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Introduction

The j-invariant of an elliptic curve with complex multiplication is an algebraic
integer. For a proof of this fact see [Si2, Thm.IL.6.1]. For every z € C there
exists an elliptic curve E s.t. j(E) = z. If we pick an arbitrary algebraic in-
teger z does the corresponding elliptic curve have complex multiplication? In
this project we show that the answer is no. In fact only finitely many rational
integers (i.e. elements of Z) correspond to elliptic curves with complex multi-
plication.

Chapter 1 contains a discussion of plane curves. Many of the proofs are con-
tained in [Kn] but I have partly simplified them and added steps for clarity.

Chapter 2 defines an elliptic curve as a nonsingular cubic in Weierstrass Form.
We define the j-invariant of an elliptic curve in Chapter 2.

Chapter 3 shows that an elliptic curve is topologically a torus. There is a cor-
respondence between complex tori and elliptic curves. The j-invariant allows
us to explicitly forge a bijection between classes of complex tori and classes of
elliptic curves. Thus we regard complex tori as elliptic curves.

Chapter 4 defines complex multiplication. We look at complex multiplication
from the perspective of plane curves and from the perspective of complex tori.

Chapter 5 contains a lot of algebraic number theory. We need results about
algebraic number fields in order to understand the proof that the j-invariant of
a curve with complex multiplication is an algebraic integer. To show that only
finitely many rational integers correspond to curves with complex multiplica-
tion we need the fact that there are exactly nine quadratic imaginary fields of
class number 1. This was originally conjectured by Gauss and was proved by
Heegner. See [He] for a proof.



1 Plane Curves

Summary

The set of zeroes of a nonzero homogeneous polynomial is a well-defined subset
of the projective plane PZ. For a discussion of projective space see [Rel, 1.4]. I
think of P4 as R? together with points on the horizon ”at infinity”. A projective
change of coordinates is an invertible linear map. We regard two plane curves
as the same if they are projectively equivalent.

A curve is nonsingular if we can sensibly define a tangent line at every point
of the curve. The tangent line at a point is the unique line through that point
with intersection multiplicity greater than 1. Nonsingularity is preserved by a
projective change of coordinates. A flex (or point of inflection) is a nonsingular
point of the curve where the intersection multiplicity of the tangent line is greater
than 2. Of course at school we learn that an inflection point of the curve in R?

given by y = f(z) is a point where % =0.

1.1 A Few Definitions

PZ == (C°\ {0})/ ~ where (a, 8,7) ~ (o', 8,7") if 3X € C\ {0} s.t. (a,8,7) =
A, B',9")

A plane curve is a non-zero homogeneous polynomial F' € C[X,Y, Z]. The set
of zeroes of F' in P% is well-defined since F' is homogeneous. We write F(C)
or E : (F = 0) to denote this locus. If deg(F)=1, 2 or 3 we say F is a line,
conic or cubic respectively. A plane curve F' is called irreducible if F' is an

irreducible polynomial. We regard F' and oF as the same curve Ya € C\{0}
since F(C) = aF(C).

A projective transformation (or projective change of coordinates) is a linear
map ¢ € Gl3(C). If ¢ = g2 for some A € C\ {0} then
¢1(a7677) = ¢2(a,ﬂ,7)V(a,ﬂ,’y) € ]P(%

This leads us to define the projective group,

PGl;3(C) := (Gl3(C)) /{scalar matrices}

where a scalar matrix is a matrix of the form AI for some A € C\ {0}. Note that
PGI3(C) acts transitively on P% (ie.V X,Y € PZ3¢ € PGI3(C) st. ¢(X) =Y)
since Gl3(C) acts transitively on C* \ {0}.

We say two curves, F} & F», are projectively equivalent if 3¢ € PGI3(C) s.t.
F(X,Y,Z) = Fy(¢~"(X,Y, Z)). Note that F;(C) = ¢(F»(C)).
Define F% := F o ¢~'. Then F?(C) = ¢(F(C)).



