Calabi—Yau manifold with b; = 0, i.e. a K3
surface by the discussion in section 4.6. In particular, we can blow up the singulari-
ties resulting from the fixed points of Zj; on T* without destroying the Calabi-Yau
condition; that is, we replace each singular point by a chain of exceptional divisors,
which in the case of Z,,-fixed points have as intersection matrix the Cartan matrix
of A,,_1. In particular, the exceptional divisors themselves are rational curves,
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i.e. holomorphically embedded spheres with self intersection number —2. In terms
of the homology of the resulting surface X these rational curves are elements of
Hy(X,Z)N Hy1(X,C). To translate to cohomology we work with their Poincaré
duals, which now are elements of Pic(X) with length squared —2. One may check
that for M € {2,3,4,6} this procedure changes the Hodge diamond by

1 1
2 2 0 0
1 4 1 — 1 20 1
2 2 0 0
1 1

and indeed produces a K3 surface X [Wal88]. We also obtain a rational map
7w : T* — X of degree M that is defined outside the fixed points. To fix all
necessary geometric data we additionally need to pick the class of a Kahler metric
on X. To understand the geometric interpretation of C' = T (A, B)/Zys we have
to consider the ORBIFOLD LIMIT of our K3 surface, that is use the ORBIFOLD
SINGULAR METRIC on X which is induced from the flat metric on 7* and assigns
volume zero to all the exceptional divisors. The corresponding Einstein metric is
constructed by excising a sphere around each singular point of T*/Zj; and gluing
in an Eguchi Hanson sphere E instead for Zs fixed points, or a generalized version
E,, with boundary 0FE,, = S®/Z,, at infinity and nonvanishing Betti numbers
bo(Ep) = 1,b2(Eyp,) = by (Er) = m — 1, ie. x(En,) = m. The orbifold limit is the
limit these Eguchi Hanson type spheres have shrunk to zero size in.
Summarizing, a Z,, orbifold limit X of K3 is obtained by replacing each Z,, fixed
point on T%/Zys by a chain of m — 1 rational spheres of volume zero. On the
other hand, the stabilizer group Z,, of such a fixed point has order m, so there are
m — 1 twisted Ramond ground states associated to this fixed point. This leads to
a natural interpretation of the multiplicity, namely winding a string around a Z,,
fixed point leaves a choice of winding it around one of the m — 1 rational spheres
that replace the fixed point.

This interpretation is also natural in the context of chiral rings: Since by theo-
rem 5.2.2 the orbifold conformal field theory C’ is invariant under spectral flow
(3.1.8), Ramond ground states with charges (Q; @) are in 1 : 1 correspondence to
(chiral,chiral) fields with charges shifted by 4. On the other hand, as explained in
section 3.1.1, it has been conjectured in [LVW89] and is strongly believed since then
that for every N = (2, 2) superconformal field theory with nonlinear o model inter-
pretation on some Calabi-Yau manifold X the (chiral,chiral) ring is isomorphic to
H**(X,C). Here, the (holomorphic,antiholomorphic) degree of a differential form
is given by (left,right) charges of the corresponding (chiral,chiral) field.

Note that the Ramond ground states of the original toroidal theory which are Z,,
invariant are in 1 : 1 correspondence to the Z,; invariant forms on 7*. Hence the
above counting already confirms that the number of generators of given bidegree
agrees in each of the rings in case X is a Zj, orbifold limit of K3. In this case
it is also not hard to see that the map described in [LVW89] indeed is a ring
isomorphism.
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The above reasoning cannot be directly applied in the case d = 2. In the following,
C = T(A, B) with Zj; symmetric 7% = R* /A and parameters (7, p) according to
(4.3.1). The orbifold X = T?/Z,s is a Riemann sphere with metric singularities
but smooth complex structure. The Calabi—Yau condition on a Kéahler manifold
X, dim¢ X = n, is equivalent to the holonomy of X being contained in SU(n).
Now SU(1) = {1}, so the only Calabi-Yau manifold in complex dimension one
is a torus, and no blow up of the singularities is possible without destroying the
Calabi—Yau condition. Nevertheless each Z,, fixed point accounts with multiplicity
m — 1 to the twisted sector of ' = C/Zjy;. A simple explanation can be given in
terms of singularity theory.

We first introduce some notions from this theory, which can be learned from
[Arn81, AGZVS85]. In general, let C = {f(z1,...,2,) = 0} C C" denote an al-
gebraic hypersurface with quasihomogeneous singularity in z = 0, i.e. f is a quasi-
homogeneous polynomial. This induces a natural C* action on C'. The MODALITY
v of the singularity with respect to this action is the least number such that a
sufficiently small neighbourhood of 0 may be covered by a finite number of v-
parameter families of C* orbits. Loosely speaking, it is the number of free complex
parameters in f which do not change the type of singularity in z = 0. Quasi-
homogeneous hypersurface singularities of modality 0,1,2 are entirely classified
and called SIMPLE, UNIMODAL, and BIMODAL, respectively. The MULTIPLICITY or
MILNOR NUMBER of the singularity is the index of the singularity z = 0 for the

vector field grad(f), i.e. the dimension of the local ring Clzy, ..., z,]/ (g—i) of Cy.

It is the number of points into which 0 € C' will split under a sufficiently general
(VERSAL) deformation.

Let us concentrate on the quotient singularity in a chosen Z,, fixed point « on
X =T?/Zy. This is the quasihomogeneous quotient singularity of

C™ = {fo(z,y) =0} CC?,  fulz,y):=1y>—z™ (5.2.11)

It has modality 0 and is of A,, 1 type in the (ADE-)classification of these singular-
ities due to H. Cartan, D. Prill, E. Brieskorn, and V. Arnold [Car57, Pri67, Bri7l,
Arn72]. Tts Milnor number is easily checked to be p, = m — 1. The topology of the
neighbourhood of a simple singularity C C C? is uniquely determined by the link
K := SN C, where ¢ € R sufficiently small. In our case, K = K,, is the torus
knot (2, m). Simplifying a bit, one can understand the topology of the singularity
by replacing the singular D?> N C by a Riemann surface F' with 0F = K. Such a
surface exists for every simple singularity and is uniquely defined. Namely, F' is
the fibre of the MILNOR FIBRATION

I
s?- K st

and is called MILNOR FIBRE. For the singularities (5.2.11) of type A,,_1 the
Milnor fibre F), is constructed as follows: Take two 2m-gons and mark every
second edge of each of them in cyclic order by numbers 1,..., m. Identify edges
of the two polygons if they carry the same marking, but with orientation reversed.
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A simplified argument to show that the above indeed gives the Milnor fibre F,
is based on the observation that we have constructed the Riemann surface for
fMz,y) = y*> — 2™ + A in the limit A — 0. Namely, two sheets C are glued
along m branchcuts that end in m points pi,...,p, € C, all of which approach
(z,y) = (0,0) in the limit A — 0. It is instructive to check that for m = 3 the
trefoil knot K3 is indeed the boundary of the Riemann surface F3 constructed by
the above prescription.

It is a deep result due to Milnor, that the topology of the Milnor fibre is just a bou-
quet of y, spheres St. In other words, y, = rk H;(F},,Z), and the noncontractable
cycles in F},, can be visualized in the deformation f;,\l(x, y) =y>— 2™+ A of Cy, as
encircling two branchpoints p1,pj,j € {2,..., o, = m — 1} each. This means that
for a string winding around the fixed point a there are m — 1 topologically distinct
possibilities to wind around different sets of branchpoints.

While the above gives a satisfactory geometric explanation for the multiplicity
m — 1 each fixed point accounts with in the orbifold conformal field theory, we
would also like to understand the translation into the language of chiral rings (see
section 3.1.1). By theorem 5.2.2 the (chiral,chiral) fields corresponding to twisted

l

Ramond ground states have left and right handed charges ;; in the A twisted

sector. An interpretation of these fields in terms of cohomology with rational degree

ﬁ on X seems natural. This would be in accord with the counting of Ramond
ground states by the STRINGY EULER NUMBER for orbifolds, as introduced in

[DHVWS5, DHVWS6]:

xst(Y/G) = % doxYh), Yi={yeY|fy=gy=vy}.

| |fg€G,
[f,g]=0

Namely, one checks for M € {2,3,4,6} that

Xst(T?/Zar) =2+ pia; = X(S*) + ) tha;,
' j

J

where the sum runs over all fixed points on X and x(S?) accounts for the two
Ramond ground states with Q = @ = +1 of the original toroidal theory which are
invariant under Zys. xs(T*/Zar) also agrees with the Witten index of C/Z s (see
section 3.1.2), since by theorem 5.2.2

& 1
tra(-1)" = 2,00 02 =0 = = Y um

1,me{0,...,M—1}
(,m)#(0,0

with 7y, given in theorem 5.2.1.
The more striking observation is that we can build the entire (chiral,chiral) ring of
the orbifold conformal field theory from the local rings of singularities introduced
above. In a different language this way we reobtain the standard Landau—-Ginzburg
description of chiral rings for 72 /Z s, M € {3,4,6} as discussed in [LLW89, VW89].
Let us review their analysis in a somewhat different approach to give the full
picture.
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The local ring of an A,,_; singularity (5.2.11) in a Z,, fixed point «; of X is
Cle,yl/ (2,%) = Clay)/ (@) ' ~0) = R;.

The generator ®; is now interpreted as the generator of the (chiral,chiral) ring of
our orbifold conformal field theory of dimensions h = h = ﬁ that corresponds to
the twist field ¥; on the fixed point c; with minimal twist =. In the following,
we will use the multiplication on the set of twist fields that is induced by the
normal ordered product on the (c,c) ring. Then ®; <+ 3, is consistent with the
ring structure, since fusion gives E}n’l ~ (X;)1, so the product of Z;-”’l with all
other fields E? is zero and therefore E;-”_l ~ 0 in the ring of twist fields. By
[Mar89, LLW89], R; is isomorphic to the (c,c) ring of the N = (2,2) minimal
model (m — 2).

We now take the tensor product Ryz,, of all local rings R; over singular points of
X =T?%/Zs:

Rz, = spanc {®7'95°®5° [ oy € {0,1}},
Rz, = spang{ &M"®3? |a; €{0,1,2}}, (5.2.12)
Rz spangc{ @7 ®S? | oy € {0,...,4}, 00 € {0,1}}.

Note that Z, type singularities never account separately, since the corresponding
twist field is obtained from others by fusion: ¥;35 both in the Z, and the Zg¢ case.
Moreover, Rz,, has xs:(T?%/Zun) = 8,9,10 elements for M = 3,4, 6, in accord with
the desired interpretation as (c,c) ring of the Z,, orbifold conformal field theory. To
keep with this interpretation, the relations between the ®; in Rz, must be given
by the normal ordered product in the corresponding (c,c) ring. This explicitly
depends on the coefficients of the operator product expansion in the particular
model, i.e. on the parameter p of the original toroidal theory, if we ensure Z,,
symmetry of T? by fixing 7. The simplest case is the one where we can take the
free product of the rings R; such that the relations in Rz,, are just <I>;”_1 ~ 0 for a
Z, fixed point «;. Anticipating theorem 5.6.4, we know that the fermionic tensor
products (2) ® (2),[(1) ® (1) ® (1) or (1) ® (4)] of N = (2,2) minimal models are
the Z4, [Z3 or Zg] orbifolds of the N = (2,2) toroidal superconformal field theories
with ¢ = 3 and parameters 7 = p = i [T = p = €?™/3], respectively. This directly
shows that in these cases Ryz,, is isomorphic to the (c,c) ring of the corresponding
orbifold conformal field theory. In fact it is also not hard to check that for arbitrary
parameters of p the point group selection rules [DFMS87] for orbifold conformal
field theories give such severe restrictions on the fusion rules that the chiral ring
structure can be determined. Namely, n point functions vanish unless the total
monodromy of the inserted fields is trivial. For example, in the Zj case, the only
possible nonvanishing two point functions that contain ¥; are (3;(2)X?(w)) and
(21(2)X2X3(w)). This implies the general relation ®2 + a®,®3 ~ 0 in Rz, for some
parameter a = a(p). All in all, by an appropriate rescaling of the ®; we find the
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following relations:

Rz,: P+ az®y®3 ~ 0, O + az® P35 ~ 0, 3 + az3®®y ~ 0;
Rz,: PV +as®,05~ 0, B3 + a, 02D, ~ 0; (5.2.13)
Rze: P+ ag® @5~ 0, B3 + 204D, ~ 0.

In fact, Ryz,, with (5.2.12) and (5.2.13) is just the local ring of a singularity in C3:

RZM :C[q)I,(I)Q,(I)?)]/ (3;21;4,3%1:[’3%1;4) 3
CLg 7é —1: Wg((I)l, (1)2, (I)g) = (I):I’ + (I)g + (I)g + 3@3@1@2@3
a; # 1: Wy(®,P,®3) = @ + &) + P + 2a,P70]
4a3 # —1: We(®y, Dy, ®3) = B + B3 + B2 + 304D D3.
(5.2.14)
The above is the list of all unimodal parabolic singularities, which are labelled
EG, E7, Eg in the mathematics literature. Unimodality, i.e. one free parameter a,,,
is in accord with the fact that the moduli spaces of Z,, orbifolds, M € {3,4,6}, of
N = (2,2) superconformal field theories with central charge ¢ = 3 have complex
dimension one and can be parametrized by p € H/PSL(2,Z) (see sections 5.3 and
(6.1.2)). Thus ay = ax(p), and by the above az(e*™/3) = a4(i) = ag(e*™/?) = 0.
Summarizing, we have reestablished the following theorem without recourse to
the Landau-Ginzburg language, though this is quite fashionable in the context of
chiral rings. We stress that the Landau—Ginzburg result is discussed in great detail
for the Zj case in [LLW89]. Application of the same technique to Z4 and Zg is
straightforward.

Theorem 5.2.4

The (chiral,chiral) ring of the Zy; orbifold of an N = (2, 2) toroidal superconformal
field theory with ¢ = 3 for M € {3,4,6} is isomorphic to the local ring of the
parabolic singularity Eg, E7, Eg given by {Wy(®1, ®s, ®3) = 0} in (5.2.14).

We remark that the precise relation az = a3(p) has been determined in [LLW8&9].
Sayipjamal Dulat has counted the number of (chiral,chiral) states of given charge in
the respective orbifolds in the formula of theorem 5.2.2 and checked agreement with
the number of homogeneous polynomials of the same degree in the corresponding
local rings [Dul00]. As we have seen above, this agreement actually follows directly
from the geometric construction of orbifold conformal field theories.

As to the case of Zs orbifolds we remark that no Landau—Ginzburg description is
given in [LLW89]*. In fact they do not have a Landau—Ginzburg description, since
the (chiral,antichiral) ring contains the Zs invariant field wg)a(_l) of the original
toroidal theory and thus is nontrivial. On the level of singularity theory, the reason
is that the singularity of type A; in (5.2.11) is reducible: fo(z,y) = (y +z)(y — x),
and the local ring is freely generated of rank one. Since there are two Z, invariant

(chiral chiral) fields, 1 and w(j)_(j), in the original toroidal conformal field theory

*Accordingly, the corresponding statement about the (chiral,chiral) ring in [Dul00] is wrong.
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and there are four Z, fixed points, the (c,c) ring of a Zy orbifold conformal field
theory is isomorphic to the ring ®¢_;C, in accord with x(7?/Zs) = 6.

5.3 Crystallographic orbifolds

In section 5.2 we explained that every geometric symmetry group G of the torus
T? = R%/A, i.e. an automorphism group of the lattice A, induces a symmetry of
the toroidal conformal field theory T (A, B) if B satisfies (5.2.1). Then the orbifold
construction yields a new theory 7 (A, B)/G. In this section, we will construct
all such “geometric” orbifolds of bosonic toroidal conformal field theories with
c =d = 2. We will use the notation introduced in section 4.3 for twodimensional
toroidal theories.

5.3.1 Crystallographic symmetry groups

We start by listing all possible geometric symmetry groups and their action on
the corresponding toroidal conformal field theory. The discrete symmetries of
twodimensional tori are classified. Namely, in two dimensions there are seventeen
inequivalent crystallographic space groups [P6124], i.e. discrete subgroups G C
O(2) x R? that leave invariant some lattice A’ and therefore act on a torus 7% =
R?/A, where A C A’. Figure 5.3.1 shows all these symmetry groups by depicting
the orbit of some symbol » under G. A complete list of the corresponding groups
is given in (5.3.9) after we have explained their action on 7% and T (A, B).

Each lattice A’ in figure 5.3.1 is formed by fixed combinations of the symbol »,
which we call motive, in various orientations. Then A C A’ is given by those motives
which have the same orientation. The space group G is a semi-direct product of
a finite point group P C O(2) and a “translationary” group A C O(2) x R? of
elements which do not fix the origin. In figure 5.3.1 the group A is the minimal
subgroup of G which acts transitively on motives. The finite group P is determined
by inspection of the particular motives which comprise the orbit of the symbol »
under P each.

By the above, P is an automorphism group of the two-dimensional lattice A, and
if (S,0) € A, then there is some D € Z such that D§ € A. Therefore if A € P
has order M then M € {2,3,4,6}. The values M = 3 or M = 6 require A to
be a hexagonal lattice (1 = €%>*/3); M = 4 requires a square lattice (1 = 4). A
lattice with these values of 7 automatically has Zj,; symmetry, and Z,, acts by
(5.2.2) on the corresponding toroidal conformal field theory. Since rotations in two
dimensions commute, (5.2.1) gives no restriction on the B—field.

The REFLECTION SYMMETRY R is an automorphism of lattices with 7 € {0,1},
where R acts on the coordinates of T? by

R=R;: (z",2*) — (z',—2%) or R= Ry : (2", 2%) — (—z',2?). (5.3.1)

By inspection of the action on the respective fundamental cell one checks that an
exchange of R; and R, is equivalent to a transformation of 7p; with S;7T as in
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(2.1.5) we define

0= { TST2SC if ¢ = 1.
Then
Ry <> Ry is equivalent to 7 o Or, where § ") 3 5.3.2
1 2 is equivalent to 7 7, where Ok +im) — %+%2 ( )

We can therefore restrict ourselves to the discussion of the symmetry R; in the
following. To extend R; to the charge lattice (4.2.1), the B-field B must obey (5.2.1)
which is true iff p; € %Z. Then by using (4.3.3) for the Ry action |my, mg, ny,n2) —
+|m/, mb, n, n) we obtain

my = —my, ny = —ni+ 2mng + 2pimg + 4rpima, (5.3.3)
my = mo+2mmy, Ny = g+ 2pima, -

and the invariant vectors (p;; p,) of the charge lattice correspond to |0, mg, 11, no),

1 NoTo =M
< 272 2'02> , N9, Mgy € Z such that n; = nym + map; € Z.

pl,T - \/m 0
(5.3.4)

Because (5.3.4) only depends on p; mod Z the same is true for the resulting orbifold
theory and we can pick p; € {0, %} Note that in the case p; = % the B-field of
our theory is effectively shifted by an integer form if we apply R;. This will be of
some importance below.

In all cases except for 7, = p; = % we can fix the phases of the ground states such
that Ry acts by |mq, ma, ni,n2) — |mf, mh,nl, nh) with (5.3.3). If 7y = p; = 1, the
charge lattice (4.3.3) of the toroidal theory is generated by the four vectors

1 Ty + 0o Ty — 0p2
¢ = — ) ’ 6’ +1
e S 2 ((6 (1/2 - 257202)) (f (1/2 + 2672p2) ety

which are pairwise interchanged by Ry (vs1 <> vs—1). The R; invariant part of the
charge lattice is given by (5.3.4),

1 NoTo £ Mapo 24+ mr
= = 2 r
Pir o ( 0 ) f( o )’

ne = 2n,mo=2m,ny =n+meEZL, r=1/pa/To.

(5.3.5)

Because (vse,v5—) = 1, the vertex operators corresponding to generators of the
invariant part of the charge lattice are obtained from operator product expansions

(Vvsa] + VI=vsa]) x (V{vs ] = VI=vs,1]) -

Since this is a product between an R; even and an R; odd operator, the resulting
vertex operators are Ry odd. It follows that R, acts on ground states corresponding
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to invariant charge vectors (5.3.5) by |mq, ma,n1,n2) — (=1)"2|mq, ma, ny, na).
The additional signs in the R; action for i, = p; = % are due to the fact that
the action of R; effectively shifts the B-field by an integer form, as was already
mentioned above. In the discussion of the bicritical point (C15) in section 6.2 we
will point out a very natural confirmation of this observation.

TRANSLATIONS T by 6 € A are the basic symmetries of the torus 72 = R? /A. The
result of modding out any torus by a translation symmetry 75, D6 € A, D € N
minimal with this property, gives another torus with lattice generated by A and §.
To produce a surface different from the torus, and thereby non—toroidal conformal
field theories, we must combine the translation with the reflection symmetry which
we denote Tg := RTs;. More precisely, we will need this symmetry only in the case
71 =0 and D = 2, and we set

I \/%(1(/)2) 5y = \/%(720/2), 5 = \/%@//22)

for k € {1,2}: ,
Tg, := Rke%ip'%, Tp, = Rke%ip'%, ng = Rge%ip'%.

(5.3.6)
The groups of type Zs generated by Txr or T} are denoted Zo(Tr) or Zo(Ty),
respectively, where either R = R; or R = R,. To understand the action of the
symmetry T = RTj) on the space of states of a toroidal conformal field theory
observe that T only acts on the ground state sectors and leaves the oscillator
modes invariant. On a state |mq, mso, ny,n2) corresponding to the charge vector
(pi; pr) (1, A) the action of T}Q is given by the action (5.3.3) of R; combined with
multiplication by exp[27i(py; pr) (1, A) - 1 (pi; pr)(0,260)] = (—1)®20?) " where we
used (4.2.1). It is therefore a priori clear that as for the action of R we need to
restrict the possible B—field values to p; € {0, %} for consistency of the action of
T}(z'). In fact, Tz(z’) actions are only needed in the case 77 = 0. Using (4.3.3) one now
checks that only for p; = 0 the order of Tg) is two, whereas for p; = 1/2 we find that
Tg) generates a Z, type group. The action of g := (Tz(zl))z is given by multiplication
with £1 on the different sectors of the space of states. To mod out a toroidal theory
A by this Z, then is equivalent to performing a Z, orbifold procedure on A/{1, g}.
But A/{1, g} is another toroidal theory, because both generic torus currents are
invariant under g and give conserved currents in A/{1, g} as well. The Tlg) action
with p; = 1/2 hence need not be considered separately. For p; = 0 by (5.3.2) we
now have

T TV is equivalent to 7 (= iry) > OT (z i) . (56.3.7)

1 2 T

Since by (5.3.6) 6¢) =, /2 (1/2), if |mq, mo, n1, na) is Ri-invariant, then by (5.3.4)

*

my = 0,11 = noTy + Map1, and Tg) acts by

Tg) 2 |ma, ma,my, no) = (—1)"2 |my, mg, ng, ng). (5.3.8)
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We denote by A(1¥) € Zjs the rotation by an angle of . Then R, = A(7)Ry,
70 = ATy

., and we have the noncyclic crystallographic groups

D2 = {1,A(7T),R1,R2}, Dg(R) = ZgURZg,

D4 - Z4 U R1Z4 - Z4 U R2Z4, D6 = ZG U RZG,
DQ(TR) = {17A(7r)7TR17fR2}: DZ(TIIQ) = {17A(W)7T;217T1{22}7
Dy(Th) = Zy4UThZy=T4UTh Ly

The symmetries that correspond to the lattices in figure 5.3.1 and the restrictions
on the values of 7 and p are

Lattice H 1 ‘ 2 ‘ 3 ‘ 4 ‘ ) ‘ 6 ‘ 7
Symmetries || {T5,0 € A} | Zo | Zs | Zy | Zs Zs(R) Zs(R)

T cH ceH |3 | i [e¥B] =0 =3

p c€H cH|e€H |[eH| €H |p€{0,3}|pme{0,1}
Lattice 8 9 10 11 12

Symmetries D, D, Zo(Tr) | Do(Tr) | Do(Ty,)

T 1=0 T =3 m=0|7=0|7=0

p pme{0,5Hme{0,3}[m=0]p=0]p=0

Lattice 13 14 15 16 17
Symmetries | Ds(R;) D3(Rs) D, Dy(Ty,) Dg

o o27i]3 o27i/3 i i o27i]3

p pr€{0,5} | p€{0,5} [p€{0,3}] P =0 ple{O,%}(mg)

Note that all groups occurring in (5.3.9) are solvable. This is clear for the Abelian
ones. For the dihedral groups D, it follows from the fact that the subgroup Z,
of rotations in D,, is a normal subgroup with Abelian factor D, /Z, = Z,. The
finite reflection groups among the groups listed in (5.3.9) are Zy(R), Do, D3(R), Dy,
and Dg. These are better known as Weyl groups of the semisimple Lie algebras
Al, A1 (&) Al, AQ, BQ, and GQ, respectively.

As mentioned in sections 5.1 and 5.2, discrete torsion gives additional degrees of
freedom to a G orbifold parametrized by H?(G,U(1)). With (4.2.4) one checks

Zy for even M.

H*(Zr,U(1)) = {0}, H?*(Dyp,U(1)) = (5.3.10)

5.3.2 One loop partition functions of crystallographic
orbifolds

Let us now give the construction for the sixteen different types of orbifold conformal
field theories with ¢ = 2 corresponding to compactification on 7?/G, G taken from
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(5.3.9) (note that the first of them, corresponding to lattice 1, is the translation
group G = A which acts trivially on 7?). This has been achieved during the stay
of Sayipjamal Dulat at Bonn University, who contributed the necessary Poisson
resumations as well as consistency checks via computer calculation to our joint
work [DWOO]*. The partition function of the G-orbifold of a toroidal conformal
field theory with parameters (7, p) will be denoted Zg_orp(T, p)-

Lattices 2-5 correspond to the standard Z,, orbifold discussed in section 5.2.1
with partition functions given in theorem 5.2.1. The calculation for the other
lattices is simple if one uses the general orbifold prescription of section 5.1, employs
(5.1.7) for the non Abelian groups, and computes box by box in (5.1.3) for the
Abelian subgroups. 1| |is just the partition function of the original toroidal theory,

1

and for g # 1 boxes of type ¢/ | can be determined directly: The ground states
1

|m1, ma, n1,n9) are pairwise orthogonal, so the only states that give a contribution
are the ones that are built by an action of creation operators on ground states
corresponding to vertex operators with g—invariant charge vectors. For the R and
Ty action the latter are given in (5.3.4). If all other boxes are related to those of
type ¢| | by modular transformations (5.1.4), as is the case for lattices 6, 7, 10, 13,

14, onelcan directly determine the entire partition function.

Otherwise there are closed modular orbits in the twisted sector, and we have ad-
ditional degrees of freedom due to discrete torsion. In all cases these are orbits of
boxes of the type ¢ [ |, g € {Rx, TI(%I;)C’ Tg, }, and thus belong to D, type subgroups

A(m)

of the respective crystallographic group. Hence by (5.3.10) this leaves at most the
choice of one sign for each of these orbits. For their calculation, recall from section
5.2 that the twisted sector H 4(r) of the ordinary Zs orbifold by (5.2.3) corresponds
to fields ¢ with half integer modes and (z = 0) = o, j € {1,2,3,4}, a Z, fixed
point on T2. Assume that k of the four corresponding Z, twisted ground states
are eigenstates of g. There eigenvalues must agree and be +1 in order for the Z,
action on the twisted sector to be well defined. Since by (5.2.4) the twisted ground
states have dimensions (h; h) = (1/8;1/8), we find

o ] = o, (gat g )

7 (q@)®
= =4k- 12
(qq) H;.Lozl(]‘ - qn71/2)(1 — q’n—l/2)(1 + q'ﬂ*l/?)(l + q’n—l/Q)

_ k|
2|n

772

V304

- i

All in all the modular orbit of ¢ | | is equal to £2kZ14,, where Zpgn, denotes
A(m)
the partition function (3.3) of the Ising model, and k € {0, 2,4}, since g must map

*The interested reader can find a copy of the respective sections of [DWO00] in Sayipjamal
Dulat’s PhD thesis.
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twisted ground states onto twisted ground states. The correct factor k£ has to be
determined separately in each case. For g = Tz(zl) or g = TR no Zs fixed points are
¢ invariant, so clearly £ = 0. For ¢ = R the result depends on the values of 7;
and p;. In case 3 = p; = 0 the original toroidal theory decomposes into a tensor
product of two ¢ = 1 theories. The action of Dy respects the product structure,
hence

ZD;'—orb(O’TQ’O’p?) Zoch (VTQIOZ)Zorb (\/ pQ/TQ)’ (5311)

where Z¢3!(r) is the Zs, orbifold partition function of a single boson compactified

on a circle of radius r,

n(o)
193 (O')

n(o)
194 (O’)

n(o)
192 (O')

see [EGRS87, Sal87, Yan87]. Z<=!(r) is a special case of (4.1.7),

1
ZeHr) = 2<Z°—()+2 + 2 + 2

) : (5.3.12)

Z7N(r) = —5 > girtmr) ga(homn) (5.3.13)

‘77| mnGZ

One now checks from (5.3.11) that in this case k¥ = 4, in agreement with the
geometric observation that all the four Z, fixed points on T2 are invariant under
the R actions. For 771 = 1/2, p; = 0 one can argue that only two of the four fixed
points are invariant, thus £ = 2. If p; = 1/2, this geometric argument breaks
down since, as noted in our general discussion in section 5.3.1, in this case the
symmetries Ry, Ry effectively shift the B-field by an integer form. The correct
factor for ; = 0,p; = 1/2 is k = 2, as well. This follows from the construction
of the D, orbifold conformal field theory (lattice 15), where one sees that the D,
orbifold at 71 = 0,p; = 1/2 must always contain an even number of fields with
dimensions h = h = 1/16. For 7, = p; = 1/2 we find k = 0. This follows from
the fact that 1| | by the result for the R-orbifold generically does not get any
Ry

contributions from fields with dimensions h = h = 1/16. Hence A(m)| |= £ |%
Ry

cannot give such contributions either. We stress that we have been discussing a
perhaps counterintuitive effect of “turning on the B-field”: The action of R;, R,
on twisted ground states depends severely on the value of p;. In particular, they
must not be interpreted from a purely geometric point of view.

With the above, all Dy type orbifolds can be performed (lattices 8, 9, 11, 12). The
dihedral groups D4 and Dg have Dy type subgroups, where discrete torsion oc-
curs as well. Concerning lattice 15, the maximal Abelian subgroups of D, are Zy,,
Dy = {1, A(w), R1, Ro}, and D} = {1, A(n), A(w/2) Ry, A(n/2)Rs}. The two order
four groups D and D), give different contributions to the partition function, since
these groups are not conjugate in ;. The fundamental cells of lattice 15 we have to
pick in order to interpret them as reflections along the edges of the cell have different
shape. For D, it is a unit square giving a contribution Zp, ,+(7 = 1, p), whereas for
D), it is a rhombus giving a contribution Zp,_ (7 = % + %, p). As to discrete tor-
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[a¥)

sion, both subgroups must contribute with the same factor* since H?(D,,U(1)) &
Z4 by (5.3.10) does not contain Zy X Zs. Lattice 16 is treated analogously. In
the case of lattice 17, the maximal Abelian subgroups of Dg are Zg, and three
groups of type Do, namely {1, A(7), Ry, Ry}, {1, A(w), A(w/3) Ry, A(w/3)R2}, {1,
A(m), A(2n/3)Ry, A(2m/3)Ry}. These order four groups give identical contribu-
tions to the partition function since they are conjugate in Dg. This also means
that in order for the action of Dg on the twisted sector to be well defined, discrete
torsion must be the same for all the three of them.

We will now list the results for all one-loop partition functions of crystallographic
orbifolds that are not Z,, orbifolds and thus were given in theorem 5.2.1; for more
details see [DWO00]. In general, if p; = 71, we set r := \/pa/T2, 7" := \/paT2, and if

p1 # 11, we have r := \/2py /7o, 7" := \/2pa7. By (5.3.2), an exchange of R; and
R, is equivalent to exchanging r and r'. Moreover, we set h: := (2 4 mr)®.

ZRl—O'I‘b(O;TQa 07 p?) = ZCZI(T)Zg’r:bl(T,)’

1 1 V304 + _op-
ZRl—orb(0a7—2>§ap2) = §<Z+ i Zq%m”q%m"
m,n
L Lpt o _ip-
V402 Lpt o g
B Z(—l)m”q”’"“qzhm"> :
n m,n

1 1
Zleorb(ia 72,0,02) = Zg,—ors(0, 72, 2’ p2)

V30,4
774

Z B Z q4h;rm 64h;m

1 1 1
ZR170rb(_77—2’_ap2) - §<Z +
m,n€Z  m,neL+1/2

2 2

el g
U m,n€Z m+n=1(2)
194192 .nm Lpt _Llp-—

m,n€Z,m+n=1(2)

1
ZD;—orb(Tla T2, P1, p?) = §(Z22—orb + ZRI_O"'b + ZR2—0Tb + kZISi”g - Z)’
1
k= 4(1 — T — p1), T1,P1 € {Oa 5}’

939 =
3V4 Z(_l)nqh;qnqhmn

4
n m,n

Z qhanh:nn

nezZ,mel+1/2

1
ZTR1 _OTb(()? T2, O: p2) = 5 <Z +

V30

+774

*We remark that we have unfortunately made this observation only after the publication of
[DWO00], where accordingly the corresponding statements are wrong.
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Va9 1 hitn ghimn
n' nez,ge:mm(_l) e ,
Zpy(rr)-ort(0, 72,0, p2) = %(ZZQ—orb + Zry—orb + L1y —orb — Z),
Zpy(1t)—or(0, 72,0, p2) = %(ZZg—orb + Zrg, —orb + Zrp,—orb — Z),
Zoiny-as(1/2V3)2, 00, 02) = 5 (Zageans + 2o~ 7)
Zpy(ra)-orn(1/2,V/3/2,p1,p2) = % (Zzg—orb + 2ZRy—ort — Z), (5.3.14)
1
p1 € {0, 5},
Zfo—orb(O’ 1,0,p) = % (ZZ4—orb(0a 1,0, p2) + ZDg:—orb(O’ 1,0, p2)
+Z e —ons(1/2,1/2,0, p2) = Zzpors(0, 1,0, pQ)) ,
1

Zpt—on(0,1,1/2,p2) = 5(ZZLI,(,T,,(0,1,1/2,p2)+ZD2i_o,,,(0,1,1/2,,)2)

+ZD2forb(1/2a 1/2a 1/2a :02) - ZZz*orb(Oa 1, 1/2: ,02)) )
1

ZD4(TI’2)iforb(0a 1,0, P2) = ) (erorb(oa 1,0, pz) + ZD2(T}’%)—orb(0a 1,0, ,02)

20 —ors(1/2:1/2,0, 12) = Z2sors(0,1,0, 2) )

1
ZDéi),orb(l/Qa \/5/25 P1; ,02) = ﬁ(Gzza—orb + 3(4ZDgi)forb - QZZg—orb))
1
= §(ZZ6—orb + 2ZD§i)—orb — 275 orb),
1
p1 € {Oa 5}

Here, Z denotes the original toroidal partition function (4.3.4), the partition func-
tions Zz,,—ors Of the Zj; orbifolds were given in theorem 5.2.1, and Zpgp, is the
partition function (3.3) of the Ising model.

5.4 Orbifolds involving the spacetime fermion
number operator

The orbifolds discussed in this section are all constructed by the general procedure
described in section 5.1 and are not motivated geometrically. Namely, they involve
the SPACETIME FERMION NUMBER OPERATOR (—1)Fs, which is defined to act
trivially on the Neveu-Schwarz sector of a superconformal field theory and by
multiplication with —1 on the Ramond sector. We will see, however, that we can
always translate into settings where either geometric interpretations are at hand
or everything can be reduced to the Ising model.
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In the case of an N = (2, 2) superconformal theory which is invariant under spectral
flow, the operators of spectral flow are Ramond fields and so are projected out if we
perform an orbifold involving (—1)¥s. In other words, spacetime supersymmetry
is broken and since the entire N = (2, 2) superconformal algebra is invariant under
(—1)Fs we are able to construct examples of superconformal field theories which
are not invariant under spectral flow. Though for all theories constructed below
the charges (Q; Q) obey Q — Q € Z, the condition of Q — Q being even for bosonic
fields is violated. In particular, the worldsheet fermion number operator (—1)%
may not be identified with emilJo—Jo)

In [DGHS8] all orbifolds of N = (1,1) toroidal superconformal field theories with
c = % have been constructed that apart from geometric symmetries involve the
spacetime fermion number operator. It is easy to generalize the analysis to arbi-
trary dimensions, and we will use the notations introduced in [DGH88| to do so.
The Z, X Zjy gradings of the resulting orbifold conformal field theories, which are
not given in [DGHS88], can also be determined in general, since the R part of the
partition function must transform covariantly under modular transformations, as
was remarked as a comment to (3.1.9).

By definition, (—1)s leaves invariant spacetime fermions with twisted boundary
conditions in space direction of the worldsheet torus Z(c). Since modular transfor-
mations permute the boundary conditions of the fermions, the theory obtained by
modding out (—1)*s from a superconformal field theory C will have the same space
H = HNS @ H" of states as the original, but in H* the sectors H,* and Hf are
interchanged. On the level of partition functions, only Z5 changes its sign. Since
by our general approach to superconformal field theories in chapter 3 the sectors
HE and Hf are on equal footing, this renaming of bosonic into fermionic Ramond
fields can always be done consistently. If C = T (A, B) is a toroidal superconformal
field theory, as we will assume for the rest of this section, we even have Hf = /H?
(theorem 4.1.4) as a remnant of the order—disorder duality of the critical Ising
model. In the N = (2,2) case where ¢ = 3d/2,d/2 € N, the Ramond fields in the
orbifold C/(—1)¥s will carry different charges from the ones in C, however, but in
this case we can interpret the orbifold geometrically. Namely, the Dirac fermions
in C; (notations as in definition 4.1.3) can be bosonized, and the operator (—1)%s
acts as a shift on the charge lattice of the resulting toroidal theory. Since the shift
is left-right symmetric, level matching conditions are satisfied automatically. The
Ising and the geometric interpretation of the fermion number operator ensures that
all orbifolds discussed below can indeed be explicitly constructed.

Let us now combine (—1)"s with other symmetries of toroidal superconformal field
theories. Firstly, consider a shift symmetry Ta with A = (p;p,)(0,6), D§ € A for
some D € N as discussed in (5.1.5). Set Ss := (—1)"ST, then since S? is a pure
shift symmetry and generates a normal subgroup of span{Ss}, we can perform the
Ss orbifold stepwise and assume 26 € A from now on. The corresponding orbifold
conformal field theory is called SUPER—AFFINE ORBIFOLD with partition function
Zi_ T :=T'(A,B). We use the notations of (5.1.5) and remark that modular

s—a?’
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transformations (2.1.5) act by
(
Zry = > <ZI‘3L + Zp; + Zpy + ZFZ)
1
B I ETS
A (ng ~ Zp + Zpy - ZFZ) Zrs = s,
| Zr; 7 2 (er{ —Zps = Zpy + Zr;)

Then it is easy to determine the entire partition function from

( d>
by modular transformations (as usual, set z = 0 for odd d). Moreover, since Z¥
must transform covariantly under modular transformations,

d d

+

d

’194(2)

n

Ss = (Zr0+ - ZFg) %

791 (Z)
n

192(2)
n

’193(2)
n

1

d

z% = (ZF(]*'*'ZP;) 193752) , Zg _ (ZFO‘L_ZFZ) 194752) ’
4 = (ZPE +ZFZ> 192752) d’ 2t = (Zra_ rz) 191;2) d

If we combine (—1)fs with a generator v of an ordinary Z,; orbifold (5.2.2), the

same reasoning as above yields the construction trivial if 42 generates Zy, i.e. for
M = 3. We restrict ourselves to the case M = 2. The resulting Zs type orbifold
by Sg := (=1)fs - (=1) is called ORBIFOLD PRIME with partition function Z. .
By analogous calculations as in the superaffine case, we find

ZNS _ 1 7 193(2) d+ 193194794(2’) d + 792193792(2) d _ ’192194’!91(2) d
ot T 2\ Ty R R n® ’
NS 1 194(2) d 193194193(2) d 192793191(2) d 192194’(92(2) d
Zorb’ ) Zr + 3 3 + 3 ’

n n n n
P S C) C 19504091 (2) | [9209505(2) [* [ 029404(2) |
v = \EET T e e )
ZE  _ 1|y 91(2) | [030092(2) [* [020304(2) [© [0204093(2) |*
O N e B e e el e

Note that in general this is not just the (—1)s orbifold of the Z, orbifold, but
comparison with theorem 5.2.2 shows

Zrw(o,2=0)= 25 _,4(0,2=0)—3-2¢"1. (5.4.1)
Finally, let us discuss possible combinations of symmetries S5, Sg, and generators

of Zy, M € {2,3,4,6}. Since the group generated by Sg and S; contains a
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purely geometric normal subgroup span{S; - Sg} of index 2, the corresponding
orbifold can be obtained stepwise by a geometric symmetry and by S;. The group
generated by Sr and a generator of the standard Zj,, action (5.2.2) will neither
produce anything new, since for even M we get (—1)"s applied to the ordinary
Zyr orbifold, and for odd M it is generated by a single symmetry of type Sg which
was discussed above. The only nontrivial combination is a Zjy; X Zgy type group
containing the ordinary Z,; and the additional generator Ss. This type of orbifold
is called SUPER-M-ORBIFOLD, and the partition function for M = 2 is

Zr 2—orb — (Zf—a + ngg—orb + Z orb — ZF) .

5.5 The generalized GSO projection

It is known from Calabi—Yau compactification, and we have also seen in section
3.1.5, that those N = (2,2) superconformal field theories are particularly simple
which have all integer charges on the left and right handed side. To be consistent
with theorem 3.1.4 we have to relax this condition to hold only in the NS sector
and require ) + ,Q + ¢ € Z in the R sector. In particular, we must have
c=3d/2,d/2 € N which i 1s assumed throughout this section. Analogously to the
proof of theorem 3.1.4 we can argue that the above condition on the charges is
equivalent to the theory being invariant under all combinations U, 1 U +1,Uss U
of spectral flows, i.e. these operators being realized as fields in the theory The
aim is to associate a theory where this is the case to every superconformal field
theory by an orbifold procedure. Unfortunately we will have to make additional
assumptions on our theories in order for this idea to work.

Definition 5.5.1

Let C denote an N = (2,2) superconformal field theory with central charge ¢ =
3d/2,d/2 € N, such that all left and right charges are multiples of a fixed fraction
%, M € N. Then by GENERALIZED GSO PROJECTION* we mean the orbifold
procedure performed with the group Ggso which is generated by

: e2rido on NS emito=T0) on H,
= . K = . —
M emse?milo on HE M —emJo=Jo) on H;

We claim that under appropriate assumptions on C, the generalized GSO projection
can be used to achieve our above aim:

Theorem 5.5.2

Suppose C is an N = (2,2) superconformal field theory with central charge ¢ =
3d/2,d/2 € N, such that the set of charges Q, Q occurring in C does not have an
accumulation point. Then by the generalized GSO projection we can construct an
N = (2,2) superconformal field theory C = C/Ggso which is invariant under all

*“GSO” refers to Gliozzi, Scherk and Olive [GSOT77] who proposed a similar projection to
arrive at tachyon free consistent string theories.
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combinations of spectral flow.

Proof:

Since by assumption the set of charges Q,Q occurring in C does not have an
accumulation point and on the other hand forms a lattice in R, we see that there
exists an integer M € N such that all charges are multiples of ﬁ Thus the
group Gggo of definition 5.5.1 is a well defined finite group, actually a subgroup of
Zions X Ziopy. 'The orbifold by Ggso is well defined, since Ggso can be generated by
the left-right (anti—)symmetric (3%, , kar, and thus level matching conditions are
automatically satisfied. By construction, C/Ggso is invariant under Ggso, which
directly translates into the conditions on the charges that we know are equivalent
to invariance under all combinations of spectral flow. O

At the end of section 5.1 we have remarked that orbifolds by solvable groups can
always be rescinded by an orbifold of the same type. Hence we can use theorem
5.5.2 for a first result towards a classification of N = (2,2) superconformal field
theories:

Theorem 5.5.3

Let C denote an N = (2,2) superconformal field theory with central charge ¢ =
3d/2,d/2 € N such that the set of charges Q,Q occurring in C does not have an
accumulation point. Then C can be obtained as orbifold conformal field theory
C = C/G from a theory C which is invariant under all combinations of spectral
flow. The group G is a product of cyclic groups.

If d = 2, then C is a toroidal superconformal field theory.

Proof:

Only the assertion on the case d = 2 remains to be shown. Since C is an N = (2,2)
superconformal field theory with ¢ = 3 that is invariant under all combinations of
spectral flow, in particular the operators U; = €', U, = ' of (3.1.7) are realized
as fields in the theory. They have quantum numbers (h,@Q;h, Q) = (3,1;0,0)
and (h,Q;h,Q) = (0,0;3,1), respectively. Thus ¢' = U; and El = U, are free
Dirac fermions, and their superpartners j', 7' give U(1) currents. Since ¢ = 3, by
definition 4.1.4 this suffices to show that C is a toroidal superconformal field theory.

O

Unfortunately, it is not clear how strong the condition on the charges in theorem
5.5.3 really is. Theorem 5.5.3 is obviously important, since all theories that satisfy
the conditions asserted for C are believed to have a nonlinear sigma model inter-
pretation in terms of string compactification. On the other hand it is not very
handy, since the GSO projection is explicitly not motivated by geometry, so for its
inverse we cannot expect anything better. Nevertheless, the situation we find for
the known examples gives reason to hope:

Theorem 5.5.4
Suppose that C is an N = (2,2) superconformal field theory with central charge
¢ = 3d/2,d/2 € N odd, obtained as orbifold C = C/G from a toroidal supercon-

formal field theory C = T (A, B). Moreover assume that G is a product of cyclic
groups Zyy, acting either asstandard Zy; (theorem 5.2.2) or superaffine, orbifold—
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prime or super—M — orbifold as described in section 5.4. Then the generalized GSO
projection reconstructs the toroidal theory C from C.

Proof:

It suffices to show that the generalized GSO projection inverts the standard Z,,,

the orbifold prime and the superaffine orbifold separately. Our assumptions on C

are such that the generalized GSO projection is well defined in any case.

Since by theorem 5.2.2 the Zj orbifold conformal field theories are invariant under

spectral flow, ks of definition 5.5.1 acts trivially on C/Zj,;. Let v denote a gener-

ator of Zs, then to show theorem 5.2.2 we argued that for a single Dirac fermion

Ql}:(f ) twisted by ¥ the Ramond ground states correspond to Neveu—Schwarz states

with left and right handed charge (—1)*. Since £ = ¢ was assumed to be odd,
m c

the total charge of a Ramond ground state in H,n is Q@ = Q = 7} — ¢. Hence

Gaso = Zyy acts by multiplication with e " on ‘H.m and thus indeed inverts the
standard Z;, orbifold.

For the orbifold prime and the superaffine orbifold it follows from our results of
section 5.4 that only (half) integer charges occur in the respective sectors, but
the condition of Q — Q € 27 exactly for bosonic states is violated. Thus only
k1 of definition 5.5.1 acts nontrivially on these orbifold conformal field theories,
Gagso = Zsy. Tt is straightforward to check that x; acts by multiplication with —1
exactly in the twisted sectors of the orbifold prime and superaffine orbifold and so
inverts these orbifolds, as asserted. O

The following observation is reassuring: In section 5.3 we have constructed various
orbifolds of toroidal conformal field theories with central charge ¢ = 2 by non
Abelian groups. The action of the corresponding crystallographic group can be
extended to toroidal superconformal field theories with central charge ¢ = 3 such
that the fermionic fields are treated equally as their bosonic superpartners. But
now one checks that none of the non Abelian groups leaves invariant the generators
G#, J of the superconformal algebra (3.1.1), basically since the reflection symmetry
(5.3.1) does not. This is in accordance with theorem 5.5.3.

5.6 Gepner models revisited

In theorem 3.1.16 we have seen that Gepner models exactly satisfy the conditions
on charges that make theories as simple as required in section 5.5. It is therefore
natural to ask whether Gepner models in turn can be constructed as orbifolds of
other N = (2,2) superconformal field theories. Such a construction indeed is the
more common one [Gep87, Gep88, GVW89]|, as we will see in theorem 5.6.1 below.
Some knowledge on the discrete symmetries of N = (2,2) minimal models and
orbifolds of their tensor products will facilitate the discussion.
The minimal model (k) inherits a Zj_» symmetry from the parafermionic subtheory
whose generator acts by

By enken () @l (5.6.1)

m,S8;m,s m,S$;m,8"
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Hence the tensor product (k1) ® - -- ® (k,) possesses an Abelian symmetry group
[T}, Z#; +2, whose elements are denoted a = [ay, . .., a,]. To study the correspond-
ing orbifolds of (k1) ®---® (k,) (see also [GPI0]) it proves convenient to introduce
a scalar product on H;Zl Ly, +2 by

T
a;b;

a,bEHij+2: aeb:= m
j=1

Jj=1 J=

Then the level matching conditions for an orbifold by H := span(a) C [[j_; Zg,+2
read Adaea € Z, it H = Z, [GP90]. Using the fusion rules (3.1.18) as well
as (3.1.17) one checks that a (Ramond) Neveu-Schwarz field ®§:1‘I)lr]ﬁj,sj;mj,§j is
invariant under a iff it is (semi-)local to V¢ := ®§:1(I)2j,aj;—aj,—aj- To be able
to directly include the twisted sectors into the discussion, here we have assumed
arbitrary left-right coupling. Namely, since it is local to all fields in the theory,
by property 8 for our conformal field theories (section 2.1) (k1) ® --- ® (k,)/H
automatically contains the field V*. Note that this is a SIMPLE CURRENT in the
sense of [SY89b, SY89a, SY90|, i.e. fusion with V* always produces only one
conformal family. In fact, it is easy to see that up to projection onto H—-invariant
states the twisted sector Hym of (k1) ® --- ® (k,)/H is obtained from the original
Hilbert space H by application of (V*)™. But this means that orbifoldizing by H
is equivalent to extending the holomorphic W-algebra of (k1) ® --- ® (k,) by the

simple current
T

U* := (X) 9. 20,:00- (5.6.2)

j=1

We remark that @ ., o = (®9,,,)" in fact are the only holomorphic simple currents
of (k) and since for any factor ®}, ... of a field in a consistent theory we must
assume s —s = Omod 2 for consistency of the Z, X Zs grading, we have to assume
b to be even. This leaves us with the U® as the only candidates an extension of

the W-algebra by simple currents may work with. We are now ready to show

Theorem 5.6.1
The Gepner model (ki) - - - (k,) of definition 3.1.15 is obtained by GSO projection
(definition 5.5.1) from (k;) ® - - - ® (k;).

Proof:

We set C := (k1) @ -+ - ® (kr)/Gaso and must show C = (k1) - - - (k). To keep sign
errors out of the game, we restrict to the bosonic Neveu—Schwarz sector, which is
legitimate since both C and the Gepner model are invariant under spectral flow.
By (3.1.17) we find M = lem{k; +2,i=1,...,r} in the definition 5.5.1 of Ggso-
Then ks acts trivially, since this is so on each minimal model factor. On the other
hand, since Ggso projects onto integer charges in the Neveu-Schwarz sector, (ys

acts by
- l; d —k27:2mj - l;
@0 (1) @
Q- ® Doy 5jm8 € Py 5jim; 55
j=1 i=1 =1
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Since all fields in (k1) ® --- ® (k,) have left-right symmetric quantum numbers
m; = m;, the GSO projection therefore is just an orbifold by H = span(5) C
[[5=1 Zk;+2 with 8 = [1,...,1] as discussed above. Hence C is obtained from
(k1) ® - -- ® (k,) by enhancement of the holomorphic W-algebra with the operator
of twofold lefthanded spectral flow U? = Uy, which is just our construction of the
Gepner model in definition 3.1.15. O

It is now clear that also the Gepner model inherits a residual Abelian symmetry
group from its minimal model factors: Namely, for (ki) ---(k,) we find Zy X G,
where Z; denotes charge conjugation and Guy = ([ ;= Zk;+2)/Zn, M = lem {k; +
2,i=1,...,r}. Here, Zy acts by

r r
Hij+2—)Hij+2, [al,...,ar]|—>[a1+1,...,a,«+1]
7j=1 7j=1

(see also [GP90]). Note that only elements of the subgroup

T a/]
ij 5 € Z} C Gap (5.6.3)
j=1

leave invariant the operators of spectral flow Ui%Ui%, i.e. commute with spacetime

ggf,g = {[al, ooy 0] € Gap

supersymmetry. Elements of Go—G%¢ describe R-symmetries [Gep87]. We directly
deduce the following

Theorem 5.6.2 B ~ _

Consider a Gepner type model C = (ky)---(k,) as in definition 3.1.17, where
W D Wagepner s obtained by extending with simple currents U, U, ... asin (5.6.2),
and H := span(a,b,...) C Qg,l)g. Then C is obtained as orbifold by H from the
Gepner model (kq) - - - (k;).

The discussion now is fairly close to a remarkable duality on the moduli space of
superconformal field theories, known as MIRROR SYMMETRY:

Theorem 5.6.3 [GP90]

Let C denote a Gepner model and H := gg,ﬂg . Then the theory obtained by modding
out H is isomorphic to C. More generally, assume H C gg}f’ such that C/H is well
defined. Then one can define a dual group

H = {beggll)”aobEZVaEH},

and C/H and C/H* are isomorphic N = (2,2) superconformal field theories, so—
called MIRROR PARTNERS. Their spectrum differs by the sign chosen for the right
handed charges.

Since by the above we obtain Gepner models by performing the GSO projection
on tensor products of minimal models, it is a natural question to ask what kind of
orbifold on the Gepner model will reproduce the tensor product of minimal models.
At least in case of central charge ¢ = 3 the answer is simple:
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Theorem 5.6.4
The fermionic tensor product (2)®(2) [(1)®(1)®(1) or (1)®(4)] of N = (2,2) mini-
mal models has a geometric interpretation as Z, [Z; or Zg) orbifold of the N = (2,2)

toroidal superconformal field theory with ¢ = 3 and parameters T = p = 1
[T = p = €?™/3], respectively.

Proof:

First note that the Gepner models (2)? [(1)® or (1)(4)] possess geometric inter-
pretations, since they are just the toroidal superconformal conformal field theories
with ¢ = 3 and parameters 7 = p = i [T = p = €*>™/3]. This is generally regarded as
a well known fact, and it is easy to check that the partition functions indeed agree.
Moreover, the current algebra of each of these models contains u(1)3, and so they
are toroidal conformal field theories by definition 4.1.1. To see that they are indeed
the asserted toroidal superconformal field theories in the sense of definition 4.1.3
one has to show that the charge lattices with respect to the u(1)* current algebras
agree. This is explicitly done for the case (2)? in theorem 7.3.24. For (1)3, (1)(4) it
already suffices to note that both of them have left and right u(1) @ su(3) current
algebras and thereby are uniquely determined within the moduli space of toroidal
superconformal field theories with ¢ = 3 (see theorem 6.1.1).

We now need to show that the inverse of the GSO projection on the Gepner models
induces the standard Z, [Zs or Zg| action (5.2.2) on the respective toroidal theory.
It clearly is a Zj, type orbifold, M = 4 [3 or 6], generated by

T T
= L T Q) ¢
N . _ 2M — —
Qo ®(I>mj’8j;mj,8j € (I)mjﬁj;mj’s]"
j=1 Jj=1

On (2)2, {4 leaves two of the seven (1,0) fields invariant, whereas the eigenvalues +i
occur twice and —1 occurs once. The two SU(2) current algebras are interchanged.
The same is true for the standard Z, action on the SU(2)? torus. By the explicit
field identifications of theorem 7.3.24 one finds that the corresponding actions
indeed are su(2)?@®u(1) conjugate. A similar analysis holds in the other two cases.
Again, it is also easy to show that the respective partition functions agree. O

Theorem 5.6.4 matches nicely with theorem 5.5.4 but in fact is a stronger result.
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Chapter 6

The moduli space of unitary
conformal field theories with
central charge c =2

This chapter is devoted to the study of the moduli space M? of unitary conformal
field theories with central charge ¢ = 2. Most of the results have been published
in [DW00]. We use the notations for toroidal theories in two dimensions and
crystallographic symmetries that were introduced in sections 4.3 and 5.3.

In section 6.1 we give a classification of all nonisolated nonexceptional orbifold
components of the moduli space. The global structure of M? is investigated in
section 6.2, where all intersection points and lines of nonisolated nonexceptional
orbifold components are determined. In section 6.3 we discuss theories obtained as
tensor products of known models with central charge ¢ < 2. We relate our results to
those on ¢ = 3/2 superconformal field theories [DGH88| and are able to interpret
all the orbifolds discussed there in terms of crystallographic orbifolds. We also
correct the statements on multicritical points on the moduli space of N = (1,1)
superconformal field theories with ¢ = 3/2 made in [DGHS88|. Section 6.4 ends the
chapter with a summary on the picture we have obtained so far.

6.1 Classification of orbifolds with ¢ =2

In this section we will argue why our constructions of crystallographic orbifolds
of section 5.3 already suffice to determine all nonisolated nonexceptional orbifold
components of the moduli space M2. In section 6.1.1 we discuss all symmetries of
two dimensional conformal field theories we will need. In section 6.1.2 we show that
they indeed suffice, and give the parameter spaces of the corresponding components
of the moduli space. The proof of theorem 6.1.3 below is based on ideas of Werner
Nahm’s.
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6.1.1 Discrete and continuous symmetries of toroidal con-
formal field theories

In order to determine all orbifold components of the moduli space we need to find all
possible symmetries of toroidal conformal field theories C € MY %" The simplest
ones are those which are induced by geometric symmetries of the torus 7% = R? /A
for a given geometric interpretation C = T (A, B). All of these symmetries have
been discussed in section 5.3.

One can expect to find discrete quantum symmetries without geometric interpre-
tation on fixed points of the additional generators U, V, UV of the modular group
PSL(2,7Z)* x Z3 of MY %" in (4.3.6). But it turns out that neither of them gives
new orbifold components of the moduli space. Firstly, target space orientation
change V induces a trivial action on toroidal conformal field theories. The fixed
lines of U and UV in the Teichmiiller space H x H of MY %" haye parameter
spaces

gU = {(Tlat:Tl,t) |t€R+}a gUV = {(Tlata _Tl’t) |t€R+} (611)

Then, for mirror symmetry g = U we read off an induced action ny <+ ms on the
charge lattice (4.3.3). Moreover, all theories in & have a righthanded SU(2) xU (1)
symmetry, two of whose commuting generators are invariant under this action.
Since one checks that both generic Abelian lefthanded U(1) currents are invariant
under the action of U as well, we find that the theory we produce by modding out
U contains at least two left— and two righthanded Abelian currents and thus is a
torus theory again. U therefore is SU(2) conjugate to a shift on the charge lattice,
which acts by multiplication with :"27™2 on states created from the Hilbert space
ground state |mq, mo, n1,n9). It is now a straightforward calculation to check that
this shift orbifold reproduces the original theory. The case ¢ = UV is treated
analogously, since Eyy is obtained from £y by a parity change (7, p) — (7, —p).
Classically, tori cannot have continuous symmetries beyond translations. However,
at certain parameters 7, p it is well known that quantum effects can lead to en-
hanced gauge symmetry groups. This seems to be equivalent to the occurrence of
additional (1,0) fields that generate an affine Kac-Moody algebra in our theory,
though a proof for this observation is lacking. It is not clear, when a Noether
method can be applied to associate conserved currents to a global symmetry of a
conformal field theory, unless the theory is described by functional integrals.

In the case of toroidal conformal field theories, however, it is not hard to determine
all points in MY where additional (1,0) fields occur left-right symmetrically
and generate an enhanced continuous quantum symmetry. We remark that our
idea of proof is fairly similar to methods used by B. Rostand [Ros90, Ros91].
Assume that a toroidal conformal field theory with charge lattice I' has left-right
symmetrically enhanced symmetry. By {(£p;;0), (0;+p}),: € {1,...,d}} C T
we denote the charge vectors corresponding to the additional vertex operators of
dimensions (1;0) and (0; 1), respectively. In particular, |p;|*> = |pi[* = 2, and since
these vertex operators are pairwise local, for ¢ # j we may assume p; - p; = p; - p;- €
{0,1}. Then the R-span of {(p;;p}),7 € {1,...,d}} C T is totally isotropic with
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respect to the scalar product (4.1.4). By the discussion in section 4.2 this means
that we may choose a geometric interpretation (A, B) of our toroidal theory such
that p; = pj} for all ¢ € {1,...,d}. Moreover, by the above restrictions on the
scalar products between the p;, these vectors generate the root lattice of a simply
laced Lie group. Since the rank of this group can be at most two, the only possible
groups are A, = SU(3), A? = SU(2)? or A; = SU(2). If we now write the charge
vectors (p;;0) and (0; —p;) in the form (4.2.1), we find

1
ViE{l,...,d}: :th:—(/,LZi—B)\Z:]:)\Z),)\zEA,,LL?:EA*

V2

In particular, 2);,2B); € A* for all i € {1,...,d}. These conditions are suffi-
cient to determine all theories in MY %" with left-right symmetrically enhanced
symmetry:

Theorem 6.1.1

There are two theories with maximally, that is rank two, enhanced symmetry,
namely the SU(2)? torus theory at 7 = p = i and the SU(3) torus theory at
T = p = ¥/3 with gauge symmetries SU(2)? x SU(2)2,SU(3), x SU(3),, re-
spectively. Tori with 7 = p & {i,e*™/*} and 7, € {0,1} exhibit an enhanced
SU(2), x SU(2), symmetry.

We stress that (6.1.1) contains examples where enhanced symmetry occurs non-
symmetrically: For generic parameters 7 = p (i.e. 71 & {0,3}), we have a right
handed SU(2);, whereas for 7 = —p, 71 € {0, 5}, we have a left handed one.

6.1.2 Irreducible nonexceptional nonisolated components
of the moduli space

Suppose that a nonisolated component of M? with Teichmiiller space £ C H x H
is obtained by modding out a common symmetry group G of all toroidal theories
with parameters in £. Assume further that £ is a maximal connected subset of
H x H corresponding to theories with symmetry G. In particular, G acts as group
of isometries on &£, and the (1, 1) fields which describe deformations within £ are
invariant under G. Thus £ is totally geodesic. Since by the discussion of (4.3.6)
the metric on the Teichmiiller space H x H is just the product of hyperbolic metrics
on each of the factors H, geodesics are well known: The projection on each of the
H-factors is a half circle with center on the real axis, a half line parallel to the
imaginary axis of H, or constant.

If £ contains a large volume theory, then the action of G' has a geometric interpre-
tation. Namely, recall from (4.2.7) that a large volume theory in £ has a unique
preferred geometric interpretation (A, B) with large p, = det(G,) in terms of a
nonlinear o model. Then the action of GG on that toroidal theory will not change this
preferred geometric interpretation. Since I' as defined in (4.2.7) has the property
span, ' = {%(,u; w) | p € A*}, the action of G is given by a geometric symmetry
on the corresponding torus 7% = R? /A.
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Let us assume that G maps the set {jix7, | k,! € {1,2}} of generic (1,1) fields of
theories in M4 into itself. By construction of toroidal conformal field theories,
this means that G induces an action on the entire Teichmiiller space H x H of
Myarain - which identifies isomorphic theories and fixes £. This action will be
denoted G in the following. By construction (4.3.6) of the moduli space M erein
of toroidal theories, we must have G C PSL(2,Z)*xZ%. Note that in general G will
be different from G, since an action of G on vertex operators V[p] by multiplication
with phases will be invisible in its induced action on MZarain,

If £ contains a geodesic with the property that its projection on one of the factors
of H in the Teichmiiller space is constant, then by (4.3.3) one checks that £ contains
a large volume limit and thus G acts geometrically by the above. Otherwise, note
that & is the fixed point set of a subgroup G C PSL(2,Z)? x Z3, and that by what
was said in section 6.1.1 the action of V need not be discussed. Thus £ must be
one of the spaces &y, Eyy of (6.1.1), or a Mdbius transform thereof. Since £ is
maximal, we may assume G = {1, g}, where g € {U,UV} and £ = &,. But then
in section 6.1.1 we argued that in neither of these cases we find new components
of M? by modding out such a nongeometric symmetry.

To summarize what we have shown up to now we use the following

Definition 6.1.2

Let & C H X H denote the Teichmiiller space of a nonisolated irreducible orbifold
component E of M2, such that £ is obtained by orbifolding with the group G. If
the set {jx7, | k,1 € {1,2}} of generic (1,1) fields of theories with parameters in
£ is not mapped onto itself by the action of G, we call the action as well as the
corresponding orbifold component of M? EXCEPTIONAL.

Above we have shown

Theorem 6.1.3 R

Each nonexceptional nonisolated component £ of M? which is obtained by an orb-
ifold procedure form a subspace MY %" js obtained by a geometric orbifold. By
the discussion of section 5.3 it thus is obtained by a crystallographic orbifold.