1.2 Definition

Let (a, 3,7) € PZ. Choose ¢ € PGI3(C) s.t. ¢d(a,B,v) = (0,0,1). We define
local affine coordinates at («, 8,v) with the map:

p: ¢ (CxCx{1}) —= C
ple7 (X, Y1) = (X,Y)
 is a bijection. The most familiar example is ¢ = I:
o {(X,V,Z)e PL|Z=1} — C
p(X,Y,1) = (X,)Y)

¢ defines local coordinates at (0,0,1) and ¢! gives us an imbedding of C? in
PZ as the affine piece (Z=1). In this case the (Z=0) part of P2 is often referred
to as "the line at infinity”.

If F is a plane curve then about any point (a,3,7) € P% we can define affine
local coordinates by choosing ¢ € PGl3(C) as in Definition 1.2. We have the
corresponding affine curve f defined by f(z,y) = F(¢~"(z,y,1)) € Clz,y].

f(@,y) = folz,y) + fi(z,y) + ... + fa(z,y)
where f;(x,y) is a homogeneous polynomial of degree i in x & y, d = deg(F).
fO(xay) =0« (aaﬂa’}/) € F((C)

1.3 Definition

Let (a, 8,7v) € F(C). We say (a, 3,7) is a singular point of F if f; is the zero
polynomial. («, 3,7) is a nonsingular point iff it is not a singular point. F is a
nonsingular curve if all the points in F(C) are nonsingular points of F.

We need to check that singularity is well-defined (i.e. independent of the choice
of ¢).

1.4 Theorem

Let F be a plane curve, (a,
transformations s.t. ¢(a, 5,

fl,y) =F(¢~ (z,9,1)) = filz,y) + ... + fa(z,y)

where f;, g; are homogeneous of degree i, d = deg(F).
Then f; and g; are either both zero or both non-zero.



Proof [Kn, p.26]
flz,y) = (Fop™) (o d~!)(z,y,1).
Now ¢ 0 ¢~! € PGI3(C) and ) 0 ¢~1(0,0,1) = (0,0,1).
a b 0
Thus popt=|c d 0
r s 1
Expanding the determinant by the third column, we see that

det(p o ¢~ 1) = det <(cl Z) # 0. Thus <Z Z) is invertible. So

flz,y) = (Foy™")(az +by,cx +dy,rz + sy + 1)
_ ax + by cx + dy
F ! 1
(Foy (e +sy+ )<ra:+sy+1’m+sy+1’ )
az + by cr + dy )

= 1)
(rz + sy + )g<rac+sy+1’rx+sy+1

= (rz+sy+ 1) g (az + by, cx + dy) + ... + ga(azx + by, cx + dy)

By regrouping into homogeneous terms we see that fi(z,v) = g1(azx + by, cx +
dy).

-1
Similarly g1 (z,y) = fi(az + By, vz + dy) where (2 Z) = (j g)

Thus f; is the zero polynomial < fi(z,y) =0Vz,y € C& ¢y (z,y) =0Vz,y € C
& g1 is the zero polynomial. O

Recall in Definition 1.1 we defined F¢ = F o ¢ ! and noted that F¢(C) =
¢(F(C)). Corollary 1.5 will show that nonsingularity is preserved by a projective
change of coordinates, so F is nonsingular iff F'¢ is nonsingular.

1.5 Corollary

If («, B,7) is a nonsingular point of F then ¢(«, 5,7) is a nonsingular point of
F9.

Proof

Choose ¢ s.t. ¥(a,B3,7) = (0,0,1) and ¢ s.t. p o p(a,3,7) = (0,0,1). Then 2
and o ¢ satisfy the hypothesis of Theorem 1.4. In the notation of Theorem 1.4
flz,y) = F(y~"(z,y,1)) and g(z,y) = f?(z,y) = F((p o ¢)~"(z,y,1)). Thus
by Theorem 1.4 f; and ff are either both zero or both non-zero. O

At a nonsingular point («, 3,7v) € F(C) choose ¢ s.t. ¢(a,8,7) = (0,0,1) as
in Definition 1.2. The affine curve f has a tangent line in C2 at (0,0). The



line is given by fi(z,y) = 0. Note that this line is defined iff f; is not the zero
polynomial iff («, 3,7) is a nonsingular point of F. This motivates our next
definition.

1.6 Definition

Let (a, 8,7v) be a nonsingular point of a plane curve F' and choose ¢ € PGlg((C)
s.t. ¢(a,8,7) = (0,0,1). The tangent line L to F at (o, 8,7) is defined L :=
fi0¢ where f € C[X,Y, Z] is just fi considered as a polynomial in 3 variables
independent of Z.

We need to check that the tangent line is well-defined (i.e. independent of the
choice of ¢ € PGI3(C)).
1.7 Theorem

Let ¢,v € PGI3(C) and suppose ¢(a, B,7) = (e, B,7) = (0,0, 1).
Let Ly = fio¢p & Ly = g1 o where f; and g1 are as in Theorem 1.4. Then
Ly = Ly.

Proof [Kn, p.28]

b
o ¢p~1(0,0,1) = (0,0,1) so po p~! = d
s

S o0
= o O

with <Z Z) invertible (as in proof of 1.4).

file,y,2) = filzy)
= gi(az + by, cx + dy)
= gl(a:v—l—by,cm—l—dy,m:—l—sy—l—z)
= GiYoo ' (z,y,2))
Ly(z,y,2) = ¢ (¢(ﬂf y,2)) = Gi(¢ 0 6~ (2,9, 2)))
= fil¢(z,y,2)) = Ly(w,y,2)
* by the proof of 1.4.
** since g7 is independent of the last coordinate. O

1.8 Theorem

P = (a,8,7) € F(C) is a nonsingular point of F iff at least one of gf;, gi,
oF

57 is nonzero at P. At a nonsingular point the tangent line L is given by
L=X228(P)+YIL(P)+ 22 (P).



Proof [Kn, Prop.I1.2.6]

Choose ¢ € PGI3(C) s.t. (;5( B,7v) = (0,
(a, B,7) € F(C) s0 Fo¢~'(0,0,1) = 0.
As in Definition 1.2, let

fly) = Flo~'(z,5,1) =F (¢~ ((z,y) = (2,9,1))) .
= folz,y) + ... + falz,y)
Fo¢1(0,0,1) = fo =0. fi(z,y) = axr + by where a = %(0,0), b= 2—5(0,0).

By the Chain Rule

@v) = (Zo.o.200)

= (Sr@s gr@s. S o (é g)

10
(¢~! is a linear map so is equal to its derivative. (0 1) is the derivative of
0 0

new) = (Zoo.3oo) (1)

<8F( Bv)a (a 67)8 (a Bv))aﬁl(%’).

Thus if all partial derivatives are zero at P, then fl = 0 (i.e. P is a singular
point). Now Fo¢1(0,0,1) =0, s0 Fo¢ ! is a polynomial with no monomials
just in Z. So

oF oF

(z,y) = (z,y,1)).

Ay, 2")

~10,0,1) = —— (¢7'(0,0,1)) ¢7'(0,0,1
o7 (@867 0,0,1) = 5= (670,0,1)67(0,0,1)
0
= Fog™! 1
= (Fo67)(0,0,1)
= 0.
By linearity this means we can put anything we like for the third entry of the
vector:
hG@y, ) =

(55 @8 g @8 g @8, 67 (%)
Y

(55 (@8, S @8, S8 ) 67 ( )



Let (2',y',2") = ¢(X,Y, Z) so that

»

L(X,Y,2) = fi(z,y',2") = (5% (. 8,7), 3% (@, 8,7), §5 (o, B, 7)) ( )
Thus if at least one of the partial derivatives is nonzero at P, then f; # 0 (i.e.
P is a nonsingular point).

TN

We have shown that at least one of the partial derivatives is nonzero at P iff P
is a nonsingular point and that

L=X32(P)+Y2E(P)+ Z22(P). O

Fix a curve F and a line L in C[X,Y, Z].