In fact, since the Teichmiiller space £ of an exceptional component is totally
geodesic, to give an estimate of how many exceptional components one may find it
suffices to determine all geodesics in H x H that parametrize theories which gener-
ically possess more than four (1, 1) fields. By explicit calculation using (4.3.3) one
checks that all such geodesics have the form f(t) = (71,¢, £71,t) € Hx H, ¢t € RT,
or are Mobius transforms thereof. In other words, without loss of generality £ = &y
or & = &Eyy as defined in (6.1.1). Thus in all exceptional cases the toroidal con-
formal field theories with parameters in £ possess an additional SU(2); or SU(2),
symmetry, and the exceptional action is given by a binary tetrahedral, octahedral
or icosahedral subgroup 7,0, I of SU(2) (see [Gin88b]), possibly in combination
with some other symmetry. For instance, if 7, = 0 the toroidal theories in £y = Eyy
decompose into tensor products of ¢ = 1 circle theories at radii r = 1,7 = ¢, re-
spectively. Then the possible actions of T, O, I on the first factor theory are clear
from the results on conformal field theories with central charge ¢ = 1 [Gin88b].
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Discrete subgroups of, for example, SU(3) cannot lead to the construction of non-
isolated components of the moduli space, since by the discussion at the end of
section 6.1.1 we know that an enhanced SU(3) symmetry only occurs at the iso-
lated point 7 = p = €?™/3 of MY " In general, exceptional components of M?
are an interesting issue to be studied separately, which exceeds the scope of the
present work.

We rather concentrate on the nonexceptional components of M? in the following.
Note that equivalent toroidal theories need not always be mapped onto equivalent
orbifold theories if we mod out a symmetry group G, since the action of G' in some
cases does depend on the particular choice of coordinates on 7T2. In other words, £
is obtained from £ by modding out a subgroup of {A € PSL(2,Z)?xZ3% | AE = £}
which needs to be determined for every group G separately.

Recall on the other hand from the end of section 5.1 that every theory that was
constructed as orbifold by a solvable group G possesses a symmetry which one
can mod out to regain the original theory. The list of crystallographic symmetries
(5.3.9) shows that indeed only orbifolds by solvable groups are of relevance to us.
Thus no information distinguishing two theories may be lost under our orbifold
procedures. In other words, if we mod out two distinct toroidal theories by the
same symmetry, then the resulting theories must be distinct as well.

Let us now determine the parameter spaces of all nonexceptional nonisolated orb-
ifold components of M?. By theorem 6.1.3 all of them are crystallographic orbifolds
by some group G in our list (5.3.9), and the corresponding component is denoted
Mg _orp- From (5.3.9) one also reads the Teichmiiller spaces, for an illustration
and the numbering of the respective lattices see figure 5.3.1.

If G = Zy (lattices 2-5), we find that G commutes with Mobius transformations,
and in case M = 2 also with the entire PSL(2,7Z)? x Z32 of (4.3.6). Thus for the
families of Zj; orbifold conformal field theories with ¢ = 2 we get the following
irreducible components of M?:

1%

M2zy—orp Myerein =~ 1 x H/PSL(2,Z)? x Z3,
for M € {3,4,6}: Mzyon = {(r.p) |7 ="' pecH/PSL(2,Z)}
=~ H/PSL(2,7Z).

(6.1.2)
For the lattices 6 to 17, by (5.3.9) we get irreducible components M(G”_g’;g of the
moduli space M? with 71, p; € {0, %} In some cases discrete torsion gives ad-
ditional degrees of freedom, increasing the number of irreducible components to
ng;f l.}rb. The Teichmiiller space of each such irreducible component is (R*)*,
where £ = 1 if 75 must be fixed for the particular lattice, too, and £ = 2 other-
wise. To find the correct parameter spaces, we must determine the subgroup P
of PSL(2,7)% x Z2 in (4.3.6) which maps the respective Teichmiiller space (R")*
onto itself. Then we must discuss which elements of P map equivalent orbifold
theories onto each other.

Restrict P to one of the factors R* C H of the Teichmiiller space (R*)¥, specified
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by ¢1 =0 or ¢; = 5. We claim that
P PSL(2,7) = {1,0},

where © was given in (5.3.2). By definition, © acts on I° := {¢ € H | {; = 0} by
G é andon IT:={C€H|{ =3} by & é. Now I° = J°U ©J° where
JO:={C € I’| ¢ > 1}. Because J° does not contain any two points identified
1

by Mobius transformations, the assertion follows for the case (; = 0. For (; = 3

observe that It = (JTUTSTJ ) UO(JtUTSTJ), where J* := {¢ € I't | (, > L}
and J' :={¢ € H|||¢]| =1,¢ € [-1,0]}. Because no two points in J* U J! are
related by Mobius transformations, the assertion follows. For the respective factor
of the Teichmiiller space under discussion, © will be called T-DUALITY.

By our convention to fix 7, p; € {0, %} it is clear that target space orientation
change V : (1,p) — (-7, —p) in (4.3.5) can only be contained in P if 1, = p; €
{0,2}, in which case it acts trivially. Mirror symmetry U : (7,p) — (p,7) is
contained iff 7 = p; and 7 is not fixed. Inspection of the charge lattice (4.2.1)
and the action (5.3.3) of R; shows that mirror symmetry commutes with R, Ry
on toroidal conformal field theories. But a priori it is not clear whether it indeed
commutes with the action of each of the symmetry groups corresponding to lattices
6 to 17. Therefore, a case by case study is necessary to decide which of ©,U map
a G orbifold onto an equivalent one and thus determine all the parameter spaces
MgE_Orb. We will also see that not all of the lattices yield different components of
the moduli space M?2.

By our general discussion of crystallographic symmetry groups in section 5.3.1, to
find the correct parameter space for the irreducible components of M? obtained by
Zs(R) orbifolding, the Teichmiiller spaces are constructed by considering R = R;
only. T-duality applied to 7 alone, which by (5.3.2) is equivalent to R; <> Ry, i.e.
r <> 7' in (5.3.14), does not generically map onto an isomorphic theory. Application
of T—duality to both 7 and p simultaneously, which will be denoted by

and called SIMULTANEOUS T—DUALITY in the following, amounts to 7 — *, 7’ —
L, mapping the Zy(R) orbifold to an isomorphic theory (see (5.3.14)). Mirror
symmetry 7 <> p acts by r — %, r" + 7', which it is invariant under, too. In
particular, lattice 6 (; = 0) with p; = 3 and lattice 7 (1, = 1) with p; = 0
correspond to families of isomorphic orbifold conformal field theories.

Summarizing, we have constructed the following three irreducible components of

the moduli space:
M(Zz(l)%)—orb = (R+) /{Ua 8}5 MZ2(R)—orb = (R+) /{U, S},
(0,3) (1,0 ~ 2
MZz(zR)forb = MZZ(R)forb = (R+) /S.

In the other cases an analogous discussion leads to the determination of the correct
parameter spaces which we list in (6.1.3) below. As to the case of D3(R) (lattices
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13 and 14) it is worth mentioning that by (5.3.14) we know that Zg, . is obtained
from Zg, .+ by application of T—duality (5.3.2) on 7. Using mirror symmetry we
see that we can equally apply T-duality to p and find

Zpy(r)-orn(1/2,V3/2,0,p2) = Zpy(mi)-orn(1/2,V3/2,0,1/ o),
ZDs(Rz)—orb(1/2, \/3/25 1/2: ,02) - ZDs(Rl)—orb(1/2, \/3/25 1/2: 1/4:02),

The above actually is the equation for T—duality on M D3 R1 _orp- 1D particular,

the D3(Rs) orbifold procedure does not yield a new component of the moduli space

M? but only reproduces M%’;gRl)_wb,pl € {0,1}. All in all we find
(0,0) ~ 2 0,3) ~ (30~ 2
MD;:—orb = (R+/®) /U’ MD;—orb = MDzét—orb:(R—i—/@) )
(33) ~ 2
M1)22307‘b = (R+/®) /Ua
2
MZQ(TR)—O'I'IJ = (R+) /U7
2
Mbpyy-ors = (RY)"/US,  Mpyary-on = (RY/0) x R,
MO o 2 R, MPY = RT/6, pre 0,1},
MD4(TI’{)i—orb = R+a
M(g)i— b = R+/®’ M(Dlgz)o'rb = IR_}—/G)
6 or

(6.1.3)
As a first consistency check we remark that if our description of nonisolated nonex-
ceptional components of M? is complete, it must be possible to find all nonisolated
components known so far. In particular, we should consider tensor products of
known models. The simplest case is the product of two models with central charge
¢ = 1. The possible factor theories then are C<='(r),C<;! (), C5~1, CS™!, and C&71,
corresponding to compactification on a circle with radius r, its ZQ orblfo]d, or one
of the three isolated components of the ¢ = 1 moduli space, respectively. Models
containing one of the latter three factor theories are exceptional but of course easily
constructed, as was mentioned above. Moreover,

Clry@C=(r) = Cr(0,Z,0, rr)

C=(r) @ Co (1) = Cry—or(0,%,0,77),
C((J:r_b (T) ®Corb (TI) = CD;"—orb(O " 0 TT)

)

Using the results of [DGHS88|, nonisolated components of the moduli space can also
be obtained by tensoring N = (1, 1) superconformal field theories ce=?/ ?(r) with
central charge ¢ = 3/2 with the unique unitary conformal field theory at ¢ = 1/2.
In section 6.3 we will discuss how the resulting models C} (r) can be found within
the components of M? we have determined above.
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6.2 Multicritical points and lines

We now determine all intersections of the 26 nonexceptional components Mg().)_orb
of the moduli space that we constructed in section 6.1. We find that all but three
of them can be connected directly or indirectly to the moduli space MYaerem of
toroidal theories, and M? exhibits a complicated structure with various loops.
The procedure closely follows the proof for the isomorphy of the ¢ = 1 circle
theory at radius r = 2 to the orbifold theory at radius r =1 (see, e.g., [DHVWS85,
Gin88al). The main idea is to exploit the enhanced SU(2) symmetry of the circle
theory at radius r = 1. Namely, SU(2) relates two generically different Z, actions
in this theory by conjugation. Thus the resulting orbifold theories are isomorphic.
One of them is the circle theory at doubled radius r = 2, the other is the ordinary
Z orbifold theory at radius r = 1.

Using results of B. Rostand’s we can show that the generalization of the above
procedure to ¢ = 2 will suffice to find all intersections of our 27 nonexceptional
nonisolated components of M?. Namely, in [Ros90, Ros91] it is shown that every
multicritical point on the moduli space MY of toroidal theories is an orbifold
of another toroidal theory with enhanced symmetry. By our discussion in section
6.1, we may restrict ourselves to the study of left—right symmetric orbifolds. In
particular, to find all intersections of M2%" with one of the 26 nonexceptional
orbifold components it suffices to determine all toroidal theories with enhanced
left and right symmetry (which in the following are simply called theories with
enhanced symmetry) and mod out all symmetries which are conjugate to some
shift on the charge lattice. As anticipated in [DVV87] each of the toroidal mul-
ticritical points generates a series of further multicritical points or lines, since we
can mod out further symmetries. But even better, this procedure will lead to the
determination of all intersection points: By the discussion in sections 6.1 and 5.3,
all the 26 nonexceptional components of M? are obtained by modding out solvable
groups from toroidal theories. This means that we can always regain the original
toroidal theory by performing another orbifold procedure. In particular, any inter-
section point between nonexceptional nonisolated components of M? corresponds
to a multicritical point on M5 rain,

One can simplify things by stepwise modding out [DGH88]: If a symmetry group
G contains a normal subgroup H, then the G orbifold conformal field theory C/G
of a theory C is isomorphic to the G/H orbifold conformal field theory of C/H.
Moreover, the G/H action on C/H translates to an action on any other theory C’
which was identified with C/H. For H' C G/H,G' = H x H' this leads to possibly
new identifications C/G’ = C'/H' which need not correspond to conjugate actions
on the original C. In C/H = C' we may have gotten rid of all states which the G’
action has no consistent conjugate on.

In theorem 6.1.1 we have determined all points of enhanced symmetry in M2arain,
Namely, only tori with enhanced SU(2), x SU(2), or SU(3), x SU(3), symmetry
are of relevance. In section 6.2.1 we discuss all the multicritical points and lines
obtainable by modding out conjugate Z, symmetries of tori with enhanced SU(2)
symmetry. In sections 6.2.2-6.2.6 we determine all multicritical points and lines
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obtainable from those identifications we found in 6.2.1 by modding out further
symmetries. Afterwards (section 6.2.7) we follow the same procedure for the SU(3)
torus theory at 7 = p = €>™/3. The slightly technical discussion results in a list of
all multicritical points and lines in nonexceptional nonisolated components of M?2.
We remark that about half of the discrete identifications below have been con-
jectured by Sayipjamal Dulat on the basis of numerical calculations of partition
functions. She has confirmed all the others numerically as well. Some of these
identifications also follow directly from the literature [DHVWS85, Gin88a, KS88|.
We will denote the G(*) orbifold theory of the toroidal theory Cr (71, 72, p1, p2) with
parameters (7, p) by Cgee)_orp(T1, T2, p1, p2) in the following.

6.2.1 Multicritical lines on the torus moduli space M} n;
Conjugate Z, actions

To compare all Z, symmetries of the SU(2)? torus theory at 7 = p =7 we discuss
their action on the (1, 0) fields. As in definition 4.1.1, the conserved currents of the
generic toroidal theory are called j*. The additional vertex operators of dimensions
(1,0) are denoted j%,u € {1,2}, such that each triple j#, j% generates an SU(2),
Kac-Moody algebra. Each of these SU(2); Kac—-Moody algebras belongs to one
of the ¢ = 1 factors of the torus theory. Let us list all Z, symmetries with two

—~—

positive and four negative eigenvalues on the set of (1,0) fields. By Zs(R) we denote
the Zs(R) symmetry applied to the torus theory with fundamental cell such that
T =p=1/2+1i/2 (remember the phases on Hilbert space ground states that were
discussed for lattice 9 around (5.3.5)):

7, rotational group : gH s — gk Ji > g%,

shift orbifold by &' =1 (1) : j# — j¥, i = =gk,

ZZ(RI) : lej17j2'_>_j27 jiH_]iajingv
Zy(Tg,) : jte gl it e =5 die =ik gt e 5t

None of the above symmetries mixes currents from different ¢ = 1 factors of the
torus theory or j#* with j% currents. Moreover, their eigenvalue spectrum is iden-
tical on each ¢ = 1 factor, so we may use the corresponding ¢ = 1 result to show
that the four Z, orbifolds by the above listed symmetries give isomorphic theories
when applied to the SU(2)? theory. This generates a quadrucritical point. The
shift orbifold by the half lattice vector ¢’, as explained around (5.1.5), results in a
torus theory with additional generator ¢’ of the lattice and half volume and B—field
(Cr(0,1,0,2) = Cr(0,1,0,1/2) by T—duality):

CT(07 17 0: 2) = CTR—orb(07 ]-7 07 1) (Q]-)
= CZQ—OT'()(O) 1: 07 1) = CR—orb(l/Qa 1/2a 1/27 1/2)

The equality C7(0,1,0,2) = Cz,_or5(0,1,0,1) has already been proven in [KS88],
both on the level of partition function and operator algebra.
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The above quadrucritical point turns out to actually be the intersection of four
bicritical lines. First consider the family of torus theories at parameters 7 = p =
1t,t € RY which decompose into tensor products of two ¢ = 1 circle theories at
radii 7 = 1 and ' = ¢, respectively. For all values of ¢ the first factor possesses an
SU(2) symmetry. Since the actions of Tg, and the shift by 6’ = 1 (;) only differ
on this first factor, where they are generally conjugate by the SU(2) symmetry, we
find (Cr(1/2,t/2,0,t/2) = Cr(0,t/2,1/2,t/2) by mirror symmetry)

Vit e RT : CT(O,t/2, 1/2,t/2) :CTszorb(O,t,O,t), (Ll)
and analogously
VteR" 1 Crp or(0,8,0,1) = Cz, or(0,1,0,1). (L2)

Next consider the family of toroidal theories at parameters 7 = p = 1/2+1it,t € RT.
We also have a generic SU(2) x U(1) symmetry for this family. Inspection of the
charge lattice shows that as before we have conjugate Z, symmetries now giving
bicritical lines

Vit e R+ : CZZ—Orb(l/Qatal/Qat) = CR1—07'b(1/2at7 1/2at)7 (L3)
Crooons(1/2,8,1/2,8) = Cr(0,2t,1/4,1/2). (L4)

There are two more Zy symmetries which are conjugate on the entire family of

toroidal theories with parameters 7 = p = it,t € R", by SU(2) symmetry on the

first factor. They have four positive and two negative eigenvalues on (1,0) fields:
Z>(Ry) - R R R RN R o R Fi e
shift orbifold by 6; =1 ()@ j* — j*, Ji =71, 725l

In particular,
VteR": Cr,_ors(0,t,0,t) = Cr(0,t/2,0,2t). (L5)

We remark that Zy(R) applied to the theory with fundamental cell such that
T =1/241i/2, p =i has three positive and three negative eigenvalues on the set of

(1,0) fields. Hence it is not conjugate to any other crystallographic symmetry of
Cr(0,1,0,1).

6.2.2 Series of multicritical lines and points obtainable
from (L1) and (L5)

We are now going to mod out further symmetries on both sides of the equalities
obtained above. The main problem is to find the correct translation for the action
of a symmetry from one model to the other. The simplest case is (L5) from which
we mod out R; on both sides. Because all the symmetries used so far respect
the factorization of Cr(0,¢,0,¢) into a tensor product of two circle theories and
commute, we directly get

VteR" 1 Cpt_op(0,2,0,) = Cry—orn(0,1/2,0,2¢). (L6)
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Note that by mirror symmetry and T—duality (5.3.2) we have Cg, _44(0,2,0,1/2) =
Cry—or5(0,2,0,2), hence the above multicritical line and the one found in (L5)
intersect in a tricritical point:

CD;_OM(O, 1,0,1) = Cr,—ors(0,1/2,0,2) = Cr(0,1,0,4). (T1)

We now systematically mod out all symmetries of the torus theory Cr(0,%/2,0, 2t)
in (L5). The procedure is similar in all cases, namely, the charge lattices of the
underlying toroidal theories on both sides of an identification must be determined,
as well as twisted ground states, if present. After having performed a state by
state identification, symmetries can be translated from one side to the other. This
way the details which we partly omit in the proofs below can easily be filled.

As to (L5), by (5.3.9) the actions we can generically mod out on the torus theory
CT(O,t/Q,O, 2t) are ZQ,ZQ(R),ZQ(TR),D;, DQ(TR) and DQ(TII%) At t = 2 one has

—_

additional Z,(R) and Z,4 actions which give no new identifications, though.
Modding out by Zs(R;) gives the bicritical line (L6) as discussed above. The
reflection Ry on the torus side acts as a shift by §; = % ((1)) on the underlying torus
theory of Cg,(0,t,0,t) leading to a trivial identity. The symmetry Tp, applied
to the torus side differs in its action from R; by additional signs on those vertex
operators (of lowest dimension) in Cr(0,%/2,0,2¢) which correspond to twisted
ground states in Cg,(0,t,0,t). Therefore, comparison with (L6) shows

VteR 1 Cp-_yp(0,1,0,1) = Cry —ors(0,2/2,0,2t). (L7)

Modding out by T%, instead of Tg, again gives a trivial identity, since T, acts
on the underlying torus of Cg, o+4(0,%,0,%) by the shift 75,. Note that a com-
parison of (L7) with (L6) gives a fairly natural explanation for the additional
degree of freedom we have due to discrete torsion. Since Cr, —orb(0,1/2,0,2) =
Cry,—orb(0,2,0,2) by T-duality (see (5.3.14)), the multicritical lines (L7) and (L1)
intersect in a tricritical point:

CDZ)—furb(O, 1,0,1) = CTRz,wb(O, 2,0,2) =Cr(0,1,1/2,1). (T2)

Next, we mod out the ordinary Z, action on (L5). The multicritical line (L5) can
also be written as CfRQ_OTb(O,t, 0,t) = Cr(0,t/2,0,2t). Recall that C(0,t,0,t) as
well as Cr(0,2t,0,t/2) are tensor products of circle theories at radii r = 1,7 = ¢
and r = 2,r' = t, respectively. Now consider the residual action of Dy(Tg) of the
original torus theory Cr(0,¢,0,%) on the orbifoldized theory CfRforb(O’ t,0,t) and
note that it acts as ordinary Z, on the invariant sector. The twisted ground states

of the first circle factor are interchanged, so all in all we get an ordinary Z, action
on Cr(0,t/2,0,2t). This yields

VteR" 1 Cpyra)—ors(0,%,0,t) = Cz,—orp(0,8/2,0, 2¢). (L8)

By analogous arguments one finds that modding out (L1) by Z, on the torus side
yields
VteR": CZz_o,,-b(O,t/Q, 1/2,t/2) = CDQ(T%)*OTb(()’tJ O,t) (Lg)
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As mentioned above, R, applied to Cr(0,t/2,1/2,t/2) acts as shift 75, on the
underlying torus theory of Cg, o(0,%,0,%). Applying this to the bicritical line
(L8), if Ry acts with positive sign on the Z, twisted ground states of the right
hand side we obtain a trivial identity. On the other hand, if we use negative
discrete torsion on the right hand side we find

Vt €R" 1 Coy(rn)-ors(0,/2,0,2t) = Cp__,,4,(0,/2,0,2¢). (L10)

Note that the bicritical lines (L7) and (L.10) intersect in a tricritical point which
can be interpreted as the result of modding out (T1) by Tk,:

Criy -ors(0,1,0,4) = Cpy=,,4(0,2,0,2) = Cpyry)-or(0,1/2,0,2). (6.2.1)

To mod out (L5) by D(T}) on the torus side amounts to modding out (L7) by
T}, which acts as shift Ty, 0" = % (1), on the underlying torus of CDz_ _orp(0,1,0,1).
Thus

VteR": CDz_—orb(]'/Qa t/25 0, t/2) = CDZ(TII%)—OT‘I)(07 t/21 0, 21:) (Lll)

Note that because of T-duality Cp,r)—ors(0,2,0,2) = Cp,(r1)—or(0,1/2,0,2) as
can be seen from (5.3.14), so (L11) intersects (L9) in a tricritical point which can
be understood as the result of modding out (T2) by Z:

CDQ—_OTb(l/Z, 1/2,0,1/2) = CD2(T1:%),0N,(O, 1/2,0,2) = Cy,(0,1,1/2,1). (T3)

We now turn to a systematic discussion of intersection lines and points obtained
from (L1). From Cr(0,t/2,1/2,t/2) we can generically mod out Zg,Zy(R), and
Di. The additional symmetries for = 1 and ¢ = 2 produce nothing new.
Modding out by the ordinary Z, action on the torus side gives the bicritical line
(L9), as was mentioned above. We claim that the result of modding out a Zs(R;)
action leads to the bicritical line

VteR" 1 Cri—ors(0,8/2,1/2,/2) = Cpy(rp)—ors(0,1/1,0,¢). (L12)

Actually, the slightly surprising parameters on the right hand side are due to an
apparent asymmetry in the definition of Dy(Tg) = {1, A(n), Tr,, Tr,}. If we use
Dj(TTg = {1,A(w),TR2,fR1} instead, then by T—duality the parameters on the
right hand side of (L12) are (0,¢,0,¢). Our claim thus amounts to the fact that
R; as applied to Cr(0,t/2,1/2,t/2) induces an ordinary Zs action (or equivalently
Tr,) on Crp,-ors(0,%,0,). For the (1,0) fields this is easy to check: R; leaves one of
the Abelian currents of the torus theory invariant and multiplies the other by —1.
So do Zy and Tk, on Cry, _orb(0,¢,0,t), where the Ty, invariant generic Abelian
current of the underlying torus theory is multiplied by —1, and the 7%, invariant
combination of vertex operators remains invariant. To give a full proof for (L12),
note that the charge lattice of Cr(1/2,¢/2,0,t/2) by (4.3.3) is generated by vectors

e {a ((2):(L) =(():(3)).
H((2):6) =(():C))}

S

Sl
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The four vertex operators of dimension i(l + t%) given by
e%(¢1+6¢2/t)e%(¢1+6¢2/t)’ €, = {:l:l}
correspond to the following T, invariant vertex operators of Cr(0,,0, t):

de (1,2 de (51 =2 de [ 1,2 de (51,2
eﬂ(‘ﬁ/+‘P//t)e\/§(5‘P/+(P//t) _ 6\/5( ‘P/‘le/t)e\/g( dpr+97 /t) 6,6 c {:I:]_}

?

(see (4.3.3) to determine the charge lattice of C7(0,t,0,t); ¢} denote the bosonic
fields in this torus theory to distinguish them from ¢* on C(0,¢/2,1/2,t/2)). Both
Ry on C(1/2,1/2,0,t/2) and Z, and Ty, on Cr,—orb(0,2,0,1) pairwise interchange
these vertex operators. The four vertex operators of dimension 15 (1 + ¢?) given by

i 1 2y _ i —1 —2
ezﬂ(ecp +tp )e 55 (P +0tP ), e,8 € {£1},

correspond to the twisted ground states on CTRQ,ON,(O, t,0,t), both being pairwise

interchanged by Ry on Cr(1/2,t/2,0,t/2) and Z, and Tg, on Cry,—orb(0,2,0,1) as
well. This proves (L12). Modding out R instead of R; gives the same result, up
to T—duality. Note that the point (6.2.1) actually lies on (L12), hence we have
found another quadrucritical point:

CTRforb(Oa 1a Oa 4) = CDz_—orb(O’ 2a 0: 2) (QQ)
= CD2(TR)—O'I‘1)(0’ 1/2’ Oa 2) = CR—O'I‘b(Oa 1a 1/2; 1)

Moreover, (L12) intersects the bicritical lines (L2) and (L8), so there is another
quadrucritical point:

Crors(1/2,1/2,0,2) = Cpyry)-ors(0,1,0,1) (Q3)
= CZQ*OTI)(07 2) Oa 2) - CTR1 fov'b(oa 25 0, 2)

We proceed with the above reasoning to see that the Zs action on the toroidal
Cr(0,t/2,1/2,t/2) translates to a Tp action on the theory Cry _or(0,2,0,t) =
CTIIQ,W(,(O, t,0,t) (this is the proof of (L9)). Therefore, in order to determine the
action induced by D3 on Cr(0,t/2,1/2,t/2), we note that on Cr,__or(0,1,0,1) the
additional symmetry to mod out compared to (L.12) on the underlying torus theory
Cr(0,t,0,%) is the combination T;zlle, i.e. a shift by §; = % ((1)) Moreover, the
Z twisted ground states in Cz, oro(0,t/2,1/2,t/2) are given by vertex operators

which are T, invariant, and therefore
Vt€R" 1 Cpr op(0,1/2,1/2,/2) = Cpy(ra)-or(0, 2/1, 0, 2¢). (L13)

This can also be seen by applying Ry to Cz,—os(0,t/2,1/2,¢/2) in (L9). Modding
out the D5 action on the torus side analogously gives (L11), again. Note that the
bicritical line (L13) intersects (L8) and (L10), so we have found two more tricritical
points:

CD;_OT,)(O, 1/2,1/2,1/2) = Cpy(rp)-ors(0,2,0,2) = Czy—0rs(0, 1,0, 4), (T4)

CDj—orb(O’ 1, 1/Qa 1) = CDz(TR)—OTb(O’ 1,0, 4) = CD;—orb(O’ 1,0, 4)' (T5)
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6.2.3 Series of multicritical lines and points obtainable
from (L2)-(L4)

To gain further identifications from (L2) we can only mod out further symmetries
of the underlying torus theory Cr(0,¢,0,t). If we add generators of order four we
only get trivial identities. An action of Zs(R) type basically acts as a shift on the
Cry, (0,%,0,1) theory, so we arrive at the bicritical lines (L6) and (L7) again. All
other symmetries give trivial identities.

Next we consider (L3). The symmetries we can generically mod out are Zo, Zs(R)
and Zy(Ty), all giving trivial identities. For ¢ = v/3/2 we can mod out additional
symmetries containing a Zs action, but this does not produce anything new. For the
special value t = 1/2, where we have Cz, 44(0,1,0,1) = Cr, ors(1/2,1/2,1/2,1/2)
all but the modding out of Tj give trivial identities as well. The symmetry T%
multiplies both Z, invariant (1,0) fields in Cz, 4+(0,1,0,1) by —1, and the gen-
erators of the invariant part of the C7(0,1,0,1) charge lattice are pairwise inter-
changed. The same is true for the Z, twisted ground states. We claim that this
translates to an Ry action on Cg,_o(1/2,1/2,1/2,1/2). Namely, as a result of
the discussion for lattice 7 around (5.3.5) we found that on Cr(1/2,1/2,1/2,1/2)
the action of D, leaves invariant none of the combinations of vertex operators of
dimensions (1,0). The respective (1/8,1/8) and (1/2,1/2) fields are also pairwise
interchanged in Cg, _or(1/2,1/2,1/2,1/2), thus

CDQ(T'R)_OT'b(O’ 1,0, 1) = CDQ_O""b(l/Q’ 1/2’ 1/2’ 1/2)'

By (L9) and Cz, or5(0,1/2,1/2,1/2) = Cz,-6r(0, 1,0, 2) we see that we have actu-
ally found a tricritical point on a bicritical line:

Cpyors(1/2,1/2,1/2,1/2) = Cz,-0rb(0,1,0,2) = Cpy(ry—ors(0,1,0,1).  (T6)

We remark that the above can be seen more directly by showing that in the notation

TN TN

of section 6.2.1 the groups Zs(R1) X Zo(R2), Za X Zo(Ty) and Do(T},) are conjugate
symmetry groups of type Dy of the SU(2)? torus theory.

In the discussion of lattice 15 in section 5.3.2 we have found that DT acting on
Cr(0,1,1/2,1/2) has a subgroup D) C Di which effectively acts on the toroidal
Cr(1/2,1/2,1/2,1/2) =Cr(0,1,0,1). By the above this action is conjugate to the
one of Dy(T%) on Cr(0,1,0,1), where Dy(Th) C D (T%) generically exactly gives
the distinction between D3 (T%) and Di. This means

CD4+_m,b(0, 1,1/2,1/2) = CD4(TI/2)+_ON,(O, 1,0,1), (6.2.2)

CDZ_M,)(O, 1,1/2,1/2) = CD4(T1/%)—,OT,,(O, 1,0,1). (C1)

Let us now turn to the discussion of (L4). Generically, we can only mod out a Zs
action on Cr(0,2t,1/4,t/2). This leads to another bicritical line:

VteRY 1 Cpy_ors(1/2,t,1/2,t) = Cz,_ors(0,2t,1/4,1/2), (L14)
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as follows directly from (L3) and (L4). Note that (L14) intersects the bicritical
line (L9) in (T6).

We can mod out additional symmetries of (L4) at special values of ¢, namely
if p = 1/4 +it/2 is equivalent to p' with p} € {0,1/2} by Mé&bius transforma-
tions. This is true for ¢t € {1/2,v/3/2,v7/2,/5/12,+/3/20,/1/28}, but only
for t = v/3/2 we produce a new identification by our methods. Here, (L4)
gives Cr,—ors(1/2,v3/2,1/2,4/3/2) = Cr(0,4/3,0,/3), and the torus theory de-
composes into a tensor product of two ¢ = 1 circle theories at radii r = 1
and 7' = /3, respectively. The latter only contains one (1,0) field which is
identified with the vertex operator V2301612371 + e~ iV2/3016-1/23%1 i the
Cry-ors(1/2,v/3/2,1/2,4/3/2) model. The SU(2) generators of the first circle fac-
tor are identified with the two other Ry invariant vertex operators and the Abelian
current 52 of C;(1/2,v/3/2,1/2,v/3/2). The only symmetry we can mod out to find
a new identification is Tx,. Then by definition, of the (1,0) fields on the torus side
only one is invariant, namely the Abelian current of the first factor theory. The
same is true for the R; action on Cr,_o(1/2,v/3/2,1/2,4/3/2), where only one
combination of vertex operators is invariant. Actually, the actions match entirely,
showing

Cpa—or(1/2,V/3/2,1/2,V/3/2) = Cr,, —ors(0,V/3,0,/3). (C2)

6.2.4 Series of multicritical points obtainable from (Q1)

The identifications in section 6.2.1 we have not yet used by our discussions of the
bicritical lines (L1)-(L5) are Cr(0,1,0,2) = Cz,_ors(0,1,0, 1) and CTRI_O,.(,(O, 1,0,1)
= Cr-or(1/2,1/2,1/2,1/2), taken from (Q1). In the latter case we can mod out
additional symmetries on the underlying tori, but this produces no new identifi-
cations. Namely, the ordinary Z, action applied to the left hand side gives the
identification Cp,(ry)—ors(0,1,0,1) = Cr,_os(0,1/2,1/2,1/2) on (L12), and Z, ap-
plied to the right hand side gives Cp,(r2,) or5(0,1,0,1) = Cp,—orp(1/2,1/2,1/2,1/2),
see (T6). In fact, by the discussion at the beginning of the section we know that it
suffices to mod out further symmetries of identities that contain toroidal theories.
We are now going to mod out further symmetries on both sides of the equality
Czy orp(0,1,0,1) = Cr(0,1,0,2). We mostly use the description in terms of the
toroidal theory Cr(0, 1,0, 2), which by (4.3.3) has charge vectors

1
D == { <”2) 19 (mQ) } mi,n; € 2. (6.2.3)
r 2 ni mq

On the Cz, o(0,1,0,1) side, the torus currents J', J? of Cr(0,1,0,2) are Z, in-
variant combinations of vertex operators with dimensions (h; h) = (1;0) in the two
¢ = 1 factors of Cr(0, 1,0, 1). The states |0,0,+1,0), [0,0,0,+1) in C+(0, 1,0, 2) by
(6.2.3) correspond to the (1/8,1/8) fields of the theory and therefore are identified
with the four twisted ground states of the Zs orbifold Cz, o(0,1,0,1). Further
generators of the Hilbert space of Cr(0, 1,0, 2) are vertex operators corresponding
to|£1,0,0,0), |0,£1,0,0) which are identified with the Z, invariant combinations
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of vertex operators with dimensions (h;h) = (1/2;1/2) of the Cr(0,1,0,1) side.
These do not live in one of the separate factor theories.

—_—

The Zs action on Cr(0,1,0,2) induces a Zy(R) action on the underlying torus of
Czy—orb(0,1,0,1), and we arrive at Cp,_o5(1/2,1/2,1/2,1/2) = Cz,-6(0,1,0,2)
reproducing part of (T6). The R; action on Cr(0,1,0,2) translates to the orb-
ifold theory Cz, or5(0,1,0,1) in the following way: Among the (1,0) fields in
Cz,-ors(0,1,0,1) only the combination in the first factor of Cr(0,1,0,1) is invari-
ant; two of the twisted ground states of the Z, orbifold are exchanged, whereas
two of them are fixed. Among the (1/2,1/2) fields, again two are fixed and two
are exchanged; this is just the R; action on Cz, o4(1/2,1/2,0,1), hence

CD;—orb(l/z’ 1/2’ 0, 1) = CR*OTb(O’ 1,0, 2)' (C3)

If we combine the Zs and Zy(R) actions on Cr(0,1,0,2), the Zy now will act as
a shift on the underlying torus of Cz, ,+(0,1,0,1). It is easier to understand the
resulting identification by considering the Zj orbifold theory Cz, o4(0,1,0,2). Tg,
acts on Cz, ,+4(0,1,0,2) by pairwise interchanging the Z, twisted ground states
and multiplying the Z, invariant vertex operators of dimensions (1/8,1/8) in
Cr(0,1,0,2) by —1. On the other hand, R; with negative discrete torsion will
multiply the two T invariant twisted ground state combinations by —1 but leave
invariant the two Z, invariant (1/8,1/8) fields of Cr(0,1,0,2). These Z, actions
are conjugate, since the action on the invariant Z, twisted ground state combi-
nations of Cz, 4(0,1,0,1) = Cr(0,1,0,2) is merely exchanged with that on two
combinations of twisted ground states of Cz, 4(0,1,0,2). This again is possible
because of the ¢ = 1 identification between the circle theory at radius » = 1 and
the orbifold theory at radius » = 2. In summary,

CDQ(Tk)—orb(Oa 1,0, 2) = CDz_forb(O’ 1,0, 2) (C4)

The Tg, action on Cr(0,1,0,2) differs from the R; action by a sign in the action
on the (1/8,1/8) fields, i.e. the twisted ground states of the Z, orbifold on the
Czyorb(1/2,1/2,0,1) side. Therefore by comparison with (C3)

Cp-—0(1/2,1/2,0,1) = Cry_ors(0,1,0,2). (C5)

5 —orb

Comparison of (C3) with (C5) also gives a fairly natural explanation for the addi-
tional degree of freedom we have due to discrete torsion.

—_

If we mod out Zy(R) and the corresponding D; type symmetries on Cr(0,1,0,2),
i.e. consider Zy(R) on Cr(1/2,1/2,0,2), we only reproduce identities we have
found already above: Cp,(r,)—ors(0,1,0,1) = Cr_or5(1/2,1/2,0,2) on (L12), as well
as CD2(TI(2,))7OM(O, 2,0,2) = Cpz_,y(1/2,1/2,0,2) on (L13) and (L11), respectively.
Next we discuss the action of 7%, on Cr(0,1,0,1/2) instead of Cr(0,1,0,2). In
(6.2.3) this exchanges the roles of m; and n;, such that compared to the action of
Ry on Cp(0,1,0,2) we now have additional signs on (1/2,1/2) fields. In particular,
only one combination of (1/2,1/2) fields is invariant, as well as three of the twisted
ground state combinations in Cz, o(0,1,0,1). We claim that this is the residual
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action of an ordinary Z, rotation on Cr(0,1,0,1). It acts by interchanging the two
circle factors of Cr(0, 1,0, 1), but the generators of the Hilbert space of the second
factor are multiplied with an additional sign. Indeed, this is exactly the Tg, action
on a torus whose lattice has an additional generator (1/2,1/2) compared to Z? for
Cr(0,1,0,1),i.e. on Cr(0,1,0,1/2). Hence,

CZ4forb(0a 1a 0) 1) = CTRforb(Oa 1, Oa 1/2) (C6)

Using (C6) we can further mod out T, on the underlying torus theory of the above

Cry, —orb(0,1,0,1/2). This translates to a Zy(Ry) action on the underlying torus
theory of Cz, +4(0,1,0,1), so

CD;Lforb(()’ 1,1/2,1/2) = Cpy(ap)-ors(0,1,0,1/2).
By (6.2.2) we see that we have actually found a tricritical point:
CDj—orb(O’ 1,1/2,1/2) = CDz(TR)—orb(O, 1,0,1/2) = CD4(T112)+,0,1,(0, 1,0,1). (T7)

We now rewrite (C6) as Cz,—or(0,1,0,1) = CTII{I,O,A,,(O, 1,0,1/2) and mod out by
T%, on the underlying torus of the right hand side. Analogously to the T, action
on Cry —ors(0,1/2,0,2t) in (L7), which induced a shift on the underlying torus
theory of Cpp-_,,;(0,¢,0,¢), in (C6) we get a shift Ty, d' = 3 (1) on the underlying
torus theory of Cz, o4(0,1,0,1). Then we obtain

Cz4-0r5(0,1,0,2) = Cp,(r1)—ors(0,1,0,1/2). (C7)

Back to the identification Cz, 44(0,1,0,1) = Cr(0,1,0,1/2) in (Q1) we now mod
out groups containing Z, on the torus side. With the ordinary Z, action we
reproduce the above bicritical point (C7), but in combination with Dy(T%), the
Z4 generator acts as a shift on the underlying torus theory of Cz,—»+(0,1,0,2) in

(C7):

CD4(TI’%)+—orb(0, ]-a Oa 1/2) = Cerorb(O’ 1? Oa 4)? (CS)
CD4(TI’{)——orb(0a 1,0, 1/2) CZ4—07'()(0’ L 1/2> 1) (Cg)

The latter identification is more easily understood when we mod out symmetries
on the tricritical point (T2), as we will do in section 6.2.6.

The effect of D, type actions is most easily understood from the fact that by (C4)
the action of Dy(T%) C D4(Th)* on Cr(0,1,0,2) is conjugate to that of D; C Dj .
Therefore,

Coury)-—ors(0,1,0,2) = Cp-,,(0,1,0,2). (6.2.4)
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6.2.5 Series of multicritical points obtainable from (T1)

From the multicritical points and lines determined so far we can find further mul-
ticritical points by modding out further symmetries. By the systematic procedure
we followed above, this can only give something new, if we use an identification
obtained as intersection of bicritical lines. Moreover, because by the discussion at
the beginning of the section it suffices to use identifications containing a toroidal
theory, only (T1) and (T2) are left to be discussed in this and the following section.
For the point (T1) only the identification C7(0,1,0,4) = CD;(O, 1,0,1) has not
been used yet. By modding out Zs we yield (T4) from (T1), in particular we find
Cry-0r6(0,1,0,4) = Cpt_,,4(0,1/2,1/2,1/2). Modding out a Zy(R) action yields
Cr-0r(0,1,0,4) = Cpt_,4(0,2,0,2) on (L6). Note that this shows that Z, and R

on Cr(0,1,0,4) both induce shifts on the underlying torus theory of CD2+(0, 1,0,1),

namely Ty,8' = 3 (7), and T5,,0; = 1 (;), respectively. The combined action

gives a trivial identity for Dy, and Cp-_,4(0,1,0,4) = Cp+_,,4(0,1,1/2,1) in (T5).
Modding out Zo(Tr), Do(Tr) and Dy(T}) reproduces the points at t = 2 in (L7),
(L10), and (L11), respectively. Modding out Z, reproduces (C8). To determine the
result of modding out D, actions, note that by the above the action of R induces
a shift T, on the underlying torus theory of Cp+ (0,1,0,1), so from (C8) we obtain

CDZ—orb(()? 17 07 4) = CD4(T1’Q)+—orb(0; 1; 0; 4) (625)

All the other choices of discrete torsion give trivial identities. Modding out by
Dy(Ty)* gives the same or a trivial identity again.

Next we mod out Zs(R), i.e. Zo(R) on Cr(1/2,1/2,0,4). This interchanges the
two circle factors of the original C7(0,1,0,1) in CDéhwb(O, 1,0,1) above and thus
is equivalent to adding a Z, generator to Dy. Therefore,

Croors(1/2,1/2,0,4) = Cpys_,(0,1,0,1). (C10)

To mod out the corresponding D, actions we again use the above observation that
Zy on Cr(1/2,1/2,0,4) acts as Tj, on the torus theory underlying Cp+_,,,(0,1,0,1)
to find

CD;'forb(l/Q’ 1/2’ O’ 4) = CDIforb(O’ 1’ O> 2)’ (Cll)

and
CD;_OTb(l/Q, 1/2, 0, 4) = CD4(TI/2)+_OT,,(O, 1,0, 2). (012)

6.2.6 Series of multicritical points obtainable from (T2)

We now discuss additional identifications that can be obtained from (T2). The only
identity not used up to now is Cr(0,1,1/2,1) = CDgforb(O, 1,0,1). If we mod out
a Zs action from the torus theory, (T2) is transformed into (T3), in particular we
yield Cz,-06(0,1,1/2,1) = Cp-_,4(1/2,1/2,0,1/2). The Z; action thus induces
a shift Ty,0' = 1 (1) on the underlying torus theory of Cps—ors(0,1,0,1). The R
action on Cr(0,1,1/2,1) induces a shift as well, now by Ty,,6; = 3 (), yielding
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Cr-or(0,1,1/2,1) = Cp-_,,4(0,2,0,2) in (Q2). The combined R and Z actions
thus yield a trivial identity for D, and CDétorb(O, 1,1/2,1) = Cpy(rr)-ors(0,1,0,4)
on (L13). Modding out Z, is equivalent to modding out another Z, action on
Czp-ors(0,1,1/2,1) = Cp-_,,,(1/2,1/2,0,1/2) which interchanges the circle fac-
tors of the underlying geometric torus (i.e. Z, invariant vertex operators with
h = h). The action matches a Dy action on CD;_Orb(l/Q, 1/2,0,1/2), where the
additional Dj invariant vertex operators as compared to Cp-_,,(1/2,1/2,0,1)
correspond to the Z, twisted ground states of Cz, ,+4(0,1,1/2,1). We thus ob-
tain Cz, or5(0,1,1/2,1) = Cp,err)-—ors(0, 1,0, 1/2) reproducing (C9). Since by the
above we know that R; on Cr(0,1,1/2,1) induces a Ty, shift on the underlying
torus theory of Cp—_,,,(0,1,0,1), it also follows that

Cor—ors(0,1,1/2,1) = Cp,rg)-—ors(0, 1,0,4). (C13)
Flipping the sign of discrete torsion on both sides of the above equivalence we find
Cot—orp(0,1,1/2,1) = Cpyapy+—ors(0,1,0,4),
which together with (6.2.5) yields a tricritical point:

Cot—orp(0,1,1/2,1) = Cp,eagyt—ors(0,1,0,4) = Cpp- (0, 1,0,4). (T8)

We now mod out Z/J/R) on Cp(0,1,1/2,1),i.e. Zo(R) on Cp(1/2,1/2,1/2,1). Sim-
ilarly to (C10) we find

CR—orb(1/2a 1/27 1/2a 1) = CDZ forb(oa 1a Oa 1) (014)

Because by the above, Zy on Cr(1/2,1/2,1/2,1) induces a shift Ty on the under-
lying torus theory of C,—_,,,(0,1,0,1) in (C14), we find

CDQ_O'/'b(]‘/2’ 1/27 1/2a 1) = CD4(T}'2)_—O7‘I7(0, 17 0; 2)

Together with (6.2.4) this gives another tricritical point:

Coamors(1/2,1/2,1/2,1) = Cpy(rp)-—ors(0,1,0,2) = Cpp _,y(0,1,0,2).  (T9)

6.2.7 Multicritical points obtained from conjugate Zj, Ds,
Z¢ and Dg type actions

We start by comparing all Z3 type symmetries of the SU(3) torus theory at pa-
rameters 7 = p = w, w := e2™/3. The generically conserved currents of the torus
theory we call j!, 52, and k', k2, k® together with I = (k*)!, u € {1,2, 3}, denote
the additional vertex operators with dimensions (h; k) = (1;0). The fields j*, k*, I*
generate an SU(3); Kac-Moody algebra, and {k*}, {I*} form closed orbits under
the ordinary Zs action. In passing we remark that among all possible Z, symme-
tries of Cr(w,w), those conjugate only reproduce (L3).
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Among the Zs actions on one hand we have the ordinary rotational Z3 which leaves
two fields k' + k% + k3 and ' +1? + 13 invariant, three fields j, = j! +452, k' + wk®+
W2k3, 1Y 4+ wil? + w?? have eigenvalue w. On the other hand, the shift orbifold by
0= %(/\1 — A2) exhibits the same spectrum, where the \; as usual denote a basis
of the lattice associated to the parameters 7 = p = w. Here, j!, j2 are invariant,
and k', k%, k® have eigenvalue w. We particularly see that the two Zj actions are
conjugate, thus modding out Cr(w,w) by these two symmetries gives isomorphic
theories. The shift orbifold again produces a torus theory with same parameter
T = w, but p reduced by a factor of three; in the following we use o := 1/2+1i3+/3/2
which is related to w/3 by the Mobius transformation 725 and state

Croom(1/2,7V/3/2,1/2,7/3/2) = Cr(1/2,V/3/2,1/2,3V/3/2). (C15)

We will now mod out additional symmetries on both sides of the above equality.
Only those of order two give new identifications. Note that both R, and the
ordinary Zj, on Cr(w,w) interchange the two Zs—invariant (1,0) fields k* + &2 + k3
and ['+1?+13. Thus Ry, —1 must act as Ry, Ry on the torus theory Cr(w, «). Study
the action on the charge lattice to check that the order above is indeed correct.
This means that the R; action on Cr(w,w) must induce the ordinary Z, action on
Cr(w,a). In particular, the fields k' + k? + k% and [' + [? + [ are multiplied by
—1 under R;. Here we can confirm our result of the discussion of lattice 7 around
(5.3.5): The signs obtained there occur in a completely natural way in the present
example.

All in all for the Z, actions on Cr(w,w) compared to Cr(w,«) we have found
(R1, Ry, —1) — (R, —1, R;) and therefore directly obtain the following bicritical
points:

Cos(ra)—ors(1/2,V/3/2,1/2,4/3/2

( = Cszorb(l/Qa \/§/2a1/2a3\/§/2)a
(1/2,v/3/2,1/2,V/3/2

(

(

= Cleorb(l/Q: \/5/27 1/2a3\/§/2)7
= CRz—orb(1/2: \/3/27 1/27 3\/5/2)7
CDg—orb(l/Qa \/§/2a 1/2’ 3\/3/2)

CDS(RQ)—OTI)
Cro-ors(1/2,V/3/2,1/2,/3/2
Cpg—ors(1/2,V3/2,1/2,3/3/2

~— ~— ~— ~—
~~ I~

6.3 Dixon, Ginsparg and Harvey’s results
on ¢ = 3/2 revisited

We can construct conformal field theories CZ with central charge ¢ = 2 by tensoriz-
ing the bosonic subtheories C of N = (1,1) superconformal field theories with
the bosonic subtheory of the Ising model (3.3). By [DGH88], the moduli space of
N = (1,1) superconformal field theories with ¢ = 3/2 contains five connected lines.
The CIRCLE LINE Ccc;z’/ ?(r) is just the moduli space of “toroidal” superconformal
field theories of definition 4.1.3 in dimension d = 1, such that Cy is just the Ising
model (3.3). The tensor product of two Ising models is the critical Ashkin—Teller
model and has a bosonic description as Z, orbifold of the ¢ = 1 circle theory at
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radius 7' = /2 [Zam87b]. By the discussion of Zy(R) orbifolds in section 5.3 we
therefore directly obtain

Cane(V2r) = Con! (V2) © €71 (V2r) = Cpy—ors(0, 7,0, 27).

The other four lines in the ¢ = 3/2 moduli space are obtained as orbifold models

of cg‘”ﬁ‘/ ?(r). The ordinary Zy orbifold (see theorem 5.2.2) gives the so-called
ORBIFOLD LINE C;T::/ 2(7“). For the fermions the orbifold procedure effectively only
exchanges boundary conditions, which we here forget about since we only consider
the bosonic subtheories. Therefore, we can regard Z, as only acting on the second
circle factor of C2 . (v/2r) = Cr,—ors(0,7,0,2r). This amounts to modding out an
R, action, i.e.

orb(\/_r) orb(o T, 0 QT)

Note that by the results of section 6.2 and in agreement with [DGH88] the only
intersection point of the above lines is situated on (L6):

Cgrc( ) Corb( ) (631)

The remaining three lines are the superaffine, super—2-orbifold (or simply SUPER—
ORBIFOLD), and the orbifold—prime lines in dimension d = 1 as introduced in
section 5.4. To determine CZ  (1/2r), we trivially continue the action of S; =
(=1)PsTx to CE (v/2r). Then S; remains to act as ordinary shift orbifold on the
second factor theory in CZ (v/2r), the ¢ = 1 circle theory at radius v/2r. On the
first factor, we have the action of (—1)fs on one of the Majorana fermions. We use
the bosonic description as Zs orbifold of the ¢ = 1 circle theory at radius V2. Here,
the Ramond sector is built on those Hilbert space ground states with odd label of
the momentum mode. Thus on the underlying ¢ = 1 circle theory, (—1)%s acts as
shift orbifold as well. This means that CZ _(1/2r) can be obtained as shift orbifold

by Ty, 6" = % (1), on the underlying torus theory Cr(0,r,0,2r) of C . (v2r):

CsB—a(\/iT) = CR2*0Tb(1/2a T/Q: 07 T)-

Recall that the superorbifold line C<=2/2(r) is a D, type orbifold of C%.2/%(r) by
the group generated by the ordinary Z, action and Sy. Since by the above Zs and
Ss act as reflection R; and shift Ty on the underlying torus theory C(0,r,0,2r)

of CE (v/2r), respectively, we find

s orb(fr) o'/'b(l/2 T/Q 0 T)

By the results of section 6.2 we see that only the superorbifold line intersects one
of the other three lines discussed so far, namely in (C3):

Cs orb(\/_) Cgrc(\/_) (632)

This agrees with the results of [DGHSS].
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Recall that the orbifold-prime line er:b?/ ?(r) is obtained by modding out Sg =

(=1)5 - (—=1) from C%**(r). Since the generator —1 of the ordinary Z, action

on CE (v/2r) acts as reflection R;, and (—1)"s induces the shift orbifold on the
underlying ¢ = 1 circle theory at radius /2 of the first factor in CZ _(v/2), Sg acts
as Tg, on the underlying torus theory Cr(0,,0,2r) of CE (v/2r). Therefore,

Colf.b/ (\/57‘) = CDQ(TR)—OTb(()? T, 0, 2T)

Concerning intersections of the orbifold—prime line with the other lines discussed
above, again we are in exact agreement with the results of [DGH88]: We find
multicritical points on (L13) and (L12), namely

Co(2) = Clon(2),

ord’ s—orb
Coy(1) = C7,(2).

It is a straightforward calculation to check (5.4.1) for our ¢ = 2 models, i.e.
ZDg(TR)—orb(Oa r, 05 2T) = ZD;'—orb(O’ T, 0: ZT) - 3ZIsing

from (5.3.14) and (3.3).

The above in particular gives a geometric interpretation in terms of crystallographic
orbifolds to all the nonisolated orbifolds discussed in [DGHS88].

Up to now we have carefully restricted the discussion to bosonic subtheories of
the N = (1,1) superconformal field theories. The reason is that three of the
four intersection points of lines given in [DGHS88| do not hold on the level of
superconformal field theories. In the notation of section 3, only the bosonic sectors
‘Hy agree in these points, not the fermionic ones H;. Let us discuss the alleged
intersection points case by case, which for convenience are labelled by the formula
of the corresponding ¢ = 2 theory above, that expresses the correct observation
that the bosonic parts of the ¢ = 3/2 factor theories coincide.

Concerning (6.3.1), the Z, orbifold of the N = (1,1) “toroidal” superconformal
field theory at 7 = 1 does not contain any fields of dimensions (h; h) = (%;0), since
the Majorana fermion of the toroidal theory is not Z, invariant and no holomorphic
vertex operators with 2 = § exist. On the other hand, the N = (1,1) “toroidal”
superconformal field theory at » = 2 does possess a free left handed Majorana
fermion with dimensions (h; k) = (3;0) in the fermionic sector H; which therefore
cannot agree with the fermionic sector on the orbifold line.

The intersection point (6.3.2) of circle and super—orbifold lines is the only one
that Dixon, Ginsparg and Harvey argue for on the level of operator algebras in
[DGHS88]. Their argument proves that this point is a true intersection point of the
two lines, also on the level of superconformal field theories.

To understand the bosonic intersection point (6.3.3) we make use of the results on
partition functions of the respective theories in section 5.4. Though the orbifold
prime and super—orbifold theories at r = 2 have the same vacuum character in each

sector, counting of the (h; k) = (75; 1) fields shows that the theories do not agree.
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The orbifold prime theory possesses one bosonic Ramond and one bosonic Neveu—
Schwarz as well as two fermionic Ramond fields with these dimensions, whereas
the fermionic Ramond ground states are missing in the super—orbifold theory.

For the intersection point (6.3.4) of orbifold prime and super—affine orbifold lines
again a counting of the (h;h) = (3;0) fields suffices. The super-affine orbifold at
r = 2 possesses a fermionic Neveu—Schwarz field with these dimensions which is
missing in the orbifold prime theory at r = 1.

Despite the above corrections to the statements of [DGHS88|, one can consider
fermionic tensor products CI" of N = (1, 1) superconformal field theories with the
Ising model and search for the resulting components of M? in our description. We
obtain

czrc(\/_r) = Cr(0,7,0,2r), Corb(\/_ ) = Czyor(0,7,0,2r),
sfa(\/ir) = CT(% % 0, T)’ Cs orb(\/_’r) = CZQ—O'I‘I)(% % 0, T)a (635)
Cf;nb/(\/ir) = CZg—o'rb(O, T, O, 27“)

Since above we argued that the intersection point (6.3.2) is a true intersection point
also on the level of superconformal field theories, we should expect a corresponding
intersection point for C% (r) and CF (7). Indeed, from (6.3.5) we read

Cs orb(\/i) = CZ2—OTb(%a ;’ 0 1) CT(O’ 17 O 2) Cgrc(\/_)

by PSL(2,7Z)? invariance of Mz, o5 and (Q1). On the other hand, CZ . (2) #
ck,(1), CF,(2) # CE . (2),CE, (1) # CF ,(2), in full agreement with our above
observation that these are no intersection points on the level of N = (1, 1) super-
conformal field theories with ¢ = 3/2.

s—orb\T

6.4 Summary: A glimpse on the structure of M?

We can now give a complete description of those nonisolated parts of the moduli
space M2 of unitary conformal field theories with ¢ = 2 that can be constructed by
an orbifold procedure from toroidal theories and are nonexceptional. The excep-
tional cases are those related to the binary tetrahedral, octahedral and icosahedral
subgroups of SU(2), see definition 6.1.2. All the nonexceptional cases are obtained
as orbifolds with geometric interpretation by crystallographic symmetries (theorem
6.1.3). Apart from the moduli space MLY% of toroidal theories we find 26 compo-
nents of M2, which exhibit a complicated graph like structure. There are fourteen
bicritical lines and 31 multicritical points, among them three quadrucritical and
nine tricritical points. We have proven multicriticality on the level of the operator
algebra for all these lines and points. Our analysis of multicritical points shows
that all but three of the irreducible crystallographic components of the moduli
space are directly or indirectly connected to the moduli space of toroidal theories.

The remaining three components are MO DE—ort’ Mgg( R)—orb-

Our results are consistent with those on ¢ = 3/2 superconformal field theories
[DGHS8S, as long as their bosonic subtheories are concerned only: We have deter-
mined the tensor products of the bosonic subtheories of the five continuous lines of
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¢ = 3/2 superconformal field theories discussed in [DGHS88] with that of an Ising
model in terms of our description of M?. All multicritical points in the ¢ = 3/2
moduli space are reidentified by our results on M?2. In particular, this gives geo-
metric interpretations to all nonisolated orbifolds discussed in [DGHS88] in terms
of crystallographic orbifolds.

We also find the bosonic parts of the fermionic tensor products of the five lines
with the Ising model in our picture. Contrary to the statements in [DGH88] these
lines have only one intersection point on the level of superconformal field theories.
The latter observation is also in full agreement with our picture of M?2.

A discussion of the exceptional components of M?2 is not carried out in this work.
By our results, these would yield the only possible examples of asymmetric orb-
ifold conformal field theories [NSV87] with ¢ = 2 and therefore should be studied
separately. Neither do we touch the determination of isolated components of the
moduli space, which is expected to be even more involved. Apart from that, our
results do not give a complete classification of unitary conformal field theories with
central charge ¢ = 2, since we are lacking a theorem which would tell us that all
nonisolated components of the moduli space may be obtained by some orbifold
procedure from a subspace of the toroidal component. It would also be interesting
to determine those theories in M? which admit supersymmetry.



Chapter 7

The moduli space of
superconformal field theories with
central charge c =6

In this chapter, we study the moduli space M of N = (4,4) superconformal field
theories with central charge ¢ = 6. Section 7.1 is devoted to its global description
in an emended version as compared to the literature. In section 7.2 we study par-
tition functions on the moduli space, we in particular construct “topological” or
rather “a generic part of” partition functions of theories in M. In section 7.3 we
discuss the component of M which consists of theories that are associated to K3.
Some geometric features of K3 surfaces, in particular algebraic automorphisms,
the determination of generic Picard numbers, and the description of the integer
cohomology for Zj, orbifold limits of K3 surfaces are given in section 7.3.1. Sec-
tion 7.3.2 deals with Z, orbifold conformal field theories in M. The results enable
us to discuss Nahm and Fourier-Mukai transforms from a purely conformal field
theoretic point of view in section 7.3.3, such that we can prove T—duality and jus-
tify our global description of M without leaving this framework. The embedding
of the other Z,, orbifold conformal field theories within MX3 ie. M € {3,4,6},
is the object of section 7.3.4. This in particular allows us to show in section 7.3.5
that the Z, orbifold of the nonlinear ¢ model on the torus with lattice A = Z*
has a geometric interpretation on the Fermat quartic hypersurface. Two further
models on the quartic are determined, too. In section 7.3.6 we find the locations of
the Gepner model (2)* and of some of its orbifolds within M by proving isomor-
phisms to nonlinear o models. In particular, by identifying (2)* with the above Z,4
orbifold of T(Z*,0) we are able to show that this Gepner model has a geometric
interpretation with Fermat quartic target space. We find a meeting point of the
moduli spaces of Z, and Z, orbifold conformal field theories different from the one
conjectured in [EOTY89]. In section 7.4 we close with a panoramic view of M
that summarizes the results of the present chapter.

135
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7.1 The moduli space: General discussion

By M we denote the moduli space of N = (4, 4) superconformal field theories with
central charge ¢ = 6, where the superconformal algebra is obtained as extension of
an N = (2,2) superconformal algebra by an su(2); Kac-Moody algebra as intro-
duced in section 3.2. The general features of M discussed in the present section
have been extracted from the literature [Sei88, Cec91, AM94, Asp97]| and emended
in joint work with Werner Nahm that is accepted for publication in [NWO1].

For any N = (4,4) superconformal theory the space of states H contains four—
dimensional vector spaces (); and @, of real left and right supercharges. Since
we consider left and right central charge ¢ = 6 and restrict to the Ademollo et al
algebra (3.2.1), (3.2.2) at k = 1, H carries the action of an su(2) @ su(2) current al-
gebra of level 1. The (3+3)-dimensional Lie group generated by the corresponding
charges will be denoted SU(2);*" x SU(2)5**¥ and its {(1,1),(—1,—1)} quotient
by SO(4)**#¥. The commutant of SU(2);"*¥ in SO(Q;) will be called SU(2);. One
can identify SU(2);"" with SU(2); by selecting one vector in @);. Namely, the
stabilizer subgroup of SO(Q);) for this vector is of type SO(3) with surjective pro-
jections to the two SU(2) groups modulo their centers. This allows an identification
of the images. Such an identification seems to be implicit in many discussions in
the literature, but will not be used in this section.

We assume the existence of a quartet of spectral flow fields U, 1 U, 1, Uypt U:F 1 as
in (3.1.7), ie. (h,Q;h,Q) = (%,€151,62),& € {£1}, for ¢ = 6. By the discussion
in section 5.5 this is equivalent to the assumption that only integer charges (Q; Q)
occur in our theories. By what was said in section 3.2, instead of using N = (4, 4)
supersymmetry it suffices to start with N = (2,2) and this quartet.

Our assumptions are natural in the context of superstring compactification. There,
unbroken extended spacetime supersymmetry is obtained from N = (2,2) world-
sheet supersymmetry with spectral flow operators [Sen86, Sen87]. Thus our su-
perconformal theories may be used as a background for N = 4 supergravity in six
dimensions. Here, however, we concentrate on the internal conformal field theory.
External degrees of freedom are not taken into account.

Let us give a brief summary on what is known about the moduli space M so far.
The spaces of states of the conformal field theories form a vector bundle over M
with local gradings by finite dimensional subbundles. They can be decomposed
into irreducible representations of the left and right N = 4 supersymmetries. The
irreducible representations are determined by their lowest weight values of (h, Q).
As we have seen in section 3.2.2, these representations can be deformed continu-
ously with respect to the value of h, except for those of non-zero Witten index, the
massless ones. Let us enumerate the representations which are massless with re-
spect to both the left and the right handed side. Apart from the vacuum we already
mentioned the spectral flow operators with (h,@;k, Q) = (3,e1;1,62),&; € {£1}.
They form a vector multiplet under SO(4)***¥. Since the vacuum is unique, there
is exactly one multiplet of such fields. On the other hand, the dimension of the
vector space of real (i, 0; i, 0) fields is not fixed a priori. We shall denote it by
4+ 4 and show ¢ € {0,16} in theorem 7.1.1 below. With a slight abuse of notation,
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the orthogonal group of this vector space will be called O(4 + §). These are all the
possibilities of massless representations in the Ramond sector. The corresponding
ground state fields describe the entire cohomology of Landau-Ginzburg or ¢ model
descriptions of our theories [LVW89].

Theorem 7.1.1
The moduli space M of N = (2,2) superconformal field theories with ¢ = 6 and
four operators of spectral flow U:tlU +1 U:tlU 1 realized as fields of the theory

decomposes into two components Mt"” and MK3. The elliptic genus of theories
in M vanishes, and that of theories in M3 agrees with the geometric elliptic
genus of a K3 surface given in theorem 3.1.10.

We call one of our conformal field theories ASSOCIATED TO TORUS OR K3, de-
pending on the elliptic genus. For the theories associated to the torus one has
0 = 0, and for those associated to K3 one has § = 16.