Let P = (a,8,7) € (F = 0)N (L = 0). As usual choose ¢ € PGI3(C) s
¢(aaB77) = (anv 1) and let f(iL”, ) F( (:U Y, )) fl(:Zj y) +...+ fd(cZj y)
l(ﬂf y) L(¢~ (z,y,1)).

(
y

1(0,0) =0 so I(z,y) = bx — ay for some a,b € C.
p(t) = < ) parametrizes [(z,y) = 0.
Fle(t)) = filat,bt) + ... + falat,bt) = tfi(a,b) + ... + t* fu(a, ).

1.9 Definition

The intersection multiplicity of L with F at P, i(P, L, F), is defined to be the
order of the zero of f(p(t)) at t = 0. (We say i(P, L, F) = 400 if fop =0 and
i(P,L,F)=0if P ¢ (F=0)n (L =0)).

1.10 Theorem

At a nonsingular point P € (F = 0) the tangent line, Ly, to F' at P is the
unique line with (P, L, F) > 1.

Proof [Kn, p.35]

Let L be a line through P.

i(P,L,F)—l(:) ¢Oatt—0(:)f1(ab)760(:)(ab)¢(T=0)
since L1 = f1 o¢ by Deﬁmtlon 1.6.
So (P,L,F) =1 < image(p) € L1(C) < L # L. 0

1.11 Definition

A nonsingular point P € F(C) is called a flex or inflection point of F' if
3<i(P,L,F) < 00



We have that a point P is on the curve < fo = 0. Given a point P on the curve,
P is a nonsingular point < fi(z,y) # 0. Given a nonsingular point P on the
curve, l(z,y) = bx — ay where fi(x,y) = bx —ay, and P is a flex & f5(a,b) = 0.

Let fa(x,y) = cx® + dovy + ey®. If fi | fo then fa(a,b) = 0. Conversely if
fa(a,b) = 0 then (when a,b # 0) fo(z,y) = cx® +dzy +ey® = (bx — ay) (rz + sy)
where r = ¢/b, s = —e/a. So f1 | f». The cases a = 0,b = 0 can be checked
separately.

Thus a nonsingular point is a flex & f; | fo.

1.12 Definition

The Hessian matrix of F' is defined to be
5%F 5%F 5%F
Ox2 Oxdy  Oxdz

H = 5%F 5%F 5%F
T Oz 0y 821/2 Oydz
8%F 8°F 8°F

dz0z  Oydz 0z2

1.13 Theorem
A nonsingular point P € F'is a flex & detH(P) = 0.

To prove this we need a few results first.

1.14 Lemma
Let F,G € C[X,Y, Z] be plane curves and P = (a, 8,7) € F(C) N G(C). Then
P is a singular point of the curve FG.
Proof [Kn, Prop.IL2.3]
Choose ¢ € PGI3(C) s.t. ¢(P) =(0,0,1). Let
flay) = Fo~'(2,9,1) = fi(z,y) + .. + falz,y)

g(l',y) = G(Qsil(xaya]-)) :gl(ff,y)++gd(1',y)
Then
f9(z,y) = FG(¢~ (z,y,1)) = F(¢ (2,5, 1))G (¢ (z,y,1))
= flgl(way)_'__'_fdgd(way)
So fg has no first degree terms and hence P is a singular point of F'G. O

1.15 Theorem - Bézout’s Theorem

Let F,G € C[X,Y, Z], deg(F') = m, deg(G) = n. Then F(C)NG(C) is nonempty
and contains more than mn points iff ' and G have a common factor. In fact, if
F and G have no common factor, then F'(C) NG(C) contains exactly mn points
if they are counted with the correct multiplicities.



Proof

For a complete proof see advanced texts on Algebraic Geometry. For a proof in
the case when one of the curves is a line or a conic see [Rel, Thm.1.9].

1.16 Corollary

A reducible plane curve F' is singular.

Proof [Kn, Cor.I1.2.5]

Let F = F1 F5 be plane curves and let d; & e; be the highest and lowest degrees
of terms in F;. Now the product of the d; terms in F; with the ds terms in F3
is the didy part of F} F5. Similarly the product of the e; terms in F} with the
ey terms in Fj is the ejey part of Fi Fy. Since F is homogeneous didy = ejes.
So di > e; & dy < ey which is a contradiction as by definition ds > e;. Thus
d1 =é€1 and d2 = €.

We have shown that F; and F, are homogeneous, ie. they are plane curves.
Theorem 1.15 (Bézout’s Theorem) tells us that Fj(C) N F5(C) is nonempty and
Lemma 1.14 says that any point in this intersection is singular. O

1.17 Lemma

Let A = (a;;) be a 3 x 3 symmetric matrix over C. Then the conic

X
C(X,Y,Z):=(X,Y,Z)A|Y
z

is reducible iff detA = 0.

Proof [Kn, Lem.II1.2.11]

If C is reducible then C is singular by Corollary 1.16. Let P € C(C) be a
singular point. By Theorem 1.8 % = g—i = % =0 at P. A is symmetric so

A(P)=0. 0# P € Ker(A) so det(A) = 0.

Conversely we can diagonalise A since it is symmetric. One of the diagonal
entries must be zero since det(A) = 0. so we find that the conic C is projectively
equivalent to the curve X2 + Y2 = (X +iY)(X —iY) which is reducible. O

Proof of Theorem 1.13 [Kn, Prop.I1.2.12]

Let L be the tangent line to F' at P. Choose ¢ with ¢(P) = (0,0,1). Let
f(z,y) = F(¢*(z,y,1)). We know that P is a flex & f; | fo. Now consider

the conic Q¢ (z,y,2) := fao d(z,y,2). fi | fo & L] Qy.

Pis aflex = L| Qg = L divides the conic defined by H(P) = detH(P) =0



(by Lemma 1.17).

Conversely detH (P) = 0 = conic C defined by H(P) is reducible (by Lemma
1.17). C = Ly L, say. Now L is the tangent line to C' at Pso L = Ly or L = Ls.
L|C=L|Qs= Pisaflex. a

1.18 Corollary

A nonsingular plane curve F' with d = deg(F') > 2 has at least one flex.

Proof

By Theorem 1.13 flex points are solutions of F' = 0 = det(H). det(H) is a
plane curve of degree 3(d — 2). Bézout’s Theorem tells us that the intersection
F(C) ndet(H)(C) is non-empty. a

1.19 Remarks

Bézout’s Theorem tells us that F' has 3d(d — 2) flex points (if they are counted
with correct multiplicities) unless F' and det(H) have a common factor. It turns
out that this cannot happen unless F' is a product of lines. But then of course
F is reducible and hence singular by Corollary 1.16.

Every point of F(C) has a tangent line - the unique line with intersection mul-
tiplicity (P, L, F') > 1 by Theorem 1.10. Note that i(P, L, F) = 2 except at the
finite number of flex points.

1.20 Summary of Key Points from Chapter 1

1. Let P € F(C). P is a nonsingular point iff at least one of the partials g—)lf.,

g—g, g—g is not zero at P. The tangent line at P is Xg—§|p+Yg—€.|p+Zg—g|p
which is defined iff P is a nonsingular point. Nonsingularity is preserved

by projective change of coordinates.

2. A flex is a nonsingular point at which the tangent line has intersection
multiplicity greater than or equal to 3. A nonsingular point P of a curve
F is a flex iff det(H(P)) = 0 where H is the Hessian of F.

3. Every nonsingular cubic contains a flex point. A nonsingular cubic has at
most 9 flex points.

10



2 Elliptic Curves

Overview

A cubic is a non-zero homogeneous polynomial F' € C[X,Y, Z] of degree 3. An
elliptic curve is a nonsingular cubic in Weierstrass Form. A cubic is projectively
equivalent to a cubic in Weierstrass Form iff it contains a flex. We showed in
Corollary 1.18 that every nonsingular cubic contains a flex. Since we regard pro-
jectively equivalent curves as the same, elliptic curves are precisely nonsingular
cubics. The j-invariant assigns a different complex number to each projective
equivalence class of elliptic curves.