Proof:

By our assumptions on theories contained in M we can use theorem 3.1.7 to char-
acterize components M*® of M by the conformal field theoretic elliptic genus £°
of theories in M*®. By theorem 3.1.12 we know £°® = %c‘,’X:Kg,A € Z. Thus the
leading order terms of the elliptic genus are

A 7 A
€%(0,2) = 5 Wppere=g emoylo 4. = 5 (2y+20+2y ") +---  (7.1.1)

Consider first a component M*® of M where there exist fields Eﬁ) with quantum
numbers (h, Q; h, Q) = (0,0; ;,il) in the Neveu-Schwarz sector. Since they are
complex conjugate, from the existence of a real structure on the space of states
of our theory by property 1 of section 2.1 it is clear that if either of the two

exists, so does the other. Since there is only one irreducible representation of the
Virasoro algebra with these quantum numbers [FQS84], E(il) is a Dirac fermion,
and J; = %EEPE(_I) is a right moving U(1) current. We now decompose the right
moving U(1) current J of a given theory in M* into J = J; + J5 by the GKO
construction and bosonize J;, = i0H. Then Eﬁ) = :efiﬁlz. By our assumptions
on theories in M we can find Neveu—Schwarz fields J. which together with J
generate an su(2), Kac-Moody algebra. Since J. must be local to both Eil),
we find Jo = :eF(H1tH2).  OPE with @ﬁ’ then shows that Ef) = e s a
second Dirac fermion which is realized as Neveu-Schwarz field of our theory. It

also follows that no further right moving Dirac fermions can be contained in the
theory. Thus by application of the spectral flow U_ %U 1 as given by (3.1.8) we

can determine all Ramond ground states of the theory with Q = —1. Namely, two
of them with ¢) = 0 correspond to the two Dirac fermions, and one with @ = £1
each corresponds to the operators Ui%U 1 of spectral flow. The coefficient in front

of y~!in (7.1.1) vanishes, so A =0, and M* = M
In any other component M* of M we have no fields with (h, Q; h Q) (0, 0; % +1).

Again, by spectral flow all Ramond ground states of the theory with Q = —1 are
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determined, and now the coefficient in front of y ! in (7.1.1) is 2. Thus A = 2 and
M*® = MX3 as asserted above.

The respective values of ¢ are read off from (7.1.1). O

In theorem 7.1.1 we have only used the conformal field theoretic elliptic genus £
which a priori need not be left-right symmetric by definition 3.1.6. The RIGHT
HANDED ELLIPTIC GENUS

E(7.7) 1= tryn(—1) T g H g
has analogous properties and will be used in the following

Theorem 7.1.2
For all theories in M the left and right handed elliptic genera have the same power

series expressions. In particular, theories in M are toroidal superconformal field
theories in the sense of definition 4.1.3, i.e. M™™ = MY as in (4.2.6).

Proof:

Since theorems 3.1.7 and 3.1.12 have direct analogs for £, theorem 7.1.1 can also
be directly translated to the right handed elliptic genus. To prove the assertion, it
therefore suffices to exclude the case £ = Ex—k3,E = 0. Let h?? denote the generic
number of Ramond-Ramond ground states of the theories in a given component of
M with charge (Q; Q) = (p—1;¢—1). Then from our assumption on the existence
of a quartet of operators of spectral flow we have h%? = p20 = p02 = p22 = 1. If
E = Ex_ks, it follows that A0 = Ab? = 0, and from € = 0 we read h%! = h2! = 2.
But then £& = Ex_g3 implies h'! = 24, whereas £ = 0 implies ! = 0, so
€ = Ex—k3,€ = 0 cannot hold simultaneously.

In particular we see that the existence of one right handed Dirac fermion already
implies the existence of two left and two right handed Dirac fermions. The su-
perpartners of the corresponding Majorana fermions give four left and four right
moving Abelian U(1) currents. Hence the respective theory indeed is a toroidal
superconformal field theory in the sense of definition 4.1.3. O

To understand the local structure of the moduli space M we must determine the
tangent space H; in a given point of M, i.e. describe the deformation moduli of a
given theory. As discussed in section 2.2, this space consists of real fields of dimen-
sions h = h = 1 in the space of states H over the chosen point. The Zamolodchikov
metric on H; establishes on M the structure of a Riemannian manifold, with holon-
omy group contained in O(H;). To preserve the supersymmetry algebra, H; by
conjecture 3.1.1 must consist of SO(4)***¥ invariant fields in the image of 7 under
(Ql)1/2 ® (Qr)1 /2, where the latter subscripts denote Fourier components. The vec-
tor space Fi o is spanned by the fields with (h, Q; h, Q) = (3,215 3,62), & € {1},
and is obtained from the ( ,0; i, 0) Ramond fields by spectral flow. Thus it gives
an irreducible 4(4+6)—dimens10nal representation of su(2);""Y @ su(2)**Y®o(4+9).
Accordingly, F1/, @ H; yields a well-known representation of the osp(2,2) super-
SUsYy

algebra spanned by (Q;)+1/2, su(2);""?, and the Virasoro operator L,. In particu-
lar, H; should be 4(4 + ¢)—dimensional and form an irreducible representation of
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su(2); & su(2), @ o(4 + 6). We shall assume that all elements of #; really give
integrable deformations, as has been shown to all orders in perturbation theory
[Dix87]. Note, however, that there is no complete proof yet.

The holonomy group of M projects to an O(4+46) action on the uncharged massless
Ramond representations and to an SO(4) action on @; ® @Q,. Thus its Lie algebra
is contained in su(2); ® su(2), D o(4 + ). The two Lie algebras are equal for M
and one expects the same for 6 = 16. In section 7.3.2 we shall find an isometry
from M?®" to a subvariety of M¥3 such that the holonomy Lie algebra of the
latter space is at least su(2); ® su(2), ® so(4). Moreover, this isometry shows that
M3 is not compact. Since one has the inclusion

su(2) @ su(2) @ o(4+0) = sp(1) @ sp(1) ® o(4 + 6) — sp(1) & sp(4 + 6),

the moduli space of N = (4,4) superconformal field theories with ¢ = 6 associated
to torus or K3 is a quaternionic K&hler manifold of real dimension 4(4 + §). To
determine its local structure, recall that we are looking for a noncompact space.
By Berger’s classification of quaternionic Kéhler manifolds [Ber55] it can only be
reducible or quaternionic symmetric [Sim62, Th. 9]. Because non—Ricci flat quater-
nionic Kéhler manifolds are (even locally) de Rham irreducible [Wol65], this means
that it can only be Ricci flat or quaternionic symmetric. The former is excluded
because geodesic submanifolds on which all holomorphic sectional curvatures are
negative and bounded away from zero have been found [PS90, CFG89, Cec90].
Hence the moduli space must locally be the Wolf space

T4 = O%(4,4+0;R)/SO(4) x O(4 +9)
SO (4,4 +6;R)/SO(4) x SO(4 +9) (7.1.2)
>~ 04,44 6;R)/O(4) x O(4 + 0),

1%

i.e. one component of the GRASSMANNIAN OF ORIENTED SPACELIKE FOUR-—
PLANES 7 C R¥**% [Cec91], reproducing Narain’s and Seiberg’s previous results
[CENTS85, Nar86, Sei88]. The Zamolodchikov metric on 7%**9 is the group invari-
ant one. In case § = 0 this indeed is the Teichmiiller space of M as was stated
in (4.2.2).

Generic examples for our conformal theories are nonlinear o models which by the
discussion of the elliptic genus and theorem 7.1.1 must have the oriented four—
torus or the K3 surface as target space X. In the K3 case, the existence of these
quantum field theories has not been proven yet, but their conformal dimensions
and operator product coefficients have a well defined perturbation theory in terms
of inverse powers of the volume. We tacitly make the assumption that a rigorous
treatment is possible and warn the reader that many of our statements depend on
this assumption.

Around (4.2.3) we argued that the parameter space of nonlinear o models has the
form { Ricci flat metrics} x {B — fields}. To understand the parameter spaces for
the two components of M corresponding to nonlinear ¢ models on a four—torus or
a K3 surface X, note that metric and orientation define a Hodge star operator on
X which on A2X has eigenvalues 1. The corresponding eigenspaces A*X have
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dimension 3 and 3 + §, where as above § = 0 for the torus and § = 16 for the
K3 case. One finds that AT™X has vanishing curvature [Hit74]. Hence one can
choose three parallel sections wy, wy, ws € H*(X,R) which span a positive definite
three plane ¥ C H?(X,R) with respect to the intersection product, which agrees
with the cup product (on homology: use Poincaré duality). This means that the
choice of an Einstein metric on X induces the choice of a positive definite three
plane ¥ C H?*(X,R). The orientation on X induces an orientation on . One can
show that Ricci flat metrics are locally uniquely specified by X, apart from a scale
factor given by the volume. Since the Hodge star operator in the middle dimension
does not change under a rescaling of the metric, the volume V' must be specified
separately.

We consider the vector space H?(X,R) together with the intersection product,
such that H?(X,R) = R332, In other words, positive definite subspaces have at
most dimension three, negative definite ones at most dimension 3+ ¢§. On K3 this
choice of sign determines a canonical orientation. As explained at the end of section
4.4, when one wants to study M " by itself, the choice of a torus orientation is
superfluous. One of our main interests, however, is the study of torus orbifolds. For
a canonical blow—up of the resulting singularities one needs an orientation. The
effect of a change of orientation on the torus will be considered in section 7.3.2.
It follows that 7339 x Rt is the Teichmiiller space of Einstein metrics on X.
Explicitly, we have

T334+ = O (H?*(X,R))/SO(3) x O(3+6). (7.1.3)

The SO(3) group in the denominator is to be interpreted as SO(X,) for some posi-
tive definite reference three-plane in H%(X,R), while O(3+6) is the corresponding
group for the orthogonal complement of ¥,. Equivalently, 7239 could have been
written as SOT(H?(X,R))/SO(3) x SO(3+ ). We choose the description (7.1.3)
for later convenience in the construction of the entire moduli space.

Since also B-field degrees of freedom have to be taken into account, the Teichmiiller
spaces for parameter spaces of nonlinear ¢ models in our cases are

T30 x RT x H*(X,R). (7.1.4)

Their elements will be denoted by (3,V, B). The Zamolodchikov metric gives a
warped product structure to this space.

In the context of o models it often is useful to choose a complex structure on X.
When such a structure is given, the real and imaginary parts of any generator of
H?%(X,C) span an oriented twoplane Q C ¥.. Conversely, any such subspace {2
defines a complex structure. This means that the choice of an Einstein metric
is nothing but the choice of an S? of complex structures on X, in other words a
HYPERKAHLER STRUCTURE. In terms of cohomology, €2 specifies H*%(X, C) &
H%?(X,C). The orthogonal complement of 2 in H?(X,R) yields H"'(X,R). Any
vector w € HY'(X,R) of positive norm yields a Kéhler class compatible with the
complex structure and the hyperkédhler structure ¥ spanned by €2 and w.
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By a result of Kodaira’s, X is algebraic, if NS(X) (definition 4.6.1) contains an
element p of positive length squared [Kod64], where by the discussion after defi-
nition 4.6.2 in case X is K3 or a torus we have NS(X) & HY(X) N H*(X,Z).
Given a hyperkahler structure 3 we can always find 2 C ¥ such that X becomes
an algebraic surface. It suffices to choose w as the projection of p on ¥ and (2 as
the corresponding orthogonal complement. The projection is non-vanishing, since
the orthogonal complement of ¥ in H?(X,R) is negative definite. Varying p one
obtains a countable infinity of algebraic structures on X. Thus the occasionally
encountered interpretation of moduli of conformal field theories as corresponding
to nonalgebraic deformations of K3 surfaces does not make sense. This was already
pointed out in [Cec91] by different arguments.

Worldsheet parity transformations (&g, &) — (—&o, &1) change the sign of the cycles,
or equivalently the sign of B, which yields an automorphism of the parameter space.
Target space parity for B = 0 yields a specific worldsheet parity transformation
and thus an identification of su(2); with su(2),. The corresponding diagonal Lie
algebra su(2),,, generates an SO(3) subgroup of SO(4). Under the action of this
subgroup a four—plane z € 7%?° decomposes into a line and its orthogonal three—
plane ¥ C z. The S? x S? bundle over M now has a diagonal S? subbundle. Each
point in the fibre corresponds to the choice of an SO(2) subgroup of SO(3) or a
subalgebra u (1), of su(2);;,. Geometrically this yields a complex structure in the
target space. Thus the S? bundle over the B = 0 subspace of M is the bundle of
complex structures over the moduli space of Ricci flat metrics on the target space.
For higher dimensional Calabi-Yau spaces the ¢ model description works only for
large volume due to instanton corrections. In our case, however, the metric on
the moduli space does not receive corrections [NS95|. Therefore the Teichmiiller
space (7.1.4) of o models on X should be a covering of a component of M, thus
isomorphic to the Teichmiiller space 7**° obtained in (7.1.2). Indeed, for § = 16
a natural isomorphism

T4 o 73340 RY x H2(X,R) (7.1.5)

was given in [AM94, Asp97], with a correction and clarification by [RW98, Dij99].
The same construction actually works for § = 0, too, see (4.4.3). It uses the

identification
7_474+(5 _ O+(Heven(X, ]R))/SO(AL) X 0(4 + 5)7

where SO(4) is to be interpreted as SO(zq) for some positive definite reference
four-plane in H¢"*"(X,R), while O(4 + 0) is the corresponding group for the or-
thogonal complement of zy. In other words, the elements of 7**% are interpreted
as positive definite oriented four—planes x C H®*"(X,R) by H®*"(X,R) & R4+,
Note that all the cohomology of K3 is even, whereas H°%(X R) & R»* when X
is a four-torus.

From the preceding discussion, x can be interpreted as the SO(4)***¥ invariant
part of the tensor product of (); ® @, with the four-dimensional space of charged
Ramond ground states. Note that the action of so(4) = su(2), ® su(2), discussed
above generates orthogonal transformations of the four-plane z € T** that
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corresponds to the theory under inspection, whereas o(4+0) acts on its orthogonal
complement.

We have repeatedly used the splitting so(4) = su(2); ® su(2),. Consider the anti-
symmetric product A2z of the above four-plane . We choose the orientation of
such that su(2); fixes the anti—selfdual part (A%z)~ of A%z with respect to the group
invariant metric on O (4,4 + 0; R). When the theory has a parity operation which
interchanges ); and @), this induces a change of orientation of x. The choice of an
N = (2,2) subalgebra within the N = (4,4) superconformal algebra corresponds
to the selection of a Cartan torus u(1);®u(1), of su(2);® su(2),. This induces the
choice of an oriented twoplane in Q C z. The rotations of z in this twoplane are
generated by u(1);,, those perpendicular to the plane by u(1), ,. Thus the moduli
space of N = (2,2) superconformal field theories with central charge ¢ = 6 is given
by a Grassmann bundle over M, with fibre SO(4)/(SO(2)11»xSO(2),_,) = S2xS2.
Given an image (X, V, B) of z under the isomorphism (7.1.5), the twoplane  C z
actually is the lift of a twoplane {2 C ¥ that corresponds to the choice of a complex
structure on X. Though we refer to the choice of such a twoplane 2 as fixing a
complex structure we see that, more precisely, the twoplane (2 specifies a complex
structure in every such image (X, V, B).

To explicitly realize the isomorphism (7.1.5) one also needs the positive generators
v of H*(X,Z) and v° of H°(X,Z), which are Poincaré dual to points and to the
whole oriented cycle X, respectively. They are null vectors in H®*"(X,R) and
satisfy (v,v°) = 1. Thus over Z they span an even, unimodular lattice isomorphic
to the standard hyperbolic lattice U with bilinear form

01
10/
Now consider a triple (X,V, B) in the right hand side of (7.1.5). Define

£: X - H*"(X,R), &(0):=0—(B,o)v,

T := spang (f (), & ="+ B+ (V - @) U) i (7.1.6)
Then ¥ = ¢ (X) is a positive definite oriented three-plane in H®"*"(X,R), and
the vector & is orthogonal to . Since |€4||*> = 2V, it has positive square. To-
gether, 5 and &, span an oriented four—plane x C H®*"(X,R). Obviously, the
map (X,V, B) — z is invertible, once v and v° are given.

Note that the role of triality for toroidal conformal theories (see section 4.4) is
now visible upon comparison of the geometric interpretations (7.1.6) and (4.2.1).
The analogy between choices of nullplanes Y,Y? as described in section 4.2 and
null vectors v, v° above is apparent. Indeed, part of the triality manifests itself
in a one to one correspondence between maximal isotropic subspaces ¥ C R**
and null Weyl spinors v such that Y = {y € R%? | ¢(y)(v) = 0} where ¢ denotes
Clifford multiplication on the spinor bundle [BT88]. One can regard this as further
justification for interpreting v as volume form which generates H*(T,Z) in our
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geometric interpretation. Note also that in both cases different choices of Y, v°
correspond to B-field shifts by integral forms (see below).

To describe the projection from Teichmiiller space to M we need to consider the
lattices H?(X,Z) and H®*"(X,Z). They are even, unimodular, and have signature
(p,p + 6) with p = 3 and p = 4, respectively. Such lattices are isometric to
PPt = UP @ (Fg(—1))%8. Here each summand is a free Z module, Fg has as
bilinear form the Cartan matrix of Eg, and for any lattice ' we denote by I'(n) the
same Z module [' with quadratic form scaled by n.

We now consider the projection from Teichmiiller space to M. First we have to
identify all points in 733%9 which yield the same Ricci flat metric. This means
that we have to quotient the Teichmiiller space (7.1.3) by the so—called CLASSICAL
SYMMETRIES. The projection is given by

O1(H*(X,Z))\T>*"° (7.1.7)

[KT87]. The interpretation of the quotient space (7.1.7) as moduli space of Einstein
metrics of volume 1 on X is straightforward in the torus case. For X = K3 one has
to include orbifold limits [KT87] (see section 5.2.2), and as was shown by Anderson
[And92] one can define an EXTRINSIC L2-METRIC on the space E of regular Einstein
metrics of volume 1 on K3 such that the completion of E is contained in the set
of regular and orbifold singular Einstein metrics. The o models corresponding to
orbifold limits are not expected to exist for all values of B [Wit95]. To simplify
the discussion we include such CONIFOLD POINTS in M. On 7**t% the group of
classical symmetries lifts by (7.1.6) to the subgroup of O* (H®"*"(X, Z)) which fixes
both lattice vectors v and v°.

Next we consider the shifts of B by elements A € H*(X,Z), which neither change
the physical content. One easily calculates that this also yields a left action on
T44+9 by a lattice automorphism in O (H®"(X,Z)), generated by w — w —
(w, \)v for (w,v) =0 and v° — 0 + X — WU. These transformations fix v and
shift v° to arbitrary null vectors dual to v. Thus the choice of v° is physically
irrelevant.

Below, we shall argue that the projection from Teichmiiller space to M is given by

7—4,4—|—5 — O+(Heven (X, Z))\T4’4+6- (718)

The group OT(H®*"(X,Z)) acts transitively on pairs of primitive lattice vectors
of equal length [LP81, Nik80b]. Thus (7.1.8) would imply that different choices of
v,v? are equivalent. Anticipating this result in general, we call the choice of an
arbitrary primitive null vector v € H®*"(X,Z) a GEOMETRIC INTERPRETATION
of a positive oriented four—plane z C H®*"(X,Z). Such a choice yields a family of
o models with physically equivalent data (3,V, B). A conformal field theory has
various different geometric interpretations, and the choice of v is comparable to a
choice of a chart of M.

Aspinwall and Morrison also identify theories which are related by the worldsheet
parity transformation [AM94]. We regard the latter as a symmetry of M. It is

given by change of orientation of the four—plane z or equivalently by a conjugation
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of OT(H®*"(X,R)) with an element of O(H**"(X,R)) — O"(H*®*"(X,R)) which
transforms the lattice H""(X, Z) and the reference four—plane z; into themselves.
To stay in the classical context, one may choose an element which fixes v and v°.
More canonically, parity corresponds to (v,v°) + (—v, —v%). The latter induces
54 — —64 and (E, V, B) — (E, V, —B)

Let us consider the general pattern of identifications. When two points in Teichmiil-
ler space are identified, the same is true for their tangent spaces. Higher derivatives
can be treated by perturbation theory in terms of tensor products of the tangent
spaces Hi. Assuming the convergence of the perturbation expansion in conformal
field theory, any such isomorphism can be transported to all points of 749,
Therefore o model isomorphisms are given by the action of a group G(® on this
space. In the previous considerations we have found a subgroup of G(?.

In theorem 7.3.17 we shall prove that the interchange of v and v°, which is the
Fourier-Mukai transform [RW98], also belongs to G(. When B = 0, this yields
the map (X, V,0) — (2,V~1,0). In the torus case, it is known as T-duality and it
seems natural to extend this name to X = K3. We will not use the name mirror
symmetry for this transformation.

It is obvious that classical symmetries, integral B-field shifts, and T-duality gen-
erate all of OF(H®"*"(X,Z)). Thus G contains all of this group. As argued in
[AM94, Asp97], it cannot be larger, since otherwise the quotient of 744+ by G
plus the parity automorphism would not be Hausdorff [All66]. For a proof of the
Hausdorff property of M one will need some features of the superconformal field
theories, which should be easy to verify once they are somewhat better understood
along the lines that were drawn in sections 2.1 and 3. First, one has to check that
all fields are generated by the iterated operator products of a finite dimensional
subspace of basic fields. Next one has to show that the operator product coeffi-
cients are determined in terms of a finite number of basic coefficients, and that the
latter are constrained by algebraic equations only. This would show that M is an
algebraic space. In particular, every point has a neighborhood which contains no
isomorphic point. All of these features are true in the known examples of conformal
field theories with finite effective central charge, in particular for the unitary ones.
They certainly should be true in our case.

7.2 The topological part of partition functions

Let us now study generic features of theories contained in the moduli space M.
In particular, one can ask whether certain fields exist generically, as is the case,
e.g., for the quartet of spectral flow fields by assumption. As a first step of such an
analysis we ask for a generic part of the partition function of all theories in a given
component of M. The idea is similar to the determination of the “topological part
Zyop of the partition function” of Eguchi, Ooguri, Taormina and Yang [EOTY89,
(3.10)]. The analysis in [EOTY89] is not carried out explicitly, though, and we
suggest an improvement to the result presented there.

We use the ansatz of [Tao90] for the partition function of any theory C in M.
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Namely, by our assumptions C is invariant under spectral flow, such that it is
sufficient to study the partition function in one of the sectors S € {NS, N S R, R}
and use the flows (3.1.9). Since C possesses N = (4, 4) superconformal symmetry,
we can split the partition function into combinations of the N = (4,4) characters
ch(‘io,ch‘fﬂ,lﬂ,chf’o introduced in section 3.2.2. By theorems 7.1.1 and 7.1.2 we

have either no left-right coupling between Chg,o and ch‘ls/z1 /25 if C € MX3, or
otherwise € = 2 left and right handed couplings each, if C € M. With

~ 8 . S
ch = limchy
h—0 ’

we then find
ZS = Chos,o (ChOS,O)* + hljl Ch‘ls/Q,l/Q (Ch‘ls/Q,l/Z)*
+ € [Chos,o (Chﬁs/2,1/2)* + Chf/2,1/2 (Chos,o)*]
+ F R (chiy)" + chfy (F ek
~S, g N s S~ S\ * ~8 [ ~8\*
+ G oh” (hSp0) + chS s (G ch ) +Hch (ch ) .

(7.2.1)

If C € M"" we have ¢ = 2, hb! = 4, whereas for C € M¥3 we have ¢ =0, M =
20. Moreover, F' = F(o,z) and analogously for F',G,G’, and H = H(o,2;7,%).
Note that F, G, H may only have nonnegative integer coefficients in ¢, q.

By theorem 7.1.1 we explicitly know the elliptic genus £ of C, and since £ can be
obtained from the partition function by (3.1.11) we can deduce restrictions on F, G
and F', G'. Namely,

Theorem 7.2.1
Consider a conformal field theory C in M with partition function (7.2.1). Define

e:=G—-2F, ¢:=G —2F'.
Then
0 on Mtori

4 _ 94
V2 4194 — 12h3> on MX3,

Proof:
We use (3.1.11) to determine the elliptic genus £ from (7.2.1). By inserting the
Witten indices (3.2.7) we find

E(0,2) = Zp(0,2,0,2=0) = (¢ — 2) chéo + (Y = 2¢) chfi/m/? +e ch”.

Since £(7,%) = £(7,%) by theorem 7.1.2 we immediately deduce e = €'. If C €
Mt € = 0, so with ¢ = 2,h"" = 4 we get e = 0. In case C € MK we
insert the formula for £ given in theorem 3.1.10 as well as the explicit forms of

PR ~R
chglo, chiyg 1/ ch (see (3.2.5), (3.2.10)) to show the assertion of the theorem. O
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Theorem 7.2.1 allows us to rewrite (7.2.1) in a more suggestive way:
+ & [ehgo (chippap)” + chijaap (chGo)]
+ [e ch (Chf/2,1/2) + Chf/2,1/2 (6 ch ) } (7.2.2)
+ Foh (ch§y+2¢hSs1)" + (cho +2¢h5 )51 o) (F’ ch )
+ Hch (ch ) )
Note that the vacuum character of C is given by

NS ~NS  ~NS
xm=%(ch3f§+chg§)+zr-§<ch + ch )

i.e. F counts the primary holomorphic fields of C that are not contained in the
N = 4 vacuum representation with character %(ché\{g + ché\fﬁg ). By our discussion
in section 3.2, nongeneric holomorphic fields may occur if a right handed massive
representation hits the unitarity bound and splits into three massless ones,

~S\* S V¢ s s .
(ch ) = }1L1_1>r(1) (chh,o) = (Cho,o + 20h1/2,1/2) ,

as in (3.2.6). Hence (7.2.2) shows that all fields counted by e are generic, even
if all holomorphic fields counted by F' are nongeneric. The latter is clearly not
the case on M since there we always have seven additional (1,0) fields by the
very definition 4.1.3 of a toroidal superconformal field theory. In the K3 case we
could easily give lower bounds on the number of generic holomorphic fields if the
function ex3 had negative coefficients. Alone, numerical calculations up to order
q™°, where the coefficients of exs appear to be growing rapidly, give reason to

Conjecture 7.2.2
The function eg3(o) of theorem 7.2.1 has only integer exponents and nonnegative
coefficients in q.

Proof of the first assertion:

By (3.2.12), the function
=~ 9\
hs :=q3n (% <—2> - h3>
n

has only integer exponents in q. With (A2.2) one now checks

1

~ 8
6[(3(0') = 24h3 + 2 — 37—3 (ﬁg +19§) 5

from which the first assertion of the conjecture follows. O



7.3. THE MODULI SPACE OF THEORIES ASSOCIATED TO K3 147

The second assertion of conjecture 7.2.2 is left as a challenge to the mathemati-
cal reader. Note that if this conjecture is true, Zamolodchikov’s method for the
determination of generic holomorphic fields as discussed at the end of section 2.2
must fail on M%3. On the other hand, we can then write down a generic part
of partition functions on the two components of M. Namely, for M we use
(4.1.7) and (4.1.11), whereas for M*3 we set F = 0,F' = 0,H = 0 in (7.2.2),
insert the theta function expressions of section 3.2 for the N = 4 characters, and
perform persevering theta function training. Since it is based on conjecture 7.2.2
we formulate

Conclusion 7.2.3
Generic partition functions on M*™ and on M¥3 are given by

4 4
, 1 1 Vi(2)
A LCAG2A Iy
! In[® 2; U
s _ L[020a)" 02050 |050u]" | 92" [ 9]
en 2 || n? n? n? n n
2
A qfé 1 : 19,(2) +
—48|h3|2+8Reh3<2 4)+2 gt ,
n* n 2;1 n
respectively.

We remark that in contrast to Zy,, as suggested in [EOTY89, (3.11)] for K3, our
Z s above has only positive coefficients, if conjecture 7.2.2 is true. Nome of the
generic partition functions is modular invariant. From (7.2.2), since ex3 has only
integer exponents in g by the part of conjecture 7.2.2 we could prove, we see that
all generic primary fields counted by egs are fermionic. They are nonholomorphic,
since

exs(0) = 90q + 462¢% + 1540¢° + - - - .

From the properties of the elliptic genus it should be possible to interpret all these
fields in terms of deformations of parameters of the theory. The leading order
term, for example, corresponds to the 90 deformations of any of our theories that
preserve conformal invariance but break the left handed supersymmetry.

7.3 The moduli space of theories
associated to K3

For the rest of this work, we will concentrate on the moduli space M%3 of conformal
field theories associated to K3, namely

MK3 — O—I—(Heven(X’ Z))\7-4,20 (731)

by (7.1.8), where X always denotes a K3 surface in the following. For other
presentations see [AM94, RW98, Dij99).
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In the decomposition (7.1.5) we determine the product metric such that it becomes
an isometry. In particular, it faithfully relates moduli of the conformal field theory
to deformations of geometric objects. Recall that the structure of the tangent
space H; of MX3 in a given superconformal field theory is best understood by
examining the (3, 3)-fields in F; 5. In our case we have related it to the su(2);"* &
su(2):**¥ invariant subspace of the tensor product Q1®QT®HS)4®H$)4, where ’HYZ

denotes the charged and ’HY}L the uncharged Ramond ground states. The invariant

subspace of Q; ® Q, ®H$)4 yields a four—plane with an orthogonal group generated
by su(2); @ su(2),. When a frame in Q; ® @, is chosen, the latter tensor product
factor can be omitted. The description of M implies that ’Hﬁﬁ}?—[ﬁ% has a natural
non-degenerate indefinite metric and remains invariant under deformations, but it
has not been understood from a pure conformal field theoretic point of view how
its signature comes about. In terms of the four—plane x € T4% giving the location
of our theory in moduli space, specific vectors in the tangent space 1,742 are
described by infinitesimal deformations of one generator £ € x in direction z+
leaving £ Nz invariant.

To formulate this in terms of a geometric interpretation (X, V, B) specified by
(7.1.6), pick a basis 71, ...,n9 of ¥t C H%(X,R) = R>¥. Then 2! is spanned by
{ni — (i, Byv;i =1,...,19} and 7y := 0° + B — (@ + V)v. The following is
most easily achieved by making use of R. Dijkgraaf’s description of the quaternionic
structure of M*3 [Dij99]. In each of the SO(4) fibres of H, over n; — (n;, BY v, =
1,...,19, we find a three dimensional subspace deforming generators of ¥ by 7;,
as well as the deformation of B in direction of 7;. The fibre over 7y contains
B-field deformations in direction of ¥ and the deformation of volume. All in all,
a 3-19 = 57 dimensional subspace of H; = T, M*? is mapped onto deformations
of ¥ by (1,1)-forms n € ¥+ N H*(X,R) ¢ H"'(X,R), no matter what complex
structure we pick in 3. The 23 dimensional complement of this subspace is given
by 19 + 3 deformations of the B-field by forms n € H?(X,R) and the volume
deformation.

One of the most valuable tools for understanding the structure of the moduli space
is the study of symmetries. Such an analysis will be initiated in the next section,
where we also review some of the mathematical background.

7.3.1 Making use of K3 geometry: Symmetries and lattices

In order to take advantage of the mathematicians’ insight on K3 geometry we first
study how to translate symmetries of a given superconformal field theory to its geo-
metric interpretations. Those symmetries which commute with our su(2); ® su(2),
action leave the four—plane x invariant and are called ALGEBRAIC SYMMETRIES.
When the N = (4,4) supersymmetric theories are constructed in terms of (2,2)
supersymmetric theories one has a natural framing. In this context, algebraic
symmetries are those which leave the entire vector space ); ® ), of supercharges
invariant. More generally, any Abelian symmetry group of our theory projects to
a u(1); ® u(l), subgroup of su(2); ® su(2), and fixes the corresponding N = (2,2)
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subalgebra. When corresponding supercharges are fixed, the Abelian symmetry
group acts diagonally on the charge generators J=, T of su(2);"Y @ su(2)5%v. The
algebraic subgroup of this symmetry group is the one which fixes these charges.

If the primitive null vector v specifying our geometric interpretation (3, V, B) is
invariant upon the induced action of an algebraic symmetry we call the latter a
CLASSICAL SYMMETRY of the geometric interpretation (X, V, B). Because a classi-
cal symmetry o* fixes x by definition we get an induced automorphism of H?(X, R)
which leaves ¥ C H?(X,R) and B € H*(X,R)/H?*(X, Z) invariant. Moreover, be-
cause &, in (7.1.6) is invariant as well, 1y = v° + B — (@ + V)v is fixed. Thus
a* acts trivially on moduli of volume and B-field deformation in direction of X.
Because a* acts as automorphism on H%'(X,R) = Q'+ N H%(X,R) for any choice
of complex structure Q2 C 3 on X leaving the onedimensional H-(X,R) N ¥
invariant, all in all, z — (3, V, B) maps the action of «* to an automorphism of

H?(X,R) which on H%!(X, R) has exactly the same spectrum as o* on (3, 3)-fields

with charge, say, Q = Q) = 1.
We thus find that we are naturally led to a discussion of algebraic automorphisms
of K3 surfaces:

Algebraic automorphisms and discrete symmetries of Gepner models

Definition 7.3.1 [Nik80a]

Consider an automorphism o € Aut(X) of finite order on a K3 surface X, whose
induced action o* on H*(X,C) is trivial on H*°(X). Then « is called an ALGE-
BRAIC AUTOMORPHISM.

This notion of course only makes sense after a choice of complex structure. Below
(7.1.5) we have seen that in conformal field theory language such a choice arises
from selecting an N = (2, 2) subalgebra of the N = (4,4) superconformal algebra
and so fixing generators J, J*, J, T of su(2),®su(2),. Still, because in the present
context the metric always is invariant under o* as well, i.e. ¥ C H?(X,R)*", we
see that for o* with integral action on H?(X,C) which is induced by an automor-
phism a € Aut(X) of finite order, « is an algebraic automorphism, independently
of the choice of complex structure 2 C 3. On the other hand, given an algebraic
automorphism « of X which induces an automorphism of H?(X,R) that leaves
the B-field invariant, a induces a symmetry of our conformal field theory which
leaves J, J£, 7,7 invariant. This gives a precise notion of how to continue such
an algebraic automorphism to the conformal field theory level.

Algebraic automorphisms are mathematically well understood thanks to the work
of Nikulin [Nik80a] for the Abelian and Mukai [Muk88] for the general case. The
first to explicitly take advantage of their special properties in the context of con-
formal field theory was P.S. Aspinwall [Asp95]. From [Nik80a, Th. 4.3,4.7,4.15]
one can deduce the following consequence of the global Torelli theorem:

Theorem 7.3.2
Let g denote an automorphism of H*(X, C) of finite order which maps forms cor-
responding to effective divisors of self intersection number —2 in Pic(X) to forms



150 CHAPTER 7. THE MODULI SPACE OF SCFTS WITH C =6

corresponding to effective divisors. Then g is induced by an algebraic automor-
phism of X iff (H*(X,Z)9)"NH2(X,Z) C Pic(X) is negative definite with respect
to the intersection form and does not contain elements of length squared —2.

If for a geometric interpretation (3,V, B) of z € O (H®*"(X,Z))\T**° we have
classical symmetries which act effectively on what we read off as H?(X, C) but are
not induced by an algebraic automorphism of the K3 surface X by theorem 7.3.2,
then our interpretation of x as giving a superconformal field theory breaks down.
Such points should be conifold points of the moduli space M3, characterized
by too high an amount of symmetry. One can regard Nikulin’s theorem 7.3.2 as
harbinger of Witten’s result that in points of enhanced symmetry on the moduli
space of type ITA string theories compactified on K3 the conformal field theory
description breaks down [Wit95].

By abuse of notation we will often renounce to distinguish between an algebraic
automorphism on K3 and its induced action on cohomology.

From Mukai’s work [Muk88, Th. 1.4] one may learn that the induced action of any
algebraic automorphism group G on the total rational cohomology H*(X,Q) is a
MATHIEU REPRESENTATION of GG over (Q, i.e. a representation with character

x(g) = n(ord(g)), where for n € N: pu(n) := (7.3.2)

n ] (1+%)'

p prime,
pln
This imposes such severe restrictions on G that all possible finite algebraic auto-
morphism groups can be classified [Nik80a, Muk88]. It also follows that

dimg H'(X.Q)% = 4(€) 1= 15 3 uord (9) (733)

geG

[Muk88, Prop. 3.4]. Since G acts algebraically, we have dimg H*(X,Q)¢ =
dimg H*(X,R)Y = dim¢ H*(X,C)¢. By definition of algebraic automorphisms
H*(X,C)¢ > H(X,C) & H**(X,C) & H*?(X,C) ® H**(X, C), so

w(G) — 4 = dimg HY' (X, R)C. (7.3.4)

Moreover, from theorem 7.3.2 we know that (H?(X, ]R)G)L C HY(X,R) is nega-
tive definite, and because H"'!(X,R) has signature (1,19), we may conclude that
it contains an invariant element with positive length squared. Thus u(G) > 5
for every algebraic automorphism group G [Muk88, Th. 1.4]. Moreover [Muk88,
Cor. 3.5, Prop. 3.6],

G # {1} = p(G) < 16. (7.3.5)

Finally let us consider the special case of an algebraic automorphism « of order
4, which will be useful in due course. By n; we denote the multiplicity of the
eigenvalue i* of the induced action o* on H''(X,C). Because by (7.3.2) and
(7.3.3) u(Zy) = 10 and p(Zy) = 16, using (7.3.4) we find ng = 10 —4 = 6,ny =
16 — 4 — ng = 6. The automorphism «o* acts on the lattice H?(X,Z), so it must
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have integer trace. On the other hand 20 = dim¢ HY (X, C) = ng + ny + ng + n3,
hence

Ng = Ng = 6, ny =ng = 4. (736)

It now is natural to investigate algebraic symmetries of superconformal field the-
ories in M&3. A program to find a stratification of the moduli space could even
be formulated as follows: Determine all subspaces of theories having a geometric
interpretation (3,V, B) with given algebraic automorphism group G. Relations
between such subspaces may be described by the modding out of algebraic auto-
morphisms. Any infinitesimal deformation of ¥ by an element of H!(X, R)¢ will
preserve the symmetries in GG, as well as volume deformations and B-field defor-
mations by elements in H%(X,R)“. The subspace of theories with given classical
symmetry group G in a geometric interpretation therefore can maximally have real
dimension 3(u(G) —5) + 1+ pu(G) — 2 = 4(u(G) — 4) in accord with (7.3.4). In
particular, for the minimal value u(G) = 5, the only deformations preserving the
entire symmetry are deformations of volume and those of the B-field by elements
of . Of course, the above program is far from utterly realizable, even in the pure
geometric context, but it might serve as a useful line of thought.

Let us discuss algebraic symmetries of Gepner models (sections 3.1.3 and 5.6) as-
sociated to K'3. Assume we can locate our Gepner model []’_, (k;) within M*?,
that is we explicitly know the corresponding four—plane z C H®*"(X,R) as de-
scribed in section 7.1. Furthermore assume that by picking a primitive null vector
v € H®"(X,Z) we have chosen a specific geometric interpretation (X,V, B). By
construction, a Gepner model comes with a fixed choice of the N = (2,2) subal-
gebra corresponding to a specific twoplane 2 C 3. We stress that this is true for
any geometric interpretation of [[7_, (k;): The choice of the N = (2,2) subalgebra
does not fix a complex structure a priori, it fixes a choice of complex structure
in every geometric interpretation of our model, as was explained in section 7.1.
Still, we now assume our K3 surface X to be equipped with complex structure
and Kahler metric. By the above discussion we know that any symmetry of the
Gepner model which leaves the su(2);"" & su(2):“*¥ currents J, J*, J, 7= and the
vector v invariant may act as an algebraic automorphism on X. Since the op-

erators of twofold spectral flow together with the U(1) currents .J,.J of [T5=: (%)
are the generators of su(2);"* @ su(2):“*¥ we may identify J* = (@%2,2;0,0)@” and

T = (@8,0#2,2)@7. Now recall the discussion of discrete Abelian symmetry groups
Gap of Gepner models in section 5.6. In particular,

T a,]
ij+2 GZ} C Gay
7j=1

(M =lem(k; +2,j = 1,...,7)) as defined in (5.6.3) is the stabilizer group of
J*, T, indeed, the subgroup of algebraic symmetries of [Tj_i(k;) in Gup. We

ggll)g = {[a'la s '70'1"] € HZkJ'+2/ZM
j=1

conclude that elements of lel)g can act as algebraic automorphisms on X fixing
the B-field B € H?(X,R), and vice versa. More explicitly by what was said at
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the beginning of this section, the action of such a Gepner symmetry on the (3, 3)-
fields with charges, say, @ = Q = 1 should be identified with the induced action
of an algebraic automorphism of X on H"(X,R). With reference to its possible
geometric interpretation we call G the ABELIAN ALGEBRAIC SYMMETRY GROUP
OF THE GEPNER MODEL. It is not hard to determine G%¢ for all Gepner models

associated to K 3:

Theorem 7.3.3
The Abelian algebraic symmetry groups
K3 are given by

o, of the Gepner models associated to

[T (k) | (W] (M@ | (2)*] (1)(2°(4) | (1)*(4)* | (1)*(2)(10)

Gay! Zy 73 Zi‘ Ly ‘ 73 ‘ Zsg

IT_. (k) || (4)% ] (3)%(8) | (2)(6)* | (2)(4)(10) | (2)(3)(18)

G4 L Zs Ly ‘ Ly ‘ {1}

IT_, (k) || (1)(10)* | (1)(8)(13) | (1)(7)(16) | (1)(6)(22) | (1)(5)(40)
Gy’ Z; | {1y | zs | {1y | {1}

In section 7.3.6 we will investigate where in the moduli space of superconformal field
theories associated to K3 to locate the Gepner model (2)* and some of its orbifolds
by elements of G%9 = (Z,)2. From the above discussion it is clear that given a
definite geometric interpretation for (2)* the geometric interpretation of its orbifold
models is obtained by modding out the corresponding algebraic automorphisms.

Apart from symmetries in Zy X G, our Gepner model will possess permutation
symmetries involving identical factor theories. Their discussion is a bit more subtle,
because as noted in [FKS92| a permutation of fermionic fields will involve additional
signs (3.1.19). This in particular applies to J* = ((I)O:FZ,Z;O,O)@"’ meaning that odd
permutations can only act algebraically when accompanied by a phase symmetry

r s
[al, .. .,a,«] € Gap: E J €7+ % (737)
ey kj + 2

Let us discuss this phenomenon in detail for the example of prime interest to us,
namely the Gepner model (2)*. Here % = (Z,)? by theorem 7.3.3, and the entire
algebraic symmetry group is generally believed to be G%9 2 (Z,)? x S; [Asp95).
Moreover, based on Landau-Ginzburg computations and comparison of symmetries
[GVWS89, GP90, FKSS90, Asp95] it is generally believed that (2)* has a geometric

interpretation (Xg, Vg, Bg) given by the Fermat quartic

I/JE(CI Q¢ = {($03$1'$2'$3)€C]P3|

Jo(zo 21t 20t 3) Zac - 4¢sz =0}

(7.3.8)
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at ¥ = 0. Indeed, Q = Qy is a K3 surface with algebraic automorphism group
(Z4)* x 84 [Muk88], and arguments in favour of the viewpoint that it yields a
geometric interpretation of (2)* will arise from the following discussion. It is proved
in corollary 7.3.28.

To give the action of the two generators [1,3,0,0] and [1,0,3, 0] of % 2 (Z4)? on
the (1 l)—ﬁelds with charges @ = @ = 1 we use the shorthand notation

272
B = (Q},o;—3,2)®4> (7.3.9)
F(ni,ng,n3,m4) = @pt o0 0 @ P2 000 @ P12 0000 ® Pt 0ns0
(n; € N) and find
[1,3,0,0] — 1 ] i =
1[1,0,3,0]
1 F(1,1,1,1), E | F(0,2,0,2),
F(2,0,2,0) | F(1,0,1,2) | F(1,2,1,0)
1 F(2,2,0,0), | F(2,0,0,2), (7.3.10)
F(0,0,2,2) | F(0,2,2,0) | F(2,1,0,1) | F(0,1,2,1)
i F(1,1,0,2) | F(2,0,1,1) | F(2,1,1,0) | F(1,2,0,1)
i F(1,1,2,0) | F(0,2,1,1) | F(1,0,2,1) | F(0,1,1,2)

Note first that by (7.3.3) we have u(Z4 X Z4) = 6, in accordance with (7.3.4) and
2 = 6 — 4 invariant fields in the above table. One moreover easily checks that the
spectrum of every element g € Qg,l)g of order four agrees with the one computed
in (7.3.6) for algebraic automorphisms of order four on K3 surfaces. This is a
strong and highly non-trivial evidence for the fact that one possible geometric
interpretation of (2)* is given by a K3 surface whose algebraic automorphism
group contains (Z4)?.

As stated above, further discussion is due concerning the action of &, because
transpositions of fermionic modes introduce sign flips (3.1.19). In particular, odd
elements of S; do not leave J* invariant. To have an algebraic action of the en-
tire group S; we must therefore accompany o € S84 by a phase symmetry a, =
[a1(0), as(0),a3(0), as(c)] € Gu which for odd o satisfies (7.3.7). Thus a transpo-
sition (a,w) € S4 must be represented by p((a, w)) = (o, w) 0 Aaw) = A(aw) © (0, w)
in order to have p((a,w))? = 1. With any such choice of p on generators (c;,w;)
of §; one may then check explicitly that p defines an algebraic action of Sy, i.e.
its spectrum on the (3, 1)-fields coincides with the spectrum of the algebraic au-
tomorphism group S;. Namely, any element of order two (or three, four) in S,
leaves (1(Zy) — 4 = 12 (or wu(Zs) — 4 = 8,(Z4) — 4 = 6) states invariant, and
elements of order four have the spectrum given in (7.3.6). Note in particular that
by (7.3.7) with any consistent choice of o + a, the group S, acts by o — sign(o)

on F(1,1,1,1) and trivially on E. This leaves E = (®],._3,)®* as the unique
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invariant state upon the action of (Z,)? x S, in accordance with u((Z4)? xS,) =5
and (7.3.4).

Summarizing, we have shown that the action of the entire algebraic symmetry
group G% = (Z,4)? x S, of (2)* as described above exhibits a spectrum consistent
with its interpretation as group of algebraic automorphisms of a K3 surface, e.g.
the Fermat quartic with geometric interpretation (Xg, Vg, Bg). Remember that
7 (galg) = 5 is the minimal possible value of y by the above discussion. Thus the
only four invariant (4, 3)-fields (®L; g.259)®*, (®L; g.51,0)®* are those corresponding
to moduli of volume deformations and of B-field deformations in direction of ¥g.

On Picard numbers and Fermat quartic hypersurfaces

V. Nikulin has found and explained to us an elegant method to compute lower
bounds on the Picard number (see definition 4.6.1) of a K3 surface*. Since the
idea is based on exploiting algebraic automorphisms of the respective manifold and
seems not to be known in general, we take the opportunity and digress to explain
it and apply it to the family of Fermat hypersurfaces in CP3.

Consider the induced action of an algebraic automorphism group G C Aut(X) on
H?(X,Z) for a K3 surface X. By T := H*(X,Z)¢ C H*(X,Z) we denote the G
invariant part of this lattice, and we set Sg := Tg N H?(X,Z). By [Nik80a, Lemma
4.2], Sg is contained in the Picard lattice Pic(X) = NS(X) = H*(X,Z)NH"“(X)
of X. In the proof of this lemma, V. Nikulin uses the following construction: Let Y
denote the minimal resolution of X/G, then we obtain a birational map 7 : X — Y
of degree |G| which is defined outside the singular points. Loosely speaking, each
exceptional divisor of the blow up on Y corresponds to an element of Sg C Pic(X),
such that we get a lower bound on the Picard number p(X) = rk Pic(X). More
precisely, let P C H?(Y,Z) denote the lattice generated by the exceptional divisors
obtained from the blow up. Set K := Pt N H?(Y,Z). Then 7 induces a map
7" 1 K < H?(X,Z) which obeys

Ve,ye K: n'(z)-7"(y) = |G|(z-y).

Hence 7*K C T is a nondegenerate sublattice, and by construction rk (K) =
rk (Tg) = u(G) — 2, where we used (7.3.3) and (7.3.4). Since rk (H*(X,Z)) = 22,
we find

p(X) = 1k Pic(X) > 1k (Sq) = 24— p(G),

a lower bound on the Picard number of X. If X is algebraic, Pic(X) contains an
element of positive norm. The above procedure only counts contributions to the
negative definite part of Pic(X), thus for an algebraic K3 surface X

p(X) > 25 — pu(G). (7.3.11)

We will now apply Nikulin’s method to the Fermat family (7.3.8):

*We thank F. Laytimi for her truly enjoyable story on this subject [Nah].
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Theorem 7.3.4
The Fermat family Q,, given in (7.3.8) has generic Picard number 19; the Fermat
quartic hypersurface Qg has Picard number 20.

Proof:
The Abelian group of algebraic automorphisms of CP? which leave Q,, invariant is

3

G = {(ng, n1,n9,n3) € (Z4)* \an =0(4)},

i=0
where (ng,ni, ng,n3) € (Z4)* acts by

‘N1

(no, n1,n9,m3).(To : 1 : T2 : x3) = ("0 : i "2

x1 12 1 13).

It is also easy to check that the holomorphic twoform Qijo of Qy is invariant under

G, since for homogeneous coordinates 21, 29, 23 and ﬁj, the defining polynomial for
Q, with respect to these coordinates,

92,0 _ le A dZQ
Ofy/023

Since in the above notation (1,1,1,1) € G generates the C* action that acts triv-
ially on CP?, we find G & Z4 x Z,. Because each of the Qy is algebraic by
construction, u(G) = 6 now leaves us with p(Qy) > 19 by (7.3.11). By theorem
4.6.6 singular K3 surfaces are discrete in the moduli space of complex structures
on K3, hence we cannot have generic Picard number 20 on the Fermat family,
proving the first assertion of the theorem. Indeed, one checks that the entire al-
gebraic symmetry group of Q is G4 = 7.2 x A4, where Ay C S is the group of
even permutations of the four coordinates. By (7.3.3) we have u(G%9) = 6.

On the other hand, at ¢ = 0 one finds an algebraic symmetry group G%¢ = Z2x S,
with pu(G3¥) = 5, so Qp must have maximal Picard number 20 by (7.3.11). O

From theorem 4.6.6 it follows that the complex structure of the singular Fermat
quartic @ = Q is uniquely determined by the quadratic form on its transcendental
lattice, which by [Ino76] is

Qo = ( b ) . (7.3.12)

Another special point on the family Q,, is the one at ¢ = 1 (or any other power
of 7): Here, the complex structure attains singularities at 16 points z = (3" : ™ :
"2 s, Z?:o n; = 0(4). All of them are NODES, i.e. ordinary double points. To
check this for x = (1:1:1:1), one rewrites the defining polynomial f; of Q; with
respect to coordinates Zy := 2g, Z; := z; — 20,1 = 1,2, 3, to obtain a polynomial F'.
Now

F(Zy, 21,22, 73) = 2(Z0)*A(Z1, Za, Z3) + - -+,
3 -1 -1 Al

A(Zl,ZQ,Zg) == (Zl,ZQ,Zg) —1 3 —1 ZQ ,
-1 -1 3 Zs
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where the dots refer to lower order terms with respect to Z;. It suffices to check
that A is a nondegenerate quadratic form in order to show that (1:1:1:1)isa
node. Then the other singular points are nodes as well by symmetry.

K3 lattices

In section 7.1 we observed that the integer cohomology of the complex surface X
is of major importance to describe the moduli space M. Here, we will concentrate
on the geometric part of the moduli space M*3  i.e. the space (7.1.7) of Einstein
metrics on a K3 surface X. An Einstein metric is specified by the relative posi-
tion of the positive definite three—plane ¥ C H?(X,R) to a fixed reference lattice
H?(X,Z) C H*(X,R). In many cases the structure of the lattice ¥+ N H2(X,Z)
gives insight in the particular geometry, especially for the orbifold limits of K3 (see
section 5.2.2).

Zs orbifold limits of K3 are known to mathematicians as KUMMER SURFACES,
denoted by IC(A) if obtained by the Zs orbifold procedure from the four-torus
T = R*/A. Generators of the lattice A are denoted by Ay, ..., \s. From (4.4.3) we
obtain an associated three-plane Xr C H?(T,R), i.e. an Einstein metric on T, and
we want to describe how the Teichmiiller space 72 of Einstein metrics of volume 1
on the torus is mapped into the corresponding space 7>'° for K3. In our notation
H*(T,Z) is generated by u; A ug, j, k € {1,...,4}, where (u, ..., us) is the basis
dual to (Af,...,As). Note that in order to simplify the following argument we
regard Xp C H?(T,Z) as giving the position of the lattice H*(T,Z) = spany(u; A
) relative to a fixed three—plane spang (e Aeg+esAey, e;Aes+esNeg, e1Nes+esNes)
with respect to the standard basis (ey, .. .,es) of R:.

To make contact with the theory of Kummer surfaces we pick a complex structure
Qr C Xr. The Zy action on T has 16 fixed points %Zizl ExAg, € € ]]?“21 We can
therefore choose indices in F; to label the fixed points**. Note that this is not only
a labelling, but the torus geometry indeed induces a natural affine F}-structure
on the set I of fixed points [Nik75, Cor. 5]. The twoforms that correspond to the
16 exceptional divisors obtained from blowing up the fixed points are denoted by
{E; | i € I}. They are elements of Pic(X) = NS(X) no matter what complex
structure 2y we choose, because we are working in the orbifold limit, i.e. Vi €
I: E; LY. Let IT C Pic(X) denote the primitive sublattice of the Picard lattice
containing {E; | ¢ € I'}. It is called KUMMER LATTICE and by [Nik75, Th. 3]:

Theorem 7.3.5

The Kummer lattice 11 is spanned by the exceptional divisors {E; | i € I} and
{33 .cy Bi | H C I is a hyperplane}. On the other hand, a K3 surface X is a
Kummer surface iff Pic(X) contains a primitive sublattice isomorphic to II.

The next step is to understand how the lattice IT is embedded in H*(X,Z). We will
review the construction given in [Nik75]. Let m : T — X be the birational degree
two map from the torus to the Kummer surface. By Poincaré duality one gets maps
7, from the homology and cohomology groups of T" to those of X, and 7* in the

**F, denotes the unique finite field with two elements.
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other direction. In particular, this gives the natural embedding 7, : H*(T,Z)(2) <
H?(X,Z) [Nik75, Remark 2] (here I'(2) denotes I" with quadratic form scaled by 2).
The image lattice will be called K5. We prefer to work with metric isomorphisms
and therefore denote the image in K, of an element a € H?(T,Z) by v/2a. In
particular, we write \/i,uj A pg, 3, k € {1,...,4}, for the generators of K.

We remark that by the results in [Nik75], X is a Kummer surface iff there is a
primitive embedding I'*3(2) < Pic(X). In particular, a singular K3 surface X
(see definition 4.6.3) is Kummer iff the quadratic form on its transcendental lattice
is Qx = Qr(2), where Qr is an even quadratic form as well. Now (7.3.12) shows
that the Fermat quartic Qp of (7.3.8) is a Kummer surface. Indeed, from (4.6.2)

we find that T/Z, with T = R*/DT has the same complex structure as Q.

The lattice H*(X,Z) obeys Ko, ® 11 C H*(X,Z) C K; @& II*. One finds K3} /K, &
(Z5) = IT* /11, where II*/II is generated by {3 >, p E; | P C I is a plane}. The
isomorphism vy : K3 /K, — II* /I is most easily understood in terms of homology
by assigning the image in X of a twocycle through four fixed points in a plane P C [
to %Ziep E;. For example, 7(%/1]-/\/%) = %Zz‘erk E;, Pj, = spangy, (f;, fi) C F;,
f; € F5 the jth standard basis vector. Note that Pj; may be exchanged by any of
its translates | + Pji, | € F3. The discriminant forms of K3/Kj, and I1*/IL, i.e. the
induced Q/2Z valued quadratic forms, agree up to a sign. One now uses

Lemma 7.3.6 [Nik80a, §1]

Let L C T be a primitive sublattice of an even, selfdual lattice I'. Let L' denote
its orthogonal complement and assume L N L' = {0}. Then L*/L = (L')*/L' with
identical quadratic forms, up to a sign, where the isomorphism is denoted 7. If
conversely L, L' are nondegenerate even lattices with discriminant forms that agree
up to a sign,

T o {(z,z') el @ (L) |1() = Z’} .
Hence in our setting
H*(X,Z) 2 {(k,7) € K; ®I* | y(R) = 7}, (7.3.13)

R, T denoting the images of k, 7 under projection to Kj/K,, II*/II. Let us give a
geometric explanation for Nikulin’s method that we found together with Werner
Nahm: Loosely speaking, the Poincaré dual of a representative x of & € K5 /K, can
be interpreted as the 7, image of a torus cycle which contains Z, fixed points. It is
not a cycle on X, since it has boundaries where the exceptional divisors were glued
in instead of the fixed points by the blow up procedure. Since the discriminant
forms of Kj/K, and II*/II agree up to a sign, there is a representative 7 of the
Poincaré dual of T = 7(%) with the same boundary as that of £ but orientation
reversed. In other words, we can glue a part of a rational sphere corresponding to
7 into the boundary of the Poincaré dual of x such that the intersection numbers
of k and 7 with the Ez-(') agree up to a sign, to obtain a cocycle k +m € H*(X,Z).
This can be seen explicitly in a local coordinate chart around a fixed point. Let us
formulate it directly for general Z,, orbifolds, M € {2,3,4,6}. For example, near
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(21,22) = (0,0) € T introduce Zj, invariant coordinates x = zM,y = 2 2 = 2, 2.
The (first) blow up of the fixed point (z,y, z) = (0,0,0) on X in this chart is given
by

U= {(x,y, 2; 81,82, 83) € C* x CP? | (z,y, 2) ~ (51, 82, 83), 5182 = sé‘/l}
Near (0,0,0;1,0,0) we may use coordinates (z, s3) to write
Us (z,y,251,52,53) = (z, 255, 253, 1,55, 53).

The twocycle {2z, = € = const} on T maps onto {y = ¢} and is described by the
equation zs) =M. Tt is Poincaré dual to v/M p11 A pip and has intersection number
zero with the exceptional divisor Poincaré dual to Eg,0,0) (or E((Jf())), E(((T,()),o,o)’ E((]l)
for M = 3,4,6, respectively, see the notations introduced below). For ¢ — 0 our
cycle decomposes into M + 1 new cycles, M{s; = 0} U {z = 0}, where {z = 0} is
Poincaré dual to E(g,0,0,0) With self intersection number —2. Since M{s3 = 0}U{z =
0} must remain orthogonal to {z = 0}, we find {s3 = 0} = {(z,0,0;1,0,0)}
Poincaré dual to ﬁul A g — ﬁE(o,o,o,o)-i- contributions from other blow ups.
The isomorphism (7.3.13) provides a natural primitive embedding K, L II —
H?(X,Z), which is unique up to isomorphism [Nik75, Lemma, 7]. Hence H?(X,Z)
=~ T'319 ig generated by

M, = {%uj A g — %ZEHIJ € I} and & :=spany (E;,i € I), (7.3.14)
i€Pjj

and ['*3(2) = H*(T,Z)(2) < H?(X,Z) = I'®" is naturally embedded. The three—
plane ¥ C H?(X,R) which describes the location of the singular Kummer surface
within the moduli space (7.1.7) of Einstein metrics of volume 1 on K3 is given
by ¥ = 7,3r. In particular ¥ C H?(X,R) & H%(X,Z) ® R is obtained directly
by regarding Xy C H*(T,R) & H*(T,Z) ® R — H?(X,Z) ® R as three-plane in
H?(X,R).
Nikulin’s construction can be generalized to the other Zj; orbifold limits of K3,
M € {3,4,6}, if we can determine the analogs Py, € { III, Illl, V[ } of the Kummer
lattice II for these cases. Vice versa, we know that the orbifold limits exist and can
use lemma 7.3.6 for the primitive sublattice Ky, := m,(H?(T,Z)2™) C H*(X,Z)
and its complement Pys. A representative x of an element of K},/K) again can
be interpreted as image of a torus cycle that contains Z,, fixed points. Hence its
image under the gluing isomorphism v in Pj;/ Py, that allows to construct a cycle
on X from k is determined by the intersection number of x with the respective
exceptional divisors. This procedure allows to find the analogs of (7.3.14) in all
cases, once K, is known.

Lemma 7.3.7 o
Let X denote a Zj orbifold limit of K3, i.e. X = T/Zs3, T = T(Ql) X T(22) as
described in section 5.2.2, with birational map m : T — X of degree 3. Then

Ky =, H*(T,Z)% C H*(X,Z) has intersection form

(? ;>@U(3).
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Let T denote the primitive sublattice of H*(X,7Z) that contains all exceptional
divisors Es = {Et(i), t € F2} of the blow up, where t € F2 labels Z3 fixed points**
on T, each F3 referring to one factor T(Qk). With E; := Et(+) — Et(_), [l is generated

by &£ and
L (Z E - E) , Ly, Ly C F2 parallel lines.

teLy SEL>

The lattice generated by £; and the set Mz which consists of

Tl A piz + 5 (B + B + Eag)

fu;;/\,u4  (Euo) + Eayy + Epy), 1 €Ty
T( p3) A (e — 2#1 + pa — 5#3) +3 (E(o,o) + Enp) + E(Q,l)) ;
75— p3) A (p2 = p3) + 3 (Eoo) + Equyy + Ee2)

is isomorphic to T, In particular, "/ T = (Zs)® with generators
5 (Boo + Ea + Eeo) 5 (Bog + Eoy + Ee) » 5 (B + oy + Beg) -

This gives a natural embedding K3 | T — H?(X,Z) and in particular an em-
bedding 7,(H*(T,7Z))%* — H*(X,7Z) = I'*!. Given a Kihler-Einstein metric in
T332 defined by 7 C H?(T,R)%3, its image ¥ under the Zs orbifold procedure is
read off from Yy C H*(T,R)?* =~ H*(T,Z)"* @ R — H*(X,Z) ® R & H?(X,R).

Proof:
With respect to complex coordinates (z1,z2) on T as induced by the decom-
position T = T(Ql) X T(ZQ) the cycle {25 = const.} corresponds to the twoform

ps A pa. It can contain three Zs fixed points with labels (0,%), (1,14), (2,7) € F3,
and as explained before (7.3.14) we have to find the Poincaré dual of {s3 = 0} in

{y=e% = =9 3{s3 = 0} U{xz = 0}, where {z = 0} is the Poincaré dual of E((o ()))

Since —§(4E( )

00 T 2E((O’()))) has the correct intersection numbers, we find

Taka A s — 3 (B + By + Be) € H(X, Z).

The other two types of elements of M3 are determined analogously and correspond
to cycles {z; = const.} and {z; = Z»}, respectively. Since i € 53 arbitrary for these
generators of H%(X,Z), all the additional generators of TII listed in the theorem
are indeed contained in H?(X,Z). Moreover, I/ Tl is generated by the asserted
elements, hence |I117/111| > 3%. On the other hand, if T is the SU(3) torus, then
X is singular and by [SI77, Lemma 5.1] the quadratic form on the transcendental

.. 2 1 ) ) . . . .
lattice is Qx = ( 1 92 ) Thus K3 is contained in a lattice with intersection

form as asserted above, and |K*/K| < 33. Now |K*/K| = |I" /M| by lemma

***F3 denotes the unique finite field with three elements.
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7.3.6 proves the theorem, since no additional generators can occur in either of the
lattices discussed above. O

2
The other two cases are treated analogously, where we use QQx = ( 0 ) for

0 2
X = Tsy(s/Zy [SIT7, Lemma 5.2], and Qx = 5 4 for Tsy(3)2/Zs. The

latter can be understood since similarly to theorem 7.3.13, this orbifold limit can
be obtained from a Zj3 orbifold by another Z, orbifold construction but must have
different quadratic form from the Zj orbifold limit by theorem 4.6.6.