2.1 Definition

A cubic in the form (Y2Z +a1 XY Z+a3Y Z?) — (X3 + a2 X?Z +as X Z% + as Z°),
a; € Cis said to be in Weierstrass Form.

A nonsingular cubic in Weierstrass Form is called an Elliptic Curve.

Let F be a cubic in Weierstrass Form. Plug in Z = 0 and we are left with —X?3.
So (0,1,0) is the only point of F/(C) at infinity.

OF
X a1 YZ —3X? —20,X 7 — ay Z*
OF
v = 2YZ + a1 X Z + a3 Z°
F
g_z = Y2+ XY +2a3Y 7 — ayX> — 204X Z — 3a¢ 2>

At (0,1,0), 28 = 28 =0, 2£ = 1. By Theorem 1.8 (0,1,0) is a nonsingular
point of F and the tangent line to F' at (0,1,0) is Z = 0. We calculate the

Hessian matrix H.

—6X — 20,2Z 0,1Z 0,1Y - QCLQX - 2a4Z
H = a1 7 27 2Y + a1 X + 2a372
CL1Y — 20,2X — 2a4Z 2Y + (llX + 2a3Z 2a3Y — 20,4X — GCLGZ
0 0 aq

H (0,1,0)=[0 0 2
aq 2 2a3

detH (0,1,0) = 0, so by Theorem 1.13 (0, 1,0) is a flex of F(C).

2.2 Theorem

A cubic F is projectively equivalent to a cubic in Weierstrass Form < F(C)
contains a flex.

11



Proof [Kn, pp.40-42]

(=) is done above.
(<) Let P be a flex of F. Choose ¢1 € PGi3(C) s.t. ¢1(P) = (0,1,0). Then
F? has a flex at (0,1,0). (Recall that F(X,Y, Z) = F(¢~'(X,Y, Z))).

Let L = aX + $Z (a,3 not both zero) be the tangent line to F¢' at (0,1,0).
Note there is no term in Y since the line passes through (0, 1,0).

We want to make a projective change of coordinates ¢» which leaves the flex
at (0,1,0) and so that L?? = Z. If a = 0 we are done. If 3 = 0 then just

0 01 a 0 b
take ¢o = [0 1 0. If a,8 # 0 choose ¢ with ¢2_1 =10 1 0] st.
1 0 0 c 0 d

det(¢)™' = ad — be # 0 and aa + Bc = 0.

L(X,Y,Z) = L(aX +bZY,cX +dZ) = a(aX +bZ) + B(cX + dZ)
= (aa+ Bc)X + (ab+ pd)Z = (ab+ pd)Z
since aa + B¢ = 0. Now if ab + Bd = 0 then afiad = afbc so ad — be = 0.
Contradiction. So ab+ 3d # 0 and L*(X,Y,Z) = Z.
So, (F¢1)2 = Fo10¢,' = Fogp; ' oy’ = Fo(paty)™' = F?2? has a flex at
(0,1,0) and (Z=0) is the tangent line at (0,1,0).

Now consider the most, general form of a cubic F:

F = axsX?
+ GX2YX2Y+GX22X2Z
+ aXszY2+aXyZXYZ+axszZ2
+ aysY?+ay2 ;Y Z 4 ay Y722 +aysZ?

1. (0,1,0) € F?2?1(C) = ays = 0.

2. (0,1,0) is a nonsingular point of F?291(C). As in Definition 1.2, consider
1 0 0
f(@,y) = F () (¢~} (2,y,1)) where g = [0 0 1],
0 1 0
#(0,1,0) = (0,0,1). fi(z,y) = axy2x + ay2zy # 0 by the definition of a
nonsingular point (Definition 1.3). So axy= and ayzz are not both zero.

3. The tangent line to F?2?1(C) at (0,1,0) is L = Z. But
L= f1(¢(X, Y, Z)) —axy2X +ayz2z7Z. So axyz = 0 and by 2, ayz2z ;é 0.

4. (0,1,0) is a flex of F?291(C). Now fi(z,y) = ay2zy and fo(z,y) =
ax=yr’+axyzry+ay=zy?. By the comments after Definition 1.11 f; | fo.
Hence axzy = 0.