As to notations, for the twoforms corresponding to the exceptional divisors of
the Z, orbifold we adopt the labelling of fixed points by I = F; as used in
the Z, orbifold case. Here, we have six Z, fixed points labelled by i € I® :=
{(j1,J2,1,0),(1,0, 73, ja) | jx € Fo}. The four true Z, fixed points are labelled by
i€ I™ :={(i,4,7,5) | i,j € Fy}. The corresponding twoforms are denoted by E;
for i € I®, and for each Z, fixed point i € I®) we have three exceptional divisors
Poincaré dual to B, B such that (E™), E?) = 1, (E™, EF)Y = 0. For ease

of notation we also use the combination F; := 3EZ-(+) + 2 + EZ-(_) ifi e IM. We

(3
adopt the notation Pj, = spang, (f;, fx) used above. Remember to count Z, fixed

points only once, e.g. Pi» = {(0,0,0,0),(1,0,0,0),(1,1,0,0)}. We then have

Lemma 7.3.8
The lattice generated by the set My which consists of

S A s+ 3E00104e00 F 1 O Fiteiaon, € €{0,1}

iEP34ﬂI(4)
Shs A i = 3Eq 0000000 = 5 ) Bireoonn, € €1{0,1};
i€ PraNI4)
%(/ﬂ A pi3 + pa A o) — % Z Eiij, JjE€ 1%
1€ P13
S A pa+pa A ps) — 3 Z Eiyj, j€IW,
1€ P14

and by & = {E®  E i € I®, E; i € I®} is isomorphic to [*'9. In particular,
[T is generated by £, and

i (B,000 T B — Eopry — Eqio0) + 5 (B + Eo,10)

3 (E(o,o,o,()) + E0,0,1,1) T E0,1,00) + E(0,1,1,1) + E0,1,01) + E(0,1,1,0)) ,

5 (B,1,00 + Eop,1,1) + E0,00,1) + E0,1,00 + Ba,01) + Eo,1,1)) -
This gives a natural embedding K, | Tl — H?*(X,Z) and in particular an em-
bedding 7,(H*(T,Z))** — H*(X,Z) = I'*!°. Given a Kihler-Einstein metric in

T33 defined by ©3 C H?(T,R)%4, its image ¥ under the Z, orbifold procedure is
read off from Sy ¢ H?(T,R)%4 = H2(T,Z)* @ R — H*(X,Z) @ R = H*(X,R).
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A Zg orbifold limit has one Zg type fixed point 0, where the twoforms corre-
sponding to the exceptional divisors are denoted E(()k),k € {0,...,5}, such that
(Eok) E (k+1) ) =1, ||E(()k)||2 = —2, and all other intersection numbers are zero. We
set By := E(() ) 4+ 2E(()2) + -4 5E(()5), and for the four Zs and five Z, type fixed
points adopt the labelling from the Z3 and Z, orbifold cases. Then we find

Lemma 7.3.9
The lattice generated by the set Mg which consists of

%Ml A g + %Eo + %E(o;) + %E(l,l,o,o), ﬁﬂs N g — éEo - %E(I,O) - %E(o,o,m),

Zotn A pa +5 (B + Bayy + Baon) s Ztis A s —5 (B + Eay + Ea-n)

and by &g := {E(()k), k€ {0,...,5}; E,gi),t € F2; E;,i € I®}) is isomorphic to T'>'.
In particular, VI is generated by & and

LB+ 1 (Ba) + Fao + Foy + Ea)

+ % (E(O,O,l,l) + Ea,1,00) + E,001) + Eo,1,1,0) + E(0,1,0,1)) .

This gives a natural embedding K¢ | VI — H?(X,Z) and in particular an embed-
ding m,(H*(T,7Z))% — H?(X,Z) = T*!9. Given a Kihler-Einstein metric in T3
defined by X C H%(T,R)Zs¢, its image Y. under the Zg orbifold procedure is read
off from the embedding £y C H?(T,R)%s = (H2(T,Z))* @ R — H?(X,Z) @ R =
H2(X,R).

As noted above, the study of symmetries is an important tool in order to under-
stand the moduli space M of superconformal field theories with central charge
¢ = 6. It will prove particularly useful to understand algebraic automorphisms of
Z s orbifold conformal field theories. Here, we investigate algebraic automorphisms
of Kummer surfaces which fix the orbifold singular metric. Such an automorphism
induces an automorphism of the Kummer lattice IT because by K, = H*(T,Z)(2)
and (7.3.13) all the lattice vectors of length squared —2 in ¥+ belong to II, and
I[T®R by theorem 7.3.5 is spanned by the lattice vectors F;,: € I, of length squared
—2. Vice versa,



162 CHAPTER 7. THE MODULI SPACE OF SCFTS WITH C =6

Lemma 7.3.10

The action of an algebraic automorphism o which fixes the orbifold singular metric
on a Kummer surface X is uniquely determined by its action on the set {E; | i € I}
of forms corresponding to exceptional divisors, i.e. by an affine transformation

A, € AFF(I).

Proof:

Let o* denote the induced automorphism on the Kummer lattice II. By theorem
7.3.5 and (7.3.13) the intersection form on II is negative definite and the +E;,i €
I, are the only lattice vectors of length squared —2. Therefore, o* is uniquely
determined by o*(E;) = €i(a)ea, ) for i € I, where g;(o) € {£1} and A, €
Aff(I). Actually, ¢;(a) = €;(Aq), because A, (i) = 1 = g;(«) = 1 for otherwise
E; € (H*(X,Z)*)"* with length squared —2 contradicting theorem 7.3.2. Assume
A, = Ay for another algebraic automorphism o fixing the metric. Then g :=
(ot o a')* acts trivially on II, and because X is fixed by g as well, for the group
G generated by a ! o o/ we find p(G) > 2+ 3+ 16 = 21. Now (7.3.5) shows that
G is trivial and proves a = o’. O

Note that every singular K3 surface possesses an infinite algebraic automorphism
group by [SI77, Th. 5]. By abuse of language in the following we will frequently use
the induced action of an algebraic automorphism on II or in Aff(I) as a shorthand
for the entire action.

Theorem 7.3.11
For every Kummer surface X the group of algebraic automorphisms fixing the orb-
ifold singular metric contains ¥y C Aff(I), which acts by translations on I.

Proof:

Any translation ¢; € Aff(I) by ¢ € I acts trivially on IT*/II. Thus ¢; can be con-
tinued trivially to H%(X,Z) by (7.3.13). One now easily checks that the resulting
automorphism of H?(X, C) satisfies the criteria of theorem 7.3.2. 0

Next we will determine the group of algebraic automorphisms for the Kummer
surface associated to a torus with enhanced symmetry:

Theorem 7.3.12

The group of algebraic automorphisms fixing the orbifold singular metric of X =
K(A),A ~ Z* 18 G nmer = 24 % F5. Here, 73 x F5 C GL(F5) x Fy = Aff(I) is
equipped with the standard semidirect product.

For X = K(A), where A is generated by A; & RZ? R; € Ri = 1,2, the
group of algebraic automorphisms fixing the orbifold singular metric generically
is g]tummer =2y X Fg

Proof:

To demonstrate Z3 x F5 C G#,,....... we will show that certain algebraic automor-
phisms on the underlying torus 7 = R*/A can be pushed to X and generate an
additional group of automorphisms Z3 C GL(F;) on II. Namely, in terms of stan-
dard coordinates (z1,...,z4) on T, we are looking for automorphisms which leave
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the forms

dzx1 Adxs + dxy Adra,  dxy Adey + dxe Ades,  dxy Adzy + dxs Adey (7.3.15)

invariant. This is true for

Tri2: (mla $2,$3,$4)—P (_anxlaxlla _553),
T3 : (xla','EQa'7’.-?”3:4)—> (_:L.?n —$4,.',E1,.Z'2), (7316)
T14 =T1207T13 : ($1,$2,$3,$4}+ ($4;—$3,332,—$1)-

The induced action on II is described by permutations Ay € Aff(I) of the F;-
coordinates, namely ris = Ajp = (12)(34),r13 = A3 = (13)(24). To visualize this
action we introduce the following helpful pictures first used by H. Inose [Ino76]:
The vertical line labelled by j € F3 symbolizes the image of the twocycle {z € T |

f()l

N
20

§7¢11

el

4

NN OYY

pedva BZN%Y
SO
patvars - 7<><
700 e

4

NN

X

10 01 00 11 10 01
Figure 7.3.1: Action of the algebraic automorphisms 75 (left) and r13 (right) on II.

(z1,72) = 25} in X, and analogously for the horizontal line labelled by j' € FZ
we have {z € T'| (z3,24) = £j'}. Then the diagonal lines from cycle j to cycle j’
symbolize the exceptional divisor obtained from blowing up the fixed point labelled
(4,7") € 1. Fat diagonal lines mark those exceptional divisors which are fixed by
the respective automorphism.

One may now easily check that the automorphisms (7.3.16), viewed as automor-
phisms on H?(X,C), satisfy the criteria of theorem 7.3.2 and thus indeed are
induced by algebraic automorphisms of X.

To see that G, .. does not contain any further elements, by lemma 7.3.10 it
will suffice to show that no other element of Aut(IT) can be continued to H?(X, Z)
consistently such that it satisfies the criteria of theorem 7.3.2. Because all the
translations of I are already contained in G, we can restrict our investigation
to those elements A € GL(F;) C Aff(I) which can be continued to H?*(X,Z)
preserving the symplectic forms on F, that correspond to (7.3.15). After some
calculation one finds that A must commute with all the transformations listed in
(7.3.16). This means that A acts on I by A},(7) = Au(i) + [¢(1,1,1,1),]i] =
Sopix € Fo. But if any such A}, € G mer, then also A’ € G~ where
A'(i) = i+ |il(1,1,1,1). A’ leaves invariant a sublattice of II of rank 12. But
then, because of (7.3.5) and from (7.3.4) A’ cannot be induced by an algebraic
automorphism fixing the orbifold singular metric of X.



164 CHAPTER 7. THE MODULI SPACE OF SCFTS WITH C =6

The result for G, follows from the above proof. Namely, if (z;,25) are stan-
dard coordinates on A; @R and (z3, x4) on~A2 ®R, then among the automorphisms
(7.3.16) only 7y is generically defined on A.

It is not hard to translate our results on algebraic automorphisms of Kummer
surfaces to the Z, orbifold limits of K3. To have a better understanding of their
location within the moduli space and their geometric properties we now show
that Z, orbifolds can be constructed by another orbifold procedure from Kummer
surfaces with enhanced symmetries:

Theorem 7.3.13
Let A denote a lattice generated by A; = R;Z? R; € R,i = 1,2. Consider the K3
surface X obtained from the Kummer surface IC(K) by modding out the algebraic
automorphism 119 € é;umme,., blowing up the singularities and using the induced
orbifold singular metric. Then X is the Z, orbifold of T = R*/ A.

Proof:

By construction (7.3.16), 712 is induced by the automorphism (x1,zs, x5, T4}
(—x9, 1, 4, —x3) With respect to standard coordinates on 7. In terms of complex
coordinates as induced by the decomposition T = T(Ql) X T(QQ) this is just the action

p: (21,291 (iz1, —i29), and because IC(A) = 7/”/\,0/2, the assertion follows. O

Remark:

Study figure 7.3.1 to see how the structure A% & A3 of the exceptional divisors
in the Z,4 orbifold comes about: Twelve of the fixed points in K(K) are identified
pairwise to yield six Z, fixed points in the Z4 orbifold, that is A$. The four points
labelled 7 € {(0,0,0,0),(1,1,0,0), (0,0,1,1),(1,1,1,1)} are true Z, fixed points.
The induced action of 715 on the corresponding exceptional divisor CP! =2 S?is just
a 180° rotation about the north-south axis, and north and south poles are fixed
points. Blow up the resulting singularities in KC(A)/r12 to see how an Ajz arises
from the A; over each true Z, fixed point.

Concerning the algebraic automorphism group of Z, orbifolds we find

Theorem 7.3.14

Let X denote the Z, orbifold of T = R*/A. Then the group G of algebraic au-
tomorphisms fixing the orbifold singular metric of X consists of all the residual
symmetries induced by algebraic automorphisms of K(A) which commute with 1.
Thus, generically G = F2 is generated by the induced actions of t1199 and too1;. If
A~ 7Z* G = D, is generated by the induced actions of t1199 and 713.

Proof:

From theorem 7.3.13 it is clear that the residual symmetries induced by algebraic
automorphisms of C(A) which commute with 715 induce algebraic automorphisms
on X. Any further algebraic automorphism o* would have a lift to K(A), so
without loss of generality we can assume that o* acts only by permutation on the
ROOTS (lattice vectors of length squared —2) that correspond to each Z, fixed point

i € I}, There are twelve such roots, EZ-(i), EZ-(O), EZ-(i) + EZ-(O), EZ-(H + Ei(o) + EZ-(_),
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and there negatives, where the previous ones are effective since the set of effective
classes on a Kahler K3 surface contains the semigroup generated by the nodal
classes [BPdV84, Prop.37|. Because a* preserves intersection numbers, one checks
that apart from the identity no consistent action « of this type exists. Now the
assertion of the theorem follows from theorems 7.3.11 and 7.3.12. O

7.3.2 75 Orbifolds within the moduli space

The present section contains joint work with Werner Nahm that has been accepted
for publication in [NWO01]. Some comments on Zs orbifold conformal field theories
as described in section 5.2.2 are due, before we can show where they are located
within the moduli space M%3. We denote the Z, orbifold obtained from the non-
linear 0 model 7 (A, Br) by IC(A, Br). If the theory on the torus has an enhanced
symmetry G we sometimes simply write G /Zo, e.g. SU(2){/Z, for K(Z*,0).

In the nonlinear o model on the torus 7' = R* /A as described in section 4.2 the cur-
rent j* generates translations in direction of coordinate x;. This induces a natural
correspondence between tangent vectors of 7" and fields of the nonlinear ¢ model
which is compatible with the so(4) action on the tangent spaces of T and the moduli
space, respectively. After selection of an appropriate framing of Q); ® @), to identify
su(2);"" with su(2);, as described in section 7.1 the 1* are the superpartners of the
j*. Hence the choice of complex coordinates z; := %(ml +ixs), 29 1= %(3}3 +ixy)
corresponds to the definition of ¢§f>,j§f) in (4.1.10). By (3.2.3) and (3.2.4) the
holomorphic W-algebra of our theory has an su(2)2-subalgebra generated by

J o= 0 g = gl g = g

7.3.17
A = g ® _gpPy@ gt = By A = Py, (7310

Its geometric counterpart on the torus is the Clifford algebra generated by the
twoforms dz; A dzZy + dzo N dZo,dz1 N dze,dZ1 N dZo;dzy N dZy — dzg N dZo, dzy N
dzy,dze A dz; upon Clifford multiplication.

The nonlinear ¢ model on the Kummer surface IC(A) is the Z, orbifold of the
above, where Z, acts by j* — —j% ¥ — —* k =1,...,4. Note that the entire
su(2)?-algebra (7.3.17) is invariant under this action, thus any nonlinear o model
on a Kummer surface possesses an su(2)2-current algebra.

This orbifold model has an N = (16,16) supersymmetry. We are interested in
deformations which conserve N = (4,4) subalgebras. By conjecture 3.1.1 the lat-
ter are given by chiral and antichiral (3, 1)-fields. Generically, the Neveu-Schwarz
sector contains 144 fields with dimensions (h;h) = (3;3). Their quantum num-
bers under (J,A;J, A) are (£1,€2;€3,€4),6; € {£1} (16 fields), (e1,0;¢3,0) (64
fields), and (0, e;0,e4) (64 fields). The 80 fields which are charged under (.J;J)
yield the N = (4, 4) supersymmetric deformations which conserve the superalgebra
containing the .J currents. The 80 fields which are charged under (A; A) yield de-
formations conserving a different N = (4, 4) superalgebra. The latter corresponds

to the opposite torus orientation.
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By construction orbifold conformal field theories have a preferred geometric inter-
pretation in the sense of (7.1.6). We will now investigate this geometric interpreta-
tion for Z; orbifolds and generalize Nikulin’s technique of embedding 733 into 7>
to the quantum level. We have to lift 7, to an embedding 7, : H**"(T,Z)(2) —
Heen(X,7). The image will be denoted by K,. Apart from 1 A the lat-
tice H®*"(T,Z) has generators v,v° as defined in (7.1.6). Note that K, can-
not be embedded as primitive sublattice in I'*** such that K, L TI because
K;/Ky & (Z9)® % (Z2)® = II*/II would contradict lemma 7.3.6. This means
that the B-field of the orbifold theory must have components in the Picard lattice.
The torus model is given by a four-plane zo C H®*"(T,R), the corresponding
orbifold model by its image z = T,z in H**"(X,Z) ® R. To arrive at a complete
description, we must find the embedding of H een(X 7) in Ky @ R+ H 2(X R).

Since scalar products with elements of K, must be integral and v/20° € Kg, every
a € II must have a lift 121) +aor 0+ ain H®*"(X,Z). Those elements for which
the lift has the form 0+ a must form an O (H®*"(T, Z)) invariant sublattice of II.
One may easily check that this sublattice cannot contain the exceptional divisors
E;,i € I. Moreover, as unimodular lattice H¢"*"(X,Z) has to contain an element
of the form %UO + a with a € IT*. One finds that H"(X,Z) must contain the
set of elements

M, = Mzu{ W13 B vt Eic I} (7.3.18)
el
where M, was defined in (7.3.14). In analogy to Nikulin’s description (7.3.13) and
(7.3.14) of H*(X,Z) 2 T3 we now find

Lemma 7.3.15 . .
The lattice I spanned by My and {mw € I1 |Vm € M, : (m,m) € Z} is isomorphic
to 420,

Proof:
Define

7:=v2v, °:=-1’— iZEz +V2v, E;j= — 75V + Ej. (7.3.19)

Then T is generated by ¥, 0° and the lattice

f::spanZ (%,uj/\,ukjL%ZE\Hl,lGI; E,ie]).

’iEij
Because (E, E;) = —26;; and upon comparison to (7.3.14) it is now easy to see
that I' = I'*'9. Moreover, 0,0° L I' and spany(7,2°) & U completes the proof.

O

In particular, lemma 7.3.15 gives a natural embedding ['**(2) = H®*"(T,Z)(2)
— H®"(X,Z) = I'®, As in the case of embedding the Teichmiiller spaces
T33 s T319 this enables us to locate the image under Z, orbifold of a conformal
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field theory corresponding to a four-plane x C H®*"(T,R) = I'** @ R within
ME3 by regarding z as four-plane in H**(X,R) & I'?° @ R. Note that in this
geometric interpretation U,70° are the generators of H*(X,Z) and H°(X,Z).

Theorem 7.3.16

Let (X7, Vr, Br) denote a geometric interpretation of the nonlinear sigma model
T (A, Br) as given by (4.4.3). Then the corresponding orbifold conformal field
theory KC(A, Br) associated to the Kummer surface X = K(A) has geometric 1'n-
terpretation (X, V, B) where ©. € T as described after theorem 7.3.5, V =

and B = £Br+1BY BY =13, B € H""(X,Z) with E; € H**(X, Z) of
length squared -2 given in (7. 3.19).

In particular, the Z, orbifold procedure induces an embedding M — MHK3 a5
quaternionic submanifold.

Proof:

Pick a basis 0y, € {1, 2,3}, of 7. Then by (7.1.6) the nonlinear ¢ model 7 (A, Br)
is given by the four—plane z with generators & = o; — (03, Br)v,i € {1,2,3}, and
& =v'+ Br+ (V ”BT” )U By the embedding I'** ® R & H®**(T,R) —»
Hen(X,R) 2 ' @R given in lemma 7.3.15 it is now a simple task to reexpress
the generators of = using the generators v, ;0 of H4(X, Z) and HO(X, Z):

\/5 (O'i — <0'Z', BT>U) = \/50’,' — <\/§O’Z’, %BTM/)\
5 (o0 + B+ (Ve - B5) o) = 004 LBy + LY

+<ﬁ—l L Br+1BY 2)6
2 2 ||V2PT T 2Pz :
Comparison with (7.1.6) gives the assertion of the theorem. 0

Theorem 7.3.16 makes precise how the statement that orbifold conformal field
theories tend to give value B = % to the B-field in direction of exceptional divisors
[Asp97, §4] is to be understood: For By = 0, integration of B over any of the
exceptional divisors that are Poincaré dual to an E; gives —1. Note that 2= NT"*2°
does not contain vectors of length squared —2, namely E; € z+, || E||> = —2, but
E; ¢ H®*"(X,Z). In the context of compactifications of the type ITA string on K3
this proves that Z, orbifold conformal field theories do not have enhanced gauge
symmetry. A similar statement was made in [Asp95] and widely spread in the
literature, but we were unable to follow the argument up to our result of theorem
7.3.16.

Since in section 7.3.4 we will discuss how to locate the other Zj; orbifold models
with M € {3,4,6} in M3 it will prove useful to give some more comments on the
above construction. Firstly, to embed Ky = 7, H even (T Z.) we had to fix images of
v,v° in H®**(X,Z), namely primitive null vectors v/2v,/2v° € H®*"(X,Z) with
(\/iv, \/ivo) = 2. In terms of homology, the Poincaré dual of V/2v is the class of
the image of a generic point on 7" under 7 : T" — X: recall that 7 is only defined
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away from the Z, fixed points on 7. To understand the Poincaré dual of /2¢°,
consider the following commutative diagram for M = 2 [Nik75, (9)]:
T i» T
7
M:llf 7 lg (7.3.20)
Y

X — Xing

Here, ¢ is the factorization by Z,, and T is the two sheeted covering of X ram-
ified over the divisor Zie ; €i, where e; denotes the Poincaré dual of E;. Then
C; = f'(e;) is a nonsingular rational curve with self intersection number —1
and can be contracted by the Castelnuovo-Grauert criterion [Saf65]. ¢; denotes
this contraction. Note that f*(e;) = 2C;, and the fact that ) . e; is the branch
locus of f proves %ZZ E; € 11, as stated in theorem 7.3.5. Now +/20° is the
Poincaré dual of f,[T]. This is consistent with (v/2v, v/20°) = 2 since f is 2 : 1,
and so is 7 outside the fixed points. Hence V20l — %ZZ FE; is the Poincaré dual
of f.(IT] - >, C;). Since fis 2 : 1 and unbranched* on (IT] - > C;), we find
1(V20° =13, E;)) € H**"(X,Z), in agreement with (7.3.18). Note that this form
has noninteger intersection products with the E;, showing E; ¢ H?(X,Z) as above.
We now find lemma 7.3.15 by setting B, := 1 3", E; and

M:={r el |(By,n) €L} (7.3.21)

Indeed, then II*/Il & (Z,)8 Ky /I/(\Q with quadratic forms of opposite sign,
so Nikulin’s method given in lemma 7.3.6 works to reproduce the description for
H?(X,Z) of lemma, 7.3.15.

Recall the comment to theorem 7.3.2, where we noted that if some four—plane
r € OY(H®(X,Z))\T*? has an apparent geometric interpretation which allows
too many symmetries, something must have gone wrong. This observation can be
used to give another proof of the fact that the B-field cannot be zero for the orbifold
limit geometric interpretation of Z, orbifold conformal field theories. Let v, v°
denote the null vectors that correspond to a geometric interpretation of K(Z*,0) as
nonlinear o model on K(Z*). Assume that B = 0. Then & = v’+1v in (7.1.6). One
now checks that every element of O1(H®*"(X,Z)) that fixes &, automatically fixes
v,v° as well. In other words, K(Z*,0) does not possess nonclassical symmetries.
All classical symmetries have been determined in theorem 7.3.12 to g}ummer =
Zo x Fi 22 (Zy x Z4) ¥ Dy. On the other hand, in theorem 7.3.25 below we will
show that KC(Z*, 0) can be described as Gepner type model (2)%. Below (7.3.39) we
find its algebraic symmetry group Go 22 (Z2x Z)x D, # Gt acontradiction,
unless nonclassical symmetries exist. Indeed, explicit translation of the symmetries
from one model into the other shows that the Gepner symmetry [1,0,3,0] (see
(5.6.3) for the notation) cannot be realized as classical symmetry on K(Z*,0).

*fr: étale



7.3. THE MODULI SPACE OF THEORIES ASSOCIATED TO K3 169

7.3.3 T—duality, Fourier—Mukai, and Nahm transform

By theorem 7.3.16 any automorphism on the Teichmiiller space T%* of M is
conjugate to an automorphism on the Teichmiiller space 720 of MX3. In particu-
lar, nonlinear ¢ models on tori related by T-duality must give isomorphic theories
on K3 under Z, orbifoldizing. To show this explicitly and discuss the duality trans-
formation on MX3 obtained this way is the object of the present section. Finally
we will point out the relation between Fourier—-Mukai and Nahm transform and
also comment on its meaning in the context of “brane physics”.

For simplicity first assume that our o model on the torus 7' = R*/A has vanishing
B-field, where we have chosen a geometric interpretation (3r, Vy,0). Then T-
duality acts by (X7, Vr,0) — (X7,1/Vy,0) and in terms of O (H®*"(T,Z)) is
given by the exchange of v and v°. By theorem 7.3.16 the corresponding Z,
orbifold theories have geometric interpretations (3, Vr/2, B) and (X,1/2V7, B),
respectively, where ¥ is obtained as image of the embedding ¥y C H?(T,R) —
H?(X,R) and B = %Bg) =1 ier E;. We will now construct an automorphism ©
of the lattice H¢"*"(X, Z) which fixes the four—plane z corresponding to the model
with geometric interpretation (X2, Vr/2, B) and acts by Vi/2 — 1/2Vp. In other
words, we will explicitly construct the duality transformation induced by torus
T—duality on M¥3. Our transformation © below was already given in [RW98] but
not with complete proof. Within the context of boundary conformal field theories,
in [BER99] it was shown that © induces an isomorphism on the corresponding
conformal field theories. The relation to the Fourier-Mukai transform which we
will show in theorem 7.3.17 has not been clarified up to now and was obtained in
joint work with Werner Nahm [NW01].

By (7.1.6) the four-plane z C H®*(X, Z) is spanned by ¥ = £(X) and the vector
£ =71+ B+ (3 +1)0 (notations as in theorem 7.3.16). Because by the above ©

fixes z and ¥ pointwise, the unit vector & /+/Vy € 1 Nz must be invariant, too,
i.e. invariant under the transformation ¥y 1/Vy. Hence

o0+ B (% Vi + \%V—T) U =+/Vit’ +/VrB+ (ﬁ + \/VT) 0]
for any value of V7. We set © := O(7),0° := O(2°) etc. and deduce
P +B+0=

10, °+B+0=30. (7.3.22)

The first equation together with (B, 7) = (B, %) = 0, || B||> = —2 implies (B, D) =

—4 and justifies the ansatz

B=-4"-Y oFE +a 2 _ —
iEZI v U:>§(ai—1) =1, Ze;ai—S—Qa.
2 ]

The only solutions satisfying >, ., oFE € H even( X 7), which must be true by
7.3.22), are 0,2} for some io € I and «; = 1 fqr ¢ # 49, correspondin

é _)5, —%}.ZC’V\% ioncl}uge t?lat ?f he automorphism @ exiééts,o then 1t Ii)s a reag ;
uniquely determined up to the choice of a and of one point i3 € I. The two possible
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choices of a turn out to be related by the B-field shift BB — 2B = —B and

yield equivalent results. In the following we pick ¢ = —' 5 and find
v=20+7" Z E;, °=20+7° Z E; — Em (7.3.23)
i€l il

One easily checks that U := spang(v,0°) & U. By I we denote the orthogonal
complement of U in spang(0,0°) L I1 2 U 1 II, where I is the Kummer lattice
of X as introduced in theorem 7.3.5. Note that in I there are 15 hyperplanes
H;,i € Iy = I — {ip}, which do not contain i5. The label i € I is understood as
the vector dual to the hyperplane H;. Since the choice of iy can be seen as the
choice of an origin in the affine space T}, the latter can be regarded as a vector
space, and we have a unique natural isomorphism (F3)* = Fi. One now checks

that II is spanned by E,, 1 € I, with

By = 0-0 Ei=—3y E-0-9 (i#i) (7.3.24)

JEH;

as well as 3 ZZE HE for any hyperplane H c I. The signs of the E have been
chosen such that B = =1 =1 Yier E;.

Since (E;, E} 2(5”, one has IT 2 II. Hence @( .) = E; is a continuation of
(7.3.23) to an automorphism of lattices U L IT & U L II, and we find ©2 = 1.
Note that the action of © can be viewed as a duality transformation exchanging
vectors ¢ € I with hyperplanes H;,© € I. Twoplanes P C I are exchanged with
their duals P* which shows that © can be continued to a map on the entire lattice
H*(X,Z) consistently with (7.3.13). The induced action on K, = w,H*(T,Z)
leaves ¥ invariant. We also see that the above procedure is easily generalized to
arbitrary nonlinear ¢ models T (A, Br).

Let S denote the classical symmetry which changes the sign of E\io and leaves the
other lattice generators E’\i, i # ig, U, 0°, p;j A py, invariant. By (7.3.23) and (7.3.24)
one has ©S = Try 0, where Tg,, is the Fourier-Mukai transform which exchanges
U with ©°. Since Try = ©50, all in all we have

Theorem 7.3.17

Torus T—-duality induces a duality transformation © as given by (7.3.23) and
(7.3.24) on the subspace of M¥? of theories associated to Kummer surfaces in
the orbifold limit (see also [RW98]). The Fourier-Mukai transform Ty which
exchanges U with ©° is conjugate to a classical symmetry S by the image © of the
T-duality map on theories associated to the torus.

Note that by theorem 7.3.17 we can prove Aspinwall’s and Morrison’s description
(7.1.8) of the moduli space M¥? purely within conformal field theory without
recourse to Landau—Ginzburg arguments. Namely, as explained in section 7.1,
the group G('® needed to project from the Teichmiiller space (7.1.2) to the com-
ponent M3 of the moduli space contains the group O'(H?*(X,Z)) of classical
symmetries which fix the vectors U, 7° determining our geometric interpretation.



7.3. THE MODULI SPACE OF THEORIES ASSOCIATED TO K3 171

Moreover, for any pr1m1t1ve null vector ©° with (0,7°) = 1 there exists an ele-

(16)
ment § € GU%) such that g gv =¥ and gv° = ?°. By theorem 7.3.17 the symmetry

=+ even
Teum € OF(H*"(X, 2Z)) which exchanges v and ©° and leaves z invariant also is

an element of G19) thus OF(H**"(X,Z)) C G19 and O*(H**"(X,Z)) = G1%
under the assumption that M%? is Hausdorff, as argued in section 7.1.

The Fourier-Mukai transform v <> v° that on the torus is called T-duality is well
known to mathematicians by now. Namely, elements of the integer cohomology of
X are used to encode invariants of vector bundles, or rather coherent sheaves on
X; then the Fourier-Mukai transform gives a duality between the moduli space of
coherent sheaves on X and that on its dual X.

To be more precise, we discuss the Fourier-Mukai transform on four—tori, following
[Nah82, Nah84, Sch88, BvB89, HO97]. Let X =T = R*/A and X=T= R /A

with coordinates z,,y,. The dual torus X is interpreted as moduli space of flat

U(1) bymdlespox equivmently Jums bangles on X. We will make use of the Poincaré
bundle

9

p L — (]

| l

TxR 4 TxT

Here, £ — T denotes a trivial line bundle, and p : T" X R* — T is the restriction
to T. The map g is the projection R* — 7= R*/A*, and g denotes the projection
corresponding to VA € A : (z,y,v) ~ (z + A\ y,e o) for (z,y) € T x R* and
(w,9,v) € (p*L)(2,y)- The restriction of [:] to T x {y} is the line bundle L, — T
associated to the character x,(z) = ¢®¥. The Poincaré bundle is equipped with the
connection w(z,y) = 2mi Y, y,dr, and has curvature (z,y) = 2mi ) dy, A dzy,.
Consider a vector bundle B — T,E = @ Xy(n) C*, where Q is a pr1nc1pal U(n)
bundle with anti—self-dual connection A. Then A, = A+ 2mil,w(z,y) defines a
family D4 of Dirac operators on E,

Dy : I(T,S*® E) — TI(T,S7 @ E),

where S* — T denote the spin bundles on 7. Observe that A, is the restriction
of the connection A:= A®1+1,Qw on p"(E® L) to T x {y}

Now the NAHM TRANSFORM (T E, A) of the data (T; E, A) can be defined if A
is a 1-IRREDUCIBLE CONNECTION, i.e. E has no covariantly constant sections.
Namely, E is the index bundle E = ker D, 4 = ind D4 and carries the connection A
induced by the horizontal component of the connection A on p*(E ® L) as above
[Ati79]. One can show that under the above assumptions A is anti-self-dual, too.
The proof goes back to W. Nahm [Nah84], where the Nahm transform was intro-
duced for instantons on R* as well as monopoles and calorons. Instantons on 7'
comprise the simplest special case of those on R* and are therefore included in
Nahm’s investigation. The holomorphic version of the Nahm transform on T is
known to algebraic geometers as FOURIER-MUKAI TRANSFORM and was discov-
ered by S. Mukai [Muk81, Muk85]. Here, a holomorphic structure on T has to be
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chosen, and the above condition of 1-irreducibility translates into stability of the
(holomorphic) vector bundle E [Don85, UY86]. In this case the connection A is
just the Bismut-Freed connection on the index bundle E [BvB89, BGS8S].

In [Sch88, BvB8&9], the crucial observation was made that one can use the Atiyah—
Singer index theorem for families

ch(ind D4) = ﬁ /T A(T)ch(Z® E)

[AST1] to relate the invariants of (T’ E, A) to those of (T; E, A):

tk(E) = o(E) -3 (B),
a(E) = &QUQUa(B)T], (7.3.25)
eo(E) = tk(E)+ LcX(B).

The above data can be encoded in the MUKAI VECTOR M(E) € H°(X,Z) &
H2(X,Z) ® HY(X,Z) of E,

M(E) := ch(E)\/ A(X) = (tk (E), c1(E), —3¢(B) + a(B) + “Ep; (X))
(7.3.26)
For later convenience, (7.3.26) contains the general definition of the Mukai vector
for a complex surface X, where the Pontrjagin class p;(X) vanishes on the torus but
gives —48 when evaluated on K3. Note that compared to the standard conventions
we have flipped the sign of the last component of M (E), since we always choose
generators v°, v of HY(X,Z), H*(X,Z) with (v° v) = 1 as opposed to the Mukai
intersection product —1 [Muk87]. For any vector M = (Q4, Q2, Qo) € H*"(X,Z)
as above with @4 > 1 one can construct a U(Q4) bundle F — T such that M =
M(E) [BvB89, p.269]. For ()4 = 1 we have to assume @)y = 0 to find a vector
bundle E with M = M(FE). If we extend the consideration to the category of
coherent sheaves on X, (1,0,n) is the Mukai vector of the sheaf of holomorphic
functions on 7' that vanish at n points. R
By (7.3.25) the Nahm transform maps the moduli space T of flat U(1) bundles on
T, associated to the Mukai vector v° := (1,0, 0), to the moduli space of skyscraper
sheaves on 7', which is isomorphic to T itself and is associated to the Mukai vector
v := (0,0,1). This confirms our remarks above, by which the Nahm (or Fourier—
Mukai) transform induces the automorphism v° > v on H®*"(T, Z).
S. Mukai has generalized the Nahm transform to K3 surfaces X in the language
of algebraic geometry [Muk84, Muk87]. K. Hori and Y. Oz have generalized
P.J. Braam’s and P. van Baal’s construction with the Poincaré bundle and the
Atiyah—Singer index theorem for families to the K3 case [HO97]. Again, the
transformation is encoded in the Mukai vector (7.3.26), where now due to the
nonvanishing Pontrjagin class for a coherent sheaf £ — X

rk (E) = ey(E) — 1k (E) — L}(E), a1(E) ~ai(E), c(E) = c(E)
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[HO97]. Hence the Fourier—Mukai transform on K3 maps flat U(N) vector bundles
with instanton number & onto flat U(k — N) vector bundles with instanton number
k. The K3 surface X is isomorphic to the moduli space of skyscraper sheaves on
X, associated to the Mukai vector ¥ := (0,0,1), and is mapped to the moduli
space of sheaves on X with Mukai vector 0° := (1,0, 0). By (7.3.26) with p;(X) =
—48 this is the sheaf of holomorphic functions on X that are vanishing in one
point and thus is a K3 surface X again, the dual of X. From (7.1.6) one finds
that the Fourier-Mukai transform U « ©° induces (X,V,0) — (X,1/V,0) for a
geometric interpretation with vanishing B-field. But analogously to the Nahm
transform on tori, the transformation of the Einstein metric from X to X will in
general be more complicated than just an inversion of the volume. We stress that
U +» 0V is a genuinely nonclassical symmetry. The notation in terms of geometric
interpretations is misleading, since Y is determined by its relative position to the
lattice H*(X,Z), in particular the embedding of H?(X,Z) in H*(X,Z).

It is very fashionable to formulate all that has been said above in the language of
“brane physics” [HO97]. Then the Mukai vector (7.3.26) is interpreted as charge
vector of a system of D4,D2,D0 branes. A DO brane can be described as instanton
of zero size (“small instanton”) on a D4 brane wrapping X and has Mukai vector
v = (0,0,1). By (7.3.26), a D4 brane has Mukai vector (1,0,—1). Hence the

Fourier-Mukai transform ¥ ¢ v interchanges DO branes with a D4 plus a DO

brane.

This language is also used in [RW98], where elements of H*(X,Z) are interpreted
as labelling BPS states in a given type ITA string theory on K3 specified by a
four-plane x € M¥3. As above, M = (Q4, Qo, Q) € H®*"*(X,Z) corresponds
to a combination of () membranes and ()4 fourbranes, whereas (), counts the
number of DO minus D4 branes. Under the conjectured heterotic—type ITA duality,
M must correspond to a supersymmetric state of fixed winding and momentum.
The momentum is given by the projection of M onto x, and the mass of the BPS
state is the length of that vector in x. The resulting mass formula is compared to
the mass formula on the type IIA side, and Q4, @2, Qo can be interpreted in terms
of the gauge theory description of the physical Ramond-Ramond charges in the
presence of a B-field on a curved manifold [RW98].

7.3.4 7, Orbifolds within the moduli space

This section is devoted to the study of Zj, orbifolds in the moduli space MX3,
where M € {3,4,6}. We will use the notations introduced in section 7.3.1 in the
context of geometric Z,; orbifolds, see in particular lemmata 7.3.7-7.3.9.

We first consider some features of the Z,, orbifold construction on the conformal
field theory side which need further discussion. The Z,, action on a toroidal
nonlinear ¢ model T (A, Br),T = R*/A, is given by (5.2.2). From (7.3.17) we
readily read off that there always is a surviving su(2); & u(1) subalgebra of the
holomorphic W-algebra generated by J, J*, A.

Z,4 orbifold conformal field theories will be studied in a little more detail than
the other two cases below, basically in view of the application in section 7.3.5.



174 CHAPTER 7. THE MODULI SPACE OF SCFTS WITH C =6

The partition function of the Z, orbifold conformal field theory of T (A, Br) was
given in corollary 5.2.3. There we also noted that it coincides with that of the Z,
orbifold of a theory whose NS-partition function is the expression in curly brackets
in (5.2.10). Indeed, the partition function of SU(2){/Z4, i.e. of the Z, orbifold of
T = R*/Z* with By = 0, agrees with that of the Z, orbifold X(D,,0) [EOTY89].
In section 7.3.2 we observed that every Z, orbifold conformal field theory has an
su(2)? subalgebra (7.3.17) of the holomorphic W-algebra. On the other hand, as
demonstrated above, the Z, orbifold generically only possesses an su(2); @ u(1)
current algebra. For SU(2){/Z, this is enhanced to su(2); ® u(1)® which still does
not agree with the one for Kummer surfaces. Hence although the theories have the
same partition function, they are not isomorphic.

Similarly, the partition function of the Z4 orbifold of the torus model with SO(8);
symmetry agrees with that of K(Z*,0) as can be seen from (7.3.31). In this case
the theories indeed are the same (theorem 7.3.31).

For a Z,, orbifold limit X of K3, M € {3,4,6}, we have determined the analogs
{ T, T, VI} of the Kummer lattice IT in lemmata 7.3.7-7.3.9. The embeddings of
the moduli spaces of Zj; orbifolds in M%3 are now obtained analogously to that
of Zs orbifold conformal field theories as described in section 7.3.2. Namely, the
embeddings 7, : H*(T,Z)“™ — H?*(X,Z) of lemmata 7.3.7-7.3.9 have to be lifted
to 7, : Heven (T, Z)2m — Heven(X 7). The image is denoted by Kj,. Apart from
twoforms, H®"(T,Z)%™ has generators v, v°, and their images in K u are denoted
VMuv,v/Mv°. Note that Ky = Ky @ U(M). The four-plane zr € M®™™ that
determines a Zj; symmetric toroidal conformal field theory is mapped onto z =
7«7 by the Zj, orbifold procedure. We are looking for a geometric interpretation
(3,V, B) of z, fixed by 0,0° € H®*"(X,Z), such that the data read off from ¥
correspond to an orbifold limit of K3. In other words, ¥+ N H?(X,Z) contains
a primitive sublattice Py € {MI, T, VI}, and Kj C H?(X,Z) is embedded
primitively. All calculations below will be carried out in H¢"*"(X,Q); by pr we
denote the orthogonal projection onto v N (v°)* and set Py := pr(Py). Then as
for the Zs case in (7.3.19) we can fix U and use the ansatz

D= \/M’U, 60 = L’UO — ﬁBM — %v Muv (7327)

with By, € pr(H®(X,Q)) to be determined. Then we have Py 2 Py,. We will
now find an embedding 7, such that ¥, 0° give the desired geometric interpretation.

Lemma 7.3.18

Suppose that Us o p,ve the form (7.3.27) and are primitive vectors in H®*"(X,Z).

Assume that for any Z,; orbifold conformal field theory x = T,x they give the
geometric interpretation on the corresponding Zy; orbifold limit of K3 as described
above. Then

2 » _—
By € Py, 2Mi"f£ €Z, (Bum,E)=1mod M for some E € Py.
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Set J/\/I\M := My U {0,0°} with My, as defined in lemmata 7.3.7-7.3.9, and
VE€Py: E:=E-(E1)0=E+_(By,E)v

Then My and &y := {E | E € Py} generate H®" (X, Z) = T2,

Proof:

We will use lemma 7.3.6, in other words, we need to find L := (I?M)LﬂHe”e" (X,7Z),
then by [Nik80b, Prop.1.6.1] L*/L = Kj;,/Kjs, with isomorphism denoted by 7,
and the induced quadratic forms agree up to a sign. This will give

H (X, 7,) & {(a:, y) € Ky @ L* |y(@) = y} . (7.3.28)

We claim that L = ﬁM with
Py :={pe Py | (@ p) e},

Namely, for p € ﬁM by construction we can find p € H®*"(X,Z) such that p—p =
~ AO = r

av,a € R. Since Z'5 (p, V") = Tt P v%), a is an integer multiple of \/M’ and

therefore Py; C H®*"(X,Z). Since LR = Py;®R is clear on dimensional grounds,

L = Py, since both are primitive sublattices of H¢"*"(X,Z) by construction.

From Nikulin’s results we find that Bj; must be chosen such that P /PM =

K}{/[/K v with quadratic forms of opposite sign. Because Py C Py C Py, C Pj(/[,
we can use the decomposition

and since Ki,;/Ky = Ki/Ku X (Zy)? with K3, /Ky = Pj,/Py by lemmata
7.3.7-7.3.9 we find R R
Py /Py = Py Pl 22 Ty

Moreover, %BM generates ﬁj‘/[/Pj\jI, so By € Pj;. Since the quadratic forms
of Pj‘/[/PM and K3,/Kuy agree up to a sign as forms with values in Q/2Z, we

find ”f;y[! € Z, and there exists an E € Py, which generates P,/ f’M such that
(Bu, E) = 1mod M. Hence by (7.3.27) By € L = Py C Py;. The generators of
He®*"(X,Z) are now read off from (7.3.28) with the results of lemmata 7.3.7-7.3.9.

O

To explicitly determine the embedding of Z, orbifolds in M¥3 we only need to find
the correct vector BM in (7.3.27). In general, its properties listed in lemma 7.3.18
do not determine B, uniquely, but since a shift of 7° by an element of H even (X Z)
corresponds to an integer shift of the B—field in the geometric interpretation and
thus is irrelevant to our discussion, we can restrict ourselves to a finite number
of candidates for By;. A lot of them will be equivalent by lattice automorphisms
in OY(H%*(X,Z)). As for the embedding of Z, orbifold conformal field theories

in theorem 7.3.16, the lift BY) of By € Py to Py will determine the offset
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ﬁB%M) of the B—-field induced on the exceptional divisors of the blow up by the
orbifold process. Since this is a local effect for each fixed point, for every Z, type
fixed point we obtain % upon integration of the B-field over the corresponding
exceptional divisor, as shown in theorem 7.3.16. Analogously, the result for Zs
type fixed points will apply both to the Z3 and the Zg orbifold case.

Moreover, algebraic symmetries of the underlying toroidal conformal field theory
induce symmetries of the orbifold conformal field theory that must not be destroyed
by the B—field. In particular, BéM) is invariant under all algebraic automorphisms
of the orbifold limit of K'3. For Z, orbifold conformal field theories we can use the
result on algebraic automorphisms of SU(2);/Z,, theorem 7.3.12, to verify that all
Z, type fixed points are related by symmetries and therefore must give the same
result. Moreover, all E( ) i € I must carry the same B-field flux. Analogous
reasoning severely restrlcts the number of candidates for By, in all cases. Actually,

Lemma 7.3.19 5
With notations taken from lemmata 7.3.7-7.3.9, the list of all By, that obey the
conditions listed in lemma 7.3.18 and are consistent with the symmetries of Zys

orbifold conformal field theories up to equivalence by lattice automorphisms in
Ot (H*(X,Z)) is

By = Y (B +ED),

telF?
By = Y E+1Y (BEY +4EY +3E7),
ieI(2) ieI®)

By = ZE,,+QZ EM + EF)

+5(5E0 +8EY) + 9B + 8EY + 5E()).

Proof:

We only give the proof for the Z, case, since the others are obtained analogously,
the Zg case being particularly tedious. The most general ansatz for By € IIII that
is consistent with the symmetries of SU(2);/Z, and our knowledge of the B-field
on the Z, fixed points is

Bi=Y E+% Y (BP+E7)+8Y EP,

i€1(?) i€1(4) ieI4)

where we can restrict to o, 8 € {0,...,3}. Then ”1?3—42”2 € Z, which must hold by
lemma 7.3.18, iff (o, B) € {(1,2),(1,3),(3,1),(3,2)}. For (o, ) = (3,1) there is
no E € Illl with (B, E) = 1mod 4. We claim that the remaining three cases
are equivalent by lattice automorphisms in O*(H?*(X,Z)). Indeed, (a, 8) = (1,3)
turns into (o, §) = (1,2) by

B s B B0, B0 B4 B0 4 B
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and (o, 8) = (1,2) turns into («, 8) = (3,2) by
E® — - EO s EPD 4 B0 L EO)
O
For M € {3,4,6} we can now use lemma 7.3.18 with By, taken from lemma 7.3.19

to define ¥, v9, E as above and give a consistent embedding 7, : Hever(T, Z)em —

He*"(X,Z). We use

B — B, 4tV € H(X,2) (7.3.29)
to find
M (0; — (03, Brjv) = Mo; — <M0ia%BT>6
V%W+&+@"”)):W+f£ﬁ-ﬁ)

Vi 1
+(ﬁ—§

|2\ ~
JaBr+ 5B )

which proves

Theorem 7.3.20

Let (X7, Vr, Br) denote a geometric interpretation of the nonlinear sigma model
T(A,Br), and M € {3,4,6}. Assume that A is generated by Ay, k = 1,2, with
Zyr symmetric Tiyy = R? /Ay, and Br € H*(T,Z)"™ such that a Zys action is well
defined on T (A, By). Then the image x € T*?° under the Zy; orbifold procedure
has geometric interpretation (3,V, B) where ¥ € T>' is found as described in
lemmata 7.3.7-7.3.9,V = %&£, and B = = Br+ 5 B{", BY"" € H**"(X, ) as in
(7.3.29) with By as given in lemma 7.3.19. Thus we find B—field flux —L on each
exceptional divisor that corresponds to a Z,, fixed point.

In particular, the moduli space of superconformal field theories admitting an in-
terpretation as Zy; orbifold is a quaternionic submanifold of M*3. Moreover,
rt N H®*"(X,Z) does not contain vectors of length squared —2.

Theorem 7.3.20 shows that Zj, orbifold conformal field theories do not correspond
to string compactifications of the type ITA string on K3 with enhanced gauge
symmetry.

We remark that the results of theorem 7.3.20 agree with those obtained previously
in [Dou97] and [BI97] in the context of “brane physics”. Also, the discussion
of (7.3.20) seems to lead to a simpler proof in terms of quantum cohomology:
The entire reasoning presented there translates to M € {3,4,6}. Note that e.g.
for Zjy type fixed points i € I® on the Z, orbifold, f*(2¢;) = 4C; as opposed to
f*(ej) = 4C; for j € I™. In particular, if v/Mv®— By denotes the Poincaré dual of
£.(T] —37.Cy), then (By, E) = —2 for each E corresponding to a Zy, fixed point.
Since f is M : 1 and unbranched on ([T] —3.0i), (VM —By) € HV™(X, Z),
justifying the ansatz (7.3.27). Everything else follows from lemma 7.3.18, and we
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confirm B-field flux —% through each of the exceptional divisors corresponding to
a Z,, fixed point. The fact that this argument correctly predicts the B-field fluxes
supports our belief that it should be possible to put it onto a solid mathematical
footing, too.

7.3.5 Application: Fermat’s description for three orbifold
models

Let us now apply our knowledge on geometric interpretations of models in M3
gathered so far, in particular of orbifold conformal field theories, to perform changes
in geometric interpretations.

Theorem 7.3.21
The Z, orbifold of T (Z*,0) admits a geometric interpretation on the Fermat quartic

Q = Q in CP* (7.3.8) with volume Vo = 1 and Bfield Bg = —15\? up to a shift
in H*(X,Z), where a§9) denotes the Kéhler class of Q.

Proof:

Let ei,...,es denote the standard basis of Z% Then u; = e;, and by theorem
7.3.20 with ||Bgl)||2 = —32 the Z, orbifold of T(Z*,0) is described by the four-
plane z € 7%?° spanned by

&1 = 1A ps A+ pa A o, o = 1A g+ po A s,

63 = 2(/,61 A 125 + M3 N ,LL4), 64 = 460 + Bg) + 56

To read off a different geometric interpretation, we define

vo = 5 (M A ps e A g — pi A g — pig A pi3)
+1 (E 0,1,1,0) — E 1,0,1,0 ) )
0 2 (TOLLO 0L (7.3.30)
Vg = M1 A pgt pa A po + pr A

+% (E(O,O,O,l) + En1,01) — B0 — E(1,0,1,0)> .

One checks vg, vy € H®**(X,Z) as given in lemma 7.3.18, [lvg|]* = [[vg]|* = 0
and (vg,vg) = 1 to show that vg, v} is an admissible choice for null vectors in
(7.1.6). For the corresponding geometric interpretation (Xg, Vg, Bg) we find that
Yo is spanned by

o\ =y A s e A s+ A g e A s — 200,
Uég) = 2(/111 N o + 3 A ,UJ4) - 2UQ5
o = 4°+ By +50.

As complex structure g C ¥g we pick the twoplane spanned by aég) and O'?EQ).

Note that this plane is generated by lattice vectors, so the Picard number of the
corresponding geometric interpretation X is 20, i.e. X is singular (definitions
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4.6.1 and 4.6.3). Because oég),oég) are primitive lattice vectors, one now easily
checks that X equipped with the complex structure given by (2o has quadratic
form diag(8,8) on the transcendental lattice. This uniquely fixes the complex
structure on X by theorem 4.6.6, which thus agrees with that of Q by [Ino76] (see
(7.3.12)). Volume and B-field can now be read off using (7.1.6) and noting that in
our geometric interpretation

fn A s+ pua A iy — iy A g — g A g = €2 ~ 08 + Bg + (Vg — L[| Bol?) ve.

O

We remark that the results of theorem 7.3.21 admit a couple of cross—checks of
our approach: In theorem 7.3.27 we will show that SU(2){/Z, agrees with the
Gepner model (2)* with algebraic symmetry group G% = (Z4)? X Sy, the algebraic
automorphism group of the quartic (see the discussion around (7.3.10)), and with
minimal Mukai number 1(G%9) = 5. The G% invariant Kahler class on the quartic
is that of the Fubini-Study metric on CP? with K#hler form wgrg. So from the
algebraic symmetries of (2)* and since the o,gg) in theorem 7.3.21 were chosen as
primitive lattice vectors we must expect J§Q) = wpg and Bg € Yg. The latter is
confirmed by theorem 7.3.21. Secondly, one checks that ||\ |2 = ||wrs|? = 4,
since wpg corresponds to the hypersurface divisor of CP3.

In a similar fashion to theorem 7.3.21 we find quartic interpretations for two special
Z.5 orbifold conformal field theories:

Theorem 7.3.22

The Zy orbifold conformal field theories K(Dy, 0) and IC(%D;;, B*) admit geometric
interpretations on the Fermat quartic @ = Qg in CP3?, where B* is the B—field
(7.3.40) for which the latter theory has enhanced symmetry by the Frenkel-Kac
mechanism.

The proof is obtained analogously to that of theorem 7.3.21, but now with

Vg = \/§M2 A Ha,
vy = V201 A pa+ g A ua)

+1 (\/5,113 A 1+ E0,0,0,0) — E(0,0,1,00 — E(1,0,1,0) + E(1’°’°’°)>

~ ~

+3 (\/5#2 A s+ E,00) T Eo01,0 — Eo,1,00 — E(0,1,1,0)) :

The results on SU(2){/Z, and K(D,,0) of theorems 7.3.21 and 7.3.22 are partic-
ularly interesting in view of the observation made in [EOTY89] that the partition
functions of these models agree. The theories are not isomorphic, since they have
nonisomorphic W-algebras, as was explained at the beginning of section 7.3.4. The
more striking it is that both of them admit geometric interpretations on the Fer-
mat quartic hypersurface Q. The deeper reason for the agreement of the partition
functions remains a mystery, though. In particular, though on the level of (7.1.6)
it is not hard to give explicit expressions for B—field and Kahler class as well as the
volume of the quartic interpretations of (D, 0) and IC(%D;;, B*), a technique to
translate this into coordinate expressions for the Kahler form on @ is lacking.
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7.3.6 Special points in moduli space:
Gepner and Gepner type models

In this section, we explicitly locate the Gepner model (2)* and some of its orbifolds
within the moduli space M%3. This is achieved by giving o model descriptions
of these models in terms of Zsy and Z, orbifolds which we know how to locate in
moduli space by the results of sections 7.3.2 and 7.3.4.

Ideas of proof: An example with ¢ =3

We start with a survey on the steps of proof we will perform to show equivalences
between Gepner or Gepner type models and nonlinear ¢ models. We have learned
this technique from Werner Nahm. As an illustration we then prove the well known
fact that Gepner’s model (2)? admits a nonlinear o model description on the torus
associated to the Z? lattice that was already used in theorem 5.6.4.

Given two N = 2 superconformal field theories C!,C? with central charge ¢ = 3d/2
(d = 2 or d = 4) and spaces of states H', H2, to prove their equivalence we show
the following:

i. The partition functions of the two theories agree sector by sector in the sense
of (3.1).

ii. The fields of dimensions (h; k) = (1;0) in the two theories generate the same
algebra A = A; ® Ay, where Ay = u(1) for d = 2, Ay = su(2)? for d = 4,
and u(1)¢ C A,. In particular, u(1)¢ C A. A; contains the U(1)-current
JU) = J of the N = 2 superconformal algebra, and a second U(1)-generator
J@ if d = 4. Furthermore, the fields of dimensions (h;h) = (0;1) in both
theories generate algebras isomorphic to A as well, such that each of the left
moving U(1)-currents j has a right moving partner 7.

iii. For ¢ = 1,2 define
Hy = {lp) e H |JP|p) =0, ke{l,2}}

and denote the U(1)-currents in u(1)? C A, by 5,. .., 7% We normalize them
asin (4.1.1). Let j™* ~ J®) k € {1,4}, denote the remaining U(1)-currents
when normalized to (4.1.1), too, and set J := (5%,...,5%7",...,7%). The
charge lattices

Ty = {y eR¥|T|p) e H} : Tlo) =l¢) }

of H; and H? with respect to J are isomorphic to the same self dual lattice
[, C R%%; because the states in H¢ are pairwise local, in order to prove this
it suffices to show agreement of the J-action on a set of states whose charge
vectors generate a self dual lattice T'.
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Theorem 7.3.23
If i.-iii. are true then theories C* and C? are isomorphic.

Proof:

By ii. and iii. the field 7 := Y7 _,(j*)? acts as Virasoro field 7% on each of the
theories (check that T—T* has dimensions h = h = 0 with respect to T%). Thus the
restriction of T to Hj is given by Tj := 1 3"¢_, (j*)2. Moreover, #; is closed under
OPE by construction, so the H; are spaces of states of conformal field theories
with central charge d. Since by ii. and iii. the respective holomorphic W-algebras
contain d Abelian currents 5, ..., j% and analogously on the right handed side, H}
correspond to toroidal conformal field theories in the sense of definition 4.1.1. By
iii. their charge lattices agree, so these toroidal theories are isomorphic by theorem
4.1.2, and Hy = H; = H,,.

Because Ty is self dual, for any state |¢) € H® carrying charge v with respect to
J we have v € T, and thus find primary fields V?[+£v] € H} of charge +v. With
suitable combinations P of descendants j*  and P of ascendants ikn >0k €
{1,...,d}, we find |¢) := PV*[—7]|p) such that

@) =) @ V] Pl0)y and o) € Hj = {|x) € H' | Ty|x) =0}.

This shows H' = H’ @ H, for i = 1,2. H} and H} are representations of Ay = u(1)
(for d = 2) or Ay = su(2)? (for d = 4) which are completely determined by charge
and dimension of the lowest weight states. Because by ii. A contains the U(1)-
current J of the total N = 2 superconformal algebra, the partition functions of
our theories agree by i., and we already know H' = H’ @ H, for i = 1,2, we may
conclude H} = 7. O

Let’s watch the procedure described above at work:

Theorem 7.3.24
Gepner’s model C' = (2)? has a nonlinear o model description C? on the two
dimensional torus Tgy s> with SU(2)} lattice A = Z* and B-field B = 0.

Proof:
If we can prove i.-iii. in the above list, by theorem 7.3.23 we are done.

i. By the flow invariant orbit technique described below theorem 3.1.16 one can
compute the partition function of (2)2. With (4.1.11) it is determined for the
o model on Tgy ()2, and we find
4]

ii. The nonlinear o model on TSU(Q) 2 has two rightmoving Abelian currents j1, js
which we normalize to

4 4

+

2

2]
1

Va
1

193(2)
Ui

9
4|

n

Zns(T,2) = % [

for both theories.

. . %504,3
o) o)~ 2
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Their superpartners are free Majorana fermions 1)1, ¥ with coupled boundary
conditions. By e, e; we denote the generators of the lattice A = A* = Z2
which defines our torus. Then the (1, 0)-fields in the nonlinear ¢ model are
given by the three Abelian currents J = ity (the U(1) current of the
N = 2 superconformal algebra), @ = j; + jo, R = j1 — j2, and the four vertex
operators Vi, te,,0=1,2.

In the Gepner model (2)? we have an Abelian current j, j' from each minimal
model factor along with Majorana fermions 1), ¢’, where by (3.1.21) ¢’ =

DY 5.0.0®@ P 9.00- The U(1) current of the total N = 2 superconformal algebra
is J = j+ j', and comparing J, ), R-charges we can make the following

identifications:
Wty = J = 475, a+j=Q =ji—74, j—Jj =R = i),
‘/;31,61 = (I)g,O;O,O ® (bg,Q;0,0 - 7:(1)(12,2;0,0 ® ®92,0;0,0’
‘/;32,62 = cI’(Q),o;o,o ® (1’8,2;0,0 + 7@22,2;0,0 ® cI)(12,0;0,0a
Vi, eo = Z.(1)2,2;0,0 ® (I)g,o;o,o + ‘582,0;0,0 & ¢32,2;0,0a
Viey—en = _7;(1’(2),2;0,0 ® (I’g,o;o,o + (I)(izo;o,o ® (1’32,2;0,0-

Thus the (1,0)-fields in the two theories generate the same algebra A4 =
u(1) ® su(2)f = A; & Ap. Obviously, the same structure arises on the right
handed sides.

iii. The space H; for the o model is just the bosonic part of the theory. The
charge lattice I', with respect to the currents J := (Q, R; Q, R) = (j1+7J2, 71—
237y + J2:Jy — Jo) thus contains the charges M := {i(e;+e),e € {+1}?},
carried by vertex operators Vi, o, Vo +e;,¢ = 1,2. M generates the self dual
lattice {i(a+b;a —b) | a,b € Z?, S k=0 by =0 (2)} =T.

To complete the proof of iii. we observe that in the Gepner model the
fields @y 0.0 ® Lo no = Plgnomo ® oo o and o o @ Piyong
P15 0 0 ®P, 0,7 € {£1}, are uncharged with respect to J and carry
J = (j—j’,iww';j—j’,zﬂa)—charges M = {i(e;%e),e € {£1}?} generating

the lattice ['y. -

Gepner type description of SU(2){/Z,

Theorem 7.3.25

Let C' = (/2\)4 denote the Gepner type model obtained by enhancement of Weepner
of (2)* with the simple currents Ji2, Jas of theorem 3.1.18 or equivalently as orb-
ifold of (2)* by the group Z, = ([2,2,0,0]) C G%¢. Then C* = K(Z*,0) admits a
nonlinear o model description C? on the Kummer surface associated to the torus
Tsy()s with SU(2){ lattice A = Z* and vanishing B-field.
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Proof:
We prove conditions i.-iii. of theorem 7.3.23.

i.

il.

iii.

From (4.1.7) one finds

Zp=24,B7=0(T) = [é ( 4)] : (7.3.31)

Applying the orbifold procedure for the Zy-action of [2,2,0,0] € G to the
partition function of the Gepner model (2)* as can be computed by the
methods described in section 3.1.3, one checks that C' and C? have the same
partition function obtained by inserting (7.3.31) into (5.2.9).

4 4

9y
Y

9
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n
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n

In the nonlinear o model C? the current algebra (7.3.17) is enhanced to
u(1)* @ su(2)?. The additional U(1)-currents are U; := Vi, 0. + Vg, ;s 0 =
1,...,4, where the e; are the standard generators of A = A* = Z*.

In the Gepner type model C! = (5)4, apart from the U(1)-currents Jy, ..., Jy
from the factor theories, where J = J; + --- + J, we find four additional
fields with dimensions (h; k) = (1;0); by comparison of the respective OPEs
the following identifications can be made:

J = hi+h+ s+, J5= (@%2,2;0,0)@)4;

A = B+Dh—J—Ji, A* = (9%00)" ® (®hr200);
%(U1+U2) = P = J1—Jy
%(U3+U4) = Q = J3—Jy
% (Ul - U2) = R =1 ((132,2;0,0)@2 ® (CI)g,o;o,o)®2 )
% (Us—Us) = § =1 ((1)8,0;0,0)@2 ® ((1)2,2;0,0)@2
(7.3.32)

Thus the (1,0)-fields in the two theories generate the same algebra A =
su(2) du(l)* = A; @ Ap. Obviously, the same structure arises on the right
handed sides.

We show that H} and HZ both have self dual J := (P,Q, R, S; P,Q, R, S)-
charge lattice

Ty ={(z+y;x—y)|z € $Ds,y € D;}, (7.3.33)
generated by

Mt’w = {%(l‘,.@) € R474| S {(8175%0’0)5 (070181582)7
(0781:5270)7 (517070752)752' € {il}}}
and My, = {(&0) e € {x1}*}.
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In the 0 model C? we denote by Y5, 6 € Fi, the twist field corresponding to the
fixed point a5 = %Zle 0;e; of the Z, orbifold. Action of a vertex operator

with winding mode A will shift the constant mode a; of each twisted field
(see section 5.2) by 4 [HV87]. Hence,

Ui(2) Sg(w) ~ % S, (w), (7.3.34)

where the factor % is determined up to phases by observing T]%\Eg) =0,T¢ =

iZle (Ui)2, and h=h = % for twist fields. The phases are fixed by appro-
priately normalizing the twist fields. One now checks that

Vee{+1}*: s.:=> [(e)* =

are uncharged under (J;J) and (A4; A) and carry J-charges Mj,. Fore,§ €
{£1} and k,l € {1,...,4} we define

E]i? = (]k - g (V;:k,ek - erk,*ek)) (jl - % (V;:l,el - erl,*el)) -
Then Ef, B}, B3, ESS are (J, A; J, A)-uncharged and carry J-charges Mip,.

In the Gepner model, with the shorthand notation O(n;) := (Qé’l;%hm)@?,
P(ng) == O romoms @ PV e oy (ni € {£1}) we find (J, A; J, A)-
uncharged fields O(n1) @ O(ng), O(n1) @ P(n2), P(n1) @ O(ng), P(n1) ®
P(ng), which after diagonalization with respect to the J-action carry the

charges M;y,.

Similarly, with Q(n, s) := ®9,, ., (@9, .15, the fields Q(ny, 51)® Q(ny, 52),
n; € {£1}, s; € {0, 2}, after diagonalization have charges M;,,.

For later reference we note that by what was said in section 7.1 there are eight
more fields in the Ramond sector with dimensions h = h = 1. Each of them is

b - 4
uncharged under J and either (A4; A) or (J;J). We denote by W _ WA _ ¢ €

£1,€27 £1,€27 1T

{#1} the fields corresponding to the lowest weight states of su(2); = (J,J*) or
su(2); = (A, A*), with (J; J) or (4; A)-charge (g;; &) respectively and identify
wl., = (@° )

—€1,—€157€2,—€2

WA = (@ )@ (@ )

—E€1,€15;7€2,7€2 €1,E1562,€2

(7.3.35)

In 0 model language and by the discussion in section 7.1, application of left and
right handed spectral flow to the J-uncharged Wg‘:,gz yields (%, %)-ﬁelds in Fi9,
the real and imaginary parts of whose (1,1)-superpartners describe infinitesimal
deformations of the torus Ty (s)2 our Kummer surface is associated to.

Summarizing, we can now obtain a list of all fields needed to generate H' and H?
as well as a complete field by field identification by comparison of charges; for the

resulting list of (3, ;)-fields see appendix B. O
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Note that because Dy = /2D} for the J-charge lattice (7.3.33)
T, = {%(u—i-/\,u—)\) ueDz,,\eD4}.

Thus T is the charge lattice of the bosonic part of the o model C* = T(Dy,0).
Theory C! was obtained by taking the ordinary Z, orbifold of the torus model
on Tgy(9)s, but as pointed out in [KS88], for the bosonic part of the theory this
is equivalent to taking the Zs orbifold associated to a shift § = ﬁ(ﬂo; o), o =
>.;€i € A%, on the charge lattice of Tgy5s. Under this shift orbifold, by (5.1.6)
the lattices A = A* = Z* are transformed by

A= A+ (A + 3m0) = Di, A {A € A{uo, ) =0(2)} = Dy,

so the bosonic part of the resulting theory indeed is that of C3. The entire bosonic
subtheory of C! = C? in the sense of property 11 in section 3 agrees with that
of C3, because the shift acts trivially on fermions, and the ordinary Z, orbifold
just interchanges twisted and untwisted boundary conditions of the fermions in
time direction. The difference between the theories in the bosonic sector merely
amounts in opposite assignments of Ramond and Neveu-Schwarz sector on the
twisted states. So, on the level of bosonic conformal field theories:

Remark 7.3.26

The Gepner type model C' = (2)* viewed as nonlinear ¢ model C2 = K(Z*,0)
on the Kummer surface K(Z*) is located at a meeting point of the moduli spaces
of theories associated to K3 surfaces and tori, respectively. Namely, its bosonic
sector is identical with that of the nonlinear ¢ model C* = T (Dy,0).

This property does not translate to the stringy interpretation of our conformal
field theories, though. When we take external degrees of freedom into account, the
spin statistics theorem dictates in which representations of SO(4) the external free
fields may couple to internal Neveu-Schwarz or Ramond fields, respectively. The
theories C! = C? and C? therefore correspond to different compactifications of the
type ITA string.

Gepner’s description for SU(2){/Z,

Theorem 7.3.27

The Gepner model C' = (2)* admits a nonlinear o model description C'' on the
Z4 orbifold of the torus Tgyya with SU(2){-lattice A = Z* and with vanishing
B-field.

Proof:
It is clear that CT = (2)* can be obtained from C' = (2)*, for which we already have
a o model description by theorem 7.3.25, by the Z, orbifold procedure which re-
vokes the orbifold used to construct C'. The corresponding action is multiplication
by —1 on ([2, 2,0, 0])-twisted states, i.e.
4 v 4
[2,2,0,0] 1 QB m 5 — 5 T Qpl . (7.3.36)
i=1 i=1
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Among the (1,0)-fields the following are invariant under [2',2',0,0] (use (7.3.17)
and (7.3.32)):

Jo= w0 e gt = g = gDl
A = Pyl gy P = 5(U1+U2); Q = }U+T).

(7.3.37)
Hence we have a surviving su(2); Qu(l ) subalgebra of our holomorphic W-algebra.
In appendix B we give a list of all (3, })-fields in C* = (2 2)* together with their
description in the o model C? on the Z, orbifold K(Z* 0). A similar list can
be obtained for the (2, 0)-fields as discussed in the proof of theorem 7.3.25. From
these lists and (7.3.37) one readily reads off that the states invariant under (7.3.36)
coincide with those invariant under the automorphism 715 on K(Z*, 0) (see theorem
7.3.12) which is induced by the Z4 action (ji, jo, js,j1) — (—Jo, 71,74, —J3), i.€.
( il),wf)) > (iiz/)il), :Fz'i/)g)) on the underlying torus Tgy(2s. The appertaining
permutation of exceptional divisors in the Z, fixed points has been depicted in
figure 7.3.1 (section 7.3.1). The action of 715 and that induced by (7.3.36) agree
on the algebra A of (1,0)-fields and a set of states generating the entire space
of states, thus they are the same. Because of C' = C? (theorem 7.3.25) and the
fact that CT = (2)* is obtained from C! by modding out (7.3.36), it is clear that
modding out K(Z* 0) by the algebraic automorphism 7, will lead to a o model
description of (2)*. As shown in theorem 7.3.13 the result is the Z4 orbifold C'* of

TSU(2)14- O

Theorem 7.3.27 has been conjectured in [EOTY89] because of agreement of the
partition functions of C’ and C!!. This of course is only part of the proof as
can be seen from our argumentation at the beginning of section 7.3.4. There we
showed that SU(2)/Z4 does not admit a 0 model description on a Kummer surface
although its partition function by [EOTY89] agrees with that of IC(Dy, 0), too.
From theorems 7.3.21 and 7.3.27 we conclude:

Corollary 7.3.28
The Gepner type models (2)* admits a geometric interpretation on the Fermat
quartic (7.3.8) in CP?.

Let (2, V, B) denote the geometric interpretation of (2)* we gain from theorem
7.3.27. By the proof of theorem 7.3.25 we know the moduli Vdig + V and

—E&

i(Voe — VZ5_,),6,e € {£1}, for volume and B-field deformation in d1rect1on of
S of the underlying torus Tgy(g)4 of our Z, orbifold: We apply left and right
handed spectral flows to Wfl, Wfl’fl as given in (7.3.35) and then compute the
corresponding (1, 1)-superpartners. In terms of Gepner fields this means

®2
V;s; = (13252252@@250250@ ((1)0000)

+¢60250®©262262®(¢)0000
_ ®2
V&,g = ((1)8,0;0,0) ®@62262®¢260250
+(®0,00.0) " ® 50000 ® Phynnes -

’

) (7.3.38)
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Indeed, Véj; are uncharged under J and A as they should, because both U(1)-
currents must survive deformations within the moduli space of Z, orbifold confor-
mal field theories. On the other hand by our discussion below (7.3.10) the (1,1)-
superpartners of (B}, ;. 5,)%*, (DL g.r1,0)®* which carry (A; A)-charges F(1;1),
give the moduli of volume and corresponding B-field deformation if we choose the
quartic hypersurface (7.3.8) as geometric interpretation of Gepner’s model (2)*.
Hence along the “quartic line” we generically only have an su(2);-algebra of (1, 0)-
fields. This agrees with the analogous picture for ¢ = 9 and the Gepner model (3)°
where all additional U(1)-currents vanish upon deformation along the quintic line
[DG8S].

Symmetries and algebraic automorphisms revised: (2)* and (2)*

Among the algebraic symmetries Z2 x S; of the Gepner model (2)* all the phase
symmetries Z2 commute with the action of [2,2,0,0] which we mod out to obtain
(2)*. The residual Zy x Z; has a straightforward continuation to (2)* (ie. to
the twisted states). Moreover, [2,2',0,0] as given in (7.3.36) which reverts the
orbifold with respect to [2,2,0,0] must belong to the algebraic symmetry group
G of (2)*. Nevertheless, one notices that Zs x Z, 2 ([2/,2',0,0],[1, 3,0, 0]) leaves
6 # 8 = u(Zy X Zsy) — 4 states invariant and thus does not act algebraically by
(7.3.4). We temporarily leave the symmetry [1, 3,0, 0] out of discussion, because
then by the methods described below (7.3.10) we find a consistent algebraic action
of (Zy x Zy) x Dy on (2)4, where Zy x Zy = ([2,2,0,0],[1,0,3,0]) and D, =
((12), (13)(24)) C Sy is the commutant of [2,2,0,0].
Let us compare to the o model description K(Z4,0) of (2)%: In theorem 7.3.12
the group of algebraic automorphisms of X(Z*,0) which leave the orbifold singular
metric invariant was determined to G#,,....., = Z3 X F5. Although it is isomorphic
to the algebraic symmetry group (Zy x Z,) x D, of (2)* found so far, Gif,, _ must
act differently on (/2\)4. Namely, from the proof of theorem 7.3.27 we know that the
o model equivalent of [2',2',0,0] is 712 € G5 mer- Lhus only the commutant H C
G ummer Of T12 can comprise residual symmetries descending from the Z, orbifold
description on (2)%. This is no contradiction, because by the discussion in section
7.3.1 different subgroups of the entire algebraic symmetry group of (5)4 may leave
the respective null vector v invariant which defines the geometric interpretation.
By what was said in section 7.1 it is actually no surprise to find symmetries of
conformal field theories which do not descend to classical symmetries of a given
geometric interpretation. The Gepner type model (5)4 is an example where the
existence of such symmetries can be checked explicitly.
By the results of section 7.3.1 we find H = Zy X Dy = (112,713, t1100) (See also
theorem 7.3.14). We now use our state by state identification obtained in the
proof of theorem 7.3.25 (see appendix B) to determine the corresponding elements
of éalg and find
ri3 = (13)(24) e &

t1100 = C o} [1, 3, 0, O] =: [1,, 31, 0, 0]

Here ¢ acts by multiplication with —1 on those Gepner states corresponding to the

(7.3.39)
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16 twist fields X5 of the Kummer surface and trivially on all the other generating
fields of the space of states we discussed in the proof of theorem 7.3.25. Note
that ( is a symmetry of the theory because by the selection rules for amplitudes
of twist fields any n point function containing an odd number of twist fields will
vanish. The geometric interpretation tells us that modding out (/2\)4 by ¢ will
revoke the ordinary Z orbifold procedure i.e. produce 7 (Z*,0). We conclude with
the remark that by the modification (7.3.39) of the [1, 3,0, 0]-action the full group
G = (72 x Z,) x D, acts algebraically on (2)*. The subgroup H consists of all
the residual symmetries of (2)? that survive both deformations along the quartic
and the Z, orbifold line and act classically in both geometric interpretations of (2)*
known so far, the Z, orbifold and the quartic one.

Gepner type description of SO(8),/Z,

Theorem 7.3.29

Let C' = (2)* denote the Gepner type model discussed in theorem 3.1.18, i.e. the
orbifold of (2)* by the group Zy x Zy = {[2,2,0,0],[2,0,2,0]) C G%9. This model
admits a nonlinear o model description C2 on the Kummer surface IC(%D;;, B*)
associated to the torus Tso(s), with SO(8),-lattice A = %Dzl and B-field value B*
for which the theory has enhanced symmetry by the Frenkel-Kac mechanism.

Proof:
Let ey, ..., e4 denote the standard basis of Z*. With respect to this basis the B-field
which leads to a full SO(8), symmetry for the o model on Tsq(s), is

AR — A"®R, (7.3.40)

a twotorsion point in H*(Tso(s),, R)/H? (Tso(s),, Z)-
We are now ready to use theorem 7.3.23 if we can prove conditions i.-iii.

i. From (4.1.7) we find

8 8

+

1 8
73 pys (1) = 5 ( ) . (7.3.41)

With theorem 3.1.18 one checks that C' and C2 have the same partition
function obtained by inserting (7.3.41) into (5.2.9).
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ii. We have an enhancement of the current algebra (7.3.17) of the nonlinear o
model C? to su(2)5. The 12 additional (1,0)-fields are U, := % (Vaos B
+V_4,—a-B*a), Where « belongs to the Dy root system {:I:%ei + %ej}. We

set
. 1(p U
Wii =3 ( T5(eite;) + %(ei‘ei))
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to see that upon a consistent choice of cocycle factors for the vertex operators
these fields indeed comprise an extra su(2):

P = Wf;—l—W;:s, Pt = \}5( ):l:%( Wf},),
Q = Wih-Wq, QF = 5 (W J)i%( —Waa),
R = iW,, —iW;,, R* := %(Wl,4 Qi%(Wm Ws,)
S = Wi +Way, 5% = 25 (Wi +Way) £ 55 (Woy + Wiy)

(7.3.42)
For the Gepner type model C? = (’2V)4 we use X;; as a shorthand notation
for the field having factors ®,.,, in the ith and jth position and factors
®Y 0.0,0 Otherwise, and Yj; for the field having factors ®°,,.,, in the ith and
jth position and factors 3, , otherwise. By comparison of OPEs one then
checks that the following identifications can be made:

J = Ji+Jo+Js+ TE = (0%500)7";

A = SJ+Jy—J3— Jy, AT = Y, AT = Yy

P = S(h—J+J3—Ji), PP = Yy, PT = Ya;

Q %(J1—J2—J3+J4)a QY = Yu, Q = Y

R %(X13—X24), R* = :F%(X12+X34)+%(X14+X23);
S = 5 (Xiz+Xa), SE = +1(Xpg — Xaa) + & (X1s — Xo3).

Thus the (1, ) fields in the two theories generate the same algebra A4 =
su(2)f @ su(2){ = Ay @A, Obviously, the same structure arises on the right
handed sides.

We will show that the spaces of states ﬁ,} and ﬁ% of C* and C2 both have
self dual J := (P,Q, R, S; P,Q, R, S)-charge lattice

fb:{%(x—i-y;x—y) ‘x,yEZ‘l}. (7.3.43)

In the Gepner type model C! = (2)* we find 16 fields with dimensions b = h =
Z which are uncharged under (J, 4;J, A); diagonalizing them with respect
to the J-action for j € {P,Q,R,S} we obtain fields Ei,FjE uncharged
under all U(1)-currents apart from j and with (j, j)—charge \72(:&1, +1) and

%(:I:l, F1), respectively. Namely,

+ 0

EP - (I):Fl F1;F1,F1 & (I):I:l +1;4+1,4+1 & (I):Fl,q:l 3 F1L,FL & (I):I:l +1;41,4+1>
= _

Fp = (I):Fl,:Fl;:I:l,:I:l & (I):tl,:tl;:Fl,:Fl & (I):Fl,q:l;:l:l,:l:l & q):l:l,:l:l;:Fl,:Fla
+ 0 0 0 0

EQ - (I)qzl,:Fl;:Fl,:Fl & (I):I:l,:l:l;:l:l,:l:l & (I):I:l,:l:l;:l:l,:l:l & (I):Fl,q:l;q:l,:pla

+ _ &0 0 0 0
FQ = <I):F1,:F1;:|:1,:|:1 & (I):I:l,:l:l;:Fl,:Fl & (I):tl,:tl;q:l,q:l & q’q:l,q:l;ﬂ,ip
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and with ez := —1,e5 :=1 for j € {R, S}

E;f = (@; 1;2 1)®4 T & (‘%1 —2, 1)®4
+ [‘bél —2, 1®¢’2121®‘D21 -2, 1®‘I’2,1,21
‘1"%(1’2121@‘I> 2,1;-2,—1 ® ®; 121®‘I)2,1, 2, 1]
FjjE = (Q%,1;2,1)®2 ® ((I)é,l;—2,—1)®2 +¢j (CI)%I 2,—1)®2 ® (¢%,1;2,1)®2
+ [@%,1;—2,—1 ® @%,1;2,1 ® ®; 2,121 ® (1)2,1, 2,1
+&j <I>%,1;2,1 & q’%,1;72,71 ® @, 212,19 @2,1,2 1]

Among the corresponding charges under 7 we find —= (ez, +e;) generating Fb

In the sigma model C* we set

(62 —e1),

(64 —e3).

o = (61 +e9), Qs

3 =

Sl
sl

(61 + e3), oy =

Let 35 with § € F; denote the twist field corresponding to the fixed point
%Z?Zl d;c;. The action of P, @), R, S and their right handed partners is de-
termined as in (7.3.34). Then by normalizing appropriately and matching
(J; J)-charges we find that the following identifications can be made (sums
run over § € F3 with the indicated restrictions):

Ef = > S Y3,

(51:(52,(53:(54 (51#52,53-7554

Fro= > Sk ) W,
017#02,03=04 01=02,03#04

E} = Z (=1)%%,; + Z —1)%3;,
01=02,03=04 017£62,03=

e Y Cme 3 (i
81462,0374604 §1=62,037464

Ef = > ()" > (-1)7%,
01=02,03=04 01=02,03#04

Ff = ) (-1)"% = Z —1)%%,,
01#02,03#04 01#02,03=

ngt — Z (_1)(524—5326:': Z (_1)(524-5326,
§1=02,03=04 017#£62,03704

st': — Z (—1)62+6326:|: Z (_1)624-6325_
01#02,03=04 01=02,03#04

In particular, the corresponding (J; J)-charges generate L.
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Recall from theorem 5.6.3 the Greene-Plesser construction for mirror symmetry to
observe that the Zy x Zj orbifold (2)* of (2)* is invariant under mirror symmetry.
This can be regarded as an explanation for the high degree of symmetry found for
(2)*=C".

In view of (7.3.43) it is clear that the same phenomenon as described in remark
7.3.26 appears for the theory discussed above:

Remark 7.3.30 B N B

The Gepner type model C' = (2)*, or equivalently the nonlinear o model C?> =
IC(%D;;, B*), B* given by (7.3.40), is located at a meeting point of the moduli
spaces of theories associated to K3 surfaces and tori, respectively. Namely, its
bosonic sector is identical with that of the nonlinear o model C* on the SU(2)-

torus with vanishing B-field.

This again can be deduced from the results in [KS88] once one observes that the
lattice denoted by Ap(m)xo(n) there in the case n = 4 is isomorphic to fb as defined
n (7.3.43). The relation between the two meeting points (2)* = C! = C? = (3
and (2)* = C' = C2 = C3 of the moduli spaces found so far is best understood
from the fact that C! = (2)* can be constructed from C* = (2)* by modding out

Zy = ([2,0,2,0]) C Ga,. If we formulate the orbifold procedure in terms of the

charge lattice T, of C! = (2)* as described in [GP90], this amounts to a shift
orbifold by the vector § = 3(—1,1,0,0;1,—1,0,0) on I',. Indeed, this shift simply
reverts the shift we used to explain remark 7. 3 26 and brings us back onto the torus
Tsy(2)a- But as for C' = C* and C?, C! = C? and C? will correspond to different
compactifications of the type ITA string.

From (7.3.39) we are able to determine the geometric counterpart of [2,0,2,0] on
K(Z*,0): It is the unique nontrivial central element #;1,; of the algebraic automor-
phism group Gy, umer depicted in figure 7.3.2. Hence the commutant of #1117 is the

pelral
56
pelral
P

10 01

ARRR

=5 o

0

=

Figure 7.3.2: Action of the algebraic automorphism ¢;11; on the Kummer lattice II.

entire G, . but it is not clear so far how to continue the residual G5, .. /Zs
algebraically to the twisted sectors in (5)4 with respect to the t111; orbifold.

We remark that conformal field theory also helps us to draw conclusions on the
geometry of the Kummer surfaces under inspection: IC( =D, B*) is obtained from

K(Z*,0) by modding out the classical symmetry #1111, so in terms of the decom-
position (7.1.5) we stay in the same “chart” of M3, ie. choose the same null
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vector v for both theories. This means that we can explicitly relate the respec-
tive geometric data. For both Kummer surfaces we choose the complex struc-
tures induced by the N = (2,2) algebra in the corresponding Gepner models
(2)* and (2)*. Thus we identify J* = (@%2’2;¢2,2)®4 in both theories with the
twoforms 7, (dz1 A dzs), m.(dZ1 A dZs) defining the complex structure of X(A). Here
7 : Tp — K(A) is the rational map of degree two, A = Z* or A = %Dz;, respec-
tively. Then both /C(A) are singular K3 surfaces (see definitions 4.6.3). Given the
lattices of the underlying tori one can compute the intersection form for real and
imaginary part of the above twoforms defining the complex structure. One finds
that they span sublattices of the transcendental lattices with forms diag(4,4) for
K(Z*) and diag(8, 8) for IC(%D;;), respectively. The factor of two difference was
to be expected, because t111; has degree two. Nevertheless, by (4.6.2) the transcen-
dental lattices themselves for both surfaces have quadratic form diag(4,4). Note
that for a given algebraic automorphism in general it is hard to decide how the
transcendental lattice transforms under modding out [Ino76, Cor. 1.3.3]. In our
case, we could read it off thanks to the Gepner type descriptions of our conformal
field theories.

Gepner type description of SO(8),/Z,

Theorem 7.3.31

The Gepner type model C' = (2)* which agrees with C2 = K(Z*,0) by theorem
7.3.25 admits a nonlinear 0 model description as Z4 orbifold of the torus model
T(%DZL,B*) with SO(8), symmetry.

Proof:
The proof works analogously to that of theorem 7.3.27. From theorem 7.3.13 it
follows that the Z, orbifold of 7'( -D,, B*) with B* defined by (7.3.40) is obtained

from C2 = K( ﬁD4, B*) by modding out the automorphism 715 as depicted in figure

7.3.1. Thus we should work with the models C* = (2)* and C* = K(Z;Ds, B)
which are isomorphic by theorem 7.3.29. We use the notations introduced there.
Then 715 is induced by e; — ey, es — —ej,e3 — —eyg,eq > e3. Of the su(2)$
current algebra of C2 we find a surviving su(2)2 @ u(1)* current algebra on the Z,
orbifold generated by J, J*, A; P, P*,Q, R, S (see equations (7.3.17) and (7.3.42)).
The action on the generators EjE F i, j €{P,Q, R, S}, is already diagonalized. All
the EjE are invariant as well as F g On the fermionic part of the space of states

of C2 the identifications (7.3.35) hold. The fields W7 _, and W7, ,e; € {£1}, are
those invariant under the Z, action. Our field by field identifications of theorem
7.3.29 now allow us to read off the induced action on the Gepner type model
C' = (2)*. One checks that it agrees with the symmetry [2/,2',0,0] defined in
(7.3.36) which revokes the orbifold by the Z, action of [2,2,0,0]. Because !
(2)* was constructed from the Gepner model (2)* by modding out Z, X Zj

([2,2,0,0],[2,0,2,0]) C G it follows that the Z, orbifold of 'T( 5Dy, B*) agrees

ab
with the Gepner type model obtained from (2 )* by modding out Zg ([2,0,2,0]).
This clearly is isomorphic to (2)* by a permutation of the minimal model factors.
O

'l
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7.4 Summary: A hiker’s view of K3

We conclude by joining the information we have gathered so far to a panoramic
picture of those strata of the moduli space we have fully under control now (figure
7.4.1). The rest of this section is devoted to a summary of what we have learned

Zy Orbi!fold-line < Ty Orbifold-plane

Quartic line

Aozt T_Z?R(/);bifglclsf(;\,BTi, o
Br=0 et
A~ D,
SO):/Zs v—<a
ks
Tori T (A, BT)a
T=R/A T(Ds,0) T(2",0) \ K(GDwB)

Figure 7.4.1: Strata of the moduli space.

about the various components depicted in figure 7.4.1. All the strata are defined as
quaternionic submanifolds of the moduli space MX? consisting of theories which
admit certain restricted geometric interpretations. In other words, a suitable choice
of v as described in section 7.1 yields (X, V, B) such that X, B have the respective
properties. In the following we will always tacitly assume that an appropriate
choice of v has been performed already.

Figure 7.4.1 contains two strata of real dimension 16, depicted as a horizontal plane
and a mexican hat like object, respectively. The horizontal plane is the Kummer
stratum, the subspace of the moduli space consisting of all theories which admit
a geometric interpretation on a Kummer surface X in the orbifold limit. In other
words, it is the 16 dimensional moduli space of all theories (A, Br) obtained from
a nonlinear o model on a torus 7 = R*/A by applying the ordinary Z, orbifold

procedure; the B-field takes values B = %BT + %Bg), where By € H*(T,R) —

H?(X,R) (see the explanation after theorem 7.3.5), and Bg) € H"(X,Z) as
described in theorem 7.3.16. We have an embedding M < MX3 as quaternionic
submanifold, and we know how to locate this stratum within M%3. Kummer
surfaces in the orbifold limit have a generic group F; of algebraic automorphisms



194 CHAPTER 7. THE MODULI SPACE OF SCFTS WITH C =6

which leave the metric invariant. Any conformal field theory associated to such a
Kummer surface possesses an su(2)? subalgebra (7.3.17) of the holomorphic W-
algebra.

The mexican hat like object in figure 7.4.1 depicts the moduli space (4.2.6) of
theories associated to tori. Two meeting points with the Kummer stratum have
been determined so far, namely (2)* and~(§)4 (see remarks 7.3.26 and 7.3.30). We
found (2)* = K(Z4,0) = T(D4,0) and (2)* = IC(%DLL,B*) = T(Z*,0), where B*
was defined in (7.3.40).

The vertical plane in figure 7.4.1 depicts a stratum of real dimension 8, namely
the moduli space of theories admitting a geometric interpretation as Z, orbifold of
a nonlinear o model on 7 = R*/A. In order for the orbifold procedure to be well
defined we assume A to be generated by A; & RZ? R; € Ri = 1,2, (A is not
necessarily orthogonal to Ay) and Br € H*(T,R)*4 — H?(X,R) (see lemma 7.3.8).
The B-field then takes values B = %BT + iBgl) as described in theorem 7.3.20,
where the embedding of this stratum in M*? is also explained. The generic group
of algebraic automorphisms for Z, orbifolds is Z, x Fi. By theorem 7.3.31 there
is a meeting point with the Kummer stratum in the Z, orbifold of T(%D% B*),
where B* is given by (7.3.40), which agrees with K(Z4,0) = (2)*.

The four lines in figure 7.4.1 are strata of real dimension 4 which are defined by
restriction to theories admitting a geometric interpretation (X, V, B) with fixed ¥
and allowed B-field values B € . Thus the volume is the only geometric parameter
along the lines and we can associate a fixed hyperkahler structure on K3 to each of
them. For all four lines it turns out that one can choose a complex structure such
that the respective K3 surface is singular. Hence X can be described by giving the
quadratic form on the transcendental lattice and the Kahler class for this choice
of complex structure. Specifically we have:

e Z*-line: The subspace of the Kummer stratum given by theories K(A, Br)
with A ~ Z* and By € X, which is marked by A ~ Z* in figure 7.4.1.

e 7, Orbifold-line: The moduli space of all theories which admit a geometric
interpretation on a K 3 surface obtained from the nonlinear ¢ model on a torus
T = R*/A, A ~ Z*, with B-field By commuting with the automorphisms
listed in (7.3.16).

e Quartic line: Though well established in the context of Landau-Ginzburg
theories, this stratum has been somewhat conjectural up to now. We de-
scribe it as the moduli space of theories admitting a geometric interpretation
(3g, Vg, Bg) on the Fermat quartic (7.3.8) equipped with a K&hler metric in
the class of the Fubini-Study metric, in order for ¥g to be invariant under
the algebraic automorphism group G = Z2 x S;. The B-field is restricted to
values Bg € Yo, because 1(G) = 5 and therefore H*(X,R)¢ = %,.

e D,-line: The moduli space of Zsy orbifold theories admitting as geometric
interpretation a Kummer surface IC(A), A ~ Dy, and with By € X. This line
is labelled by A ~ D, in figure 7.4.1.
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The four lines are characterized by the following data:

associated . )
form on the | 8roup of algebraic au- | generic
name of line tomorphisms leaving | (1,0)—current
transcendental P &
lattice the metric invariant | algebra
: 4 0 G =72 x T}
4_ Kummer 2 2 2
Z*-line ( 0 4 ) ~"(Z % Z) x Dy su(2)1
. . 20
Z, orbifold-line ( 0 2 ) D, su(2); @ u(1)
- 8 0
quartic line 0 8 (Za X Zy) X Sy su(2)q
Dy-line ( 81 2 ) Zo x Ty su(2)2

In figure 7.4.1 we have two different shortdashed arrows indicating relations be-
tween lines. Consider the Kummer surface K(Z*) associated to the Z*-line. As
demonstrated in theorem 7.3.13, the group G ,,.mer Of algebraic automorphisms
of K(Z*) which leave the metric invariant contains the automorphism 75 of order
two (see figure 7.3.1 in section 7.3.1) which upon modding out produces the Z,
orbifold-line. The entire moduli space of Z, orbifold conformal field theories is
obtained this way from Z, orbifold theories IC(A, Br), where A is generated by
A = RiZZ,Ri €eR,:=1,2, and Br € HZ(T, R)Z4.

Modding out t1111 € Gppumer (see figure 7.3.2 in section 7.3.6) on the Z*-line
produces the Dy-line, as argued before theorem 7.3.31. Note that the K3 surfaces
associated to Z*- and D,-lines have the same quadratic form on their transcendental
lattices and hence are identical as algebraic varieties. Still, the corresponding lines
in moduli space are different because different Kéhler classes are fixed. In our
terminology this is expressed by the change of lattices of the underlying tori on
transition from one line to the other. The D,-line can also be viewed as the image
of the Z*-line upon shift orbifold on the underlying torus.

Finally, we list the zero dimensional strata shown in figure 7.4.1.

To construct IC(Dy, 0) on the Dy-line, we may as well apply the ordinary Zs orbifold
procedure to the Dy-torus theory in the meeting point (2)* (the arrow with label w
in figure 7.4.1). We stress that in contrast to what was conjectured in [EOTY89]
this is not a meeting point with the Z, orbifold-plane.

As demonstrated in theorem 7.3.27 and also conjectured in [EOTY89], Gepner’s
model (2)* is the point of enhanced symmetry A = Z* Br = 0 on the Z, orbifold-
line. In section 7.3.1 we have studied the algebraic symmetry group of (2)* and
in corollary 7.3.28 proved that it admits a geometric interpretation with Fermat
quartic target space, too. In terms of the Gepner model, the moduli of infinites-
imal deformation along the Z, orbifold and the quartic line are real and imag-
inary parts of V(6,6 € {£1}) as in (7.3.38) and of the (1,1)-superpartners of
(P11 0:732)%% (‘I’L,o;m,o)ma respectively (see section 7.3.6). The models K(Dy,0)
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and IC(%D% B*) = (2)* have geometric interpretations on the Fermat quartic as
well by theorem 7.3.22. Since it is unlikely that the corresponding Kahler class
agrees with that of the quartic interpretation of (2)*, we have not depicted these
models on the quartic line.

The Gepner type models (’2\)4 and (2)* which are meeting points of torus and K3
moduli spaces have been mentioned above. For all the longdash arrowed corre-
spondences (2)* <2 (2)* <25 (2)* +2 (2)* in figure 7.4.1 we explicitly know the
symmetries to be modded out from the Gepner (type) model as well as the corre-
sponding algebraic automorphisms on the geometric interpretations. For instance,
with respect to the appropriate geometric interpretations (2)* 22 (2)* 12 (2)*,
where 115 transforms a Z, into a Z,4 orbifold by theorem 7.3.13. Hence for these
examples we know precisely how to continue geometric symmetries to the quantum
level.

Figure 7.4.1 does not show the Zs and Zg orbifold strata of M3, though in section
7.3.4 their embedding was determined. We have not studied their relative position
to the strata discussed above.




Chapter 8

Conclusions and Outlook

Let us summarize what has been achieved in this work:

We have studied rational conformal field theories and have proven that a
toroidal conformal field theory with central charge ¢ = d € N is rational iff it
possesses a geometric interpretation 7 (A, B) such that B € Skew(d) N Mat(d, Q)
and T4 = R*/A has a finite cover which is the product of ¢ rational CM tori.
In particular, rational conformal field theories are dense in the moduli space of
toroidal conformal field theories with ¢ = d.

Moreover, if T* = R*/A is a singular torus with Kéhler form w = dwy and wy €
H?(T*,7Z) ® Q,6% € Q then there is an ¢ € R with ¢* € Q, such that 7 (sVA, B)
is a rational superconformal field theory for all V € R, V? € Q, and all B €
Skew(4) N Mat(4, Q).

Our results show that in general, rationality of a conformal field theory is a much
coarser condition than that of the corresponding torus to be singular.

We have given a detailed account on orbifold conformal field theories. In par-
ticular, we have presented a geometric interpretation of the Zj; orbifold procedure
for theories with central charge ¢ = 3 in the context of singularity theory. We have
explicitly constructed the one loop partition functions for Z,, orbifolds of toroidal
conformal field theories in arbitrary dimensions, for orbifolds involving the fermion
number operator, and* for all crystallographic orbifolds with central charge ¢ = 2.
For the latter, some unexpected effects of the B—field have occurred which might
lead to a better understanding of its properties, also for higher dimensional cases.
The generalized GSO construction was used to achieve first results on a classifica-
tion of unitary conformal field theories with ¢ = 3 and to give a new interpretation
for tensor products of minimal models with ¢ = 3 as ordinary Z,, orbifold confor-
mal field theories of toroidal models. A construction of Gepner (type) models was
worked out that does not make use of the orbifold procedure, and its equivalence
to the Gepner construction was shown.

For unitary conformal field theories with ¢ = 2, we have given a complete
description of those nonisolated parts of the moduli space M? of unitary conformal

*joint work with Sayipjamal Dulat
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field theories with ¢ = 2 that can be constructed by an orbifold procedure from
toroidal theories and are nonexceptional. All the nonexceptional cases are obtained
as orbifolds with geometric interpretation by crystallographic symmetries. We have
determined all multicritical points* and lines, and have proven multicriticality on
the level of the operator algebra for all of them.

By a study of tensor products of theories with ¢ < 2, we have related our results to
those on ¢ = 3/2 superconformal field theories [DGH88], and showed agreement as
long as their bosonic subtheories are concerned only. In particular, this gives ge-
ometric interpretations to all nonisolated orbifolds discussed in [DGHS88] in terms
of crystallographic orbifolds. We have also corrected the statements in [DGH88]
on multicritical points of the moduli space of superconformal theories, and showed
that our corrections are in full agreement with our picture of M2,

For the moduli space M of N = (4,4) superconformal field theories with
¢ = 6, after a slight emendation of its global descriptionf, we have found an expres-
sion for generic parts of the partition function for theories in M. We have given
a detailed description of algebraic automorphisms on Z, and Z, orbifold limits of
K3 and have generalized! Nikulin’s method for the determination of the Kummer
lattice for Zs orbifold limits to arbitrary Zj, orbifold limits of K3, M € {3,4,6}.
The respective lattices have been calculated explicitly. These results were used to
find the locations of orbifold conformal field theoriest in the moduli space M. In
particular, the correct values of the B—field in direction of the exceptional divisors
gained from the orbifold procedure could be determined. With these results, we
have shown' that for Z, orbifold conformal field theories the Fourier—Mukai trans-
form is conjugate to a classical symmetry by the image of torus T—duality under
Zs orbifolding. This proves T—duality for the Z, orbifolds, and we can use it to
derive the form of M purely within conformal field theory. We have explicitly
found three orbifold models that admit a geometric interpretation on the Fermat
quartic hypersurface. For the Gepner model (2)* and some of its orbifolds we have
determined the locations in M and proved isomorphisms to nonlinear o models.
In particular, we have proven that the Gepner model (2)* as well as one of its orb-
ifolds have a geometric interpretation with Fermat quartic target space. We have
also found a meeting point of the moduli spaces of Zs and Z, orbifold conformal
field theories different from the one conjectured in [EOTY89].

Our work leaves many open questions and interesting problems to study. Firstly,
of course, there is the classification of all N = (2,2) superconformal field theories
with central charge ¢ = 3, which seems not far out of reach, taken all the results
presented in the text. Namely, a first step for a classification follows from the-
orems 5.3.3 and 5.3.4. The difficult part is to prove that the assumptions made
there are true in general for N = (2,2) superconformal field theories with central
charge ¢ = 3. It then remains to be shown that all possible orbifold conformal
field theories with ¢ = 3 have been determined in sections 5.2 and 5.4, compare to
section 6.1 for ideas of proof. It is not hard to find all intersection points of the

tjoint work with Werner Nahm
Hor M = 2,4, joint work with Werner Nahm
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components of the moduli space obtained that way in analogy to [DGH88] and our
discussion in section 6.2.

For conformal field theories with central charge ¢ = 2 a complete classification
would be desirable. Apart from the exceptional components of the moduli space,
which have not been studied in this work, isolated points deserve further investi-
gation, too. In both cases, asymmetric orbifolds might play a role. Moreover, it is
unclear whether other components of the moduli space exist that are not given by
orbifold conformal field theories of torus models.

The most interesting questions come about in the context of conformal field theories
on K3, though. Concerning rational theories, it would be favorable to translate
the results on toroidal theories to the K3 case. In particular, one can suspect
that rational conformal field theories are dense within the entire moduli space M
of superconformal field theories. Note that complex structures corresponding to
singular K3 surfaces are dense in the moduli space of complex structures on K3
only with respect to a non-Hausdorff topology. On the other hand, we have stressed
that the notion of rationality already for toroidal theories is a coarser one than
that of the corresponding torus being singular. The role of integral cohomology in
conformal field theory has not been clarified yet and poses an important, perhaps
related problem. At best the situation could turn out to be comparable to the
geometric one on K3, where density of singular K3 surfaces within the moduli
space of complex surfaces is a basic ingredient for the proof of the global Torelli
theorem.

Our results on the generic part of the partition functions for theories associated to
K3 are footed on a conjecture concerning Mordell’s function. Here we have left an
interesting open problem for number theorists. The determination of the generic
fields that correspond to the states counted by our generic partition function is
an intriguing open question. Do they generate a closed algebra, maybe a non—
holomorphic generalization of a W-algebra? It should be possible to determine
what kind of deformations of the conformal field theory these fields correspond to.
This would also help to understand the correct translation of geometric data to
conformal field theory and vice versa.

Our discussion of properties of N = (4,4) characters may also be driven on to
get new insight in the representation theory of the N = 4 Supervirasoro algebra.
In particular, further study of Mordell’s function seems very promising, e.g. its
relation to more tractable functions from number theory, as was started in section
3.2.2.

The discussion of orbifold conformal field theories on K3 presented in this work is
not complete. Are there other orbifold constructions of K3 involving non Abelian
groups? How do the corresponding conformal field theories look like? What is the
role of discrete torsion in these cases?

Of course, to know the location of orbifold conformal field theories in the moduli
space of theories associated to K3 can only be the starting point for a complete
understanding of this space. It seems possible to get further information about
other subspaces of the moduli space that are determined by a high amount of
symmetry. Firstly, one can try to find the locations of all Gepner models within the
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moduli space. Steps in this direction have already been taken in [EOTY89], where
orbifold descriptions of all Gepner models with at least four minimal model factors
have been conjectured. The analysis could be driven on along the lines we presented
for (2)*, but again, non Abelian orbifold constructions might be necessary. Another
good candidate is the subvariety of theories that admit a geometric interpretation
on the Fermat quartic hypersurface. Three points on this subvariety have been
determined in the present work, but more general statements should be in reach.
In particular, we suspect that the subvariety of real dimension four, where the
geometric interpretation (Xg, Vg, Bg) on the quartic has the pull back of the class
of the Fubini-Study metric as Kahler class and Bg € ¥ g, contains a conifold point
that allows for a description on a degenerate Kummer surface. If so, further study
might reveal interesting features of the conifold singularity in moduli space.
Another promising approach to the latter problem is to make use of Borcherds’ au-
tomorphic forms. Namely, Borcherds has constructed and studied an automorphic
function on M3 which attains its singularities exactly in those points where the
moduli space is expected to have conifold singularities [Bor98]. This function is
also likely to be useful for the description of global properties of the moduli space,
and we speculate that it can be interpreted in terms of the Weil-Petersson metric
on M¥3 [JT96, FS90).

Further interesting questions arise from our discussion of T—duality, Fourier—Mukai,
and Nahm transform. How does the map explicitly act on the moduli space of
Einstein metrics on K37 What is the relation to the MacKay correspondence
[BKRO1] and to mirror symmetry?

We could now start to raise questions from more fashionable parts of today’s Phy-
sics in the context of heterotic—type ITA dualities, M—theory, D—branes or boundary
conformal field theories, where our explicit results might at least give good toy mod-
els to play with. We have mentioned the close relation in the context of T—duality
in section 7.3.3, see also [OP00a, OP00b, KOP00]|. But going into details here we
could never end this thesis, so we choose to resign at this point.



Appendix A

Theta functions

A1l Definition and first properties

In this section we list the most important definitions and properties of theta func-
tions that are used within the text.

Definition Al.1
A function T : C — C is called THETA FUNCTION WITH PERIOD 0 AND CHARAC-
TERISTIC (a1, by; as, bo), if

T(z+1) =e"*™T(2), T(z+0)=e2*""T(z).

A theta function T is called TRIVIAL, if the corresponding divisor (T) is the null
divisor. The DEGREE of a theta function is given by 3= (a10 — as).

If T is a theta function with period o, then (TTI)I is an elliptic function with the
same period. The residual theorem for elliptic functions shows that the degree of

T is given by

L ao—am)= Y ordu(T) = deg((T)).

271
2€C/Z(1,0)

The degree therefore always is an integer. Moreover, the trivial theta functions are
exactly those with degree 0. Characteristics add up if we multiply theta functions,
and every theta function can be multiplied by an appropriate trivial theta function
such that for the characteristic of the result a; = by = 0. Modulo multiplication
by trivial theta functions we can therefore restrict ourselves to the discussion of
the spaces 7,(e’) of theta functions of degree n and characteristic (0,0; —27in, b).
Let T denote a representative of an element of 7,(e’). Then by definition 7" is
an entire function with exactly n zeros. Therefore dim 7,(e’) = n, and T, T with
[T], [T] € T,(e?) agree iff they have the same zeros and the same normalization.

The following theta functions of degree 1 and period o are particularly important,
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where generally ¢ = exp(27mio) and y = exp(2miz):

theta function e’ | zero
o0
Z (_1)nq%n(nfl)yn -1 0
n=—o00
o0
Z q%n(n—l)yn 1 %
n=—00
nd n2 1
qzy" g2 | 2
n=—00
- n? 1
P A B
n=—o0

In general the following slightly different functions are used (note that 9; and ¥
are no theta functions in the above sense). The product formulas are derived via

Poisson resummation:

Yi(o,2) = —v11(0o,2)

2

= ) (LraTy

n=—oc
o

= J[a-am—g 2y -2y

n=1

We always use the shorthand 9;(c) := ¥;(0,0). The following transformation




A2. KNOWN PRODUCT AND DOUBLING FORMULAS
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laws and special values are obtained directly from the definition or by Poisson

resummation:

Operation Y1(o, 2) Vs (0, 2) V3(0, 2) V4(0, 2)

o—o+1 et (0, 2) eT5(0, 2) V40, 2) V3(0, 2)

o =L | (mi)(—io)he™ - | (mio)EeTE | (—io)ie™S - | (—io)be™S

Z = g 791 (Ua Z) '194(0-a Z) 793(0-a Z) 192(0-: Z)

z—z+1 —01(0, 2) —9(0, 2) Vs3(o, 2 Y4(0, 2

Z = Z+O' —qi%yil- qf%yfl. q*%yfl. _qféy 1,
'791 (Ua Z) '192(0-a Z) '793 (Oa Z) 194(0-: Z)

z=1 9(0) 0 4(0) 3(0)

z2=9 iq~89,(0) g 893(0) g 895(0) 0

z= q7393(0) —ig"394(0) 0 q"592(0)

Z = 2+ % 192(0-a Z) _791 (07 Z) 194(0-a Z) 193(0-a Z)

Z— z+ % zq_%y_%- q_%y_% q_%y_% @q_%y_%
194 (0', Z) '193(O-a Z) 192 (Ua Z) 191 (07 Z)

zn—)z-{-"T‘H q 8y 2- —iq 8y 2 1q 8y 2 q 8y 2-
193 (Ua Z) '194(0-a Z) '791 (O’, Z) 192 (0: Z)

(A1.2)

A2

Known product and doubling formulas

By using the Jacobi tripel identity one can prove the following product formulas,

where 7(0) is the Dedekind eta function:
792(0')193(0')194(0’)

192(0')4 - 193(0')4 + 194(0')4

We moreover have the doubling formulas

93(0)? — 94(0)?, 205(20)3

219, (20)?
20)

Da(
X
(

D3

N

V)

N9 N9

U3(0)da(0)
2095 (0)V3(0)

3(0)? +95(0)?, Y, (g>2

2

2n(0)’
0.

(A2.1)
(A2.2)

V3(0)? + 94(0)?

(A2.3)

= U3(0)? — Y5(0)%
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A3 Generalizations

To prove the following generalized formulas, one first shows that both sides are
theta functions of the same degree and with same characteristic. Then, by what
was said in Al, it suffices to show that zeros and normalizations agree. Some of
the below formulas may also be found in Télke’s collection [T6166].

Formula (A2.2) can be generalized in the following way:

V9(0)?5(0, 2)* — 95(0)*I3(0, 2)* + V4(0)*V4(0,2)> = 0
192(0)2191 (o, 2)2 + 194(0)203(0, z)2 — U3 (0)2194(0, 2)2 =0 (A3.1)
3(0) 01(0, 2)* + 94(0)*Va(0, 2)* — V2(0)“V4(0, 2) 0
94(0)?91 (0, 2) + 93(0)*Va(0, 2)? — V2(0)*I3(0,2)> = 0
Writing 9;(o, z) = 9;(7, Z), we have
(92(0)? 0a(0)? = 0a(0)* Da(0)?)” = (|92(0)]* + [95(0)|" + [9a(0)]")

- (W3(0)[* = [92(0)[* — [Wa(0) )
(192(0)254(0)2 — Y4(0)? 52(0)2) : (192(0, 2)204(0, 2)* + V1 (0, 2)? V3(0, 2)*
—04(0, 2)? V30, 2)* — V3(o, 2)2 Y, (o, 2)2)

- (‘193(0)‘4_‘792( ‘— |04(0 Z|19 0,2)

92(0)* 04(0)* + 94(0)* 92(0)* = [33(0)|" = [92(0)[* — [9a(0) "
93(0)" 05(0)" + 05(0)" F3(0)" = |92(0)° + [93(0)[° = [0a()["
95(0)* 04(0)* + 04(0)* 3(0)* = [33(0)]" + [94(0) " = |92(0) "
(A3.2)
The doubling formulas (A2.3) can be generalized in various manners:
Doubling of o:
291(20,2)? = 93(0)04(0, 2) — 94(0)V3(0, 2)
20,5(20,2)*> = 3(0)V3(0, 2) — 94(0)V4(0, 2)
205(20,2)2 = 5(0)05(0, 2) + 94(0)V4(0, 2) (A33)
204(20,2)2 = 5(0)04(0, 2) + 94(0)I5(0, 2) '
291 (20,2)94(20,2) = VYs(0)V1(0, 2)
295(20, 2)05(20,2) = Vs(0)s(0, 2)
Doubling of z
95(0,22)05(0)93(0)* = a(0,2)*93(0, 2)* — V1 (0, 2)*V4(0, 2)? (A3.4)
94(0,22)94(0)93(0)* = 93(0, 2)*4(0, 2)* + V1 (0, 2)*I2(0, 2)? '



A3. GENERALIZATIONS
Doubling of ¢ and z:
¥9(20,22)

’193 (20’, 22’)
¥4(20, 22)94(20)

General product formulas:

94(20,2a)94(20, 2b) + ¥1(20, 2a)9, (20, 2b

94(20, 2a)94(20, 2b) — 91(20, 2a)19, (20, 2b
(20,2a) ) )0a(
(20,2a) ) )9a(

Y3(20, 2a)93(20, 2b

+ 92(20, 2a
VY3(20, 2a)93(20, 2b) — 92(20, 2a)1¥4 (20, 2b
V3(0, a)Vs(o, b) + V4(o, a)d4(o, b

205
¥9(20) 5  VU3(20) 9
Jy(0)? V3(0,2)° — 95(0)? V1 (0, 2)
193(20' o 2 192(20' o2 2 (A35)
193(0_)2 793( ) ) + 03(0_)2 T91( ’ )

= Y4(o,a+ b)V5(0,a — b)
Y3(o, a + b)4(o,a — b)
92(20, 2b Y3(0, a + b)s( )
= Y4(o,a+ b)ds(o,a — b)
= 295(20,a + b)Y3(20,a — b).
(A3.6)

o,a—>b
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Appendix B

Explicit field identifications:
2t = K(z*,0)

In this appendix, we give a complete list of (3, 7)-fields in (2 2)* (see theorem 7.3.25)
together with their equivalents in the nonlinear ¢ model on K(Z*,0). As usual,
g,¢; € {£1} and we use notations as in (7.3.34) and (7.3.35).

Untwisted (3, ;)-fields with respect to the ([2,2,0, 0])-orbifold:

(¢*€1 —€1;7€2, 52)®4 = WJ
((I)(ls, —&5— ) ( £,€3€ s) #2 = WA
( 2,152, 1)®4 = Yoo00 — 21100 + 21111 — L0011
®319,1)
2,1

@4
= Y010 + Zo101 — 20110 — 21001

(@

1 ®2 0 0
((1’2,1;2,1) @P, 1.4, 10D,
= Y0000 — 21100 — 21111 + 20011 + 20010 + 20001 — 21101 — 21110
1 ®2 0 0
(4’2,1;2,1) ® @1,1;1,1 ® ¢71,71;71,71
= Y0000 — 21100 — 21111 + 20011 — 20010 — 240001 + 21101 + 21110
0 1 ®2
P 1717171®q’1111® ((I)2121)

1ty

= Y0000 + 21100 — 21111 — 20011 + 21000 + 20100 — 21011 — 20111
®2
@?,1,1,1 ® ¢° “1,-13-1,-1 ® (‘I)é 1;2 1)
= Y0000 + 21100 — 21111 — 20011 — 21000 — 20100 + 21011 + 20111
q)(i1 “1;-1,-1 ® ‘1’1,1,1,1 ® q’—1 —1;-1,-1 @ q’1,1,1,1

= (Zo0000 + Z1100 + 1111 + Zo011) + (Z1000 + L0100 + Lo111 + L1011)
+ (Zo0010 + Xo0001 + X1101 + X1110) + (Z1010 + 0101 + o110 + L1001)
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P @90, @00, @0,
= (Zo000 + L1100 + L1111 + Boo11) + (X1000 + Xo100 + Xo111 + X1011)
— (Zo010 + o001 + L1101 + X1110) — (1010 + Lo101 + o110 + L1001)
(I>(1),1;1,1 & ‘1’91,71;71,71 & @?,1;1,1 &® ‘1)91,71;71,71
= (Zo000 + L1100 + L1111 + Loo11) — (Z1000 + Xo100 + Xo111 + Xio11)
— (Bo010 + Looor + L1101 + L1110) + (E1010 + L0101 + Lo110 + L1001)
(I>(1),1;1,1 & ‘1’91,—1;—1,—1 & (1)0—1,—1;—1,—1 &® @?,1;1,1

= (20000 + Z1100 + 1111 + Zo011) — (B1000 + Zo100 + Zo111 + X1011)
+ (Zo010 + Zo001 + X1101 + X1110) — (Z1010 + Zo101 + Zo110 + Z1001)

Twisted (3, 1)-fields with respect to the ([2,2,0,0])-orbifold:

(@0, )@ (2 ) = W

—€,—EiE,€ £,6;—€,—€ £,—¢€
1 ®2 1 ®2

(@2,1;72,71) ® (¢2,1;2,1) = Y1000 — 20100 + o111 — 21011
1 ®2 1 ®2

(@2,1;2,1) ® ((1)2,1;72,71) = Yoo10 — 20001 + 21101 — 21110

1 ®2 0 0
(‘1)2,1;—2,—1) @PL 1. 1,1®PT 14
= Y1000 — 20100 + 21011 — 20111 + 21010 — 20101 + 21001 — 20110
1 ®2 0 0
(‘1’2,1;—2,—1) @P]141®@P1; 114
= Y1000 — Zo100 + 21011 + Zo111 — 21010 + Zo101 — 21001 + 20110
0 0 1 ®2
Q2 11,1997, @ (‘1’2,1;—2,—1)
= Y0010 — 20001 — 21101 + 21110 + 21010 — 20101 — 21001 + 20110
0 0 1 ®2
Q1141 ®@P°; 114 ® (¢2,1;—2,—1)
= Y0010 — 20001 — 21101 + 21110 — 21010 + 20101 + 21001 — 20110



Appendix C

Partition functions and vacuum
characters of the Gepner models
with central charge ¢ =6

In this appendix, we list our numerical results for vacuum characters and partition
functions of the Gepner models with ¢ = 6. The code was written in CT; the
classes for symbolical calculations of power series and their print out were written

by F. Rohsiepe.

It is a simple combinatorial task to determine all Gepner models (here we always
use the A-invariant) with central charge ¢ = 6. We have checked that for all these
models the elliptic genus (section 3.1.2) allows to assign them either to the four—
torus or to K3. For the K3 cases, we have used the flow invariant orbit technique
described in section 3.1.3 to determine the vacuum characters.

Vacuum character of (1)(1)(1)(1)(1)(1):

1+ (1y°(-2) +6+1y°2) q+ (6 y°(-2) + 57 + 6 y"2) q"2 + (57 y~(-2) + 308 + 57 y~2) q°3

+ (1 y~(-4) + 308 y~(-2) + 1305 + 308 y"2 + 1 y~4) q~4 + (6 y~(-4) + 1305 y~(-2) + 4800 + 1305 y"2 + 6 y~4) q°5
+ (57 y~(-4) + 4800 y~(-2) + 15764 + 4800 y~2 + 57 y~4) q"6

+ (308 y~(-4) + 15764 y~(-2) + 47466 + 15764 y~2 + 308 y~4) q°7
+ (1305 y~(-4) + 47466 y~(-2) + 133461 + 47466 y"2 + 1305 y"4) q"8

Vacuum character of (1)(1)(1)(1)(4):

1+ (1 y(-2) +6+1y°2) q+ (6 y(-2) + 57 + 6 y°2) q°2 + (67 y~(-2) + 308 + 57 y~2) q°3

+ (1 y~(-4) + 308 y~(-2) + 1305 + 308 y"2 + 1 y~4) q"4 + (6 y~(-4) + 1305 y~(-2) + 4800 + 1305 y~2 + 6 y"4) q"b
+ (57 y~(-4) + 4800 y~(-2) + 15764 + 4800 y*2 + 57 y~4) q°6

+ (308 y~(-4) + 15764 y~(-2) + 47466 + 15764 y~2 + 308 y~4) q°7

+ (1305 y~(-4) + 47466 y(-2) + 133461 + 47466 y~2 + 1305 y°4) q°8

Vacuum character of (2)(2)(2)(2):

1+ (Ly(-2) +4+17y32) q+ (43 (-2) + 31 +47y2) g2+ (31 y°(-2) + 172 + 31 y°2) q°3

+ (1 y~(-4) + 172 y~(-2) + 737 + 172 y"2 + 1 y~4) q"4 + (4 y~(-4) + 737 y~(-2) + 2700 + 737 y"2 + 4 y~4) q°5
+ (31 y"(-4) + 2700 y~(-2) + 8862 + 2700 y"2 + 31 y~4) q"6

+ (172 y~(-4) + 8862 y~(-2) + 26704 + 8862 y"2 + 172 y~4) q°7

+ (737 y~(-4) + 26704 y~(-2) + 75075 + 26704 y*2 + 737 y“4) q°8

Vacuum character of (1)(2)(2)(4):

14 (1y(-2) +9+1y2) q+ (9y°(-2) +73+9y"2) q°2 + (73 y~(-2) + 398 + 73 y~2) q"3

+ (1 y~(-4) + 398 y~(-2) + 1700 + 398 y°2 + 1 y"4) q"4 + (9 y~(-4) + 1700 y~(-2) + 6234 + 1700 y"2 + 9 y~4) q°5
+ (73 y~(-4) + 6234 y~(-2) + 20471 + 6234 y~2 + 73 y~4) q°6

+ (398 y~(-4) + 20471 y~(-2) + 61671 + 20471 y~2 + 398 y~4) q°7

+ (1700 y~(-4) + 61671 y~(-2) + 173370 + 61671 y~2 + 1700 y"4) q°8

Vacuum character of (1)(1)(4)(4):

1+ 1y (-2) +4+1y32)q+ (4y(2) +3
+ (1 y~(-4) + 160 y~(-2) + 665 + 160 y"2 + 1 y~4)

+ (31 y~(-4) + 2424 y~(-2) + 7926 + 2424 y°2 + 31 y°4) q°6

+ (160 y~(-4) + 7926 y~(-2) + 23812 + 7926 y"2 + 160 y~4) q°7
+ (665 y~(-4) + 23812 y~(-2) + 66867 + 23812 y~2 + 665 y°4) q°8

1+4732) q°2+ (31 y'(-2) + 160 + 31 y°2) q°3
q 4 + (4 y°(-4) + 665 y~(-2) + 2424 + 665 y°2 + 4 y~4) q°5

Vacuum character of (1)(1)(2)(10):

14+ (1y(-2) +4+1y2) q+ (&y°(-2) +32+4ay2) q2+ (32 y°(-2) + 172 + 32 y°2) q°3

+ (1 y7(-4) + 172 y~(-2) + 724 + 172 y°2 + 1 y~4) q"4 + (4 y~(-4) + 724 y~(-2) + 2646 + 724 y"2 + 4 y"4) q°b
+ (32 y~(-4) + 2646 y~(-2) + 8676 + 2646 y"2 + 32 y"4) q°6

+ (172 y~(-4) + 8676 y~(-2) + 26104 + 8676 y~2 + 172 y~4) q°7
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+ (724 y~(-4) + 26104 y~(-2) + 73341 + 26104 y"2 + 724 y~4) q°8

Vacuum character of (4)(4)(4):

1+ (1y(-2) +3+1y3°2) q+ (83y"(-2) + 18 + 3 y"2) q°2 + (18 y~(-2) + 86 + 18 y~2) q"3
+ (1 y7(-4) + 86 y~(-2) + 345 + 86 y°2 + 1 y°4) q & + (3 y (-4) + 345 y~(-2) + 1236 + 345 y™2 + 3 y°4) q'5
+ (18 y~(-4) + 1236 y~(-2) + 4007 + 1236 y°2 + 18 y°4) q°6

+ (86 y~(-4) + 4007 y~(-2) + 11985 + 4007 y*2 + 86 y~4) q°7

+ (345 y~(-4) + 11985 y~(-2) + 33570 + 11985 y~2 + 345 y~4) q°8

Vacuum character of (3)(3)(8):

14 (1y(2) +3+1y32) q+ (3y°(-2) + 19 + 3 y2) q°2 + (19 y°(-2) + 97 + 19 y°2) q°3

+ (1 y~(-4) + 97 y~(-2) + 406 + 97 y"2 + 1 y*4) q"& + (3 y~(-4) + 406 y~(-2) + 1484 + 406 y"2 + 3 y°4) q°5
+ (19 y~(-4) + 1484 y~(-2) + 4859 + 1484 y°2 + 19 y~4) q°6

+ (97 y~(-4) + 4859 y~(-2) + 14613 + 4859 y=2 + O7 y~4) q°7

+ (406 y~(-4) + 14613 y~(-2) + 41062 + 14613 y"2 + 406 y~4) q°8

Vacuum character of (2)(6)(6):

1+ (1y(-2) +3+ 132 q+ (83y(-2) + 18 + 3 y™2) q°2 + (18 y~(-2) + 87 + 18 y°2) q"3

+ (1 y~(-4) + 87 y~(-2) + 345 + 87 y"2 + 1 y"4) q"4 + (3 y~(-4) + 345 y~(-2) + 1213 + 345 y"2 + 3 y"4) q°5
+ (18 y~(-4) + 1213 y~(-2) + 3880 + 1213 y~2 + 18 y"4) q"6

+ (87 y~(-4) + 3880 y~(-2) + 11496 + 3880 y~2 + 87 y~4) q°7

+ (345 y~(-4) + 11496 y~(-2) + 31969 + 11496 y~2 + 345 y~4) q°8

Vacuum character of (2)(4)(10):

1+ (1y(-2) +3+1y3°2) q+ (B3y"(-2) + 18 + 3 y"2) q°2 + (18 y~(-2) + 91 + 18 y~2) q"3
+ (1 yo(-4) + 91 y=(-2) + 373 + 91 y"2 + 1 y™4) q°4 + (3 y~(-4) + 373 y~(-2) + 1344 + 373 y~2 + 3 y°4) q°5
+ (18 y°(-4) + 1344 y~(-2) + 4376 + 1344 y~2 + 18 y~4) q°6

+ (91 y~(-4) + 4376 y~(-2) + 13120 + 4376 y~2 + 01 y*4) q°7

+ (373 y(-4) + 13120 y~(-2) + 36789 + 13120 y~2 + 373 y~4) q°8

Vacuum character of (2)(3)(18):

1+ (1y(-2) +3+1y3°2) q+ (3y"(-2) +18 + 3 y"2) q°2 + (18 y~(-2) + 88 + 18 y"2) q"3

+ (1 yo(-4) + 88 y~(-2) + 351 + 88 y™2 + 1 y™4) q°& + (3 y~(-4) + 351 y~(-2) + 1240 + 351 y~2 + 3 y°4) q°5
+ (18 y~(-4) + 1240 y~(-2) + 3967 + 1240 y~2 + 18 y~4) q°6

+ (88 y~(-4) + 3967 y~(-2) + 11736 + 3967 y=2 + 88 y~4) q°7

+ (351 y~(-4) + 11736 y~(-2) + 32589 + 11736 y~2 + 351 y~4) q°8

Vacuum character of (1)(10)(10):

14 (1 y(-2) +3+ 1732 q+ (3y°(-2) + 17 + 3 y*2) q°2 + (17 y~(-2) + 72 + 17 y°2) q°3

+ (1 y7(-4) + 72 y7(-2) + 258 + 72 y°2 + 1 y°4) q°4 + (3 y~(-4) + 258 y~(-2) + 846 + 258 y~2 + 3 y~4) q°5
+ (17 y~(-4) + 846 y~(-2) + 2555 + 846 y"2 + 17 y~4) q°6

+ (72 y~(-4) + 2555 y~(-2) + 7223 + 2555 y"2 + 72 y~4) q°7

+ (258 y~(-4) + 7223 y~(-2) + 19350 + 7223 y"2 + 258 y~4) q"8

Vacuum character of (1)(8)(13):

14 (1y(2) +3+1y32) q+ (3y°(-2) + 18 + 3 y°2) q°2 + (18 y°(-2) + 90 + 18 y°2) q"3
+ (1 yo(-4) + 90 y~(-2) + 366 + 90 y"2 + 1 y~4) q°& + (3 y~(-4) + 366 y~(-2) + 1318 + 366 y~2 + 3 y°4) q°5
+ (18 y(-4) + 1318 y~(-2) + 4286 + 1318 y~2 + 18 y~4) q"6

+ (90 y~(-4) + 4286 y~(-2) + 12826 + 4286 y=2 + 90 y~4) q°7

+ (366 y"(-4) + 12826 y~(-2) + 35924 + 12826 y~2 + 366 y~4) q°8

Vacuum character of (1)(7)(16):

1+ (1y(-2) +3+1y3°2) q+ (By"(-2) +17 + 3 y"2) q°2 + (17 y~(-2) + 72 + 17 y°2) q"3

+ (1 y(-4) +72y°(-2) + 269 + 72 y"2 + 1 y"4) q°4 + (3 y~(-4) + 259 y~(-2) + 869 + 259 y"2 + 3 y"4) q°b
+ (17 y~(-4) + 859 y~(-2) + 2628 + 859 y~2 + 17 y*4) q°6

+ (72 y(-4) + 2628 y™(-2) + 7528 + 2628 y~2 + 72 y~4) q°7

+ (259 y~(-4) + 7528 y~(-2) + 20436 + 7528 y*2 + 259 y°4) q°8

Vacuum character of (1)(6)(22):

1+ (1y(-2) +3+1y3°2) q+ (By"(-2) +17 + 3 y"2) q°2 + (17 y~(-2) + 72 + 17 y~2) q"3

+ (1 y7(-4) + 72 y7(-2) + 258 + 72 y°2 + 1 y°4) q 4 + (3 y~(-4) + 258 y~(-2) + 851 + 258 y°2 + 3 y°4) q°5
+ (17 y~(-4) + 851 y~(-2) + 2590 + 851 y"2 + 17 y~4) q°6

+ (72 y7(-4) + 2590 y~(-2) + 7389 + 2590 y~2 + 72 y~4) q°7

+ (258 y~(-4) + 7389 y~(-2) + 19979 + 7389 y~2 + 258 y~4) q°8

Vacuum character of (1)(5)(40):

1+ (1 y(-2) +3+1y2) q+ (3y"(-2) + 17 + 3 y™2) q°2 + (17 y~(-2) + 72 + 17 y"2) q"3

+ (1 y(-a) +72 y°(-2) + 258 + 72 y°2 + 1 y°a) q"& + (3 y~(-a) + 258 y"(-2) + 847 + 258 y"2 + 3 y"4) q°5
+ (17 y~(-4) + 847 y~(-2) + 2561 + 847 y"2 + 17 y~4) q"6

+ (72 y~(-4) + 2561 y~(-2) + 7234 + 2561 y~2 + 72 y"4) q°7

+ (258 y~(-4) + 7234 y~(-2) + 19329 + 7234 y“2 + 258 y°4) q°8
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The partition functions of the Gepner models were obtained by the usual Gepner
construction; in the print outs below, r := ¢ and v := 7.

Partition function for (1)(1)(1)(1)(1)(1):

[(@v(-2)+6+1v2)]r
[ (6 v-(-2) + 57 + 6 v°2) ] r"2
[ (67 v~(-2) + 308 + 57 v°2) 1 "3

+ e

+

L
[v(-1) +1v) y(-1) +20 + (L v (-1) +1v) y ] (1/4)
+ [ (6 v'(-1) + 6 v) y"(-1) + (20 v"(-2) + 240 + 20 v°2) + (6 v°(-1) + 6 v) y 1 r~(5/4)
+ [ (1 v(-3) +57 v (-1) + 57 v + 1 v™3) y~(-1) + (240 v~(-2) + 1800 + 240 v~2)
+ (1 v(-3) +57 v°(-1) + 57 v + 1 v°3) y 1 r"(9/4)
1 q°(1/4)
+ [
[ 301 r~(1/3)
+ [ (30 v"(-2) + 450 + 30 v"2) 1 r~(4/3)
+ [ (450 v~(-2) + 3090 + 450 v°2) 1 r"(7/3)
1 q7(1/3)
+ [
[ (20 v°(-1) + 20 v) y~(-1) + (20 v~(-1) + 20 v) y 1 r"(1/2)
+ [ (240 v (-1) + 240 v) y~(-1) + (240 v"(-1) + 240 v) y 1 r~(3/2)
+ [ (20 v~(-3) + 1800 v~(-1) + 1800 v + 20 v~3) y~(-1) + (20 v~(-3) + 1800 v"(-1) + 1800 v + 20 v*3) y 1 r"(5/2)
1 q (1/2)
+ [
[ (380 v-(-1) + 30 v) y~(-1) + (120) + (30 v-(-1) + 30 v) y 1 r~(7/12)
+ [ (450 v~ (-1) + 450 v) y~(-1) + (120 v"(-2) + 1560 + 120 v°2) + (450 v~(-1) + 450 v) y 1 r~(19/12)
+ [ (30 v"(-8) + 3090 v~(-1) + 3090 v + 30 v~3) y~(-1) + (1560 v~(-2) + 9360 + 1560 v~2)
+ (30 v7(-3) + 3090 v~(-1) + 3090 v + 30 v"3) y 1 r~(31/12)
1 q°(7/12)
+ [
[ (270) 1 £~(2/3)
+ [ (270 v~ (-2) + 2700 + 270 v~2) 1 r"(5/3)
+ [ (2700 v~(-2) + 16200 + 2700 v~2) 1 r~(8/3)
1 q7(2/3)
+ [
[ (120 v~(-1) + 120 v) y~(-1) + (120 v~(-1) + 120 v) y 1 r"(5/6)
+ [ (1560 v~(-1) + 1560 v) y~(-1) + (1560 v~(-1) + 1560 v) y 1 r~(11/6)
+ [ (120 v"(-3) + 9360 v"(-1) + 9360 v + 120 v"3) y~(-1) + (120 v~ (-3) + 9360 v~(-1) + 9360 v + 120 v"3) y 1 r"(17/6)
1 q°(5/6)
+ [
[ (270 v~(-1) + 270 v) y~(-1) + (1080) + (270 v~(-1) + 270 v) y 1 r~(11/12)
+ [ (2700 v~(-1) + 2700 v) y~(-1) + (1080 v"(-2) + 8640 + 1080 v°2) + (2700 v~(-1) + 2700 v) y 1 r~(23/12)
+ [ (270 v~(-3) + 16200 v~(-1) + 16200 v + 270 v"3) y~(-1) + (8640 v~(-2) + 48600 + 8640 v"2)

+ (270 v~ (-3) + 16200 v~(-1) + 16200 v + 270 v°3) y ] r~(35/12)

1 q~(11/12)
+ [
1y7(-2) +6+1y2
+ [ (v (-2) +6+1v"2) y°(-2) + (6 v°(-2) + 1016 + 6 v°2) + (1 v°(-2) + 6 + 1 v'2) y"2 1
+ [ (6 v'(-2) + B7 + 6 v°2) y~(-2) + (1016 v~(-2) + 8322 + 1016 v"2) + (6 v"(-2) + 57 + 6 v"2) y"2 ] r"2
+ [ (57 v~(-2) + 308 + 57 v~2) y~(-2) + (8322 v~(-2) + 44688 + 8322 v~2) + (57 v"(-2) + 308 + 57 v°"2) y"2 1 r"3
]
Qo

[ (1080 v~(-1) + 1080 v) y~(-1) + (1080 v~(-1) + 1080 v) y 1 r~(7/6)
+ [ (8640 v~(-1) + 8640 v) y~(-1) + (8640 v~(-1) + 8640 v) y 1 r~(13/6)

1 q°(7/6)
+

[ (20) y°(-2) + (6 v"(-1) + 6 v) y~(-1) + (240) + (6 v"(-1) + 6 v) y + (20) y~2 1 z~(1/4)
+ [ (20 v~(-2) + 240 + 20 v°2) y~(-2) + (1016 v~(-1) + 1016 v) y~(-1) + (240 v~(-2) + 3024 + 240 v"2)
+ (1016 v~ (-1) + 1016 v) y + (20 v~ (-2) + 240 + 20 v"2) y"2 1 r~(5/4)
+ [ (240 v~(-2) + 1800 + 240 v°2) y~(-2) + (6 v~(-3) + 8322 v~(-1) + 8322 v + 6 v"3) y~(-1)
+ (3024 v~(-2) + 22704 + 3024 v-2) + (6 v™(-3) + 8322 v™(-1) + 8322 v + 6 v"3) y + (240 v~(-2) + 1800 + 240 v~2) y~2 ] r~(9/4)
1 q~(5/4)
+
[ (380) y~(-2) + (450) + (30) y~2 1 r~(1/3)
+ [ (30 v*(-2) + 450 + 30 v"2) y~(-2) + (450 v~(-2) + 6750 + 450 v"2) + (30 v~(-2) + 450 + 30 v°2) y"2 ] r~(4/3)
+ [ (450 v~(-2) + 3090 + 450 v-2) y~(-2) + (6750 v~(-2) + 46350 + 6750 v-2) + (450 v~(-2) + 3090 + 450 v-2) y"2 ] r~(7/3)
1 q°(4/3)
+
[ (240 v~(-1) + 240 v) y~(-1) + (240 v~(-1) + 240 v) y 1 r~(1/2)
+ [ (3024 v~(-1) + 3024 v) y~(-1) + (3024 v~(-1) + 3024 v) y 1 r~(3/2)
+ [ (240 v~(-3) + 22704 v~(-1) + 22704 v + 240 v"3) y~(-1) + (240 v~(-3) + 22704 v~(-1) + 22704 v + 240 v"3) y 1 r~(5/2)
1 q°(3/2)
+
[ (120) y~(-2) + (450 v~(-1) + 450 v) y~(-1) + (1560) + (450 v~(-1) + 450 v) y + (120) y"2 1 r~(7/12)
[ (120 v~(-2) + 1560 + 120 v~2) y~(-2)
(6750 v~ (-1) + 6750 v) y~(-1) + (1660 v~(-2) + 20280 + 1560 v~2) + (6750 v~ (-1) + 6750 v) y
(120 v~ (-2) + 1560 + 120 v°2) y~2 1 r~(19/12)
[ (1560 v~(-2) + 9360 + 1560 v"2) y~(-2) + (450 v~(-3) + 46350 v~(-1) + 46350 v + 450 v"3) y~(-1)
(20280 v~(-2) + 121680 + 20280 v~2) + (450 v~(-3) + 46350 v~(-1) + 46350 v + 450 v°3) y
(1560 v~(-2) + 9360 + 1560 v~2) y"2 1 r~(31/12)
1 q°(19/12)
+
[ (270) y~(-2) + (2700) + (270) y~2 1 r~(2/3)
+ [ (270 v~ (-2) + 2700 + 270 v~2) y~(-2) + (2700 v~(-2) + 27000 + 2700 v~2) + (270 v~(-2) + 2700 + 270 v°2) y"2 ] r~(5/3)
+ [ (2700 v~(-2) + 16200 + 2700 v"2) y~(-2) + (27000 v~(-2) + 162000 + 27000 v~2)
+ (2700 v~(-2) + 16200 + 2700 v~2) y~2 1 r~(8/3)
1 q7(5/3)

+ o+ o+ o+ o+
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+ [
[ (1560 v~(-1) + 1560 v) y~(-1) + (1660 v"(-1) + 1560 v) y 1 r~(5/6)
+ [ (20280 v~(-1) + 20280 v) y~(-1) + (20280 v~(-1) + 20280 v) y 1 r~(11/6)
+ [ (1560 v~(-3) + 121680 v~(-1) + 121680 v + 1560 v"3) y~(-1)
+ (1560 v~(-3) + 121680 v~(-1) + 121680 v + 1660 v"3) y 1 r~(17/6)
1 q~(11/6)
+ [
[ (1080) y~(-2) + (2700 v~(-1) + 2700 v) y~(-1) + (8640) + (2700 v~(-1) + 2700 v) y + (1080) y~2 ] r~(11/12)
[ (1080 v~(-2) + 8640 + 1080 v*2) y~(-2) + (27000 v~(-1) + 27000 v) y~(-1) + (8640 v~(-2) + 69120 + 8640 v"2)
(27000 v~ (-1) + 27000 v) y
(1080 v~(-2) + 8640 + 1080 v*2) y~2 1 r~(23/12)
[ (8640 v~(-2) + 48600 + 8640 v"2) y~(-2) + (2700 v~(-3) + 162000 v~(-1) + 162000 v + 2700 v"3) y~(-1)
(69120 v~(-2) + 388800 + 69120 v°2) + (2700 v~(-3) + 162000 v~(-1) + 162000 v + 2700 v"3) y
(8640 v~(-2) + 48600 + 8640 v~2) y"2 1 r~(35/12)
1 q~(23/12)
r

+ o+ o+

y~(-2) + 57 + 6 y°2
[ (6 v(-2) + 1016 + 6 v°2) y~(-2) + (57 v~(-2) + 8322 + 57 v"2) + (6 v~(-2) + 1016 + 6 v°2) y2 1 r
[ (1016 v~(-2) + 8322 + 1016 v~2) y~(-2) + (8322 v~(-2) + 68229 + 8322 v~2) + (1016 v~(-2) + 8322 + 1016 v°2) y"2 1 r 2
[ (8322 v~(-2) + 44688 + 8322 v~2) y~(-2) + (68229 v~(-2) + 366396 + 68229 v-2) + (8322 v~ (-2) + 44688 + 8322 v"2) y"2 ] r"3
1q2
+ [
[ (8640 v~(-1) + 8640 v) y~(-1) + (8640 v~(-1) + 8640 v) y 1 r~(7/6)
+ [ (69120 v~(-1) + 69120 v) y~(-1) + (69120 v~(-1) + 69120 v) y 1 r~(13/6)
1 q~(13/6)

+ + + O+

+ [
[ (v (-1) +1v) y"(-3) + (240) y~(-2) + (57 v~(-1) + B7 v) y~(-1) + (1800) + (57 v~(-1) + B7 v) y + (240) y"2
+ (1 vi(-1) +1v) y°3 1] r"(1/4)
+ [ (6 v (-1) + 6 v) y~(-3) + (240 v~(-2) + 3024 + 240 v-2) y~(-2) + (8322 v~(-1) + 8322 v) y~(-1)
+ (1800 v~(-2) + 22704 + 1800 v~2) + (8322 v~(-1) + 8322 v) y + (240 v~(-2) + 3024 + 240 v"2) y~2
+ (6 v (-1) + 6 v) y°3 1 r(5/4)
+ [ (1 v°(-3) +57 v (-1) + 57 v + 1 v"3) y~(-3) + (3024 v~(-2) + 22704 + 3024 v°2) y"(-2)
+ (57 v~(-3) + 68229 v~(-1) + 68229 v + 57 v"3) y~(-1) + (22704 v~(-2) + 170464 + 22704 v"2)
+ (57 v~ (-3) + 68229 v~(-1) + 68229 v + 57 v"3) y + (3024 v~(-2) + 22704 + 3024 v"2) y"2
+ (1 v(-3) + 57 v°(-1) + 57 v + 1 v"3) y"3 1 r"(9/4)
1 q°(9/4)
+ [
[ (450) y~(-2) + (3090) + (450) y~2 1 r~(1/3)
+ [ (450 v~ (-2) + 6750 + 450 v~2) y~(-2) + (3090 v~(-2) + 46350 + 3090 v-2) + (450 v~(-2) + 6750 + 450 v°2) y"2 ] r~(4/3)
+ [ (6750 v~(-2) + 46350 + 6750 v~2) y~(-2) + (46350 v~(-2) + 318270 + 46350 v~2) + (6750 v~(-2) + 46350 + 6750 v~2) y~2 1 r~(7/3)
1 q°(7/3)
+ [
[ (20 v*(-1) + 20 v) y~(-3) + (1800 v~ (-1) + 1800 v) y~(-1) + (1800 v~(-1) + 1800 v) y + (20 v~(-1) + 20 v) y~3 1 r~(1/2)
+ [ (240 v~ (-1) + 240 v) y~(-3) + (22704 v~(-1) + 22704 v) y~(-1) + (22704 v~(-1) + 22704 v) y
+ (240 v~ (-1) + 240 v) y°3 ] r~(3/2)
+ [ (20 v~(-3) + 1800 v"(-1) + 1800 v + 20 v~3) y~(-3) + (1800 v~(-3) + 170464 v~(-1) + 170464 v + 1800 v"3) y~(-1)
+ (1800 v~(-3) + 170464 v~(-1) + 170464 v + 1800 v°3) y + (20 v~(-3) + 1800 v~(-1) + 1800 v + 20 v°3) y°3 1 r~(5/2)
1 q7(5/2)
+ [
[ (30 v"(-1) + 30 v) y~(-3) + (1560) y~(-2) + (3090 v~(-1) + 3090 v) y~(-1) + (9360) + (3090 v(-1) + 3090 v) y + (1560) y"2
(30 v~(-1) + 30 v) y~3 1 r~(7/12)
[ (450 v~ (-1) + 450 v) y~(-3) + (1560 v~(-2) + 20280 + 1560 v°2) y~(-2) + (46350 v~(-1) + 46350 v) y~(-1)
(9360 v~(-2) + 121680 + 9360 v~2) + (46350 v~(-1) + 46350 v) y + (1560 v~(-2) + 20280 + 1560 v"2) y"2
(450 v~(-1) + 450 v) y~3 1 r~(19/12)
[ (30 v~(-3) + 3090 v"(-1) + 3090 v + 30 v"3) y~(-3) + (20280 v~(-2) + 121680 + 20280 v"2) y~(-2)
(3090 v~(-3) + 318270 v~(-1) + 318270 v + 3090 v~3) y~(-1) + (121680 v~(-2) + 730080 + 121680 v~2)
(3090 v~(-3) + 318270 v~(-1) + 318270 v + 3090 v"3) y + (20280 v~(-2) + 121680 + 20280 v-2) y~2
(30 v~(-3) + 3090 v~(-1) + 3090 v + 30 v~3) y~3 1 r~(31/12)
1 q~(31/12)
L

+ o F o+

+
[ (2700) y~(-2) + (16200) + (2700) y~2 1 r~(2/3)
+ [ (2700 v~(-2) + 27000 + 2700 v"2) y~(-2) + (16200 v~(-2) + 162000 + 16200 v~2)
+ (2700 v~(-2) + 27000 + 2700 v~2) y~2 1 r~(5/3)
+ [ (27000 v~(-2) + 162000 + 27000 v-2) y~(-2) + (162000 v~(-2) + 972000 + 162000 v~2)
+ (27000 v~(-2) + 162000 + 27000 v~2) y~2 1 r~(8/3)

1 q°(8/3)
+ [
[ (120 v (-1) + 120 v) y~(-3) + (9360 v~(-1) + 9360 v) y~(-1) + (9360 v~(-1) + 9360 v) y + (120 v~(-1) + 120 v) y~3 1 r*(5/6)
+ [ (1560 v~(-1) + 1560 v) y~(-3) + (121680 v~(-1) + 121680 v) y~(-1) + (121680 v~(-1) + 121680 v) y
+ (1560 v~ (-1) + 1560 v) y~3 1 r~(11/6)
+ [ (120 v~(-3) + 9360 v"(-1) + 9360 v + 120 v~3) y~(-3) + (9360 v~(-3) + 730080 v~(-1) + 730080 v + 9360 v"3) y~(-1)
+ (9360 v~(-3) + 730080 v~(-1) + 730080 v + 9360 v"3) y + (120 v~(-3) + 9360 v~(-1) + 9360 v + 120 v"3) y~3 1 r~(17/6)

1 q~(17/6)
+ [
[ (270 v~(-1) + 270 v) y~(-3) + (8640) y~(-2) + (16200 v~(-1) + 16200 v) y~(-1) + (48600)

+ (16200 v~(-1) + 16200 v) y + (8640) y"2 + (270 v~(-1) + 270 v) y"3 ] r"(11/12)

+ [ (2700 v~(-1) + 2700 v) y~(-3) + (8640 v~ (-2) + 69120 + 8640 v~2) y~(-2) + (162000 v~(-1) + 162000 v) y~(-1)
+ (48600 v~(-2) + 388800 + 48600 v"2) + (162000 v~(-1) + 162000 v) y + (8640 v~(-2) + 69120 + 8640 v"2) y"2

+ (2700 v~(-1) + 2700 v) y~3 1 r~(23/12)

+ [ (270 v~(-3) + 16200 v~(-1) + 16200 v + 270 v"3) y~(-3) + (69120 v~ (-2) + 388800 + 69120 v"2) y~(-2)

+ (16200 v~ (-3) + 972000 v~(-1) + 972000 v + 16200 v*3) y~(-1) + (388800 v~ (-2) + 2.187e+006 + 388800 v"2)

+ (16200 v~ (-3) + 972000 v~(-1) + 972000 v + 16200 v°3) y + (69120 v~(-2) + 388800 + 69120 v°2) y"2

+ (270 v~ (-3) + 16200 v~(-1) + 16200 v + 270 v°3) y~3 1 r~(35/12)

1 q(35/12)

+ [

57 y~(-2) + 308 + 57 y°2

+ [ (57 v~(-2) + 8322 + 57 v"2) y~(-2) + (308 v~(-2) + 44688 + 308 v°2) + (57 v"(-2) + 8322 + 57 v™2) y"2 1«

+ [ (8322 v~(-2) + 68229 + 8322 v~2) y~(-2) + (44688 v~(-2) + 366396 + 44688 v~2) + (8322 v~(-2) + 68229 + 8322 v°2) y"2 ] r"2
+ [ (68229 v~(-2) + 366396 + 68229 v°2) y~(-2) + (366396 v~(-2) + 1.96758e+006 + 366396 v"2)

+ (68229 v~(-2) + 366396 + 68229 v°2) y"2 1 r"3

1q°3
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Partition function for (1)(1)(1)(1)(4):

1
+ (1 v (-2) +6+1v2)
+ (6 v°(-2) + 57 + 6 v'2) "2

+ [
[Av(-1) +1v) y(-1) +20+ (L v (-1) +1v) y ] (1/4)
+ [ (6 v'(-1) + 6 v) y"(-1) + (20 v"(-2) + 240 + 20 v°2) + (6 v°(-1) + 6 v) y 1 r~(5/4)
1 q°(1/9)
+ [
30 r~(1/3)
+ (30 v7(-2) + 450 + 30 v°2) r~(4/3)

1 q7(1/3)
+ [

[ (20 v°(-1) + 20 v) y~(-1) + (20 v"(-1) + 20 v) y 1 r"(1/2)
+ [ (240 v~ (-1) + 240 v) y~(-1) + (240 v"(-1) + 240 v) y 1 r~(3/2)

1 q7(1/2)
+ [

[ (30 v~(-1) + 30 v) y~(-1) + 120 + (30 v"(-1) + 30 v) y 1 £~(7/12)
+ [ (450 v~(-1) + 450 v) y~(-1) + (120 v~(-2) + 1560 + 120 v"2) + (450 v~(-1) + 450 v) y 1 r~(19/12)
1 q7(7/12)
+ [
270 r~(2/3)
+ (270 v~(-2) + 2700 + 270 v°2) r~(5/3)

1 q°(2/3)
+ [

[ (120 v~(-1) + 120 v) y~(-1) + (120 v"(-1) + 120 v) y ] r~(5/6)
+ [ (1560 v~(-1) + 1560 v) y~(-1) + (1560 v~ (-1) + 1560 v) y 1 r~(11/6)

1 q°(5/6)
+ [

[ (270 v~(-1) + 270 v) y~(-1) + 1080 + (270 v~(-1) + 270 v) y 1 r~(11/12)
+ [ (2700 v~(-1) + 2700 v) y~(-1) + (1080 v~(-2) + 8640 + 1080 v~2) + (2700 v~(-1) + 2700 v) y 1 r~(23/12)
1 q~(11/12)
+ [
1y°(-2) +6+17y°2
+ [ (L v(-2) +6+1v2) y(-2) + (6 v°(-2) + 1016 + 6 v°2) + (1 v°(-2) + 6 + 1 v™2) y2 1 r
+ [ (6 vi(-2) + 57 + 6 v°2) y~(-2) + (1016 v~(-2) + 8322 + 1016 v"2) + (6 v"(-2) + 57 + 6 v"2) y"2 ] r"2
1
R q

[ (1080 v~(-1) + 1080 v) y~(-1) + (1080 v"(-1) + 1080 v) y 1 r~(7/6)

q°(7/6)
+ [

[20 y°(-2) + (6 v"(-1) + 6 v) y~(-1) + 240 + (6 v'(-1) + 6 v) y + 20 y"2 ] r~(1/4)
+ [ (20 v~ (-2) + 240 + 20 v™2) y~(-2) + (1016 v~(-1) + 1016 v) y~(-1) + (240 v~(-2) + 3024 + 240 v°2)
+ (1016 v~(-1) + 1016 v) y + (20 v"(-2) + 240 + 20 v°2) y"2 1 r~(5/4)

1 q°(5/4)
+ [

[ 30 y"(-2) + 450 + 30 y~2 1 r~(1/3)
+ [ (30 v"(-2) + 450 + 30 v°2) y~(-2) + (450 v"(-2) + 6750 + 450 v"2) + (30 v~(-2) + 450 + 30 v"2) y"2 1 r"(4/3)
1 q7(4/3)
+ [

[ (240 v~(-1) + 240 v) y~(-1) + (240 v~ (-1) + 240 v) y 1 r~(1/2)
+ [ (3024 v~(-1) + 3024 v) y~(-1) + (3024 v~(-1) + 3024 v) y 1 r~(3/2)

1 q7(3/2)
+ [

[ 120 y~(-2) + (450 v~(-1) + 450 v) y~(-1) + 1560 + (450 v"(-1) + 450 v) y + 120 y*2 1 r~(7/12)
+ [ (120 v~(-2) + 1560 + 120 v"2) y~(-2) + (6750 v~(-1) + 6750 v) y~(-1) + (1560 v~(-2) + 20280 + 1560 v~2)
+ (6750 v~(-1) + 6750 v) y + (120 v~ (-2) + 1560 + 120 v°2) y~2 1 r~(19/12)

1 q°(19/12)
+ [
[ 270 y~(-2) + 2700 + 270 y~2 1 r"(2/3)
+ [ (270 v~(-2) + 2700 + 270 v"2) y~(-2) + (2700 v~(-2) + 27000 + 2700 v~2) + (270 v~(-2) + 2700 + 270 v"2) y~2 ] r~(5/3)
1 q°(5/3)
+ [

[ (1560 v~(-1) + 1560 v) y~(-1) + (1660 v"(-1) + 1560 v) y 1 r~(5/6)
+ [ (20280 v~(-1) + 20280 v) y~(-1) + (20280 v~(-1) + 20280 v) y 1 r~(11/6)

1 q°(11/6)
+ [

[ 1080 y~(-2) + (2700 v~(-1) + 2700 v) y~(-1) + 8640 + (2700 v~(-1) + 2700 v) y + 1080 y~2 1 r~(11/12)
+ [ (1080 v~(-2) + 8640 + 1080 v"2) y~(-2) + (27000 v~(-1) + 27000 v) y~(-1) + (8640 v~ (-2) + 69120 + 8640 v"2)
+ (27000 v~(-1) + 27000 v) y + (1080 v~(-2) + 8640 + 1080 v-2) y~2 1 r~(23/12)

1 q~(23/12)
+ [
6 y (-2) + 57 + 6 y°2
+ [ (6 v (-2) + 1016 + 6 v"2) y~(-2) + (57 v~(-2) + 8322 + 57 v"2) + (6 v*(-2) + 1016 + 6 v°2) y2 1 r
+ [ (1016 v~(-2) + 8322 + 1016 v-2) y~(-2) + (8322 v~(-2) + 68229 + 8322 v~2) + (1016 v~(-2) + 8322 + 1016 v"2) y"2 ] r"2
1q°2

Partition function for (1)(1)(1)(2)(2):

1
+ (1 v(-2) +18 +1v2) r
+ (18 v~ (-2) + 147 + 18 v°2) r"2

+ [
[@v(-1) +1v) y(-1) +12 + (1 v°(-1) +1v) y 1 r~(1/4)
+ [ (18 v~ (-1) + 18 v) y~(-1) + (12 v"(-2) + 192 + 12 v"2) + (18 v~(-1) + 18 v) y 1 r"(5/4)
1 q7(1/4)
+ [
18 r~(1/3)
+ (18 v*(-2) + 234 + 18 v"2) r~(4/3)
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1 q7(1/3)
+ [

[ (12 v°(-1) + 12 v) y~(-1) + 48 + (12 v°(-1) + 12 v) y ] r"(1/2)
+ [ (192 v~ (-1) + 192 v) y~(-1) + (48 v~(-2) + 672 + 48 v™2) + (192 v~(-1) + 192 v) y ] r"(3/2)
1 q7(1/2)
+ [

[ (18 v°(-1) + 18 v) y~(-1) + 216 + (18 v"(-1) + 18 v) y 1 r~(7/12)
+ [ (234 v~ (-1) + 234 v) y~(-1) + (216 v~(-2) + 2376 + 216 v"2) + (234 v~(-1) + 234 v) y ] r~(19/12)
1 q7(7/12)
+ [
[ (48 v*(-1) + 48 v) y~(-1) + 64 + (48 v"(-1) + 48 v) y 1 r~(3/4)
+ [ (672 v (-1) + 672 v) y~(-1) + (64 v~(-2) + 768 + 64 v*2) + (672 v~(-1) + 672 v) y ] r"(7/4)

1 q~(3/4)
+ [

[ (216 v~ (-1) + 216 v) y~(-1) + 864 + (216 v~ (-1) + 216 v) y 1 r~(5/6)
+ [ (2376 v~ (-1) + 2376 v) y~(-1) + (864 v~(-2) + 7776 + 864 v°2) + (2376 v"(-1) + 2376 v) y 1 r~(11/6)

1 q°(5/6)

+ L

1y7(-2) + 18 + 1 y~2

+ [ (1 vi(-2) + 18 + 1 v°2) y~(-2) + (64 v"(-1) + 64 v) y~(-1) + (18 v (-2) + 324 + 18 v2)

+ (64 vi(-1) +64v) y+ (Lvi(2) +18+1v2) y2]r

+ [ (18 v°(-2) + 147 + 18 v2) y~(-2) + (768 v~(-1) + 768 v) y~(-1) + (324 v~(-2) + 2646 + 324 v"2)
+ (768 v~ (-1) + 768 v) y + (18 v~(-2) + 147 + 18 v°2) y°2 ] "2

Iaq
+

[ (864 v~(-1) + 864 v) y (-1) + 1152 + (864 v~(-1) + 864 v) y ] r~(13/12)
q"(13/12)
+ L

[12 y°(-2) + (18 v*(-1) + 18 v) y (-1) + 192 + (18 v'(-1) + 18 v) y + 12 y°2 1 r~(1/4)
+ [ (12 v=(-2) + 192 + 12 v°2) y~(-2) + (324 v~(-1) + 324 v) y~(-1) + (192 v~(-2) + 3072 + 192 v~2)
+ (324 v°(-1) + 324 v) y + (12 v (-2) + 192 + 12 v"2) y"2 ] r~(5/4)

1 q~(5/4)
+

[ 18 y~(-2) + 234 + 18 y°2 1 r~(1/3)
+ [ (18 v~(-2) + 284 + 18 v°2) y~(-2) + (1152 v~ (-1) + 1152 v) y~(-1) + (234 v~(-2) + 3042 + 234 v°2)
+ (1152 v~ (-1) + 1152 v) y + (18 v~ (-2) + 234 + 18 v°2) y"2 ] r~(4/3)

1 q(4/3)
+

[ 48 y~(-2) + (192 v*(-1) + 192 v) y"(-1) + 672 + (192 v*(-1) + 192 v) y + 48 y"2 ] r"(1/2)
+ [ (48 v~(-2) + 672 + 48 v™2) y(-2) + (3072 v~ (-1) + 3072 v) y~(-1) + (672 v~(-2) + 9408 + 672 v"2)
+ (3072 v~(-1) + 3072 v) y + (48 v~(-2) + 672 + 48 v°2) y"2 1 r~(3/2)

1 q°(3/2)
+ [

[ 216 y~(-2) + (234 v"(-1) + 234 v) y~(-1) + 2376 + (284 v"(-1) + 234 v) y + 216 y"2 ] r"(7/12)
+ [ (216 v~ (-2) + 2376 + 216 v'2) y (-2) + (3042 v~ (-1) + 3042 v) y~(-1) + (23876 v~(-2) + 26136 + 2376 v"2)
+ (3042 v~(-1) + 3042 v) y + (216 v~(-2) + 2376 + 216 v°2) y"2 1 r~(19/12)

1 q°(19/12)
+ L

[ 64 y~(-2) + (672 v~ (-1) + 672 v) y"(-1) + 768 + (672 v"(-1) + 672 v) y + 64 y2 1 r"(3/4)
+ [ (64 v~(-2) + 768 + 64 v"2) y~(-2) + (9408 v~ (-1) + 9408 v) y~(-1) + (768 v"(-2) + 9216 + 768 v"2)
+ (9408 v~(-1) + 9408 v) y + (64 v~(-2) + 768 + 64 v°2) y"2 ] r~(7/4)

1 q7(7/4)
+ L

[ 864 y~(-2) + (2376 v~ (-1) + 2376 v) y~(-1) + 7776 + (2876 v~ (-1) + 2376 v) y + 864 y~2 1 r"(5/6)
+ [ (864 v(-2) + 7776 + 864 v"2) y~(-2) + (26136 v"(-1) + 26136 v) y~(-1) + (7776 v~(-2) + 69984 + 7776 v"2)
+ (26136 v~(-1) + 26136 v) y + (864 v~(-2) + 7776 + 864 v'2) y2 ] r~(11/6)

1 q~(11/6)
+ L
18 y~(-2) + 147 + 18 y°2
+ [ (18 v~(-2) + 324 + 18 v"2) y~(-2) + (768 v"(-1) + 768 v) y~(-1) + (147 v"(-2) + 2646 + 147 v"2)
+ (768 v (-1) + 768 v) y + (18 v™(-2) + 324 + 18 v'2) y2 11
+ [ (324 v(-2) + 2646 + 324 v"2) y~(-2) + (9216 v (-1) + 9216 v) y (-1) + (2646 v~(-2) + 21609 + 2646 v"2)
+ (9216 v~(-1) + 9216 v) y + (324 v~(-2) + 2646 + 324 v°2) y2 ] r"2

1q°2

Partition function for (2)(2)(2)(2):
“(-2) +4+1v2) 1r

[Av
[ (4 v(-2) +31 +4v2) ]2
[ (31 v°(-2) + 172 + 31 v°2) 1 "3

+ 4+

+

r
[Av(-1) +1v)y(-1) + @2 + 1 v(1) +1v)y]r(1/4)
+ [ (@4 v (-1) +4v) yo(-1) + (32 v™(-2) + 400 + 32 v°2) + (4 v°(-1) + 4 v) y 1 r"(56/4)
+ [ (1 v(-3) + 31 v"(-1) + 31 v + 1 v"3) y (-1) + (400 v~(-2) + 2912 + 400 v°2)
+ (1 v(-3) +31 v (-1) + 31 v +1v3) y]r(9/4)
1 q7(1/4)
+ [
[ (32 v*(-1) + 32 v) y~(-1) + (136) + (32 v~ (-1) + 32 v) y ] r~(1/2)
+ [ (400 v*(-1) + 400 v) y~(-1) + (136 v~(-2) + 1632 + 136 v"2) + (400 v~(-1) + 400 v) y 1 r"(3/2)
+ [ (32 v"(-3) + 2912 v~(-1) + 2912 v + 32 v°3) y~(-1) + (1632 v"(-2) + 10472 + 1632 v"2)
+ (32 vo(-3) + 2912 v~ (-1) + 2912 v + 32 v°3) y ] r"(5/2)
1 q7(1/2)
+ [
[ (136 v~(-1) + 136 v) y~(-1) + (544) + (136 v~(-1) + 136 v) y 1 r~(3/4)
+ [ (1632 v~(-1) + 1632 v) y~(-1) + (544 v~(-2) + 5440 + 544 v°2) + (1632 v~(-1) + 1632 v) y 1 ©~(7/4)
+ [ (186 v~(-3) + 10472 v~(-1) + 10472 v + 136 v"3) y~(-1) + (5440 v~(-2) + 31552 + 5440 v°2)
+ (136 v~(-3) + 10472 v~(-1) + 10472 v + 136 v"3) y 1 r~(11/4)
1 q~(3/4)
+ [
1y°(-2) +4+17y3°2
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+ [ v(-2) +4+1v2) y(-2) + (544 v~ (-1) + 544 v) y~(-1) + (4 v"(-2) + 1920 + 4 v"2)

+ (544 v°(-1) + 544 v) y+ (1 v°(-2) + 4+ 1v™2) y21r

+ [ (4 vi(-2) + 31 + 4 v~2) y~(-2) + (5440 v~ (-1) + 5440 v) y~(-1) + (1920 v~(-2) + 15356 + 1920 v"2)
+ (5440 v (-1) + 5440 v) y + (4 v™(-2) + 31 + 4 v™2) y2 ] r2

+ [ (31 v~ (-2) + 172 + 31 v™2) y~(-2) + (544 v~(-3) + 31562 v~(-1) + 31552 v + 544 v"3) y~(-1)

+ (15356 v~(-2) + 82560 + 15356 v"2) + (544 v~(-3) + 31552 v"(-1) + 31562 v

+ 544 v°8) y + (31 v°(-2) + 172 + 31 v°2) y*2 ] r"3

Iaq

+ [

[(32) y(-2) + (4 v (-1) + 4 v) y~(-1) + (400) + (4 v°(-1) + 4 v) y + (32) y2 1 r~(1/4)

+ [ (32 v*(-2) + 400 + 32 v*2) y~(-2) + (1920 v~(-1) + 1920 v) y~(-1) + (400 v~(-2) + 5952 + 400 v"2)
+ (1920 v~ (-1) + 1920 v) y + (32 v~ (-2) + 400 + 32 v"2) y"2 ] r~(5/4)

+ [ (400 v~(-2) + 2912 + 400 v"2) y~(-2) + (4 v~ (-3) + 15356 v"(-1) + 15356 v + 4 v~3) y~(-1)

+ (5952 v~(-2) + 42112 + 5952 v~2) + (4 v"(-3) + 15356 v~ (-1) + 15356 v + 4 v"3) y

+ (400 v~ (-2) + 2012 + 400 v°2) y~2 1 r~(9/4)

1 q~(5/4)

+
[ (136) y~(-2) + (400 v~(-1) + 400 v) y~(-1) + (1632) + (400 v~(-1) + 400 v) y + (136) y~2 1 r~(1/2)
[ (136 v~(-2) + 1632 + 136 v"2) y~(-2) + (5952 v"(-1) + 5952 v) y~(-1) + (1632 v~(-2) + 19584 + 1632 v2)
(5952 v~(-1) + 5952 v) y + (136 v~ (-2) + 1632 + 136 v°2) y"2 1 r~(3/2)
[ (1632 v~(-2) + 10472 + 1632 v"2) y~(-2) + (400 v~(-3) + 42112 v~(-1) + 42112 v + 400 v"3) y~(-1)
(19584 v~(-2) + 125664 + 19584 v°2) + (400 v~(-3) + 42112 v~(-1) + 42112 v + 400 v"3) y
(1632 v~(-2) + 10472 + 1632 v°2) y*2 1 r~(5/2)
1 q7(3/2)
L

+ o+ o+ o+

+
[ (544) y~(-2) + (1682 v~(-1) + 1632 v) y~(-1) + (5440) + (1632 v~(-1) + 1632 v) y + (544) y~2 1 r~(3/4)

+ [ (544 v~(-2) + 5440 + 544 v"2) y~(-2) + (19584 v~(-1) + 19584 v) y~(-1) + (5440 v~(-2) + 54400 + 5440 v"2)
+ (19584 v~(-1) + 19584 v) y + (544 v~(-2) + 5440 + 544 v°2) y*2 ] ¢ (7/4)
+ [ (5440 v~(-2) + 31552 + 5440 v°2) y~(-2) + (1632 v~(-3) + 125664 v~ (-1) + 126664 v + 1632 v~3) y~(-1)
+ (54400 v~(-2) + 315620 + 54400 v"2) + (1632 v~(-3) + 125664 v~(-1) + 125664 v + 1632 v°3) y
+ (5440 v~(-2) + 31552 + 5440 v°2) y~2 1 r~(11/4)
1 q7(7/4)
[

+
4y (-2) +31 +4y2
+ [ (4 vi(-2) + 1920 + 4 v"2) y~(-2) + (5440 v~(-1) + 5440 v) y~(-1) + (31 v~(-2) + 15356 + 31 v"2)
+ (5440 v~(-1) + 5440 v) y + (4 v°(-2) + 1920 + 4 v°2) y2 1 r
+ [ (1920 v~(-2) + 15356 + 1920 v°2) y~(-2) + (54400 v~(-1) + 54400 v) y~(-1) + (16356 v"(-2) + 122817 + 15356 v"2)
+ (54400 v~(-1) + 54400 v) y + (1920 v~(-2) + 15356 + 1920 v°2) y"2 1 r"2
+ [ (15356 v~(-2) + 82560 + 15356 v°2) y~(-2) + (5440 v~(-3) + 315520 v"(-1) + 315520 v + 5440 v-3) y~(-1)
+ (122817 v~(-2) + 660308 + 122817 v~2) + (5440 v~(-3) + 315520 v~(-1) + 315520 v + 5440 v°3) y
+ (16356 v~ (-2) + 82560 + 15356 v°2) y°2 1 r"3

1q2
+ [

[ (1v(-1) +1v) y(-3) + (400) y~(-2) + (31 v"(-1) + 31 v) y~(-1) + (2912) + (31 v (-1) + 31 v) y

(400) y 2 + (1 v-(-1) + 1 v) y°31 r*(1/4)

[ (4 vo(-1) + 4 v) y~(-3) + (400 v~(-2) + 5952 + 400 v°2) y~(-2) + (15356 v~(-1) + 15356 v) y~(-1)
(2912 v~(-2) + 42112 + 2912 v~2) + (156356 v~(-1) + 15356 v) y
(400 v~(-2) + 5952 + 400 v°2) y~2 + (&4 v°(-1) + & v) y"°3 1 r"(5/4)
[ (1 v(-3) +31 v°(-1) + 31 v +1v"3) y (-3) + (5952 v~(-2) + 42112 + 5952 v"2) y~(-2)

(31 v7(-3) + 122817 v~(-1) + 122817 v + 31 v"3) y"(-1) + (42112 v"(-2) + 299264 + 42112 v°2)

(31 v7(-3) + 122817 v~(-1) + 122817 v + 31 v"3) y + (5952 v~ (-2) + 42112 + 5952 v°2) y°2

(1 v°(-3) + 31 v°(-1) + 31 v + 1 v™3) y3 ] r~(9/4)
1 q7(9/4)
+ L

[ (32 v(-1) + 32 v) y~(-3) + (1632) y~(-2) + (2912 v~(-1) + 2912 v) y~(-1) + (10472)

+ o+

+ (2912 v~ (-1) + 2912 v) y + (1632) y™2 + (32 v™(-1) + 32 v) y 3 1 r~(1/2)

+ [ (400 v~(-1) + 400 v) y~(-3) + (1632 v~(-2) + 19584 + 1632 v°2) y~(-2) + (42112 v~ (-1) + 42112 v) y~(-1)
+ (10472 v~(-2) + 125664 + 10472 v"2) + (42112 v~(-1) + 42112 v) y + (1632 v~(-2) + 19584 + 1632 v~2) y~2

+ (400 v~(-1) + 400 v) y~3 1 r~(3/2)

+ [ (32 v7(-3) + 2912 v~ (-1) + 2912 v + 32 v"3) y~(-3) + (19584 v~(-2) + 125664 + 19584 v°2) y~(-2)

+ (2912 v~ (-3) + 299264 v~(-1) + 299264 v + 2912 v~3) y~(-1) + (125664 v~(-2) + 806344 + 125664 v~2)

+ (2912 v~ (-3) + 299264 v~(-1) + 299264 v + 2912 v"3) y + (19584 v~(-2) + 125664 + 19584 v°2) y~2

+ (32 v (-3) + 2912 v™(-1) + 2912 v + 32 v"3) y3 1 r~(5/2)

1 q7(5/2)

+ [
[ (186 v~(-1) + 136 v) y~(-3) + (5440) y~(-2) + (10472 v~(-1) + 10472 v) y~(-1) + (31552)

+ (10472 v~(-1) + 10472 v) y + (5440) y~2 + (136 v~(-1) + 136 v) y~3 1 r~(3/4)

+ [ (1632 v~(-1) + 1632 v) y~(-3) + (5440 v~(-2) + 54400 + 5440 v~2) y~(-2) + (125664 v~(-1) + 125664 v) y~(-1)
+ (31552 v~(-2) + 315520 + 31552 v°2) + (125664 v~(-1) + 125664 v) y + (5440 v~(-2)

+ 54400 + 5440 v~2) y~2 + (1632 v~(-1) + 1632 v) y~3 1 r~(7/4)

+ [ (136 v~(-3) + 10472 v~(-1) + 10472 v + 136 v"3) y~(-3) + (54400 v~ (-2) + 315520 + 54400 v°2) y~(-2)

+ (10472 v~(-3) + 806344 v~ (-1) + 806344 v + 10472 v-3) y~(-1) + (315520 v~(-2) + 1.83002e+006 + 315520 v°2)

+ (10472 v~ (-3) + 806344 v~ (-1) + 806344 v + 10472 v°3) y + (54400 v~ (-2) + 315520 + 54400 v"2) y 2

+ (136 v~(-3) + 10472 v~(-1) + 10472 v + 136 v~-3) y~3 1 r~(11/4)

1 q~(11/4)

+ [

31 yo(-2) + 172 + 31 y~2
[ (544 v~(-1) + 544 v) y~(-3) + (31 v"(-2) + 15356 + 31 v*2) y~(-2) + (31552 v~(-1) + 31552 v) y~(-1)
(172 v~(-2) + 82560 + 172 v~2) + (31552 v~(-1) + 31552 v) y
(31 v*(-2) + 15356 + 31 v"2) y~2 + (544 v"(-1) + 544 v) y"3 1 r
[ (5440 v~(-1) + 5440 v) y~(-3) + (15356 v~(-2) + 122817 + 15356 v°2) y~(-2) + (315520 v~(-1) + 315520 v) y~(-1)
(82560 v~ (-2) + 660308 + 82560 v°2) + (315520 v~ (-1) + 315520 v) y + (15356 v~ (-2) + 122817 + 15356 v"2) y°2
(5440 v~(-1) + 5440 v) y~3 1 r"2
[ (544 v~(-3) + 31552 v~(-1) + 315562 v + 544 v~3) y~(-3) + (122817 v~(-2) + 660308 + 122817 v~2) y~(-2)
(31552 v~ (-3) + 1.83002e+006 v~(-1) + 1.83002e+006 v + 31552 v°3) y~(-1) + (660308 v~ (-2) + 3.55008e+006 + 660308 v"2)
(31552 v~(-3) + 1.83002e+006 v~(-1) + 1.83002e+006 v + 31552 v~3) y + (122817 v~(-2) + 660308 + 122817 v°2) y-"2
(544 v~(-3) + 31552 v~ (-1) + 31552 v + 544 v°3) y°3 1 r"3
1q°3
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216 APPENDIX C. GEPNER MODEL PARTITION FUNCTIONS FOR C =6

Partition function for (1)(2)(2)(4):

1
+ (1 v (-2) +9+1v2)r
+ (9 v(-2) + 73 +9v2) r2

+ [
[Av(-1) +1v) y(-1) +24 + (L v (-1) + 1 v) y ] (1/4)
+ [ (O v(-1) +9v) yo(-1) + (24 v*(-2) + 316 + 24 v°2) + (9 v°(-1) +9 v) y 1 r~(5/4)
1 q (1/4)
+ [
9 r~(1/3)
+ (9 v (-2) + 117 + 9 v°2) r~(4/3)
1 q7(1/3)
+ [
[ (224 v°(-1) + 24 v) y~(-1) + 88 + (24 v°(-1) + 24 v) y 1 r~(1/2)
+ [ (316 v~(-1) + 316 v) y~(-1) + (88 v~(-2) + 1104 + 88 v°2) + (316 v"(-1) + 316 v) y 1 r~(3/2)
1 q7(1/2)
+ [
[ (9 vi(-1) +9v) yo(-1) + 108 + (9 v°(-1) + 9 v) y 1 £~ (7/12)
+ [ (117 v~ (-1) + 117 v) y~(-1) + (108 v~ (-2) + 1188 + 108 v~°2) + (117 v~(-1) + 117 v) y 1 r~(19/12)
1 q°(7/12)
+ [
[ (88 v-(-1) + 88 v) y~(-1) + 288 + (88 v™(-1) + 88 v) y ] r~(3/4)
+ [ (1104 v~(-1) + 1104 v) y~(-1) + (288 v~(-2) + 2944 + 288 v°2) + (1104 v~ (-1) + 1104 v) y 1 r~(7/4)
1 q7(3/4)
+ [
[ (108 v~(-1) + 108 v) y~(-1) + 432 + (108 v~(-1) + 108 v) y 1 r~(5/6)
+ [ (1188 v~(-1) + 1188 v) y~(-1) + (432 v~(-2) + 3888 + 432 v~2) + (1188 v~(-1) + 1188 v) y 1 r~(11/6)
1 q°(5/6)
[

+
1y°(-2) +9 +1y°2

+ [ (1 vi(-2) +9+1v'2) y(-2) + (288 v~ (-1) + 288 v) y~(-1) + (9 v~(-2) + 1186 + 9 v"2)

+ (288 v(-1) +288 v) y + (1 v'(-2) + 9+ 1v2) y21r

+ [ (9 vi(-2) + 73 + 9 v~2) y~(-2) + (2944 v~(-1) + 2944 v) y~(-1) + (1186 v~(-2) + 9515 + 1186 v"2)
+ (2944 v (-1) + 2944 v) y + (9 v°(-2) + 783 + 9 v™2) y'2] r"2

Iq

+

[ (432 v~(-1) + 432 v) y~(-1) + 576 + (432 v~ (-1) + 432 v) y ] r~(13/12)
q~(13/12)
+ [

[24 y7(-2) + (9 v (-1) +9 v) y(-1) + 316 + (9 v'(-1) +9 v) y + 24 y"2 ] r~(1/4)
+ [ (24 v~(-2) + 316 + 24 v°2) y~(-2) + (1186 v~ (-1) + 1186 v) y~(-1) + (316 v~(-2) + 4680 + 316 v"2)
+ (1186 v~ (-1) + 1186 v) y + (24 v~ (-2) + 316 + 24 v"2) y"2 ] r~(5/4)

1 q°(5/4)
+ [

[9y(-2) + 117 + 9 y°2 ] £~(1/3)
+ [ (9 vi(-2) + 117 + 9 v"2) y~(-2) + (576 v~(-1) + 576 v) y~(-1) + (117 v~(-2) + 1521 + 117 v"2)
+ (676 v*(-1) + 576 v) y + (9 v~ (-2) + 117 + 9 v~2) y~2 1 r~(4/3)

1 q7(4/3)
+ [

[ 88 y~(-2) + (316 v"(-1) + 316 v) y~(-1) + 110& + (316 v"(-1) + 316 v) y + 88 y~2 1 r~(1/2)
+ [ (88 v~(-2) + 1104 + 88 v~2) y~(-2) + (4680 v~(-1) + 4680 v) y~(-1) + (1104 v~(-2) + 13920 + 1104 v"2)
+ (4680 v~(-1) + 4680 v) y + (88 v~(-2) + 1104 + 88 v°2) y~2 ] r~(3/2)

1 q7(3/2)
+ [

[ 108 y~(-2) + (117 v~ (-1) + 117 v) y~(-1) + 1188 + (117 v~ (-1) + 117 v) y + 108 y2 1 r~(7/12)
+ [ (108 v(-2) + 1188 + 108 v°2) y~(-2) + (1521 v~(-1) + 15621 v) y~(-1)
+ (1188 v~(-2) + 13068 + 1188 v~2) + (1521 v~(-1) + 1521 v) y + (108 v~(-2) + 1188 + 108 v"2) y~2 1 r~(19/12)
1 q°(19/12)
+ [
[ 288 y~(-2) + (1104 v~(-1) + 1104 v) y~(-1) + 2944 + (1104 v~(-1) + 1104 v) y + 288 y"2 1 r~(3/4)
+ [ (288 v"(-2) + 2944 + 288 v~2) y~(-2) + (13920 v~(-1) + 13920 v) y~(-1)
+ (2944 v~(-2) + 30208 + 2944 v~2) + (13920 v~(-1) + 13920 v) y + (288 v~ (-2) + 2944 + 288 v"2) y"2 1 r~(7/4)

1 q°(7/4)
+ [

[ 432 y~(-2) + (1188 v~(-1) + 1188 v) y~(-1) + 3888 + (1188 v~(-1) + 1188 v) y + 432 y~2 1 r"(5/6)
+ [ (432 v"(-2) + 3888 + 432 v°2) y~(-2) + (13068 v~(-1) + 13068 v) y~(-1)
+ (3888 v~(-2) + 34992 + 3888 v"2) + (13068 v~(-1) + 13068 v) y + (432 v~(-2) + 3888 + 432 v"2) y"2 1 r~(11/6)

1 q°(11/6)
+ [
9 y~(-2) +73 +9 y°2
+ [ (9 vi(-2) + 1186 + 9 v"2) y~(-2) + (2944 v~(-1) + 2944 v) y~(-1) + (73 v~(-2) + 9515 + 73 v"2)
+ (2944 v~(-1) + 2944 v) y + (9 v™(-2) + 1186 + 9 v'2) y'2 1 r
+ [ (1186 v~(-2) + 9515 + 1186 v"2) y~(-2) + (30208 v~(-1) + 30208 v) y~(-1) + (9515 v~(-2) + 76341 + 9515 v"2)
+ (30208 v~(-1) + 30208 v) y + (1186 v~(-2) + 9515 + 1186 v"2) y"2 ] r"2
1q2

Partition function for (1)(1)(4)(4):

+ (1 v'(-2) +4+1v2)
+ (4 vi(-2) +31 +4v"2) r2

+
2 r~(1/6)
+ (2 v°(-2) + 32 + 2 v"2) £~ (7/6)

1 q7(1/6)
+

[(v(-1) +1v) y(-1) +20 + (1 v°(-1) +1v) y 1 r~(1/4)
+ [ (@ v (-1) +4v) yo(-1) + (20 v™(-2) + 232 + 20 v°2) + (4 v°(-1) + 4 v) y 1 r"(56/4)
1 q7(1/4)
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+
24 r~(1/3)
+ (24 v°(-2) + 324 + 24 v°2) r~(4/3)
1 q°(1/3)
+
[L(2v(-1) +2v) y(-1) +8 + (2 v'(-1) +2v) y 1 r"(5/12)
+ [ (382 v (-1) + 32 v) y(-1) + (8 v*(-2) + 112 + 8 v"2) + (32 v~(-1) + 32 v) y ] r~(17/12)
1 q7(5/12)
+ [
[ (20 v°(-1) + 20 v) y"(-1) + 40 + (20 v (-1) + 20 v) y ] r~(1/2)
+ [ (232 v*(-1) + 232 v) y~(-1) + (40 v"(-2) + 456 + 40 v°2) + (232 v"(-1) + 232 v) y 1 r~(3/2)
1 q7(1/2)
+
[ (22 vo(-1) + 24 v) y°(-1) + 96 + (24 v°(-1) + 24 v) y ] r~(7/12)
+ [ (328 v-(-1) + 324 v) y~(-1) + (96 v~(-2) + 1104 + 96 v°2) + (324 v~(-1) + 324 v) y 1 r~(19/12)
1 q°(7/12)
+
[ (8 vi(-1) +8 v) y"(-1) + 168 + (8 v°(-1) + 8 v) y 1 r~(2/3)
+ [ (112 v~ (-1) + 112 v) y~(-1) + (168 v~(-2) + 1704 + 168 v"2) + (112 v~(-1) + 112 v) y ] r"(5/3)
1 q~(2/3)
+
[ (40 v*(-1) + 40 v) y~(-1) + 160 + (40 v"(-1) + 40 v) y 1 r~(3/4)
+ [ (456 v~ (-1) + 456 v) y~(-1) + (160 v~(-2) + 1504 + 160 v"2) + (456 v~(-1) + 456 v) y 1 r"(7/4)
1 q7(3/4)
+ [
[ (96 v-(-1) + 96 v) y~(-1) + 72 + (96 v"(-1) + 96 v) y ] r~(5/6)
+ [ (1104 v~(-1) + 1104 v) y~(-1) + (72 v"(-2) + 720 + 72 v"2) + (1104 v~(-1) + 1104 v) y 1 r"(11/6)
1 q°(5/6)
+ [
[ (168 v~(-1) + 168 v) y~(-1) + 672 + (168 v~(-1) + 168 v) y 1 r~(11/12)
+ [ (1704 v~(-1) + 1704 v) y~(-1) + (672 v~(-2) + 5472 + 672 v°2) + (1704 v~ (-1) + 1704 v) y 1 r~(23/12)
1 q~(11/12)
+ [
1y°(-2) +4+17y°2
+ [ (1 v(-2) +4+1v2) y(-2) + (160 v~ (-1) + 160 v) y~(-1) + (4 v~(-2) + 1056 + & v"2)
+ (160 v°(-1) + 160 v) y + (1 v°(-2) + 4 + 1 v™2) y2 1«
+ [ (4 v (-2) + 31 + 4 v"2) y~(-2) + (1504 v~(-1) + 1504 v) y~(-1) + (1056 v~(-2) + 8588 + 1056 v"2)
+ (1504 v~ (-1) + 1504 v) y + (4 v°(-2) + 31 + 4 v™2) y°2 ] r"2
Ilq

+

[ (72 v°(-1) + 72 v) y~(-1) + 288 + (72 v~(-1) + 72 v) y 1 r~(13/12)
q-(13/12)
+ [
[2y(-2) +32+2y2] r(1/6)
+ [ (2v(-2) + 32+ 2v"2) y(-2) + (672 v"(-1) + 672 v) y~(-1) + (32 v"(-2) + 512 + 32 v°2)
+ (672 v"(-1) + 672 v) y + (2 v"(-2) + 32 + 2 v"2) y*2 1 r~(7/6)
1 q°(7/6)
+ [
[20 y(-2) + (4 v°(-1) + 4 v) y~(-1) + 232 + (4 v (-1) + 4 v) y + 20 y°2 1 r~(1/4)
+ [ (20 v~(-2) + 232 + 20 v"2) y~(-2) + (1056 v~(-1) + 1056 v) y~(-1) + (232 v~(-2) + 3216 + 232 v"2)
+ (1056 v~(-1) + 1056 v) y + (20 v~(-2) + 232 + 20 v°2) y~2 ] r~(5/4)
1 q°(5/4)
+ [
[ 24 y°(-2) + 324 + 24 y°2 1 r~(1/3)
+ [ (24 v~ (-2) + 324 + 24 v°2) y~(-2) + (288 v~(-1) + 288 v) y~(-1) + (324 v~(-2) + 4536 + 324 v°2)
+ (288 v (-1) + 288 v) y + (24 v (-2) + 324 + 24 v°2) y"2 ] r~(4/3)
1 q7(4/3)
+ [
[8 y~(-2) + (32 v (-1) + 32 v) y~(-1) + 112 + (32 v"(-1) + 32 v) y + 8 y*2 ] r~(5/12)
+ [ (8 vi(-2) + 112 + 8 v*2) y~(-2) + (512 v~(-1) + 512 v) y~(-1) + (112 v~(-2) + 1568 + 112 v°2)
+ (512 v(-1) + 512 v) y + (8 v~(-2) + 112 + 8 v"2) y"2 ] r~(17/12)
1 q~(17/12)
+ [
[ 40 y~(-2) + (232 v~(-1) + 232 v) y~(-1) + 456 + (232 v"(-1) + 232 v) y + 40 y™2 ] r"(1/2)
+ [ (40 v~(-2) + 456 + 40 v~2) y~(-2) + (3216 v~(-1) + 3216 v) y~(-1) + (456 v~(-2) + 5256 + 456 v"2)
+ (3216 v~(-1) + 3216 v) y + (40 v"(-2) + 456 + 40 v°2) y"2 1 r~(3/2)
1 q°(3/2)
+ [
[ 96 y~(-2) + (324 v"(-1) + 324 v) y~(-1) + 1104 + (324 v"(-1) + 324 v) y + 96 y*2 1 r~(7/12)
+ [ (96 v~(-2) + 1104 + 96 v~2) y~(-2) + (4536 v~ (-1) + 4536 v) y~(-1) + (1104 v~(-2) + 13344 + 1104 v°2)
+ (4536 v~(-1) + 4536 v) y + (96 v~(-2) + 1104 + 96 v"2) y~2 1 r~(19/12)
1 q°(19/12)
+ [
[ 168 y~(-2) + (112 v~(-1) + 112 v) y~(-1) + 1704 + (112 v*(-1) + 112 v) y + 168 y"2 ] r"(2/3)
+ [ (168 v~(-2) + 1704 + 168 v"2) y~(-2) + (1568 v"(-1) + 1568 v) y"(-1) + (1704 v~ (-2) + 17376 + 1704 v"2)
+ (1568 v~(-1) + 1568 v) y + (168 v~ (-2) + 1704 + 168 v°2) y~2 ] r~(5/3)
1 q°(5/3)
+ [
[ 160 y~(-2) + (456 v~(-1) + 456 v) y~(-1) + 1504 + (456 v~ (-1) + 456 v) y + 160 y"2 ] r"(3/4)
+ [ (160 v~ (-2) + 1504 + 160 v*2) y~(-2) + (5256 v~(-1) + 5256 v) y~(-1)
+ (1504 v~(-2) + 14368 + 1504 v"2) + (5256 v~ (-1) + 5256 v) y + (160 v~ (-2) + 1504 + 160 v*2) y*2 1 r~(7/4)
1 q7(7/4)
+ [
[ 72 y"(-2) + (1104 v~(-1) + 1104 v) y~(-1) + 720 + (1104 v~(-1) + 1104 v) y + 72 y~2 1 r~(5/6)
+ [ (72 v~ (-2) + 720 + 72 v"2) y~(-2) + (13344 v~(-1) + 13344 v) y~(-1) + (720 v"(-2) + 7200 + 720 v"2)
+ (13344 v~(-1) + 13344 v) y + (72 v~(-2) + 720 + 72 v°2) y~2 ] r~(11/6)
1 q~(11/6)
+ [
[ 672 y~(-2) + (1704 v~ (-1) + 1704 v) y~(-1) + 5472 + (1704 v~ (-1) + 1704 v) y + 672 y"2 1 r~(11/12)
+ [ (672 v~(-2) + 5472 + 672 v"2) y~(-2) + (17376 v~(-1) + 17376 v) y~(-1)
+ (5472 v~(-2) + 44928 + 5472 v°2) + (17376 v~(-1) + 17376 v) y + (672 v"(-2) + 5472 + 672 v°2) y"2 1 r~(23/12)
1 q7(23/12)
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[
y(-2) + 31 + 4 y°2
[ (4 v=(-2) + 1056 + 4 v"2) y~(-2) + (1504 v~(-1) + 1504 v) y~(-1) + (31 v"(-2) + 8588 + 31 v"2)
(1504 v~(-1) + 1504 v) y + (4 v~(-2) + 1056 + 4 v°2) y"2 1 r
[ (1056 v~(-2) + 8588 + 1056 v-2) y~(-2) + (14368 v~(-1) + 14368 v) y~(-1)
(8588 v~(-2) + 70113 + 8588 v"2) + (14368 v~(-1) + 14368 v) y + (1056 v"(-2) + 8588 + 1056 v*2) y 2 1 r"2
1q°2

+ o+ D+

Partition function for (1)(1)(2)(10):

+ (1 v (-2) +4+1v2)r
+ (4 vo(-2) +32+ 4v"2) 2

+ [
1 r~(1/6)
+ (1 v (-2) + 16 + 1 v"2) r~(7/6)

1 q°(1/6)
+ [

[(v(-1) +1v) y(-1) +24 + (1 v(-1) +1v) y 1z (1/4)
+ [(@v(-1) +4v) yo(-1) + (22 v (-2) + 296 + 24 v"2) + (4 v°(-1) + 4 v) y ] r~(5/4)
1 q7(1/4)
+ [
18 r~(1/3)
+ (18 v~(-2) + 234 + 18 v"2) r~(4/3)

1 q7(1/3)
+ [

[(v(-1) +1v) y(-1) + 4+ (1 v-(-1) + 1 v) y] r(6/12)
+ [ (16 v-(-1) + 16 v) y°(-1) + (4 v'(-2) + 56 + 4 v°2) + (16 v (-1) + 16 v) y ] r~(17/12)
1 q°(5/12)
+ [

[ (22 v°(-1) + 24 v) y"(-1) + 44 + (24 v"(-1) + 24 v) y 1 r~(1/2)
+ [ (296 v~ (-1) + 296 v) y~(-1) + (44 v~(-2) + 564 + 44 v~2) + (296 v~(-1) + 296 v) y 1 r~(3/2)

1 q7(1/2)
+ [

[ (18 v°(-1) + 18 v) y~(-1) + 144 + (18 v~(-1) + 18 v) y 1 r~(7/12)
+ [ (234 v°(-1) + 234 v) y~(-1) + (144 v"(-2) + 1584 + 144 v°2) + (234 v°(-1) + 234 v) y 1 r~(19/12)
1 q7(7/12)
+ [
[(4v(-1) +4v) y(-1) +57 + (4 v (-1) + 4v) y 1 (2/3)
+ [ (56 v*(-1) + 56 v) y"(-1) + (57 v~(-2) + 582 + 57 v"2) + (56 v~(-1) + 56 v) y 1 r"(5/3)

1 q7(2/3)
+ [

[ (44 v°(-1) + 44 v) y~(-1) + 112 + (44 v"(-1) + 44 v) y ] r~(3/4)
+ [ (564 v~ (-1) + 564 v) y~(-1) + (112 v~(-2) + 1136 + 112 v"2) + (564 v~ (-1) + 564 v) y 1 " (7/4)
1 q~(3/4)
+ [

[ (144 v~(-1) + 144 v) y~(-1) + 468 + (144 v~(-1) + 144 v) y 1 ©~(5/6)
+ [ (1584 v~(-1) + 1584 v) y~(-1) + (468 v~(-2) + 4248 + 468 v-2) + (1584 v~(-1) + 1584 v) y 1 r~(11/6)
1 q°(5/6)
+ [

[ (57 v"(-1) + 57 v) y~(-1) + 228 + (57 v"(-1) + 57 v) y 1 r~(11/12)
+ [ (582 v"(-1) + 582 v) y~(-1) + (228 v"(-2) + 1872 + 228 v°2) + (582 v™(-1) + 582 v) y 1 r~(23/12)
1 q°(11/12)
+ [
1y7(-2) +4+1y2
+ [ (1 v(-2) +4+1v'2) y(-2) + (112 v~(-1) + 112 v) y"(-1) + (4 v*(-2) + 998 + 4 v°2)
+ (112 vi(-1) + 112 v) y+ (A v (-2) + 4+ 1v2) y2]r
+ [ (& v(-2) + 32+ 4 v"2) y°(-2) + (1136 v~(-1) + 1136 v) y~(-1) + (998 v"(-2) + 8068 + 998 v"2)
+ (1136 v~(-1) + 1136 v) y + (4 v~(-2) + 82 + 4 v"2) y"2 ] r"2
Ilq

+

[ (468 v~(-1) + 468 v) y~(-1) + 720 + (468 v~(-1) + 468 v) y 1 r~(13/12)

q~(13/12)
+ [

[1y(-2) +16 +1 y2 1 r"(1/6)
+ [ (1 vi(-2) + 16 + 1 v"2) y~(-2) + (228 v"(-1) + 228 v) y~(-1) + (16 v"(-2) + 256 + 16 v°2)
+ (228 v (-1) + 228 v) y + (1 v°(-2) + 16 + 1 v°2) y~2 1 =~ (7/6)

1 q°(7/6)
+ [

[24 y7(-2) + (4 v"(-1) + 4 v) y°(-1) + 296 + (4 v~°(-1) + 4 v) y + 24 y°2 1 r~(1/4)
+ [ (24 v~(-2) + 296 + 24 v~2) y~(-2) + (998 v~(-1) + 998 v) y~(-1) + (296 v~(-2) + 4008 + 296 v-2)
+ (998 v~ (-1) + 998 v) y + (24 v~(-2) + 296 + 24 v°2) y"2 ] r"(5/4)

1 q°(5/4)
+ [

[ 18 y~(-2) + 234 + 18 y°2 1 r~(1/3)
+ [ (18 v~ (-2) + 234 + 18 v™2) y~(-2) + (720 v~(-1) + 720 v) y~(-1) + (284 v~(-2) + 3114 + 234 v°2)
+ (720 v°(-1) + 720 v) y + (18 v~(-2) + 234 + 18 v*2) y"2 1 r"(4/3)

1 q°(4/3)
+ [

[4y°(-2) + (16 v"(-1) + 16 v) y~(-1) + 56 + (16 v~(-1) + 16 v) y + 4 y"2 ] r"(5/12)
+ [ (& v (-2) + 56 + 4 v"2) y~(-2) + (256 v"(-1) + 256 v) y~(-1) + (56 v~(-2) + 784 + 56 v°2)
+ (266 v"(-1) + 256 v) y + (4 v°(-2) + 56 + 4 v"2) y"2 1 r~(17/12)

1 q~(17/12)
+ [

[ 44 y~(-2) + (296 v~(-1) + 296 v) y~(-1) + 564 + (296 v~(-1) + 296 v) y + 44 y=2 1 r"(1/2)
+ [ (44 v~ (-2) + 564 + 44 v~2) y~(-2) + (4008 v~(-1) + 4008 v) y~(-1) + (564 v~(-2) + 7332 + 564 v"2)
+ (4008 v~(-1) + 4008 v) y + (44 v~(-2) + 564 + 44 v~2) y~2 1 r~(3/2)

1 q°(3/2)
+ [

[ 144 y~(-2) + (234 v~(-1) + 234 v) y"(-1) + 1584 + (234 v"(-1) + 234 v) y + 144 y*2 ] r~(7/12)
+ [ (144 v~ (-2) + 1584 + 144 v"2) y~(-2) + (3114 v"(-1) + 3114 v) y~(-1)



219

+ (1584 v~(-2) + 17712 + 1584 v°2) + (3114 v~ (-1) + 3114 v) y + (144 v~ (-2) + 1584 + 144 v°2) y~2 1 r~(19/12)
1 q7(19/12)
+ L
[ 57 y(-2) + (56 v~ (-1) + 56 v) y~(-1) + 582 + (56 v"(-1) + 56 v) y + 57 y"2 1 r~(2/3)
+ [ (87 v~(-2) + 582 + 57 v°2) y~(-2) + (784 v~(-1) + 784 v) y~(-1) + (582 v~(-2) + 5988 + 582 v-2)
+ (784 v~(-1) + 784 v) y + (57 v~(-2) + 582 + 57 v°2) y"2 1 r"(5/3)
1 q°(5/3)
+ [
[ 112 y~(-2) + (564 v~(-1) + 564 v) y~(-1) + 1136 + (564 v"(-1) + 564 v) y + 112 y"2 1 r"(3/4)
+ [ (112 v7(-2) + 1136 + 112 v"2) y~(-2) + (7332 v"(-1) + 7332 v) y~(-1)
+ (1136 v~(-2) + 11792 + 1136 v"2) + (7332 v~ (-1) + 7332 v) y + (112 v"(-2) + 1136 + 112 v°2) y*2 1 r~(7/4)
1 q°(7/4)
+ L
[ 468 y~(-2) + (1584 v~(-1) + 1584 v) y"(-1) + 4248 + (1584 v~(-1) + 1584 v) y + 468 y"2 1 r"(5/6)
+ [ (468 v~ (-2) + 4248 + 468 v~2) y~(-2) + (17712 v~(-1) + 17712 v) y~(-1)
+ (4248 v~(-2) + 38592 + 4248 v°2) + (17712 v~(-1) + 17712 v) y + (468 v"(-2) + 4248 + 468 v"2) y~2 1 r"(11/6)
1 q°(11/6)
+ L
[ 228 y~(-2) + (582 v~(-1) + 582 v) y"(-1) + 1872 + (582 v"(-1) + 582 v) y + 228 y"2 ] r~(11/12)
+ [ (228 v~(-2) + 1872 + 228 v"2) y~(-2) + (5988 v~(-1) + 5988 v) y~(-1)
+ (1872 v~(-2) + 15552 + 1872 v~2) + (5988 v~ (-1) + 5988 v) y + (228 v~ (-2) + 1872 + 228 v"2) y~2 ] r~(23/12)
1 q~(23/12)

+ L

4y7(-2) +32+47y2

+ [ (4 vi(-2) + 998 + 4 v°2) y~(-2) + (1136 v~(-1) + 1136 v) y~(-1) + (32 v"(-2) + 8068 + 32 v"2)

+ (1136 v (-1) + 1136 v) y + (4 v°(-2) + 998 + 4 v'2) y'2 1

+ [ (998 v~(-2) + 8068 + 998 v~2) y~(-2) + (11792 v~(-1) + 11792 v) y~(-1)

+ (8068 v~(-2) + 65355 + 8068 v-2) + (11792 v~(-1) + 11792 v) y + (998 v~(-2) + 8068 + 998 v"2) y"2 ] r"2
1q2

Partition function for (4)(4)(4):

+ (1 v(-2) +3+1v2)
+ (3 vi(-2) + 18 + 3 v°2) r"2

+ [
6 r~(1/6)
+ (6 v-(-2) + 60 + 6 v°2) r~(7/6)
1 q~(1/6)
+ [
[Av(-1) +1v)y(-1) +20+ (L v (-1) +1v) y]r(1/4)
+ [ (B v"(-1) + 3 v) y"(-1) + (20 v"(-2) + 228 + 20 v°2) + (3 v°(-1) + 3 v) y 1 r~(5/4)
1 q7(1/4)
+ [
21 " (1/3)
+ (21 v°(-2) + 261 + 21 v"2) r~(4/3)
1 q7(1/3)
+ [
[ (6 vi(-1) +6v) y(-1) +24 + (6 v°(-1) + 6 v) y 1 r"(5/12)
+ [ (60 v~ (-1) + 60 v) y~(-1) + (24 v~(-2) + 192 + 24 v~2) + (60 v~(-1) + 60 v) y 1 r~(17/12)
1 q~(5/12)
+
[ (20 v°(-1) + 20 v) y~(-1) + 60 + (20 v"(-1) + 20 v) y 1 r~(1/2)
+ [ (228 v (-1) + 228 v) y~(-1) + (60 v~(-2) + 684 + 60 v°2) + (228 v~(-1) + 228 v) y ] r"(3/2)
1 q7(1/2)
+ [
[ (21 v°(-1) + 21 v) y°(-1) + 84 + (21 v (-1) + 21 v) y ] r~(7/12)
+ [ (261 v~ (-1) + 261 v) y~(-1) + (84 v"(-2) + 876 + 84 v°2) + (261 v"(-1) + 261 v) y 1 r~(19/12)
1 q°(7/12)
+
[ (24 v°(-1) + 24 v) y~(-1) + 117 + (24 v"(-1) + 24 v) y 1 ©~(2/3)
+ [ (192 vo(-1) + 192 v) y~(-1) + (117 v~(-2) + 1206 + 117 v°2) + (192 v~(-1) + 192 v) y ] r"(5/3)
1 q7(2/3)
+ [
[ (60 v*(-1) + 60 v) y~(-1) + 240 + (60 v~(-1) + 60 v) y 1 r~(3/4)
+ [ (684 v~ (-1) + 684 v) y~(-1) + (240 v~(-2) + 2256 + 240 v"2) + (684 v~(-1) + 684 v) y ] r"(7/4)
1 q~(3/4)
+
[ (84 vo(-1) + 84 v) y~(-1) + 108 + (84 v~(-1) + 84 v) y 1 =~(5/6)
+ [ (876 v"(-1) + 876 v) y~(-1) + (108 v"(-2) + 1080 + 108 v°2) + (876 v~(-1) + 876 v) y 1 r~(11/6)
1 q°(5/6)
+ [
[ (117 v~ (-1) + 117 v) y (-1) + 468 + (117 v~(-1) + 117 v) y 1 =~ (11/12)
+ [ (1206 v~(-1) + 1206 v) y~(-1) + (468 v~(-2) + 3888 + 468 v°2) + (1206 v~ (-1) + 1206 v) y 1 r~(23/12)
1 q~(11/12)

+ [

1y°(-2) +3+ 1732

+ [ (1 vi(-2) +3+1v'2) y(-2) + (240 v™(-1) + 240 v) y~(-1) + (3 v™(-2) + 1076 + 3 v"2)

+ (240 v°(-1) + 240 v) y+ (1 v°(-2) +3+1v2) y21r

+ [ (B v (-2) + 18 + 3 v"2) y~(-2) + (2256 v~(-1) + 2256 v) y~(-1) + (1076 v~(-2) + 8721 + 1076 v"2)
+ (2266 v~(-1) + 2266 v) y + (3 v°(-2) + 18 + 3 v"2) y°2 ] r™2

Iq

+

[ (108 v~(-1) + 108 v) y~(-1) + 432 + (108 v~(-1) + 108 v) y 1 r~(13/12)

q~(13/12)
+ [

[6y(-2) +60+6y2]r(1/6)
+ [ (6 v°(-2) + 60 + 6 v°2) y~(-2) + (468 v~(-1) + 468 v) y~(-1) + (60 v~(-2) + 816 + 60 v"2)
+ (468 v~ (-1) + 468 v) y + (6 v°(-2) + 60 + 6 v°2) y"2 1 r~(7/6)

1 q°(7/6)
+ [
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[20 yo(-2) + (8 v°(-1) + 3 v) y~(-1) + 228 + (3 v°(-1) + 3 v) y + 20 y°2 1 r"~(1/4)
+ [ (20 v~(-2) + 228 + 20 v"2) y~(-2) + (1076 v~(-1) + 1076 v) y~(-1) + (228 v~(-2) + 3312 + 228 v"2)
+ (1076 v~(-1) + 1076 v) y + (20 v~(-2) + 228 + 20 v"2) y~2 ] r~(5/4)

1 q~(5/4)
+

[ 21 y~(-2) + 261 + 21 y°2 1 r~(1/3)
+ [ (21 vo(-2) + 261 + 21 v°2) y~(-2) + (432 v~ (-1) + 432 v) y~(-1) + (261 v~(-2) + 3429 + 261 v"2)
+ (432 v°(-1) + 432 v) y + (21 v™(-2) + 261 + 21 v"2) y~ 2 ] r~(4/3)

1 q°(4/3)
+
[ 24 y"(-2) + (60 v(-1) + 60 v) y~(-1) + 192 + (60 v"(-1) + 60 v) y + 24 y"2 1 r"(5/12)
+ [ (24 vo(-2) + 192 + 24 v°2) y~(-2) + (816 v~(-1) + 816 v) y~(-1) + (192 v~(-2) + 2400 + 192 v"2)
+ (816 v (-1) + 816 v) y + (24 v~(-2) + 192 + 24 v"2) y"2 1 r~(17/12)

1 q°(17/12)
+

[ 60 y~(-2) + (228 v~ (-1) + 228 v) y~(-1) + 684 + (228 v~(-1) + 228 v) y + 60 y~2 1 r~(1/2)
+ [ (60 v~(-2) + 684 + 60 v~2) y~(-2) + (3312 v~(-1) + 3312 v) y~(-1) + (684 v~(-2) + 7884 + 684 v°2)
+ (3312 v~(-1) + 3312 v) y + (60 v"(-2) + 684 + 60 v"2) y"2 1 r~(3/2)

1 q7(3/2)
+

[ 84 y-(-2) + (261 v~(-1) + 261 v) y~(-1) + 876 + (261 v~(-1) + 261 v) y + 84 y~2 ] r~(7/12)
+ [ (84 v~(-2) + 876 + 84 v~2) y~(-2) + (3429 v~(-1) + 3429 v) y~(-1) + (876 v~(-2) + 9876 + 876 v"2)
+ (3429 v~ (-1) + 3429 v) y + (84 v~ (-2) + 876 + 84 v~2) y"2 ] r~(19/12)

1 q7(19/12)
+ [

[ 117 y7(-2) + (192 v~ (-1) + 192 v) y~(-1) + 1206 + (192 v~ (-1) + 192 v) y + 117 y~2 1 r~(2/3)
+ [ (117 v~ (-2) + 1206 + 117 v°2) y~(-2) + (2400 v~(-1) + 2400 v) y~(-1)
+ (1206 v~(-2) + 12564 + 1206 v~2) + (2400 v~(-1) + 2400 v) y + (117 v~(-2) + 1206 + 117 v°2) y~2 ] r~(5/3)
1 q°(5/3)
+

[ 240 y~(-2) + (684 v~(-1) + 684 v) y~(-1) + 2256 + (684 v~(-1) + 684 v) y + 240 y"2 ] r~(3/4)
+ [ (240 v~(-2) + 2256 + 240 v~2) y~(-2) + (7884 v~(-1) + 7884 v) y~(-1)
+ (2256 v~(-2) + 21552 + 2256 v~2) + (7884 v~(-1) + 7884 v) y + (240 v~(-2) + 2256 + 240 v"2) y"2 1 r~(7/4)
1 q7(7/4)
+

[ 108 y~(-2) + (876 v~(-1) + 876 v) y~(-1) + 1080 + (876 v~(-1) + 876 v) y + 108 y2 1 r~(5/6)
+ [ (108 v~(-2) + 1080 + 108 v~2) y~(-2) + (9876 v~(-1) + 9876 v) y~(-1)
+ (1080 v~(-2) + 10800 + 1080 v~2) + (9876 v~(-1) + 9876 v) y + (108 v~(-2) + 1080 + 108 v°2) y~2 1 r~(11/6)

1 q7(11/6)
+

[ 468 y~(-2) + (1206 v~(-1) + 1206 v) y~(-1) + 3888 + (1206 v~(-1) + 1206 v) y + 468 y"2 1 r~(11/12)
+ [ (468 v"(-2) + 3888 + 468 v°2) y~(-2) + (12564 v~(-1) + 12564 v) y~(-1)
+ (3888 v~(-2) + 32832 + 3888 v"2) + (12564 v~(-1) + 12564 v) y + (468 v~(-2) + 3888 + 468 v"2) y"2 1 r~(23/12)
1 q7(23/12)

+ [

3 y°(-2) + 18 + 3 y°2

+ [ (B v7(-2) + 1076 + 3 v-2) y~(-2) + (2256 v~(-1) + 2256 v) y~(-1) + (18 v~(-2) + 8721 + 18 v"2)

+ (2256 v~ (-1) + 2256 v) y + (3 v°(-2) + 1076 + 3 v"2) y2 1«

+ [ (1076 v~(-2) + 8721 + 1076 v~2) y~(-2) + (215562 v~(-1) + 21552 v) y~(-1)

+ (8721 v~(-2) + 71055 + 8721 v"2) + (21552 v~(-1) + 21552 v) y + (1076 v~(-2) + 8721 + 1076 v"2) y"2 ] r"2
1q°2

Partition function for (3)(3)(8):

+ (1 v(-2) +3+1v2)r
+ (3 v°(-2) + 19 + 3 v°2) r"2

C

7 r~(1/5)
+ (7 v (-2) + 90 + 7 v°2) r~(6/5)

1 q~(1/5)
+

[{@v(-1) +1v) y(-1) +20 + (1 v°(-1) +1v) y 1 (1/4)
+ [ (B vi(-1) +3v) yo(-1) + (20 v~ (-2) + 228 + 20 v°2) + (3 v~(-1) + 3 v) y 1 r~(5/4)
1 q°(1/4)
+
38 r~(2/5)
+ (38 v~ (-2) + 472 + 38 v"2) r~(7/5)

1 q~(2/5)
+
L v(-1) +7v) yo(-1) +28 + (7T v°(-1) + 7 v) y 1 r~(9/20)
+ [ (90 v*(-1) + 90 v) y~(-1) + (28 v~(-2) + 304 + 28 v"2) + (90 v~(-1) + 90 v) y 1 r~(29/20)
1 q°(9/20)
+ [

[ (20 v"(-1) + 20 v) y~(-1) + (20 v"(-1) + 20 v) y ] r"(1/2)
+ [ (228 v"(-1) + 228 v) y~(-1) + (228 v"(-1) + 228 v) y 1 r~(3/2)
1 q7(1/2)
+ [
112 r~(3/5)
+ (112 v~ (-2) + 1216 + 112 v"2) r~(8/5)

1 q°(3/5)
+

[ (38 v-(-1) + 38 v) y~(-1) + 152 + (38 v~(-1) + 38 v) y 1 r~(13/20)
+ [ (472 v~ (-1) + 472 v) y~(-1) + (152 v~(-2) + 1584 + 152 v~2) + (472 v~ (-1) + 472 v) y 1 r~(33/20)
1 q~(13/20)
+

[ (28 v°(-1) + 28 v) y~(-1) + (28 v~(-1) + 28 v) y 1 r~(7/10)
+ [ (304 v"(-1) + 304 v) y~(-1) + (304 v"(-1) + 304 v) y 1 =~(17/10)

1 q~(7/10)
+ [
143 r~(4/5)
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+ (143 v~(-2) + 1431 + 143 v~2) r~(9/5)

1 q~(4/5)
+ [

[ (112 v~ (-1) + 112 v) y~(-1) + 448 + (112 v~(-1) + 112 v) y 1 r~(17/20)
+ [ (1216 v~(-1) + 1216 v) y~(-1) + (448 v~(-2) + 3968 + 448 v-2) + (1216 v~(-1) + 1216 v) y ] r~(37/20)
1 q"(17/20)
+ [
[ (162 v~ (-1) + 152 v) y~(-1) + (162 v~(-1) + 152 v) y 1 r~(9/10)
+ [ (1584 v~(-1) + 1584 v) y~(-1) + (1584 v~(-1) + 1584 v) y 1 r~(19/10)

1 q°(9/10)
+ [
1y°(-2) + 3+ 1752
+ [ (1 v(-2) +3+1v"2) y°(-2) + (3 v'(-2) + 1110 + 3 v"2) + (1 v°(-2) + 3+ 1+v™2) y2 1~
+ [ (B vi(-2) +19 + 3 v°2) y~(-2) + (1110 v~ (-2) + 9013 + 1110 v"2) + (3 v"(-2) + 19 + 3 v"2) y"2 ] r"2

1q
+

[ (143 v~(-1) + 143 v) y~(-1) + 572 + (143 v~ (-1) + 143 v) y 1 r~(21/20)
q"(21/20)
+

[ (448 v~(-1) + 448 v) y~(-1) + (448 v~(-1) + 448 v) y ] r~(11/10)
q7(11/10)
+ [

[7y°(-2) +90 +7y-21] £ (1/5)
+ [ (7 vi(=2) + 90 + 7 v°2) y~(-2) + (90 v~(-2) + 1300 + 90 v=2) + (7 v"(-2) + 90 + 7 v°2) y~2 1 r~(6/5)
1 q~(6/5)
+ [

[20 y°(-2) + (3 v"(-1) + 3 v) y~(-1) + 228 + (83 v"(-1) + 3 v) y + 20 y"2 1 r~(1/4)
+ [ (20 v°(-2) + 228 + 20 v°2) y°(-2) + (1110 v~(-1) + 1110 v) y~(-1) + (228 v~(-2) + 3448 + 228 v°2)
+ (1110 v (-1) + 1110 v) y + (20 v~(-2) + 228 + 20 v"2) y~2 ] r~(5/4)

1 q(5/4)
+

[ (572 v~(-1) + 572 v) y~(-1) + (572 v~(-1) + 572 v) y 1 r~(13/10)

q(13/10)
+ L

[ 38 y~(-2) + 472 + 38 y~2 1 r~(2/5)
+ [ (38 v~(-2) + 472 + 38 v°2) y~(-2) + (472 v~(-2) + 5968 + 472 v"2) + (38 v~(-2) + 472 + 38 v°2) y"2 ] £~ (7/5)
1 q~(7/5)
+

[ 28 y°(-2) + (90 v*(-1) + 90 v) y~(-1) + 304 + (90 v"(-1) + 90 v) y + 28 y"2 1 r~(9/20)
+ [ (28 v~(-2) + 304 + 28 v~2) y~(-2) + (1300 v~ (-1) + 1300 v) y~(-1) + (304 v~(-2) + 3872 + 304 v~2)
+ (1300 v~(-1) + 1300 v) y + (28 v"(-2) + 304 + 28 v*2) y"2 ] r~(29/20)

1 q7(29/20)
+ [

[ (228 v~(-1) + 228 v) y~(-1) + (228 v"(-1) + 228 v) y ] r"(1/2)
+ [ (3448 v~(-1) + 3448 v) y~(-1) + (3448 v~ (-1) + 3448 v) y 1 r~(3/2)

1 q7(3/2)
+

[ 112 y~(-2) + 1216 + 112 y°2 1 r~(3/5)
+ [ (112 vo(-2) + 1216 + 112 v"2) y~(-2) + (1216 v~(-2) + 13238 + 1216 v"2) + (112 v"(-2) + 1216 + 112 v"2) y~2 1 r"(8/5)
1 q~(8/5)
+ L

[ 152 y~(-2) + (472 v~(-1) + 472 v) y~(-1) + 1584 + (472 v~ (-1) + 472 v) y + 162 y~2 ] r~(13/20)
+ [ (152 v"(-2) + 1584 + 152 v"2) y~(-2) + (5968 v~(-1) + 5968 v) y~(-1) + (1584 v~(-2) + 16928 + 1584 v"2)
+ (5968 v~(-1) + 5968 v) y + (1562 v~(-2) + 1584 + 152 v"2) y~2 1 r~(33/20)

1 q7(33/20)
+ [

[ (304 v~(-1) + 304 v) y"(-1) + (304 v~(-1) + 304 v) y 1 r"(7/10)
+ [ (3872 v~(-1) + 3872 v) y~(-1) + (3872 v~ (-1) + 3872 v) y 1 r~(17/10)

1 q°(17/10)
+ L

[ 143 y~(-2) + 1431 + 143 y~2 ] r"(4/5)
+ [ (143 v™(-2) + 1431 + 143 v"2) y~(-2) + (1431 v~(-2) + 14327 + 1431 v°2) + (143 v~(-2) + 1431 + 143 v"2) y"2 1 r"(9/5)
1 q°(9/5)
+ [

[ 448 y~(-2) + (1216 v~(-1) + 1216 v) y~(-1) + 3968 + (1216 v~(-1) + 1216 v) y + 448 y~2 1 r~(17/20)
+ [ (448 v"(-2) + 3968 + 448 v"2) y~(-2) + (13238 v"(-1) + 13238 v) y~(-1) + (3968 v~(-2) + 35288 + 3968 v"2)
+ (13238 v~(-1) + 13238 v) y + (448 v~(-2) + 3968 + 448 v°2) y~2 1 r~(37/20)

1 q°(37/20)
+ L

[ (1584 v~(-1) + 1584 v) y~(-1) + (1584 v~(-1) + 1584 v) y 1 r~(9/10)
+ [ (16928 v~(-1) + 16928 v) y~(-1) + (16928 v~(-1) + 16928 v) y 1 r~(19/10)

1 q~(19/10)
+ [
3 y7(-2) +19 + 3 y°2
+ [ (3 v™(-2) + 1110 + 3 v"2) y~(-2) + (19 v~(-2) + 9013 + 19 v"2) + (3 v*(-2) + 1110 + 3 v°2) y2 1 r
+ [ (1110 v~(-2) + 9013 + 1110 v*2) y~(-2) + (9013 v~ (-2) + 73397 + 9013 v°2) + (1110 v~(-2) + 9013 + 1110 v°2) y*2 ] r"2
1q2

Partition function for (2)(6)(6):

+ (1 v(-2) +3+1v2)
+ (3 vi(-2) + 18 + 3 v°2) r"2

+ L
2 r~(1/8)
+ (2 v°(-2) + 20 + 2 v°2) r"(9/8)

1 q7(1/8)
+

[Av(-1) +1v) y(-1) +32+ (1 v'(-1) +1v) y]1r(1/4)
+ [ (Bv(-1) +3v) y (1) + (32 v™(-2) + 368 + 32 v°2) + (B v™(-1) +3 v) y 1 r"(56/4)
1 q7(1/4)
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+ [
[(2v(-1) +2v) yo(-1) + 20 + (2 v-(-1) + 2 v) y 1 £~ (3/8)
+ [ (20 vo(-1) + 20 v) y"(-1) + (20 v"(-2) + 220 + 20 v"2) + (20 v~(-1) + 20 v) y ] r~(11/8)
1 q°(3/8)
+ [
[ (32 v°(-1) + 32 v) y~(-1) + 114 + (32 v"(-1) + 32 v) y 1 r~(1/2)
+ [ (368 v~ (-1) + 368 v) y~(-1) + (114 v~(-2) + 1212 + 114 v"2) + (368 v~(-1) + 368 v) y 1 r"(3/2)
1 q°(1/2)
+ [
[ (20 v°(-1) + 20 v) y~(-1) + 100 + (20 v~(-1) + 20 v) y ] =~ (5/8)
+ [ (220 v (-1) + 220 v) y~(-1) + (100 v"(-2) + 1076 + 100 v°2) + (220 v~(-1) + 220 v) y 1 r~(13/8)
1 q°(5/8)
+ [
[ (114 v~(-1) + 114 v) y~(-1) + 384 + (114 v~(-1) + 114 v) y 1 r~(3/4)
+ [ (1212 v~(-1) + 1212 v) y~(-1) + (384 v~(-2) + 3648 + 384 v°2) + (1212 v~(-1) + 1212 v) y 1 r~(7/4)
1 q~(3/4)
+ [
[ (100 v~(-1) + 100 v) y~(-1) + 272 + (100 v~(-1) + 100 v) y 1 =~(7/8)
+ [ (1076 v~(-1) + 1076 v) y~(-1) + (272 v~(-2) + 2352 + 272 v~2) + (1076 v~ (-1) + 1076 v) y 1 r~(15/8)
1 q°(7/8)
+ [
1y°(-2) +3+17y°2
+ [ (1 v(-2) +3+1v2) y(-2) + (384 v~ (-1) + 384 v) y (-1) + (3 v~(-2) + 1570 + 3 v"2)
+ (384 v°(-1) +38¢ v) y+ (1 v (-2) +3+1v2) y2]r
+ [ (3 v (-2) + 18 + 3 v"2) y~(-2) + (3648 v~(-1) + 3648 v) y~(-1) + (1570 v"(-2) + 12615 + 1570 v"2)
+ (3648 v~(-1) + 3648 v) y + (3 v™(-2) + 18 + 3 v"2) y'2 ] r"2
Igq
+ [
[2y(-2) +20+27y2] r(1/8)
+ [ (2 v (-2) + 20 + 2 v"2) y°(-2) + (272 v"(-1) + 272 v) y~(-1) + (20 v"(-2) + 506 + 20 v°2)
+ (272 v (-1) + 272 v) y + (2 v°(-2) + 20 + 2 v°2) y°2 ] £~(9/8)
1 q°(9/8)
+ [
[32 y7(-2) + (3 v"(-1) + 3 v) y~(-1) + 368 + (3 v°(-1) + 3 v) y + 32 y°2 1 =~(1/4)
+ [ (32 v~(-2) + 368 + 32 v~2) y~(-2) + (1570 v~(-1) + 1570 v) y~(-1) + (368 v~(-2) + 5216 + 368 v"2)
+ (1570 v~(-1) + 1570 v) y + (32 v"(-2) + 368 + 32 v°2) y"2 ] r~(5/4)
1 q~(5/4)
+ [
[ 20 y*(-2) + (20 v~(-1) + 20 v) y~(-1) + 220 + (20 v~(-1) + 20 v) y + 20 y"2 ] r"(3/8)
+ [ (20 v~ (-2) + 220 + 20 v"2) y~(-2) + (506 v~(-1) + 506 v) y~(-1) + (220 v~(-2) + 2740 + 220 v°2)
+ (506 v~(-1) + 506 v) y + (20 v~(-2) + 220 + 20 v*2) y"2 ] r~(11/8)
1 q7(11/8)
+ [
[ 114 y~(-2) + (368 v~(-1) + 368 v) y"(-1) + 1212 + (368 v"(-1) + 368 v) y + 114 y"2 ] r*(1/2)
+ [ (114 v (-2) + 1212 + 114 v"2) y~(-2) + (5216 v~ (-1) + 5216 v) y~(-1)
+ (1212 v~(-2) + 13896 + 1212 v"2) + (5216 v~ (-1) + 5216 v) y + (114 v~ (-2) + 1212 + 114 v"2) y*2 1 r~(3/2)
1 q°(3/2)
+ [
[ 100 y~(-2) + (220 v~(-1) + 220 v) y~(-1) + 1076 + (220 v~(-1) + 220 v) y + 100 y"2 1 r~(5/8)
+ [ (100 v~ (-2) + 1076 + 100 v°2) y~(-2) + (2740 v~(-1) + 2740 v) y~(-1)
+ (1076 v~(-2) + 11716 + 1076 v~2) + (2740 v~(-1) + 2740 v) y + (100 v~(-2) + 1076 + 100 v"2) y~2 1 r~(13/8)
1 q°(13/8)
+ [
[ 384 y~(-2) + (1212 v~ (-1) + 1212 v) y~(-1) + 3648 + (1212 v~ (-1) + 1212 v) y + 384 y"2 ] r~(3/4)
+ [ (384 v~(-2) + 3648 + 384 v"2) y~(-2) + (13896 v~(-1) + 13896 v) y~(-1)
+ (3648 v~(-2) + 35200 + 3648 v~2) + (13896 v~(-1) + 13896 v) y + (384 v~ (-2) + 3648 + 384 v°2) y 2 1 r (7/4)
1 q°(7/4)
+ [
[ 272 y~(-2) + (1076 v~ (-1) + 1076 v) y~(-1) + 2352 + (1076 v"(-1) + 1076 v) y + 272 y*2 1 r~(7/8)
+ [ (272 v~ (-2) + 2352 + 272 v"2) y~(-2) + (11716 v~(-1) + 11716 v) y~(-1)
+ (2852 v~(-2) + 20880 + 2352 v°2) + (11716 v~(-1) + 11716 v) y + (272 v~ (-2) + 2352 + 272 v"2) y~2 ] r~(15/8)
1 q(15/8)
L

+
3 y°(-2) + 18 + 3 y°2

+ [ (B v-(-2) + 1570 + 3 v~2) y~(-2) + (3648 v~(-1) + 3648 v) y~(-1) + (18 v~(-2) + 12615 + 18 v~2)

+ (3648 v~(-1) + 3648 v) y + (3 v°(-2) + 1670 + 3 v"2) y2 1 r

+ [ (1570 v~(-2) + 12615 + 1570 v~2) y~(-2) + (35200 v~(-1) + 35200 v) y~(-1)

+ (12615 v~ (-2) + 102701 + 12615 v°2) + (35200 v~(-1) + 35200 v) y + (1570 v"(-2) + 12615 + 1570 v"2) y 2 1 r"2
1q°2

Partition function for (2)(4)(10):

1
+ (1 v(-2) +3+1v2
+ (3 v°(-2) + 18 + 3 v°2) r"2

C
3 r~(1/6)
+ (3 v (-2) + 37 + 3 v~2) r~(7/6)
1 q°(1/6)
+
[(@v(-1) +1v) y(-1) +26 + (1 v°(-1) + 1 v) y 1 (1/4)
+ [ (B v(-1) +3v) y(-1) + (26 v~ (-2) + 300 + 26 v"2) + (3 v~(-1) + 3 v) y 1 r~(5/4)
1 q~(1/4)
+ L
9 r~(1/3)
+ (9 v (-2) + 117 + 9 v°2) r~(4/3)
1 q7(1/3)
+
[ (B v(-1) +3v) y(-1) +20 + (B3 v"(-1) + 3 v) y 1 r~(5/12)
+ [ (37 vo(-1) + 37 v) y"(-1) + (20 v~(-2) + 220 + 20 v"2) + (37 v~(-1) + 37 v) y 1 r~(17/12)
1 q7(5/12)
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+ [
[ (26 v"(-1) + 26 v) y"(-1) + 76 + (26 v"(-1) + 26 v) y 1 r~(1/2)
+ [ (300 v~(-1) + 300 v) y~(-1) + (75 v~(-2) + 849 + 75 v~2) + (300 v~(-1) + 300 v) y 1 r~(3/2)
1 q7(1/2)
+ [
L@ v(-1) +9v) y(-1) +72 + (9 v°(-1) + 9 v) y 1 r"(7/12)
+ [ (117 v (-1) + 117 v) y~(-1) + (72 v~ (-2) + 792 + 72 v"2) + (117 v~ (-1) + 117 v) y ] r~(19/12)
1 q°(7/12)
+ [
[ (20 v°(-1) + 20 v) y"(-1) + 93 + (20 v (-1) + 20 v) y ] r~(2/3)
+ [ (220 v*(-1) + 220 v) y~(-1) + (93 v~(-2) + 933 + 93 v"2) + (220 v~(-1) + 220 v) y 1 r~(5/3)
1 q7(2/3)
+ [
[ (75 v°(-1) + 75 v) y~(-1) + 220 + (756 v~(-1) + 756 v) y 1 r~(3/4)
+ [ (849 v~(-1) + 849 v) y~(-1) + (220 v"(-2) + 2204 + 220 v°2) + (849 v~ (-1) + 849 v) y 1 r~(7/4)
1 q~(3/4)
+ [
[ (72 v°(-1) + 72 v) y~(-1) + 234 + (72 v~(-1) + 72 v) y 1 £~(5/6)
+ [ (792 v~ (-1) + 792 v) y~(-1) + (234 v~(-2) + 2124 + 234 v°2) + (792 v~(-1) + 792 v) y ] r~(11/6)
1 q°(5/6)
+ [
[ (93 vo(-1) + 93 v) y~(-1) + 316 + (93 v~(-1) + 93 v) y 1 r~(11/12)
+ [ (933 vo(-1) + 933 v) y~(-1) + (316 v~ (-2) + 2684 + 316 v~2) + (933 v~ (-1) + 933 v) y ] r~(23/12)
1 q~(11/12)
r

+
1y(-2) +3+1y2
+ [ (L v(-2) +3+1v'2) y(-2) + (220 v"(-1) + 220 v) y~(-1) + (3 v~(-2) + 1143 + 3 v"2)
+ (220 v°(-1) +220 v) y + (1 v°(-2) + 3+ 1v2) y2]1r
+ [ (3 v (-2) + 18 + 3 v™2) y~(-2) + (2204 v~(-1) + 2204 v) y~(-1) + (1143 v~(-2) + 9291 + 1143 v-2)
+ (2204 vo(-1) + 2204 v) y + (3 v°(-2) + 18 + 3 v"2) y"2 ] r"2

Tq
+

[ (234 v~(-1) + 234 v) y~(-1) + 360 + (234 v~(-1) + 234 v) y 1 r~(13/12)

q~(13/12)
+ [

[3y°(-2) +37 +3 y21 £ (1/6)
+ [ (3 v™(-2) + 37 + 3 v"2) y~(-2) + (316 v"(-1) + 316 v) y~(-1) + (37 v~(-2) + 810 + 37 v°2)
+ (316 v°(-1) + 316 v) y + (8 v°(-2) + 37 + 3 v"2) y"2 ] r~(7/6)

1 q~(7/6)
+ [

[26 y7(-2) + (3 v (-1) + 3 v) y~(-1) + 300 + (3 v°(-1) +3 v) y + 26 y"2 1 r~(1/4)
+ [ (26 v (-2) + 300 + 26 v™2) y~(-2) + (1143 v~(-1) + 1143 v) y~(-1) + (300 v~(-2) + 4236 + 300 v°2)
+ (1143 v~(-1) + 1143 v) y + (26 v"(-2) + 300 + 26 v*2) y"2 1 r~(5/4)

1 q°(5/4)
+ [

[9 y (-2) + 117 + 9 y*2 1 £~(1/3)
+ [ (9 v7(-2) + 117 + 9 v°2) y~(-2) + (360 v~(-1) + 360 v) y~(-1) + (117 v~(-2) + 1557 + 117 v°2)
+ (360 v"(-1) + 360 v) y + (9 v~(-2) + 117 + 9 v"2) y"2 ] r"(4/3)

1 q~(4/3)
+ [

[ 20 y"(-2) + (37 v~ (-1) + 37 v) y~(-1) + 220 + (37 v~(-1) + 37 v) y + 20 y"2 1 r~(5/12)
+ [ (20 v~(-2) + 220 + 20 v™2) y~(-2) + (810 v~(-1) + 810 v) y~(-1) + (220 v~(-2) + 2696 + 220 v~2)
+ (810 v~(-1) + 810 v) y + (20 v~(-2) + 220 + 20 v°2) y"2 ] r~(17/12)

1 q°(17/12)
+ [

[ 756 y7(-2) + (300 v~(-1) + 300 v) y~(-1) + 849 + (300 v-(-1) + 300 v) y + 756 y"2 1 r~(1/2)
+ [ (75 v~ (-2) + 849 + 75 v"2) y~(-2) + (4236 v~(-1) + 4236 v) y~(-1) + (849 v~ (-2) + 9983 + 849 v"2)
+ (4236 v~(-1) + 4236 v) y + (75 v™(-2) + 849 + 75 v°2) y"2 ] r~(3/2)

1 q7(3/2)
+ [

[72 yo(-2) + (117 v~ (-1) + 117 v) y~(-1) + 792 + (117 v~ (-1) + 117 v) y + 72 y~2 ] r~(7/12)
+ [ (72 v~ (-2) + 792 + 72 v*2) y~(-2) + (1657 v~(-1) + 1557 v) y~(-1) + (792 v"(-2) + 8856 + 792 v"2)
+ (1557 v~ (-1) + 1657 v) y + (72 v7(-2) + 792 + 72 v°2) y~2 ] r~(19/12)

1 q~(19/12)
+ [

[ 93 y~(-2) + (220 v"(-1) + 220 v) y~(-1) + 933 + (220 v"(-1) + 220 v) y + 93 y"2 1 r"(2/3)
+ [ (983 v~(-2) + 933 + 93 v~2) y~(-2) + (2696 v~(-1) + 2696 v) y~(-1) + (933 v~(-2) + 9402 + 933 v"2)
+ (2696 v~(-1) + 2696 v) y + (93 v~(-2) + 933 + 93 v°2) y"2 ] r~(5/3)

1 q°(5/3)
+ [

[ 220 y~(-2) + (849 v~(-1) + 849 v) y~(-1) + 2204 + (849 v"(-1) + 849 v) y + 220 y"2 1 r"(3/4)
+ [ (220 v~(-2) + 2204 + 220 v~2) y~(-2) + (9983 v~(-1) + 9983 v) y~(-1)
+ (2204 v~(-2) + 22572 + 2204 v"2) + (9983 v~ (-1) + 9983 v) y + (220 v~ (-2) + 2204 + 220 v°2) y*2 1 r~(7/4)
1 q7(7/4)
+ [

[ 284 y~(-2) + (792 v~(-1) + 792 v) y~(-1) + 2124 + (792 v*(-1) + 792 v) y + 234 y"2 ] r"(5/6)
+ [ (234 v (-2) + 2124 + 234 v"2) y~(-2) + (8856 v~(-1) + 8856 v) y~(-1)
+ (2124 v~ (-2) + 19296 + 2124 v°2) + (8856 v~ (-1) + 8856 v) y + (234 v"(-2) + 2124 + 234 v°2) y~2 1 r~(11/6)
1 q°(11/6)
+ [

[ 316 y~(-2) + (933 v~ (-1) + 933 v) y~(-1) + 2684 + (933 v~(-1) + 933 v) y + 316 y~2 ] r~(11/12)
+ [ (316 v"(-2) + 2684 + 316 v°2) y~(-2) + (9402 v~(-1) + 9402 v) y~(-1)
+ (2684 v~(-2) + 23176 + 2684 v~2) + (9402 v~(-1) + 9402 v) y + (316 v~ (-2) + 2684 + 316 v"2) y"2 ] r~(23/12)

1 q~(23/12)
+ L
3 y°(-2) + 18 + 3 y2
+ [ (3 vi(-2) + 1143 + 3 v™2) y~(-2) + (2204 v~(-1) + 2204 v) y~(-1) + (18 v"(-2) + 9291 + 18 v"2)
+ (2204 vo(-1) + 2204 v) y + (3 v°(-2) + 11483 + 3 v'2) y2 1
+ [ (1143 v~(-2) + 9291 + 1143 v"2) y~(-2) + (22572 v~(-1) + 22572 v) y~(-1)
+ (9291 v~ (-2) + 75834 + 9201 v°2) + (22572 v~(-1) + 22572 v) y + (1143 v"(-2) + 9201 + 1143 v"2) y°2 1 r"2

1q°2



224 APPENDIX C. GEPNER MODEL PARTITION FUNCTIONS FOR C =6

Partition function for (2)(3)(18):

+ (1 v (-2) +3+1v2) r
+ (3 v(-2) + 18 + 3 v™2) r2

+ [

1 r~(1/10)
+ (1 v(-2) +9 + 1 v"2) r~(11/10)
1 q°(1/10)
+ [
4 r~(1/5)
+ (4 v~(-2) + 46 + 4 v°2) r~(6/5)
1 q~(1/5)
+ [

[(v(-1) +1v) y(-1) +28 + (1 v°(-1) +1v) y 1 (1/4)
+ [ (Bvi(-1) +3v) yo(-1) + (28 v°(-2) + 316 + 28 v"2) + (8 v~ (-1) + 3 v) y 1 r~(5/4)
1 q°(1/4)
+ [
1 r~(3/10)
+ (1 vo(-2) + 17 + 1 v~2) r~(13/10)

1 q~(3/10)
+ [
[@vi(-1) +1v) gy (-1) +4+ (1 v-(-1) +1v) y] £ (7/20)
+ [ (@ v(-1) +9v) yo(-1) + (4 v°(-2) + 28 + 4 v™2) + (9 v~ (-1) + 9 v) y 1 r~(27/20)
1 q°(7/20)
+ [
21 r"(2/5)
+ (21 v'(-2) + 255 + 21 v"2) r~(7/5)

1 q~(2/5)
+ [

[(4v(-1) +4v) y(-1) + 24 + (4 v°(-1) + 4 v) y 1 r~(9/20)
+ [ (46 vo(-1) + 46 v) y (-1) + (24 v"(-2) + 264 + 24 v°2) + (46 v~(-1) + 46 v) y 1 r~(29/20)
1 q7(9/20)
+ [

[ (28 v°(-1) + 28 v) y~(-1) + 62 + (28 v"(-1) + 28 v) y 1 r~(1/2)
+ [ (316 v°(-1) + 316 v) y~(-1) + (62 v"(-2) + 625 + 62 v°"2) + (316 v~(-1) + 316 v) y 1 r~(3/2)
1 q°(1/2)
+ [
[Av(-1) +1v) y(-1) +4+ (1 v(-1) +1v)y]r(11/20)
+ [ (17 v (-1) + 17 v) y°(-1) + (4 v*(-2) + 60 + 4 v"2) + (17 v"(-1) + 17 v) y 1 r"(31/20)
1 q°(11/20)
+ [

[(4v(-1) +4v) y(-1) + 34 + (4 v-(-1) + 4 v) y ] r~(3/5)
+ [ (28 vo(-1) + 28 v) y~(-1) + (34 v~ (-2) + 363 + 34 v°2) + (28 v-(-1) + 28 v) y 1 r~(8/5)
1 q°(3/5)
+ [

[ (21 v°(-1) + 21 v) y~(-1) + 148 + (21 v"(-1) + 21 v) y 1 r~(13/20)
+ [ (255 v~ (-1) + 255 v) y~(-1) + (148 v~(-2) + 1524 + 148 v"2) + (255 v~(-1) + 265 v) y 1 r~(33/20)
1 q°(13/20)
+ [

[ (22 v°(-1) + 24 v) y~(-1) + 81 + (24 v~ (-1) + 2¢ v) y 1 r~(7/10)
+ [ (264 v~ (-1) + 264 v) y~(-1) + (81 v"(-2) + 825 + 81 v°2) + (264 v"(-1) + 264 v) y 1 r~(17/10)

1 q°(7/10)
+ [

[ (62 v-(-1) + 62 v) y~(-1) + 120 + (62 v™(-1) + 62 v) y 1 r~(3/4)
+ [ (6256 v*(-1) + 625 v) y~(-1) + (120 v~(-2) + 1108 + 120 v"2) + (625 v~(-1) + 625 v) y 1 " (7/4)

1 q7(3/4)
+ [

[(4v(-1) +4v) y(-1) + 25 + (4 v°(-1) + 4 v) y ] r~(4/5)
+ [ (60 v~ (-1) + 60 v) y (-1) + (25 v"(-2) + 230 + 25 v°2) + (60 v~(-1) + 60 v) y 1 r~(9/5)

1 q°(4/5)
+ [

[ (3¢ v°(-1) + 34 v) y~(-1) + 152 + (34 v"(-1) + 34 v) y 1 r~(17/20)
+ [ (363 v~(-1) + 363 v) y~(-1) + (152 v~(-2) + 1324 + 152 v~2) + (363 v~ (-1) + 363 v) y 1 r~(37/20)
1 q°(17/20)
+ [

[ (148 v~(-1) + 148 v) y~(-1) + 365 + (148 v~(-1) + 148 v) y 1 r~(9/10)
+ [ (1524 v~(-1) + 1524 v) y~(-1) + (365 v~(-2) + 3248 + 365 v"2) + (1524 v~(-1) + 1524 v) y 1 r~(19/10)
1 q(9/10)
+ [

[ (81 vo(-1) + 81 v) y~(-1) + 196 + (81 v~(-1) + 81 v) y 1 r~(19/20)
+ [ (825 v"(-1) + 825 v) y~(-1) + (196 v"(-2) + 1372 + 196 v°2) + (825 v~(-1) + 825 v) y 1 r~(39/20)

1 q°(19/20)
+ [
1y°(-2) +3+17y°2
+ [ (1 v (-2) +3+1v2) y(-2) + (120 v°(-1) + 120 v) y"(-1) + (3 v"(-2) + 980 + 3 v"2)
+ (120 v°(-1) + 120 v) y + (1 v°(-2) + 3+ 1v™2) y2 1~
+ [ (3 v (-2) + 18 + 3 v"2) y~(-2) + (1108 v~(-1) + 1108 v) y~(-1) + (980 v~(-2) + 7859 + 980 v"2)
+ (1108 v~ (-1) + 1108 v) y + (3 v°(-2) + 18 + 3 v™2) y"2 ] r"2

Iaq
+

[ (25 v°(-1) + 25 v) y~(-1) + 172 + (25 v"(-1) + 25 v) y 1 r~(21/20)

q~(21/20)
+ [

[1y°(-2) +9+1y21] r(1/10)
+ [ (1 v(-2) + 9+ 1v'2) y(-2) + (152 v~(-1) + 152 v) y~(-1) + (9 v~(-2) + 266 + 9 v°2)
+ (162 vo(-1) + 152 v) y + (1 v°(-2) + 9 + 1 v°2) y~2 1 r~(11/10)

1 q°(11/10)
+

[ (365 v~(-1) + 365 v) y"(-1) + 436 + (365 v"(-1) + 365 v) y 1 r~(23/20)

q°(23/20)



+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+
3
+
+
+
+

L
[4y~(-2) + 46 + 4 y°2 ] £~(1/5)
[ (4 vo(-2) + 46 + 4 v°2) y~(-2) + (196 v~ (-1) + 196 v) y~(-1) + (46 v~(-2) + 529 + 46 v"2)
(196 v~ (-1) + 196 v) y + (4 v~(-2) + 46 + 4 v"2) y~2 1 =~(6/5)
1 q~(6/5)
L

[28 y(-2) + (3 v"(-1) + 3 v) y*(-1) + 316 + (3 v°(-1) + 3 v) y + 28 y°2 ] r~(1/4)
[ (28 v7(-2) + 316 + 28 v"2) y~(-2) + (980 v~ (-1) + 980 v) y~(-1) + (316 v~(-2) + 3904 + 316 v"2)
(980 v"(-1) + 980 v) y + (28 v"(-2) + 316 + 28 v*2) y'2 1 r"(5/4)
1 q°(5/4)
r
[1y°(-2) +17 + 1 y°2 1 £°(3/10)
[ (1 v (-2) +17 + 1 v°2) y°(-2) + (172 v"(-1) + 172 v) y~(-1) + (17 v"(-2) + 577 + 17 v"2)
(172 v~ (-1) + 172 v) y + (1 v"(-2) + 17 + 1 v"2) y~2 ] r~(13/10)
1 q°(13/10)
L

~(7/20)

[4y°(-2) + (9v(-1) +9v) yo(-1) +28 + (9 v™(-1) +9v) y+4y2]r
(28 v~ (-2) + 680 + 28 v°2)

[ (& vi(-2) + 28 + & v'2) y~(-2) + (266 v"(-1) + 266 v) y~(-1) + (28
(266 v~(-1) + 266 v) y + (4 v~(-2) + 28 + 4 v~2) y~2 1 r~(27/20)
1 q~(27/20)
L

[ 21 y°(-2) + 255 + 21 y°2 1 =~(2/5)
[ (21 v~(-2) + 255 + 21 v"2) y~(-2) + (436 v~(-1) + 436 v) y~(-1) + (255 v~(-2) + 3242 + 255 v~2)
(436 v™(-1) + 436 v) y + (21 v~ (-2) + 255 + 21 v°2) y"2 ] r"(7/5)
1 q~(7/5)

L
[ 24 y~(-2) + (46 v"(-1) + 46 v) y~(-1) + 264 + (46 v"(-1) + 46 v) y + 24 y~2 1 ="(9/20)
[ (28 v~(-2) + 264 + 24 v°2) y~(-2) + (529 v~(-1) + 529 v) y~(-1) + (264 v~(-2) + 3012 + 264 v2)
(529 v~(-1) + 529 v) y + (24 v~(-2) + 264 + 24 v~2) y~2 1 r~(29/20)
1 q7(29/20)
r

[ 62 y°(-2) + (316 v"(-1) + 316 v) y~(-1) + 625 + (316 v"(-1) + 316 v) y + 62 y~2 1 r"(1/2)

[ (62 v~(-2) + 625 + 62 v"2) y~(-2) + (3904 v~(-1) + 3904 v) y~(-1) + (625 v~(-2) + 6458 + 625 v"2)
(3904 v~(-1) + 3904 v) y + (62 v"(-2) + 625 + 62 v°2) y"2 1 r~(3/2)
1 q7(3/2)
N

[4y7(-2) + (17 v"(-1) + 17 v) y~(-1) + 60 + (17 v"(-1) + 17 v) y + 4 y"2 1 £~(11/20)
[ (4 v (-2) + 60 + 4 v2) y~(-2) + (577 v~(-1) + 577 v) y~(-1) + (60 v"(-2) + 900 + 60 v"2)
(577 v"(-1) + 577 v) y + (& v~ (-2) + 60 + 4 v~2) y~2 ] r~(31/20)
1 q7(31/20)
L

[ 34 yo(-2) + (28 v~(-1) + 28 v) y~(-1) + 363 + (28 v~(-1) + 28 v) y + 34 y~2 1 r~(3/5)
[ (32 v=(-2) + 363 + 34 v"2) y~(-2) + (680 v~(-1) + 680 v) y~(-1) + (363 v~(-2) + 3969 + 363 v"2)
(680 v~(-1) + 680 v) y + (34 v~(-2) + 363 + 34 v"2) y"2 ] r~(8/5)
1 q°(8/5)
L
[ 148 y~(-2) + (255 v~(-1) + 255 v) y~(-1) + 1524 + (255 v~(-1) + 255 v) y + 148 y~2 1 r~(13/20)
[ (148 v~(-2) + 1524 + 148 v"2) y~(-2) + (3242 v~(-1) + 3242 v) y~(-1)
(1524 v~(-2) + 16280 + 1524 v~2) + (3242 v~(-1) + 3242 v) y + (148 v~(-2) + 1524 + 148 v~2) y~2 1 r~(33/20)
1 q7(33/20)
L

[ 81 y~(-2) + (264 v~(-1) + 264 v) y~(-1) + 825 + (264 v~(-1) + 264 v) y + 81 y™2 1 r"(7/10)

[ (81 v~(-2) + 825 + 81 v°2) y~(-2) + (3012 v~ (-1) + 3012 v) y~(-1) + (825 v~(-2) + 8577 + 825 v"2)
(3012 v~(-1) + 3012 v) y + (81 v~(-2) + 825 + 81 v~2) y~2 1 r~(17/10)
1 q~(17/10)
L

[ 120 y~(-2) + (625 v"(-1) + 625 v) y~(-1) + 1108 + (625 v"(-1) + 625 v) y + 120 y~2 1 r"(3/4)
[ (120 v™(-2) + 1108 + 120 v"2) y~(-2) + (6458 v™(-1) + 6458 v) y~(-1)
(1108 v~(-2) + 10424 + 1108 v°2) + (6458 v~(-1) + 6458 v) y + (120 v~(-2) + 1108 + 120 v°2) y~2 1 r"(7/4)
1 q°(7/4)
L

[ 25 y~(-2) + (60 v~(-1) + 60 v) y~(-1) + 230 + (60 v~(-1) + 60 v) y + 25 y~2 1 =~ (4/5)
[ (25 v=(-2) + 230 + 25 v"2) y~(-2) + (900 v~(-1) + 900 v) y~(-1) + (230 v~(-2) + 2116 + 230 v"2)
(900 v~ (-1) + 900 v) y + (25 v~ (-2) + 230 + 25 v°2) y°2 1 r~(9/5)
1 q~(9/5)
L
[ 152 y~(-2) + (363 v~(-1) + 363 v) y~(-1) + 1324 + (363 v"(-1) + 363 v) y + 152 y~2 1 r~(17/20)

[ (152 v~(-2) + 1324 + 152 v~2) y~(-2) + (3969 v~(-1) + 3969 v) y~(-1)
(1324 v~(-2) + 11908 + 1324 v°2) + (3969 v~ (-1) + 3969 v) y + (152 v~(-2) + 1324 + 152 v~2) y~2 1 r~(37/20)
1 q°(37/20)
L

[ 365 y~(-2) + (1524 v~(-1) + 1624 v) y~(-1) + 3248 + (1524 v~(-1) + 15624 v) y + 365 y~2 1 r~(9/10)
[ (365 v~ (-2) + 3248 + 365 v°2) y~(-2) + (16280 v~(-1) + 16280 v) y~(-1) + (3248 v~(-2) + 20072 + 3248 v"2)
(16280 v~(-1) + 16280 v) y + (365 v~(-2) + 3248 + 365 v°2) y"2 ] r"(19/10)
1 q~(19/10)
L

[ 196 y~(-2) + (825 v~(-1) + 825 v) y~(-1) + 1372 + (825 v"(-1) + 825 v) y + 196 y~2 1 r~(19/20)
[ (196 v~(-2) + 1872 + 196 v°2) y~(-2) + (8577 v~(-1) + 8577 v) y~(-1)
(1372 v~(-2) + 9604 + 1372 v~2) + (8577 v~(-1) + 8577 v) y + (196 v~(-2) + 1372 + 196 v°2) y~2 1 r~(39/20)

1 q7(39/20)
L
y~(-2) + 18 + 3 y°2
[ (8 vi(-2) + 980 + 3 v~2) y~(-2) + (1108 v~(-1) + 1108 v) y~(-1) + (18 v~(-2) + 7859 + 18 v"2)
(1108 v*(-1) + 1108 v) y + (3 v~(-2) + 980 + 3 v°2) y°2 1 r
[ (980 v~(-2) + 7859 + 980 v"2) y~(-2) + (10424 v~(-1) + 10424 v) y~(-1)
(7859 v~(-2) + 63465 + 7859 v~2) + (10424 v~(-1) + 10424 v) y + (980 v"(-2) + 7859 + 980 v°2) y"2 1 r-2

1q°2
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226 APPENDIX C. GEPNER MODEL PARTITION FUNCTIONS FOR C =6

Partition function for (1)(10)(10):

+ (1 v (-2) +3+1v2) r
+ (3 v (-2) +17 + 3 v™2) r2

+ [

2 r~(1/12)

+ (2 v (-2) + 20 + 2 v*2) r~(13/12)
1 q7(1/12)

+ [

4 r~(1/6)

+ (4 v-(-2) + 46 + &4 v°2) " (7/6)

1 q~(1/6)

+ [

[(@v(-1) +1v) y(-1) +22 + (1 v'(-1) +1v) y 1 (1/4)

+ [ (B v (-1) +3v) y (1) + (22 v°(-2) + 260 + 22 v°2) + (3 v~(-1) + 3 v) y 1 r~(5/4)

1 q7(1/4)
+
[(@2v(-1) +2v) yo(-1) +39 + (2 v"(-1) + 2 v) y 1 r(1/3)

+ [ (20 v°(-1) + 20 v) y°(-1) + (39 v™(-2) + 383 + 39 v™2) + (20 v-(-1) + 20 v) y ] r~(4/3)

1 q°(1/3)
+ [
[(&vi(-1) +4v) y(-1) +28 + (4 v (-1) +4v) y]r(5/12)

+ [ (46 vo(-1) + 46 v) y"(-1) + (28 v~ (-2) + 284 + 28 v"2) + (46 v~(-1) + 46 v) y 1 r~(17/12)

1 q7(5/12)
+ [

[ (22 vo(-1) + 22 v) y~(-1) + 50 + (22 v"(-1) + 22 v) y ] r~(1/2)
+ [ (260 v~ (-1) + 260 v) y~(-1) + (50 v~ (-2) + 558 + 50 v"2) + (260 v~ (-1) + 260 v)

1 q°(1/2)
+ [

[ (89 v*(-1) + 39 v) y~(-1) + 176 + (39 v~(-1) + 39 v) y 1 r~(7/12)
+ [ (383 v(-1) + 383 v) y~(-1) + (176 v~(-2) + 1520 + 176 v~2) + (383 v~(-1) + 383

1 q°(7/12)
+ [

[ (28 v"(-1) + 28 v) y~(-1) + 132 + (28 v~(-1) + 28 v) y 1 ©~(2/3)
+ [ (284 v"(-1) + 284 v) y~(-1) + (132 v"(-2) + 1266 + 132 v°2) + (284 v~(-1) + 284

1 q7(2/3)
+

[ (680 v-(-1) + 50 v) y~(-1) + 206 + (50 v~(-1) + 50 v) y 1 r~(3/4)
+ [ (558 v"(-1) + 558 v) y~(-1) + (206 v~(-2) + 1836 + 206 v"2) + (558 v~(-1) + 558

1 q7(3/4)
+ [

[ (176 v~(-1) + 176 v) y~(-1) + 324 + (176 v~ (-1) + 176 v) y 1 r~(5/6)

y 1 r(3/2)

vy 1" (19/12)

v) y 1 £°(5/3)

v) vy 1 (7/4)

+ [ (1520 v~(-1) + 1520 v) y~(-1) + (324 v~(-2) + 2648 + 324 v~2) + (1520 v~(-1) + 1520 v) y 1 r~(11/6)

1 q°(5/6)
+ [

[ (132 v~(-1) + 132 v) y~(-1) + 336 + (132 v~(-1) + 132 v) y 1 r~(11/12)

+ [ (1266 v~(-1) + 1266 v) y~(-1) + (336 v~(-2) + 2664 + 336 v°2) + (1266 v"(-1) + 1266 v) y 1 r~(23/12)

1 q7(11/12)
L
yo(-2) +3 +1y°2

(206 v"(-1) + 206 v) y + (1 v°(-2) + 3+ 1v™2) y21r

[ (3 vi(-2) + 17 + 3 v"2) y~(-2) + (1836 v~(-1) + 1836 v) y~(-1) + (1136 v~(-2) + 9157 + 1136 v"2)

(1836 v (-1) + 1836 v) y + (3 v°(-2) + 17 + 3 v"2) y2 ] r~2
1q
+ [

[2y°(-2) +20+27y°21 £ (1/12)

+
1
+ [ (1 v(-2) +3+ 1v°2) y (-2) + (206 v~(-1) + 206 v) y~(-1) + (3 v"(-2) + 1136 + 3 v"2)
+
+
+

+ [ (2 v'(-2) + 20+ 2v"2) y°(-2) + (324 v~ (-1) + 324 v) y~(-1) + (20 v~ (-2) + 736 + 20 v"2)

+ (328 v°(-1) + 3822 v) ¥ + (2 v°(-2) + 20 + 2 v2) y°2 ] r"(18/12)

1 q~(13/12)
+ [
[4y°(-2) +46 +4y2]1r(1/6)

+ [ (4 v7(-2) +46 + 4 v"2) y~(-2) + (336 v~(-1) + 336 v) y~(-1) + (46 v~(-2) + 652 + 46 v"2)

+ (336 v (-1) + 336 v) y + (& v (-2) + 46 + & v°2) y°2 1 r"(7/6)

1 q°(7/6)
+ [

[22 y7(-2) + (8 v"(-1) + 3 v) y°(-1) + 260 + (3 v"(-1) + 3 v) y + 22 y°2 1 r~(1/4)

+ [ (22 v (-2) + 260 + 22 v~2) y~(-2) + (1136 v~(-1) + 1136 v) y~(-1) + (260 v~(-2) + 3456 + 260 v"2)

+ (1136 v~(-1) + 1136 v) y + (22 v~(-2) + 260 + 22 v"2) y"2 ] r~(5/4)

1 q°(5/4)
C

+

[ 39 y7(-2) + (20 v~(-1) + 20 v) y~(-1) + 383 + (20 v~(-1) + 20 v) y + 39 y~2 1 r~(1/3)
+ [ (39 v~(-2) + 383 + 39 v°2) y~(-2) + (736 v~(-1) + 736 v) y~(-1) + (383 v~(-2) + 4399 + 383 v-2)

+ (736 v°(-1) + 736 v) y + (39 v°(-2) + 383 + 39 v"2) y"2 ] r~(4/3)

1 q7(4/3)
+ [

[ 28 y7(-2) + (46 v~(-1) + 46 v) y~(-1) + 284 + (46 v~(-1) + 46 v) y + 28 y~2 1 r~(5/12)
+ [ (28 v°(-2) + 284 + 28 v°2) y~(-2) + (652 v~(-1) + 652 v) y~(-1) + (284 v~(-2) + 3484 + 284 v°2)

+ (652 vo(-1) + 652 v) y + (28 v~ (-2) + 284 + 28 v"2) y"2 ] r~(17/12)

1 q~(17/12)
+ [

[ 50 y~(-2) + (260 v~(-1) + 260 v) y~(-1) + 558 + (260 v~(-1) + 260 v) y + 50 y~2 1 r"(1/2)
+ [ (50 v~(-2) + 558 + 50 v°2) y~(-2) + (3456 v~(-1) + 3456 v) y~(-1) + (558 v~ (-2) + 6442 + 558 v°2)

+ (3456 v~ (-1) + 3456 v) y + (50 v~(-2) + 558 + 50 v~2) y"2 1 r~(3/2)

1 q7(3/2)
+

[ 176 y~(-2) + (383 v~(-1) + 383 v) y~(-1) + 1520 + (383 v"(-1) + 383 v) y + 176 y~2 1 r~(7/12)

+ [ (176 v~ (-2) + 1520 + 176 v°2) y~(-2) + (4399 v~(-1) + 4399 v) y~(-1)

+ (1520 v~(-2) + 14720 + 1520 v°2) + (4399 v~(-1) + 4399 v) y + (176 v~(-2) + 1520 + 176 v"2) y~2 1 r~(19/12)

1 q°(19/12)



+ [

[ 132 y~(-2) + (284 v~(-1) + 284 v) y~(-1) + 1266 + (284 v"(-1) + 284 v) y +
+ [ (132 v~(-2) + 1266 + 132 v~2) y~(-2) + (3484 v~(-1) + 3484 v) y~(-1)
+ (1266 v~(-2) + 12708 + 1266 v"2) + (3484 v~ (-1) + 3484 v) y + (132 v"(-2) +
1 q°(5/3)
+ [
[ 206 y~(-2) + (558 v~(-1) + 558 v) y~(-1) + 1836 + (558 v"(-1) + 558 v) y +
+ [ (206 v~(-2) + 1836 + 206 v"2) y~(-2) + (6442 v~(-1) + 6442 v) y (-1)
+ (1836 v~(-2) + 17024 + 1836 v°2) + (6442 v~ (-1) + 6442 v) y + (206 v~(-2) +
1 q°(7/9)
+ [
[ 324 y~(-2) + (1520 v~ (-1) + 1520 v) y~(-1) + 2648 + (1520 v"(-1) + 1520 v)
+ [ (324 v~(-2) + 2648 + 324 v"2) y~(-2) + (14720 v~(-1) + 14720 v) y~(-1) +
+ (14720 v~ (-1) + 14720 v) y + (324 v"(-2) + 2648 + 324 v°2) y~2 ] r"(11/6)

1 q~(11/6)
+ [
[ 336 y~(-2) + (1266 v~(-1) + 1266 v) y~(-1) + 2664 + (1266 v~(-1) + 1266 v)
+ [ (336 v*(-2) + 2664 + 336 v"2) y~(-2) + (12708 v~(-1) + 12708 v) y~(-1)
+ (2664 v~(-2) + 21744 + 2664 v~2) + (12708 v~(-1) + 12708 v) y + (336 v~ (-2)
1 q~(23/12)

L
y(-2) + 17 + 3 y°2

(1836 v~(-1) + 1836 v) y + (3 v~(-2) + 1136 + 3 v'2) y2 1 r
[ (1136 v~(-2) + 9157 + 1136 v"2) y~(-2) + (17024 v~(-1) + 17024 v) y~(-1)
(17024 v~(-1) + 17024 v) y + (1136 v~(-2) + 9157 + 1136 v°2) y2 ] r"2
1q°2

Partition function for (1)(8)(13):

1
+ (1 v'(-2) +3+1v2)r
+ (3 vi(-2) + 18 + 3 v°2) "2

+ [
1 r~(2/15)
+ (1 v°(-2) + 9 + 1 v"2) r~(17/15)

1 q~(2/15)
+ [
5 r~(1/5)
+ (5 v (-2) + 70 + 5 v°2) r~(6/5)

1 q°(1/5)
+ [

[(1v(-1) +1v) yo(-1) +20 + (1 v°(-1) + 1 v) y 1 " (1/4)

+
3
+ [ (3 v-(-2) + 1136 + 3 v"2) y~(-2) + (1836 v~(-1) + 1836 v) y~(-1) + (17 v~
+
+
+
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132 y=2 1 r~(2/3)

1266 + 132 v°2) y°2 1 r~(5/3)

206 y°2 1 £~(3/4)

1836 + 206 v°2) y"2 1 r~(7/4)

y + 324 y°2 ] °(5/6)
(2648 v~(-2) + 23232 + 2648 v"2)

y + 336 y"2 1 r~(11/12)

+ 2664 + 336 v"2) y"2 1 r~(23/12)

(-2) + 9157 + 17 v*2)

+ (9157 v~ (-2) + 74391 + 9157 v"2)

+ [ (Bv(-1) +3v) y(-1) + (20 v-(-2) + 228 + 20 v™2) + (8 v'(-1) + 3 v) y 1 r~(5/4)

1 q°(1/4)
+ [

13 r~(1/3)
+ (13 v°(-2) + 140 + 13 v"2) r~(4/3)
1 q°(1/3)
+ [

[(v(-1) +1v) y(-1) +4+ (1 v(-1) +1v) y ] r(23/60)
+ L@ v(-1) +9v) yo(-1) + (4 v°(-2) + 28+ 4 v"2) + (9 v (-1) +9 v) y 1]
1 q~(23/60)
+ [

17 r~(2/5)
+ (17 v~ (-2) + 223 + 17 v"2) r"(7/5)

1 q(2/5)
+ [

L(Bv(-1) +5v) y(-1) +20 + (5 v°(-1) + 5 v) y 1 r~(9/20)
+ [ (70 v"(-1) + 70 v) y~(-1) + (20 v"(-2) + 240 + 20 v~2) + (70 v~(-1) + 70
1 q7(9/20)
+ [

[ (20 v°(-1) + 20 v) y~(-1) + (20 v"(-1) + 20 v) y 1 r"(1/2)
+ [ (228 v~ (-1) + 228 v) y~(-1) + (228 v"(-1) + 228 v) y 1 r~(3/2)
1 q°(1/2)
+ [
36 r~(8/15)
+ (36 v"(-2) + 426 + 36 v"2) r~(23/15)

1 q°(8/15)
+ [

[ (13 v°(-1) + 13 v) y~(-1) + 52 + (13 v"(-1) + 13 v) y 1 r~(7/12)

+ [ (140 v~ (-1) + 140 v) y~(-1) + (52 v~(-2) + 456 + 52 v°2) + (140 v~(-1) +
1 q°(7/12)

+ [

83 r~(3/5)
+ (83 v'(-2) + 894 + 83 v"2) r~(8/5)

1 q°(3/5)
+ [

[(4v(-1) +4v) y7(-1) + (4 v°(-1) + 4 v) y 1 r~(19/30)
+ [ (28 v~(-1) + 28 v) y~(-1) + (28 v"(-1) + 28 v) y 1 r~(49/30)
1 q~(19/30)
+ [

[ (17 v~ (-1) + 17 v) y~(-1) + 68 + (17 v~(-1) + 17 v) y 1 r~(13/20)
+ [ (223 v (-1) + 223 v) y~(-1) + (68 v~(-2) + 756 + 68 v°2) + (223 v~(-1) +
1 q~(13/20)
+ [

[ (20 v°(-1) + 20 v) y~(-1) + (20 v~(-1) + 20 v) y 1 r~(7/10)
+ [ (240 v~ (-1) + 240 v) y~(-1) + (240 v"(-1) + 240 v) y 1 =~(17/10)

1 q~(7/10)
+ [
50 r~(11/15)

" (83/60)

v) y 1 r~(29/20)

140 v) y 1 r~(19/12)

223 v) y 1 r~(33/20)
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+ (50 v~ (-2) + 450 + 50 v"2) r~(26/15)
1 q7(11/15)
+
[ (36 v"(-1) + 36 v) y~(-1) + 144 + (36 v~(-1) + 36 v) y 1 r"~(47/60)
+ [ (426 v (-1) + 426 v) y~(-1) + (144 v (-2) + 1416 + 144 v™2) + (426 v~ (-1) + 426 v) y 1 r~(107/60)
1 q~(47/60)
+
29 r~(4/5)
+ (29 vi(-2) + 279 + 29 v°2) r~(9/5)
1 q~(4/5)
+ [
[ (62 v"(-1) + 52 v) y~(-1) + (62 v~ (-1) + 52 v) y ] r"(5/6)
+ [ (456 v~(-1) + 456 v) y~(-1) + (456 v~(-1) + 456 v) y 1 r~(11/6)
1 q~(5/6)
+
[ (83 v°(-1) + 83 v) y~(-1) + 332 + (83 v~(-1) + 83 v) y 1 r~(17/20)
+ [ (894 v~(-1) + 894 v) y~(-1) + (832 v~(-2) + 2912 + 332 v"2) + (894 v~(-1) + 894 v) y 1 r~(37/20)
1 q~(17/20)
+
[ (68 v"(-1) + 68 v) y~(-1) + (68 v~(-1) + 68 v) y 1 r~(9/10)
+ [ (756 v~ (-1) + 756 v) y~(-1) + (756 v~ (-1) + 756 v) y 1 r~(19/10)
1 q~(9/10)
+
200 r~(14/15)
+ (200 v~(-2) + 1900 + 200 v~2) r~(29/15)
1 q~(14/15)
+ [
[ (50 v"(-1) + 50 v) y~(-1) + 200 + (50 v~(-1) + 50 v) y ] r~(59/60)
+ [ (450 v~(-1) + 450 v) y~(-1) + (200 v~ (-2) + 1400 + 200 v-2) + (450 v~ (-1) + 450 v) y 1 r~(119/60)
1 q~(59/60)
+
1y°(-2) +3+1y°2
+ [ v(-2) +3+1v°2) y(-2) + (3 v'(-2) + 996 + 3 v°2) + (1 v°(-2) +3 +1v2) y2]1r
+ [ (B v (-2) + 18 + 3 v"2) y~(-2) + (996 v~ (-2) + 8042 + 996 v°2) + (3 v°(-2) + 18 + 3 v"2) y"2 ] r"2
]
R q
[ (144 v~(-1) + 144 v) y"(-1) + (144 v~ (-1) + 144 v) y 1 r~(31/30)
q~(31/30)
+

[ (29 v-(-1) + 29 v) y~(-1) + 116 + (29 v~(-1) + 29 v) y ] r~(21/20)
q~(21/20)
+
[ (332 v~(-1) + 332 v) y~(-1) + (332 v~(-1) + 332 v) y 1 r~(11/10)
q"(11/10)
+ [
[1y(-2) +9+1y21 z(2/15)
+ [ (@ (-2) +9+1v72) yo(-2) + (9 v°(-2) + 81 +9 v"2) + (1 v'(-2) +9 + 1 v™2) y2 1 r~(17/15)
1 q~(17/15)
+
[ (200 v~(-1) + 200 v) y~(-1) + 800 + (200 v~(-1) + 200 v) y 1 r~(71/60)
q~(71/60)
+ [
[5y"(-2) +70 + 5 y"2 1 r~(1/5)
+ [ (5 v(-2) + 70 + 5 v"2) y~(-2) + (70 v~(-2) + 1000 + 70 v°2) + (5 v"(-2) + 70 + 5 v°2) y"2 ] r"(6/5)
1 q°(6/5)
+

[ (200 v~(-1) + 200 v) y~(-1) + (200 v~(-1) + 200 v) y 1 r~(37/30)

q7(37/30)
+ [

[20 y(-2) + (3 v°(-1) + 3 v) y*(-1) + 228 + (3 v"(-1) + 3 v) y + 20 y°2 ] r"(1/4)
+ [ (20 v™(-2) + 228 + 20 v"2) y (-2) + (996 v™(-1) + 996 v) y~(-1) + (228 v"(-2) + 2992 + 228 v~2)
+ (996 v°(-1) + 996 v) y + (20 v~(-2) + 228 + 20 v™2) y*2 1 r~(5/4)

1 q°(5/4)
+

[ (116 v~ (-1) + 116 v) y~(-1) + (116 v~(-1) + 116 v) y 1 r~(13/10)
q~(13/10)
+ [

[ 13 y"(-2) + 140 + 13 y*2 ] ©~(1/3)
+ [ (13 v~(-2) + 140 + 13 v~2) y~(-2) + (140 v~(-2) + 1517 + 140 v"2) + (13 v~(-2) + 140 + 13 v°2) y~2 ] r~(4/3)
1 q~(4/3)
+ [

L4y (-2) + (9v™(-1) +9v) yo(-1) + 28 + (9 v°(-1) + 9 v) y + 4 y"2 1 r~(23/60)
+ [ (4 vi(-2) +28 + 4 v"2) y°(-2) + (81 v~ (-1) + 81 v) y~(-1) + (28 v~(-2) + 196 + 28 v"2)
+ (81 vi(-1) +81v) y+ (4 v(-2) +28 + 4 v~2) y2 ] r"(83/60)

1 q~(83/60)
+ [

[ 17 y~(-2) + 223 + 17 y"2 1 r~(2/5)
+ [ (17 v~ (-2) + 223 + 17 v"2) y~(-2) + (223 v~(-2) + 3187 + 223 v"2) + (17 v~ (-2) + 223 + 17 v°2) y"2 1 r~(7/5)
1 q(7/5)
+

[ (800 v~(-1) + 800 v) y~(-1) + (800 v"(-1) + 800 v) y ] r"(43/30)
q"(43/30)
+ L

[ 20 y°(-2) + (70 v"(-1) + 70 v) y~(-1) + 240 + (70 v"(-1) + 70 v) y + 20 y"2 1 r~(9/20)
+ [ (20 v~(-2) + 240 + 20 v"2) y~(-2) + (1000 v~ (-1) + 1000 v) y~(-1) + (240 v~(-2) + 2960 + 240 v"2)
+ (1000 v~ (-1) + 1000 v) y + (20 v~ (-2) + 240 + 20 v~2) y~2 ] r~(29/20)

1 q7(29/20)
+ L

[ (228 v~(-1) + 228 v) y~(-1) + (228 v~ (-1) + 228 v) y ] r"(1/2)
+ [ (2992 v~(-1) + 2992 v) y~(-1) + (2992 v~ (-1) + 2992 v) y 1 r~(3/2)
1 q7(3/2)
+ L
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[ 36 y~(-2) + 426 + 36 y"2 1 r~(8/15)
+ [ (36 v (-2) + 426 + 36 v™2) y~(-2) + (426 v~(-2) + 5041 + 426 v°2) + (36 v"(-2) + 426 + 36 v"2) y"2 1 r~(23/15)
1 q°(23/15)
+ [

[ 52 y"(-2) + (140 v~(-1) + 140 v) y~(-1) + 456 + (140 v~(-1) + 140 v) y + 52 y~2 ] r~(7/12)
+ [ (52 v~ (-2) + 456 + 52 v"2) y~(-2) + (1517 v~(-1) + 1517 v) y~(-1) + (456 v~ (-2) + 4036 + 456 v"2)
+ (1517 v~ (-1) + 1517 v) y + (52 v"(-2) + 456 + 52 v*2) y~2 ] r~(19/12)

1 q7(19/12)
+ [

[ 83 y(-2) + 894 + 83 y"2 ] r~(3/5)
+ [ (83 v (-2) + 894 + 83 v°2) y~(-2) + (894 v~(-2) + 9642 + 894 v"2) + (83 v~(-2) + 894 + 83 v"2) y"2 1 r"(8/5)
1 q°(8/5)
+ [
[ (28 v°(-1) + 28 v) y~(-1) + (28 v~(-1) + 28 v) y 1 r~(19/30)
+ [ (196 v~(-1) + 196 v) y~(-1) + (196 v~(-1) + 196 v) y 1 r~(49/30)

1 q~(49/30)
+ [

[ 68 y~(-2) + (223 v"(-1) + 223 v) y~(-1) + 756 + (223 v"(-1) + 223 v) y + 68 y"2 1 r"(13/20)
+ [ (68 v~(-2) + 756 + 68 v~2) y~(-2) + (3187 v~(-1) + 3187 v) y~(-1) + (756 v~(-2) + 9452 + 756 v"2)
+ (3187 v~(-1) + 3187 v) y + (68 v~(-2) + 756 + 68 v°2) y"2 ] r~(33/20)

1 q7(33/20)
+ [

[ (240 v~(-1) + 240 v) y~(-1) + (240 v~(-1) + 240 v) y ] r~(7/10)
+ [ (2960 v~(-1) + 2960 v) y~(-1) + (2960 v~ (-1) + 2960 v) y 1 r~(17/10)
1 q°(17/10)
+ [
[ 50 y"(-2) + 450 + 50 y~2 1 r~(11/15)
+ [ (50 v~ (-2) + 450 + 50 v"2) y~(-2) + (450 v~(-2) + 4050 + 450 v*2) + (50 v~(-2) + 450 + 50 v"2) y"2 ] r~(26/15)
1 q7(26/15)
+ [

[ 144 y~(-2) + (426 v~(-1) + 426 v) y"(-1) + 1416 + (426 v"(-1) + 426 v) y + 144 y~2 1 r~(47/60)
+ [ (144 v~(-2) + 1416 + 144 v"2) y~(-2) + (5041 v~(-1) + 5041 v) y~(-1)
+ (1416 v~(-2) + 13924 + 1416 v°2) + (5041 v~ (-1) + 5041 v) y + (144 v~ (-2) + 1416 + 144 v"2) y~2 1 r~(107/60)

1 q~(107/60)
+ [

[ 29 y~(-2) + 279 + 29 y"2 1 r~(4/5)
+ [ (29 v~ (-2) + 279 + 29 v°2) y~(-2) + (279 v~(-2) + 2693 + 279 v"2) + (29 v~(-2) + 279 + 29 v"2) y"2 1 r"(9/5)
1 q°(9/5)
+ [
[ (456 v~ (-1) + 456 v) y~(-1) + (456 v~(-1) + 456 v) y ] r~(5/6)
+ [ (4036 v~(-1) + 4036 v) y~(-1) + (4036 v~(-1) + 4036 v) y 1 r~(11/6)

1 q°(11/6)
+ [

[ 332 y(-2) + (894 v~(-1) + 894 v) y~(-1) + 2912 + (894 v"(-1) + 894 v) y + 332 y"2 ] r~(17/20)
+ [ (332 v7(-2) + 2912 + 332 v"2) y~(-2) + (9642 v~(-1) + 9642 v) y~(-1)
+ (2912 v~ (-2) + 25592 + 2912 v"2) + (9642 v~ (-1) + 9642 v) y + (332 v~ (-2) + 2912 + 332 v"2) y*2 1 r~(37/20)
1 q°(37/20)
+ [

[ (756 v~(-1) + 756 v) y~(-1) + (756 v~(-1) + 756 v) y 1 r~(9/10)
+ [ (9452 v~(-1) + 9452 v) y~(-1) + (9452 v~(-1) + 9452 v) y 1 r~(19/10)

1 q~(19/10)
+ [

[ 200 y~(-2) + 1900 + 200 y~2 1 r~(14/15)
+ [ (200 v~(-2) + 1900 + 200 v~2) y~(-2) + (1900 v~(-2) + 18050 + 1900 v~2) + (200 v~(-2) + 1900 + 200 v~2) y~2 ] r~(29/15)
1 q°(29/15)
+ [

[ 200 y~(-2) + (450 v~(-1) + 450 v) y~(-1) + 1400 + (450 v"(-1) + 450 v) y + 200 y"2 1 r"(59/60)
+ [ (200 v~(-2) + 1400 + 200 v"2) y~(-2) + (4050 v~(-1) + 4050 v) y~(-1)
+ (1400 v~(-2) + 9800 + 1400 v°2) + (4050 v~(-1) + 4050 v) y + (200 v~(-2) + 1400 + 200 v°2) y2 1 r"(119/60)

1 q°(119/60)
+ [
3 y°(-2) + 18 + 3 y°2
+ [ (B v™(-2) + 996 + 3 v°2) y~(-2) + (18 v~ (-2) + 8042 + 18 v™2) + (3 v™(-2) + 996 + 3 v°'2) y'21r
+ [ (996 v~(-2) + 8042 + 996 v"2) y~(-2) + (8042 v~(-2) + 65311 + 8042 v°2) + (996 v"(-2) + 8042 + 996 v°2) y"2 1 r"2
1q2

Partition function for (1)(7)(16):

+ (1v(-2) +3+1v2) r
+ (3 v*(-2) + 17 + 3 v°2) "2

+ [
3 r(1/9)
+ (3 v(-2) + 33 + 3 v°2) r~(10/9)

1 q7(1/9)
+ [
3 r"(2/9)
+ (3 v (-2) + 45 + 3 v™2) r~(11/9)

1 q7(2/9)
+ [

[(v(-1) +1v) y(-1) +20+ (1 v°(-1) +1v) y 1 (1/4)
+ [ (B v (-1) +3v) yo(-1) + (20 v~ (-2) + 228 + 20 v"2) + (8 v~ (-1) + 3 v) y 1 r~(6/4)
1 q7(1/4)
+ [
26 r~(1/3)
+ (26 v°(-2) + 282 + 26 v"2) r~(4/3)

1 q7(1/3)
+ [

[(3v(-1) +3v) y°(-1) + 12 + (3 v°(-1) + 3 v) y 1 £~(13/36)
+ [ (83 vi(-1) + 33 v) y"(-1) + (12 v"(-2) + 108 + 12 v"2) + (33 v~(-1) + 33 v) y 1 r"(49/36)
1 q~(13/36)
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+ [

30 r~(4/9)

+ (30 v~ (-2) + 318
1 q7(4/9)

+ [

+ 30 v°2) r~(13/9)

[(3v(-1) +3v) y°(-1) + 12 + (3 v°(-1) + 3 v) y 1 £~ (17/36)
+ [ (45 v™(-1) + 45 v) y (-1) + (12 v"(-2) + 156 + 12 v"2) + (45 v~(-1) + 45 v) y ] r"(53/36)

1 q°(17/36)
+ [

[ (20 v°(-1) + 20
+ [ (228 v~ (-1) +
1 q7(1/2)
+
57 r~(5/9)
+ (57 v~ (-2) + 585
1 q°(5/9)
+

[ (26 v~(-1) + 26
+ [ (282 v (-1) +
1 q~(7/12)
+

[ (12 v (-1) + 12
+ [ (108 v~ (-1) +
1 q°(11/18)
+ [
96 r~(2/3)
+ (96 v*(-2) + 987
1 q°(2/3)
+ [

[ (30 v~(-1) + 30
+ [ (318 v~ (-1) +
1 q~(25/36)
+ [

[ (12 v"(-1) + 12
+ [ (156 v~(-1) +
1 q°(13/18)
+ [
75 r(7/9)
+ (75 v*(-2) + 705
1 q7(7/9)
+ [

[ (687 v°(-1) + 57
+ [ (585 v~(-1) +
1 q~(29/36)
+

+ [ (920 v~(-1) +
1 q~(5/6)
+ [
57 r~(8/9)
+ (87 v~(-2) + 582
1 q~(8/9)
+

[ (96 v~(-1) + 96
+ [ (987 v~(-1) +
1 q (11/12)
+ [

v) yo(-1) + (20 v~(-1) + 20 v) y 1 r~(1/2)
228 v) y~(-1) + (228 v"(-1) + 228 v) y 1 r~(3/2)

+ 57 v~2) r~(14/9)

v) y(-1) + 104 + (26 v"(-1) + 26 v) y 1 =" (7/12)
282 v) y~(-1) + (104 v~(-2) + 920 + 104 v"2) + (282 v~ (-1) + 282 v) y ] r~(19/12)

v) yo(-1) + (12 v~ (-1) + 12 v) y 1 r~(11/18)
108 v) y~(-1) + (108 v~(-1) + 108 v) y ] r~(29/18)

+ 96 v°2) r~(5/3)

v) y~(-1) + 120 + (30 v"(-1) + 30 v) y 1 r~(25/36)
318 v) y~(-1) + (120 v~(-2) + 1032 + 120 v"2) + (318 v~ (-1) + 318 v) y 1 r"(61/36)

v) yo(-1) + (12 v (-1) + 12 v) y ] r~(13/18)
156 v) y~(-1) + (166 v"(-1) + 156 v) y 1 r~(31/18)

+ 75 v°2) r~(16/9)

v) y (-1) + 228 + (87 v™(-1) + 57 v) y 1 r~(29/36)
585 v) y~(-1) + (228 v~(-2) + 1884 + 228 v"2) + (585 v~(-1) + 585 v) y 1 r~(65/36)

[
[ (104 v~(-1) + 104 v) y~(-1) + (104 v~(-1) + 104 v) y 1 r~(5/6)

920 v) y~(-1) + (920 v~ (-1) + 920 v) y 1 =" (11/6)

+ 57 v°2) r~(17/9)

v) y(-1) + 384 + (96 v"(-1) + 96 v) y 1 r~(11/12)
987 v) y~(-1) + (384 v~(-2) + 3180 + 384 v°2) + (987 v™(-1) + 987 v) y 1 r~(23/12)

[ (120 v~(-1) + 120 v) y~(-1) + (120 v"(-1) + 120 v) y 1 r"(17/18)
+ [ (1032 v~(-1) + 1032 v) y~(-1) + (1032 v~(-1) + 1032 v) y 1 r~(35/18)

1 q°(17/18)
+

1y°(-2) +3+17y

+ [ v(-2) +3

2
+1v2) y7(=2) + (B3 v (-2) + 1018 + 3 v2) + (1 v-(-2) +3+1v2) y21r

+ [ (B v (-2) + 17 + 3 v"2) y~(-2) + (1018 v~(-2) + 8222 + 1018 v"2) + (3 v"(-2) + 17 + 3 v"2) y"2 1 r"2

Tq
+

[ (75 v (-1) + 75
q"(37/36)
+

v) y~(-1) + 300 + (75 v~ (-1) + 75 v) y 1 r~(37/36)

[ (228 v~(-1) + 228 v) y~(-1) + (228 v~(-1) + 228 v) y ] r~(19/18)

q°(19/18)
+ [

[3y°(-2) + 33+

3 y°2 1 £ (1/9)

+ [ (3 v(-2) + 33+ 3 v™2) y (-2) + (38 v™(-2) + 435 + 33 v°2) + (3 v"(-2) + 33 + 3 v"2) y2 ] r~(10/9)

1 q7(10/9)
+

[ (67 v°(-1) + 57
q~(41/36)
+

v) y (-1) + 228 + (87 v™(-1) + 567 v) y 1 r~(41/36)

[ (384 v~(-1) + 384 v) y~(-1) + (384 v~(-1) + 384 v) y 1 ="(7/6)

q~(7/6)
+
[3y-(-2) +45 +

3 y"21 r"(2/9)

+ [ (3 v"(-2) + 45 + 3 v"2) y~(-2) + (45 v~(-2) + 729 + 45 v°2) + (3 v°(-2) + 45 + 3 v°2) y*2 ] r~(11/9)

1 q7(11/9)
+ [

[20 y(-2) + (3 v"(-1) + 3 v) y~(-1) + 228 + (3 v°(-1) + 3 v) y + 20 y°2 1 r~(1/4)
+ [ (20 v (-2) + 228 + 20 v°2) y~(-2) + (1018 v~(-1) + 1018 v) y~(-1) + (228 v~ (-2) + 3080 + 228 v"2)
+ (1018 v~ (-1) + 1018 v) y + (20 v~(-2) + 228 + 20 v°2) y~2 ] r~(5/4)

1 q~(5/4)
+

[ (300 v~(-1) + 300 v) y~(-1) + (300 v~(-1) + 300 v) y ] r~(23/18)



231

q~(23/18)
+ [

[26 y(-2) + 282 + 26 y"2 1 r~(1/3)
+ [ (26 v~ (-2) + 282 + 26 v"2) y~(-2) + (282 v~(-2) + 3354 + 282 v"2) + (26 v~(-2) + 282 + 26 v"2) y"2 1 r"(4/3)
1 q°(4/3)
+ [

[ 12 y°(-2) + (33 v~(-1) + 33 v) y~(-1) + 108 + (33 v"(-1) + 33 v) y + 12 y"2 ] r"(13/36)
+ [ (12 v~ (-2) + 108 + 12 v™2) y~(-2) + (435 v~(-1) + 435 v) y~(-1) + (108 v~(-2) + 1260 + 108 v°2)
+ (485 v~(-1) + 435 v) y + (12 v~(-2) + 108 + 12 v*2) y"2 1 r~(49/36)

1 q7(49/36)
+

[ (228 v~(-1) + 228 v) y~(-1) + (228 v~(-1) + 228 v) y ] r"(25/18)

q~(25/18)
+ [

[ 30 y"(-2) + 318 + 30 y"2 1 r~(4/9)
+ [ (30 v (-2) + 318 + 30 v"2) y~(-2) + (318 v"(-2) + 3675 + 318 v"2) + (30 v~(-2) + 318 + 30 v"2) y"2 1 r~(13/9)
1 q°(13/9)
+ [

[12 y°(-2) + (45 v"(-1) + 45 v) y~(-1) + 156 + (45 v"(-1) + 45 v) y + 12 y~2 ] r~(17/36)
+ [ (12 v~ (-2) + 156 + 12 v™2) y~(-2) + (729 v~(-1) + 729 v) y~(-1) + (166 v~(-2) + 2244 + 156 v~2)
+ (729 v™(-1) + 729 v) y + (12 v~(-2) + 156 + 12 v-2) y2 ] r~(53/36)

1 q°(53/36)
+ [
[ (228 v~(-1) + 228 v) y~(-1) + (228 v~(-1) + 228 v) y ] r"(1/2)
+ [ (3080 v~(-1) + 3080 v) y~(-1) + (3080 v"(-1) + 3080 v) y 1 r~(3/2)

1 q°(3/2)
+ [

[ 57 y(-2) + 585 + 57 y"2 1 r~(5/9)
+ [ (87 v-(-2) + 585 + 57 v™2) y~(-2) + (585 v~(-2) + 60756 + 585 v-2) + (57 v~ (-2) + 585 + 57 v°2) y~2 ] r~(14/9)
1 q~(14/9)
+ [

[ 102 y~(-2) + (282 v~(-1) + 282 v) y"(-1) + 920 + (282 v~(-1) + 282 v) y + 104 y~2 1 r~(7/12)
+ [ (104 v~(-2) + 920 + 104 v~2) y~(-2) + (3354 v~(-1) + 3354 v) y~(-1) + (920 v~(-2) + 9320 + 920 v-2)
+ (3354 v~(-1) + 3354 v) y + (104 v~(-2) + 920 + 104 v°2) y°2 1 r~(19/12)

1 q°(19/12)
+ [

[ (108 v~(-1) + 108 v) y~(-1) + (108 v~(-1) + 108 v) y 1 r~(11/18)
+ [ (1260 v~(-1) + 1260 v) y~(-1) + (1260 v~(-1) + 1260 v) y 1 r~(29/18)

1 q°(29/18)
+ [

[ 96 y~(-2) + 987 + 96 y"2 1 r~(2/3)
+ [ (96 v (-2) + 987 + 96 v™2) y~(-2) + (987 v~(-2) + 10374 + 987 v"2) + (96 v"(-2) + 987 + 96 v°2) y"2 1 r~(5/3)
1 q°(5/3)
+ [

[ 120 y~(-2) + (318 v~(-1) + 318 v) y~(-1) + 1032 + (318 v"(-1) + 318 v) y + 120 y"2 ] r"(25/36)
+ [ (120 v~(-2) + 1032 + 120 v"2) y~(-2) + (3675 v"(-1) + 3675 v) y~(-1) + (1032 v~ (-2) + 10092 + 1032 v"2)
+ (3675 v~(-1) + 3675 v) y + (120 v~(-2) + 1032 + 120 v"2) y"2 ] r~(61/36)

1 q°(61/36)
+ [

[ (156 v~(-1) + 156 v) y~(-1) + (156 v~(-1) + 166 v) y 1 r~(13/18)
+ [ (2244 v~(-1) + 2244 v) y~(-1) + (2244 v~(-1) + 2244 v) y ] r~(31/18)

1 q°(31/18)
+ [

[ 75 y"(-2) + 705 + 75 y~2 1 r~(7/9)
+ [ (75 v (-2) + 705 + 75 v°2) y~(-2) + (705 v~(-2) + 6699 + 705 v°2) + (75 v~(-2) + 705 + 75 v"2) y"2 1 r"(16/9)
1 q7(16/9)
+ [

[ 228 y~(-2) + (585 v~(-1) + 585 v) y (-1) + 1884 + (585 v~(-1) + 585 v) y + 228 y~2 ] r~(29/36)
+ [ (228 v~(-2) + 1884 + 228 v"2) y~(-2) + (6075 v"(-1) + 6075 v) y~(-1) + (1884 v~(-2) + 15852 + 1884 v"2)
+ (6075 v~(-1) + 6075 v) y + (228 v~ (-2) + 1884 + 228 v°2) y"2 ] r"(65/36)

1 q7(65/36)
+ [

[ (920 v~(-1) + 920 v) y~(-1) + (920 v~(-1) + 920 v) y ] r~(5/6)
+ [ (9320 v~(-1) + 9320 v) y~(-1) + (9320 v~ (-1) + 9320 v) y 1 r~(11/6)

1 q°(11/6)
+ [

[ 57 y"(-2) + 582 + 57 y~2 1 r~(8/9)
+ [ (57 v~ (-2) + 582 + 57 v°2) y~(-2) + (582 v~(-2) + 5988 + 582 v°2) + (57 v~(-2) + 582 + 57 v°2) y"2 1 r~(17/9)
1 q~(17/9)
+ [

[ 384 y~(-2) + (987 v~(-1) + 987 v) y~(-1) + 3180 + (987 v"(-1) + 987 v) y + 384 y"2 ] r~(11/12)
+ [ (384 v~(-2) + 3180 + 384 v"2) y~(-2) + (10374 v~(-1) + 10374 v) y~(-1) + (3180 v~(-2) + 27240 + 3180 v"2)
+ (10374 v~(-1) + 10374 v) y + (384 v~(-2) + 3180 + 384 v"2) y"2 1 r~(23/12)

1 q(238/12)
+ [

[ (1032 v~ (-1) + 1032 v) y~(-1) + (1032 v"(-1) + 1032 v) y ] r~(17/18)
+ [ (10092 v~(-1) + 10092 v) y~(-1) + (10092 v~(-1) + 10092 v) y 1 r~(35/18)

1 q~(35/18)
+ [
3 y°(-2) + 17 + 3 y°2
+ [ (3 v™(-2) + 1018 + 3 v"2) y~(-2) + (17 v~(-2) + 8222 + 17 v"2) + (8 v°(-2) + 1018 + 3 v"°2) y2 1 r
+ [ (1018 v~(-2) + 8222 + 1018 v"2) y~(-2) + (8222 v"(-2) + 66875 + 8222 v°2) + (1018 v~(-2) + 8222 + 1018 v°2) y"2 1 r"2
1q2
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Partition function for (1)(6)(22):

+ (1 v (-2) +3+1v2) r
+ (3 v (-2) +17 + 3 v™2) r2

+
1 r~(1/12)
+ (1 v (-2) +9 + 1 v"2) r~(13/12)
1 q7(1/12)
+ [
2 r~(1/8)
+ (2 vo(-2) + 26 + 2 v"2) r"(9/8)
1 q7(1/8)
+

[(Av(-1) +1v) y(-1) +26 + (1 v°(-1) +1v) y 1 r(1/4)
+ [ B vi(-1) +3v) yo(-1) + (26 v~ (-2) + 308 + 26 v™2) + (8 v°(-1) + 3 v) y 1 r~(5/4)
1 q7(1/4)
+

[ v (-1) +1v) y(-1) +256 + (1 v°(-1) +1v) y 1 (1/3)
+ [ (9 v(-1) +9v) yo(-1) + (25 v (-2) + 241 + 25 v"2) + (9 v°(-1) + 9 v) y 1 r~(4/3)
1 q°(1/3)
+

[L@v(-1) +27v) y(-1) + 16 + (2 v (-1) + 2 v) y ] r~(3/8)
+ [ (26 v°(-1) + 26 v) y~"(-1) + (16 v"(-2) + 192 + 16 v"2) + (26 v~(-1) + 26 v) y 1 r~(11/8)
1 q7(3/8)
+ [
4 r~(11/24)
+ (4 v (-2) + 56 + 4 v™2) r~(35/24)

1 q°(11/24)
+

[ (26 v"(-1) + 26 v) y~(-1) + 70 + (26 v"(-1) + 26 v) y 1 r~(1/2)
+ [ (308 v~(-1) + 308 v) y~(-1) + (70 v~(-2) + 746 + 70 v~2) + (308 v~(-1) + 308 v) y 1 r~(3/2)

1 q7(1/2)
+

[ (25 v"(-1) + 25 v) y~(-1) + 120 + (25 v"(-1) + 25 v) y 1 =~ (7/12)
+ [ (241 v (-1) + 241 v) y~(-1) + (120 v"(-2) + 1038 + 120 v°2) + (241 v~(-1) + 241 v) y 1 r~(19/12)
1 q7(7/12)
+
[ (16 v°(-1) + 16 v) y"(-1) + 64 + (16 v (-1) + 16 v) y ] r~(5/8)
+ [ (192 v~ (-1) + 192 v) y~(-1) + (64 v"(-2) + 704 + 64 v°2) + (192 v"(-1) + 192 v) y 1 r~(13/8)
1 q°(5/8)
+ [

[(4v(-1) +4v) y(-1) + 80 + (4 v-(-1) + 4 v) y 1 r~(17/24)
+ [ (86 v°(-1) + 56 v) y (-1) + (80 v"(-2) + 768 + 80 v"2) + (56 v"(-1) + 56 v) y 1 r~(41/24)

1 q~(17/24)
+

[ (70 v°(-1) + 70 v) y~(-1) + 254 + (70 v"(-1) + 70 v) y 1 r~(3/4)
+ [ (746 v~(-1) + 746 v) y~(-1) + (254 v~(-2) + 2202 + 254 v~2) + (746 v~ (-1) + 746 v) y 1 r~(7/4)
1 q~(3/4)
+

[ (120 v~(-1) + 120 v) y~(-1) + 202 + (120 v~(-1) + 120 v) y 1 =" (5/6)
+ [ (1038 v~(-1) + 1038 v) y~(-1) + (202 v~(-2) + 1730 + 202 v"2) + (1038 v~(-1) + 1038 v) y 1 r~(11/6)
1 q°(5/6)
+

[ (64 v-(-1) + 64 v) y~(-1) + 128 + (64 v~ (-1) + 64 v) y 1 =~ (7/8)
+ [ (704 v~ (-1) + 704 v) y~(-1) + (128 v~(-2) + 1152 + 128 v"2) + (704 v~(-1) + 704 v) y 1 r~(15/8)

1 q7(7/8)
+ [

[ (80 v*(-1) + 80 v) y~(-1) + 2566 + (80 v~(-1) + 80 v) y ] r~(23/24)
+ [ (768 v~(-1) + 768 v) y~(-1) + (256 v~ (-2) + 1792 + 256 v-2) + (768 v~(-1) + 768 v) y 1 r~(47/24)

1 q~(23/24)

C

+
13°(-2) +3 + 1532
+ [ (1 vi(-2) + 3+ 1v°2) y(-2) + (254 v~ (-1) + 254 v) y~(-1) + (8 v~(-2) + 1246 + 3 v"2)
+ (268 v (-1) + 264 v) y+ (1 v'(-2) +3+1v2) y21r
+ [ (B vi(-2) + 17 + 3 v°2) y~(-2) + (2202 v~(-1) + 2202 v) y~(-1) + (1246 v~(-2) + 9882 + 1246 v"2)
+ (2202 vo(-1) + 2202 v) y + (3 v°(-2) + 17 + 3 v"2) y2 ] r™2

1
Qo

[1y°(-2) +9+1y21r(1/12)
+ [ vi(-2) + 9+ 1v"2) y(-2) + (202 v~(-1) + 202 v) y"(-1) + (9 v~(-2) + 482 + 9 v"2)
+ (202 v (-1) + 202 v) y + (1 v°(-2) + 9 + 1 v™2) y°2 1 r"(13/12)

1 q7(13/12)
+ [

[2y°(-2) +26 + 275321 (1/8)
+ [(2v7(-2) + 26 + 2 v72) y(-2) + (128 v~(-1) + 128 v) y~(-1) + (26 v~ (-2) + 338 + 26 v°2)
+ (128 v°(-1) + 128 v) y + (2 v"(-2) + 26 + 2 v"2) y"2 1 £ (9/8)

1 q°(9/8)
+

[ (256 v~(-1) + 256 v) y (-1) + (256 v"(-1) + 256 v) y ] r~(29/24)
q~(29/24)
+ [
[26 y(-2) + (3 v°(-1) + 3 v) y~(-1) + 308 + (3 v°(-1) +3 v) y + 26 y"2 1 r~(1/4)
+ [ (26 v~ (-2) + 308 + 26 v"2) y~(-2) + (1246 v~(-1) + 1246 v) y~(-1) + (308 v"(-2) + 4012 + 308 v"2)
+ (1246 v~(-1) + 1246 v) y + (26 v"(-2) + 308 + 26 v°2) y"2 ] r~(5/4)
1 q~(5/4)
+ [
[25 y°(-2) + (9 v~ (-1) + 9 v) y~(-1) + 241 + (9 v°(-1) + 9 v) y + 25 y"2 ] r~(1/3)
+ [ (25 v~ (-2) + 241 + 25 v°2) y~(-2) + (482 v~(-1) + 482 v) y~(-1) + (241 v~(-2) + 3077 + 241 v°2)
+ (482 v~ (-1) + 482 v) y + (25 v~ (-2) + 241 + 25 v°2) y*2 ] r~(4/3)
1 q(4/3)



+ [

[ 16 y~(-2) + (26 v"(-1) + 26 v) y~(-1) + 192 + (26 v"(-1) + 26 v) y + 16 y"2 1 r"(3/8)
+ [ (16 v~(-2) + 192 + 16 v"2) y~(-2) + (338 v~(-1) + 338 v) y~(-1) + (192 v~(-2) + 2448 + 192 v"2)
+ (338 v(-1) + 338 v) y + (16 v°(-2) + 192 + 16 v"2) y"2 1 r~(11/8)

1 q~(11/8)
+ [

[47y°(-2) +56 + 4 y2] r(11/24)
+ [ (4 v (-2) + 56 + & v°2) y~(-2) + (56 v~(-2) + 784 + 56 v-2) + (& v~ (-2) + 56 + 4 v°2) y~2 ] r~(35/24)

1 q~(35/24)
+

1 q°(3/2)
+ [

[ 120 y~(-2) + (241 v~(-1) + 241 v) y~(-1) + 1038 + (241 v"(-1) + 241 v) y + 120 y"2 ] r~(7/12)
+ [ (120 v~(-2) + 1038 + 120 v"2) y~(-2) + (3077 v~(-1) + 3077 v) y~(-1) + (1038 v~(-2) + 9278 + 1038 v"2)
+ (3077 v~(-1) + 3077 v) y + (120 v~(-2) + 1038 + 120 v°2) y"2 1 r~(19/12)

1 q-(19/12)
0

[ 64 y7(-2) + (192 v~(-1) + 192 v) y~(-1) + 704 + (192 v~(-1) + 192 v) y + 64 y~2 1 r~(5/8)
+ [ (64 v°(-2) + 704 + 64 v°2) y~(-2) + (2448 v~(-1) + 2448 v) y~(-1) + (704 v~(-2) + 8256 + 704 v"2)
+ (2448 v~ (-1) + 2448 v) y + (64 v°(-2) + 704 + 64 v°2) y*2 ] r~(13/8)

1 q~(13/8)
+ [

[ 80 y~(-2) + (56 v"(-1) + 56 v) y~(-1) + 768 + (56 v~(-1) + 56 v) y + 80 y2 1 r~(17/24)
+ [ (80 v*(-2) + 768 + 80 v"2) y"(—2) + (784 v~(-1) + 784 v) y“(—l) + (768 v~(-2) + 7488 + 768 v°~2)
+ (784 v~(-1) + 784 v) y + (80 v~(-2) + 768 + 80 v"2) y°2 1 r~(41/24)

1 q(41/24)
+ [

[ 254 y~(-2) + (746 v~(-1) + 746 v) y~(-1) + 2202 + (746 v~(-1) + 746 v) y + 254 y~2 1 r~(3/4)
+ [ (254 v~(-2) + 2202 + 254 v"2) y"(-2) + (8596 v~(-1) + 8596 v) y"(-l) + (2202 v~(-2) + 20580 + 2202 v"2)
+ (8596 v~(-1) + 8596 v) y + (254 v~(-2) + 2202 + 254 v°2) y~2 ] r~(7/4)

1 q°(7/4)
+

[ 202 y~(-2) + (1038 v~(-1) + 1038 v) y~(-1) + 1730 + (1038 v~(-1) + 1038 v) y + 202 y°2 1 r~(5/6)
+ [ (202 v°(-2) + 1730 + 202 v°2) y~(-2) + (9278 v~(-1) + 9278 v) y~(-1) + (1780 v~(-2) + 15554 + 1730 v~2)
+ (9278 v~(-1) + 9278 v) y + (202 v~(-2) + 1730 + 202 v°2) y~2 ] r~(11/6)

1 q~(11/6)
+ [

[ 128 y°(-2) + (704 v~(-1) + 704 v) y~(-1) + 1152 + (704 v~(-1) + 704 v) y + 128 y~2 1 r~(7/8)
+ [ (128 v"(-2) + 1152 + 128 v~2) y~(-2) + (8256 v~(-1) + 8256 v) y~(-1) + (1152 v~(-2) + 10368 + 1152 v-2)
+ (8256 v~ (-1) + 8256 v) y + (128 v~(-2) + 1152 + 128 v°2) y~2 1 r~(15/8)

1 q~(15/8)
+

1 q°(47/24)
L

+ o+ W+

1972

C
[ 70 yo(-2) + (308 v~(-1) + 308 v) y~(-1) + 746 + (308 v~(-1) + 308 v) y + 70 y~2 1 r~(1/2)
+ [ (70 v~ (-2) + 746 + 70 v°2) y~(-2) + (4012 v~(-1) + 4012 v) y~(-1) + (746 v~(-2) + 8596 + 746 v"2)
+ (4012 v~(-1) + 4012 v) y + (70 v~ (-2) + 746 + 70 v"2) y"2 1 r~(3/2)

[
[ 256 y~(-2) + (768 v~(-1) + 768 v) y"(-1) + 1792 + (768 v"(-1) + 768 v) y + 256 y*2 1 r~(23/24)
+ [ (256 v~(-2) + 1792 + 256 v°2) y~(-2) + (7488 v~(-1) + 7488 v) y~(-1) + (1792 v~(-2) + 12544 + 1792 v°2)
+ (7488 v~(-1) + 7488 v) y + (256 v~ (-2) + 1792 + 256 v°2) y"2 1 r~(47/24)

yo(=2) + 17 + 3 y2
[ (3 vi(-2) + 1246 + 3 v"2) y~(-2) + (2202 v~(-1) + 2202 v) y~(-1) + (17 v~(-2) + 9882 + 17 v"2)

(2202 v~(-1) + 2202 v) y + (3 v~(-2) + 1246 + 3 v"2) y°2 1 r
[ (1246 v~(-2) + 9882 + 1246 v~2) y~(-2) + (20580 v~(-1) + 20580 v) y~(-1)

(9882 v~(-2) + 79115 + 9882 v"2) + (20580 v~(-1) + 20580 v) y + (1246 v~ (-2) + 9882 + 1246 v°2) y"2 ] r"2

Partition function for (1)(5)(40):

1
+ (1 v (-2)
+ (3 v (-2)

+ [

1 r~(1/21)
+ (1 v~ (-2)
1 q~(1/21)
+ [

5 " (1/7)

+ (5 v=(-2)
1 q~(1/7)
+ [

[@v(-1) +1v)y(-1) +20+ (1 v°(-1) +1v) y 1 (1/4)
+ [ B v(-1) +3v) y(-1) + (20 v (-2) + 228 + 20 v™2) + (8 v°(-1) + 3 v) y 1 r~(5/4)

1 q°(1/9)
+ [
6 r~(2/7)

+
+

+

+

3+1v2)r
17 + 3 v™2) r°2

9 + 1 v"2) r~(22/21)

63 + 5 v°2) r~(8/7)

+ (6 v (-2) + 94 + 6 v°2) r"(9/7)

1 q (2/7)
+ [

[(1v(-1) +1v) yo(-1) +4 + (1 v~ (-1) + 1 v) y 1 r"(25/84)
+ [ (9vi(-1) +9v) y"(-1) + (& v°(-2) + 28 + 4 v°2) + (9 v°(-1) + 9 v) y 1 r~(109/84)

1 q°(25/84)
+ [
29 r~(1/3)

+ (29 v~ (-2) + 283 + 29 v~2) r~(4/3)

1 q7(1/3)
+ [

[(v(-1) +5v) y(-1) +20 + (6 v°(-1) + 5 v) y 1 r~(11/28)
+ [ (63 v*(-1) + 63 v) y"(-1) + (20 v"(-2) + 212 + 20 v"2) + (63 v~(-1) + 63 v) y 1 r~(39/28)

1 q~(11/28)
+ [

233
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29 r~(3/7)
+ (29 vo(-2) + 289 + 29 v°2) r~(10/7)
1 q°(3/7)
+ [
9 r~(10/21)
+ (9 v~(-2) + 93 + 9 v°2) r~(31/21)

1 q~(10/21)
+ [

[ (20 v°(-1) + 20 v) y~(-1) + (20 v~ (-1) + 20 v) y 1 r"(1/2)
+ [ (228 v (-1) + 228 v) y~(-1) + (228 v~ (-1) + 228 v) y 1 r~(3/2)

1 q7(1/2)
+ [

[ (6 vi(-1) +6v) yo(-1) + 24 + (6 v"(-1) + 6 v) y ] £~ (15/28)
+ [ (94 vo(-1) + 94 v) y~(-1) + (24 v"(-2) + 328 + 24 v"2) + (94 v~(-1) + 94 v) y ] r~(43/28)
1 q°(15/28)
+ [

[(av(-1) +4v) yo(-1) + (4 v (-1) + 4 v) y ] r"(23/42)
+ [ (28 v (-1) + 28 v) y~(-1) + (28 v"(-1) + 28 v) y 1 r~(656/42)
1 q°(23/42)
+ [
89 r~(4/7)
+ (89 v°(-2) + 895 + 89 v°2) r~(11/7)

1 q(4/7)
+ [

[ (29 v°(-1) + 29 v) y~(-1) + 116 + (29 v"(-1) + 29 v) y 1 =~ (7/12)
+ [ (283 v~ (-1) + 283 v) y~(-1) + (116 v~(-2) + 900 + 116 v"2) + (283 v"(-1) + 283 v) y ] r~(19/12)
1 q7(7/12)
+ [
36 r~(13/21)
+ (36 v~ (-2) + 390 + 36 v"2) r~(34/21)

1 q~(13/21)
+ [

[ (20 v°(-1) + 20 v) y~(-1) + (20 v~(-1) + 20 v) y 1 r~(9/14)
+ [ (212 v~ (-1) + 212 v) y~(-1) + (212 v~(-1) + 212 v) y ] r~(23/14)

1 q°(9/14)
+ [

[ (29 v°(-1) + 29 v) y~(-1) + 116 + (29 v*(-1) + 29 v) y 1 r~(19/28)
+ [ (289 v~(-1) + 289 v) y~(-1) + (116 v~(-2) + 924 + 116 v~2) + (289 v~ (-1) + 289 v) y 1 r~(47/28)
1 q~(19/28)
+ [
25 r~(5/7)
+ (25 vo(-2) + 243 + 25 v°2) r~(12/7)

1 q°(5/7)
+ [

LOvi(-1) +97v) y(-1) +36 + (9 v (-1) + 9 v) y ] r~(61/84)
+ [ (93 vo(-1) + 93 v) y"(-1) + (36 v~(-2) + 300 + 36 v°"2) + (93 v~(-1) + 93 v) y 1 r~(145/84)

1 q~(61/84)
+ [
121 r~(16/21)
+ (121 v~ (-2) + 1089 + 121 v°2) r~(37/21)

1 q°(16/21)
+ [

[ (22 v°(-1) + 24 v) y~(-1) + (24 v~ (-1) + 24 v) y 1 r~(11/14)
+ [ (328 v~(-1) + 328 v) y~(-1) + (828 v"(-1) + 328 v) y 1 r~(25/14)

1 q(11/14)
+ [

[ (89 v°(-1) + 89 v) y~(-1) + 356 + (89 v~(-1) + 89 v) y 1 r~(23/28)
+ [ (895 v~ (-1) + 895 v) y~(-1) + (356 v~(-2) + 2868 + 356 v-2) + (895 v~(-1) + 895 v) y 1 r~(51/28)
1 q°(23/28)
+ [

[ (116 v~ (-1) + 116 v) y"(-1) + (116 v~(-1) + 116 v) y 1 r"(5/6)
+ [ (900 v~(-1) + 900 v) y~(-1) + (900 v"(-1) + 900 v) y 1 r~(11/6)
1 q°(5/6)
+ [
65 r~(6/7)
+ (65 v~(-2) + 677 + 65 v"2) r~(13/7)

1 q°(6/7)
+ [

[ (36 v"(-1) + 36 v) y~(-1) + 144 + (36 v~(-1) + 36 v) y 1 r~(73/84)
+ [ (390 v~(-1) + 390 v) y~(-1) + (144 v~(-2) + 1272 + 144 v~2) + (390 v~(-1) + 390 v) y 1 r~(157/84)
1 q°(73/84)
+ [
57 r~(19/21)
+ (57 v~ (-2) + 561 + 57 v™2) r~(40/21)
1 q~(19/21)
+ [

[ (116 v~ (-1) + 116 v) y (-1) + (116 v~ (-1) + 116 v) y 1 r~(13/14)
+ [ (924 v (-1) + 924 v) y~(-1) + (924 v~(-1) + 924 v) y 1 r~(27/14)
1 q~(13/14)
+ [

[ (25 v*(-1) + 25 v) y~(-1) + 100 + (25 v~(-1) + 25 v) y ] r~(27/28)
+ [ (243 v~(-1) + 243 v) y~(-1) + (100 v~(-2) + 772 + 100 v~2) + (243 v"(-1) + 243 v) y 1 r~(55/28)
1 q~(27/28)
+

[ (36 v"(-1) + 36 v) y~(-1) + (36 v"(-1) + 36 v) y 1 r~(41/42)
+ [ (300 v~(-1) + 300 v) y~(-1) + (300 v~(-1) + 300 v) y 1 r~(83/42)

1 q"(41/42)
+

1y°(-2) +3+1y2
+ [ (@ v(-2) +3+1v°2) y7(-2) + (3 v"(-2) +960 + 3 v"2) + (1 v°(-2) +3 +1+v"2) y2]1r
+ [ (B v (-2) + 17 + 3 v"2) y~(-2) + (960 v~(-2) + 7610 + 960 v°"2) + (3 v"(-2) + 17 + 3 v"2) y"2 1 r"2
lq
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+
[ (121 v~(-1) + 121 v) y~(-1) + 484 + (121 v~(-1) + 121 v) y ] r~(85/84)
q"(85/84)
+ [
[1y(2)+9+1y2]r(1/21)
+ L (vi(-2) +9+1v'2) y(-2) + (9 v'(-2) + 81 + 9 v°2) + (1 v°(-2) + 9 + 1 v™2) y"2 ] r (22/21)
1 q(22/21)
+
[ (356 v~(-1) + 356 v) y~(-1) + (356 v~"(-1) + 356 v) y 1 r"(15/14)
q-(15/14)
+

[ (65 v*(-1) + 65 v) y~(-1) + 260 + (65 v~(-1) + 65 v) y ] r~(31/28)
q-(31/28)
+

[ (144 v~(-1) + 144 v) y~(-1) + (144 v~(-1) + 144 v) y ] r~(47/42)

q~(47/42)
+ L

[5y"(-2) +63 +5 y"21 " (1/7)
+ [ (5 v(-2) + 63 + 5 v"2) y"(-2) + (63 v"(-2) + 830 + 63 v°2) + (5 v"(-2) + 63 + 5 v°2) y"2 1 r~(8/7)
1 q~(8/7)
+

[ (67 v"(-1) + 57 v) y~(-1) + 228 + (57 v~(-1) + 57 v) y 1 r~(97/84)
q~(97/84)
+

196 r~(25/21)
q-(25/21)
+

[ (100 v~(-1) + 100 v) y~(-1) + (100 v~(-1) + 100 v) y ] r"(17/14)

q-(17/14)
+ [

[20 yo(-2) + (3 v~ (-1) + 3 v) y~(-1) + 228 + (3 v™(-1) +3 v) y + 20 y"2 1 r~(1/4)
+ [ (20 v~(-2) + 228 + 20 v"2) y~(-2) + (960 v~(-1) + 960 v) y~(-1) + (228 v~(-2) + 2848 + 228 v"2)
+ (960 v~ (-1) + 960 v) y + (20 v~(-2) + 228 + 20 v-2) y"2 1 r~(5/4)

1 q~(5/4)
+

[ (482 v~(-1) + 484 v) y~(-1) + (484 v~(-1) + 484 v) y ] r~(53/42)

q~(53/42)
+ [

[ 6y (-2) +94 +6y21]1(2/7)
+ [ (6 v (-2) + 94 + 6 v'2) y(-2) + (94 v"(-2) + 1631 + 94 v"2) + (6 v"(-2) + 94 + 6 v"2) y™2 1 r~(9/7)
1 q°(9/7)
+ [

[4y°(-2) + (9 v (-1) +9v) y°(-1) + 28 + (9 v°(-1) + 9 v) y + 4 y°2 ] " (25/84)
+ [ (4 v (-2) + 28 + 4 v"2) y°(-2) + (81 v~ (-1) + 81 v) y~(-1) + (28 v~(-2) + 196 + 28 v"2)
+ (81 vi(-1) + 81 v) y+ (4 v'(-2) + 28 + 4 v~2) y2 1 r~(109/84)

1 q~(109/84)
+ [

[ 29 y"(-2) + 283 + 29 y"2 1 ©~(1/3)
+ [ (29 v~(-2) + 283 + 29 v~2) y~(-2) + (283 v~(-2) + 2771 + 283 v"2) + (29 v~(-2) + 283 + 29 v"2) y~2 ] r~(4/3)
1 q7(4/3)
+

[ (260 v~(-1) + 260 v) y~(-1) + (260 v~(-1) + 260 v) y ] r~(19/14)

q~(19/14)
+ [

[20 y°(-2) + (63 v~(-1) + 63 v) y~(-1) + 212 + (63 v"(-1) + 63 v) y + 20 y"2 1 r~(11/28)
+ [ (20 v (-2) + 212 + 20 v™2) y~(-2) + (830 v~(-1) + 830 v) y~(-1) + (212 v~(-2) + 2392 + 212 v"2)
+ (830 v"(-1) + 830 v) y + (20 v~ (-2) + 212 + 20 v*2) y*2 ] r~(39/28)

1 q°(39/28)
+

[ (228 v~(-1) + 228 v) y~(-1) + (228 v~(-1) + 228 v) y ] r~(59/42)

q~(59/42)
+ [

[ 29 y~(-2) + 289 + 29 y"2 1 ©~(3/7)
+ [ (29 v~ (-2) + 289 + 29 v™2) y~(-2) + (289 v~(-2) + 3049 + 289 v°2) + (29 v~(-2) + 289 + 29 v"2) y"2 1 r~(10/7)
1 q°(10/7)
+

[ (196 v~(-1) + 196 v) y~(-1) + 784 + (196 v~(-1) + 196 v) y 1 r~(121/84)

q~(121/84)
+ [

[9y(-2) +93 +9 y2] r~(10/21)
+ [ (9 v™(-2) + 93 + 9 v"2) y(-2) + (93 v~(-2) + 1089 + 93 v°2) + (9 v"(-2) + 93 + 9 v°2) y°2 1 r~(31/21)

1 q~(31/21)
+ [

[ (228 v~(-1) + 228 v) y~(-1) + (228 v~(-1) + 228 v) y ] r"(1/2)
+ [ (2848 v~(-1) + 2848 v) y~(-1) + (2848 v~ (-1) + 2848 v) y 1 r~(3/2)

1 q°(3/2)
+ [
[ 24 yo(-2) + (94 v"(-1) + 94 v) y~(-1) + 328 + (94 v"(-1) + 94 v) y + 24 y*2 ] r~(15/28)
+ [ (24 v~ (-2) + 328 + 24 v™2) y~(-2) + (1631 v~(-1) + 1531 v) y~(-1) + (328 v~ (-2) + 4716 + 328 v°2)
+ (1531 v~ (-1) + 1631 v) y + (24 v"(-2) + 328 + 24 v*2) y~2 ] r~(43/28)

1 q°(43/28)
+ L

[ (28 v°(-1) + 28 v) y~(-1) + (28 v~(-1) + 28 v) y 1 r~(23/42)
+ [ (196 v~(-1) + 196 v) y~(-1) + (196 v~(-1) + 196 v) y 1 r~(65/42)

1 q~(65/42)
+ [

[ 89 y~(-2) + 895 + 89 y"2 1 r~(4/7)
+ [ (89 v~(-2) + 895 + 89 v~2) y~(-2) + (895 v~(-2) + 9266 + 895 v°2) + (89 v~(-2) + 895 + 89 v"2) y~2 ] r~(11/7)
1 q~(11/7)
+ [

[ 116 y~(-2) + (283 v~(-1) + 283 v) y"(-1) + 900 + (283 v~(-1) + 283 v) y + 116 y*2 1 r~(7/12)
+ [ (116 v (-2) + 900 + 116 v*2) y~(-2) + (2771 v~(-1) + 2771 v) y~(-1) + (900 v~(-2) + 7020 + 900 v"2)
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+ (2771 vo(-1) + 2771 v) y + (116 v~(-2) + 900 + 116 v~2) y~2 1 r~(19/12)
1 q7(19/12)
+ [

[ 36 y"(-2) + 390 + 36 y"2 1 r~(13/21)
+ [ (36 v (-2) + 390 + 36 v"2) y~(-2) + (390 v~(-2) + 4353 + 390 v°2) + (36 v~(-2) + 390 + 36 v"2) y"2 ] r~(34/21)
1 q~(34/21)
+ [
[ (212 v (-1) + 212 v) y"(-1) + (212 v~ (-1) + 212 v) y ] r7(9/14)
+ [ (2392 v~(-1) + 2392 v) y~(-1) + (2392 v~(-1) + 2392 v) y 1 r~(23/14)

1 q(23/14)
+ [

[ 116 y~(-2) + (289 v~(-1) + 289 v) y~(-1) + 924 + (289 v~(-1) + 289 v) y + 116 y"2 ] r"(19/28)
+ [ (116 v~ (-2) + 924 + 116 v™2) y~(-2) + (3049 v~(-1) + 3049 v) y~(-1) + (924 v~(-2) + 8036 + 924 v"2)
+ (3049 v~ (-1) + 3049 v) y + (116 v~(-2) + 924 + 116 v"2) y~2 1 r~(47/28)

1 q°(47/28)
+

[ (784 v~(-1) + 784 v) y~(-1) + (784 v~(-1) + 784 v) y 1 r~(71/42)

q~(71/42)
+ [

[ 25 y"(-2) + 243 + 25 y"2 1 =~ (5/7)
+ [ (25 v (-2) + 243 + 25 v™2) y~(-2) + (243 v~(-2) + 2458 + 243 v°2) + (25 v™(-2) + 243 + 25 v"2) y~2 ] r~(12/7)
1 q~(12/7)
+ [
[ 36 y(-2) + (93 v~(-1) + 93 v) y~(-1) + 300 + (93 v~ (-1) + 93 v) y + 36 y"2 ] r"(61/84)
+ [ (36 v"(-2) + 300 + 36 v"2) y~(-2) + (1089 v~(-1) + 1089 v) y~(-1) + (300 v~(-2) + 3012 + 300 v"2)
+ (1089 v~ (-1) + 1089 v) y + (36 v™(-2) + 300 + 36 v™2) y~2 ] r~(145/84)

1 q~(145/84)
+ [

[ 121 y~(-2) + 1089 + 121 y~2 1 r~(16/21)
+ [ (121 v~(-2) + 1089 + 121 v~2) y~(-2) + (1089 v~(-2) + 9801 + 1089 v"2) + (121 v~(-2) + 1089 + 121 v"2) y~2 ] r~(37/21)
1 q~(37/21)
+ [

[ (328 v~(-1) + 328 v) y~(-1) + (328 v~(-1) + 328 v) y 1 r~(11/14)
+ [ (4716 v~(-1) + 4716 v) y~(-1) + (4716 v~ (-1) + 4716 v) y 1 r~(25/14)

1 q°(25/14)
+ [

[ 356 y~(-2) + (895 v~(-1) + 895 v) y~(-1) + 2868 + (895 v"(-1) + 895 v) y + 356 y"2 1 r~(23/28)
+ [ (356 v~(-2) + 2868 + 356 v~2) y~(-2) + (9266 v~(-1) + 9266 v) y~(-1) + (2868 v~(-2) + 24168 + 2868 v"2)
+ (9266 v~ (-1) + 9266 v) y + (356 v~ (-2) + 2868 + 356 v°2) y"2 ] r~(51/28)

1 q°(51/28)
+ [

[ (900 v~(-1) + 900 v) y~(-1) + (900 v~(-1) + 900 v) y 1 r~(5/6)
+ [ (7020 v~(-1) + 7020 v) y~(-1) + (7020 v~ (-1) + 7020 v) y 1 r~(11/6)
1 q~(11/6)
+ [
[ 65 y~(-2) + 677 + 65 y"2 1 ©~(6/7)
+ [ (65 v"(-2) + 677 + 65 v°2) y~(-2) + (677 v~(-2) + 7058 + 677 v°2) + (65 v~(-2) + 677 + 65 v"2) y"2 1 r~(13/7)
1 q~(13/7)
+ [

[ 144 y~(-2) + (390 v~(-1) + 390 v) y"(-1) + 1272 + (390 v~ (-1) + 390 v) y + 144 y~2 1 r~(73/84)
+ [ (144 v~(-2) + 1272 + 144 v°2) y~(-2) + (4353 v"(-1) + 4353 v) y"(-1) + (1272 v"(-2) + 11748 + 1272 v"2)
+ (4353 v~(-1) + 4353 v) y + (144 v~(-2) + 1272 + 144 v°2) y~2 ] r~(157/84)

1 q~(157/84)
+ [

[ 57 y~(-2) + 561 + 57 y"2 1 r~(19/21)
+ [ (87 v-(-2) + B61 + 57 v™2) y~(-2) + (561 v~(-2) + 5553 + 561 v-2) + (57 v~(-2) + 561 + 57 v-2) y~2 ] r~(40/21)
1 q~(40/21)
+ [
[ (924 v~ (-1) + 924 v) y~(-1) + (924 v~ (-1) + 924 v) y ] r"(13/14)
+ [ (8036 v~(-1) + 8036 v) y~(-1) + (8036 v~(-1) + 8036 v) y ] r~(27/14)

1 q°(27/14)
+ [

[ 100 y~(-2) + (243 v~(-1) + 243 v) y~(-1) + 772 + (243 v"(-1) + 243 v) y + 100 y~2 ] r~(27/28)
+ [ (100 v~(-2) + 772 + 100 v*2) y~(-2) + (2458 v~(-1) + 2458 v) y~(-1) + (772 v"(-2) + 6344 + 772 v"2)
+ (2458 v~ (-1) + 2458 v) y + (100 v~(-2) + 772 + 100 v-2) y~2 1 r~(55/28)

1 q~(55/28)
+ [

[ (300 v~(-1) + 300 v) y~(-1) + (300 v~(-1) + 300 v) y ] r~(41/42)
+ [ (3012 v~(-1) + 3012 v) y~(-1) + (3012 v~ (-1) + 3012 v) y 1 r~(83/42)

1 q~(83/42)
+ [
3 y(-2) + 17 + 3 y~2
+ [ (8 v"(-2) + 960 + 3 v°2) y~(-2) + (17 v~(-2) + 7610 + 17 v"2) + (3 v"(-2) + 960 + 3 v°2) y"2 1 r
+ [ (960 v~(-2) + 7610 + 960 v"2) y~(-2) + (7610 v"(-2) + 60585 + 7610 v"2) + (960 v~ (-2) + 7610 + 960 v"2) y"2 ] r 2
1q°2
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