12



We have

F?2% = s X3 +ax2,X2Z +axyzXYZ
+ axp2XZ+ay22Y’Z +ayp2Y 27 + ags Z°

¢ From Definition 1.11 i((0,1,0), L, F) < co. Now L=Z is the tangent line so Z
does not divide F. Thus axs # 0. We know from 3. that ay25 # 0.

—ay2z/ax3 0 0
Finally we let ¢3 = 0 ay2z/axs 0. Then the coefficient of
0 0 1

Y27 in F?%2%1 is (ay25)?/(axs)? and the coefficient of X2 is —(ay25)%/(axs)?.

Thus after multiplying through by a constant we obtain
F939201 = (Y2Z + a1 XY Z 4+ a3Y Z2) — (X3 4+ as X2 Z + a4 X 7% + a6 Z?)
as required. O

Every nonsingular cubic contains a flex by Corollary 1.18. By Theorem 2.2 every
nonsingular cubic is projectively equivalent to a curve in Weierstrass Form and
by Corollary 1.5 nonsingularity is preserved by a projective change of coordi-
nates. Every nonsingular cubic is projectively equivalent to an Elliptic Curve.

Note that some cubics in Weierstrass Form are singular, eg. F =Y2Z — X3 is
singular at (0,0,1). Note also that (0,1,0) is always a flex of a cubic in Weier-
strass Form. As was remarked earlier this is the only point of F(C) on the line
at infinity. So singularity is determined on the affine piece (Z=1).

With this in mind, from now on we write ¥ + a1 2y + asy = x> + a2x> + a4z + ag
to represent a cubic in Weierstrass Form, taking the flex at (0,1, 0) as read.
2.3 Lemma

Every cubic in Weierstrass Form is projectively equivalent to a curve in the form

y? = 2 — 27c4x — 54cg for some cy,c € C.

13



Proof
We first complete the square on the left-hand-side of the equation:

y2 + a1y + a3y = z° + a2x2 + a4 + ag
a as\? 2
(y+?1a:+?3) = y2+a1xy+a3y+%w2+alzagm+%
2
= m3+agaz2+a4m+a6+ﬂaz2+ala3az+%
4 2 4
Let Y = 2y+aix+az, X =z
Then Y2 = 4X°%44ayX? +4a4X + dag + a? X + 2a1a3X + a’

= 4X? 4+ (day +ad)X? +2(2a4 + a1a3)X + (a2 + 4ag)
= 4X3 41y X2 + 204X + bg

where by = (4ay + a?), by = (2a4 + a1a3), bg = (a3 + 4ag).

Now we complete the cube on the right-hand-side of the equation:

Y2 by by Do
. — X34y ZExzgp == =
4 R T
V> b \*  [by 303 bg b3
(3) = (o) +(5) <+ (1)
Now let y' :=108Y and 2’ := 36X + 3by. Then

YN L (N, (b 3R (BN (b B
216 36 2 122 36 36 4 123

32 by (2 362 by 3b b
2 13 a6 (20 D4 [T 62V 94} 902 .6 Y2 U6
Y v =6 <122 2) (36>+6 <122 2) 56 0 (123 1

The coefficient of the z’ term is

32 b 3b3 b
4 2 4 404 2 4
_ 2 2 - _9 o2 2
6 <122 2 > 3 (2432 2 >
2432p2 243p
— _33 < 24322 _ 5 4) = —27 (bg — 24b4) .

14
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And the constant term is

6o (302 _ba\3ba (B b
122 2) 36 122 4

— 9636 (ﬁ_bi>3_b2_2636 (ﬂ_b_‘i

2432 2 ) 2232 2633

= (3% —3%)b3 — 233°Dyby + 2%3%Dg
= —54 (—b3 + 36babs — 216bg)

Thus y"? = 2" — 27cqx’ — bdcg
where ¢y = b3 — 24by and cg = —b3 + 36b2by — 216bs.

2.4 Definition

y? = 2% — 27c4x — 54cg is called Normal Form.

2.5 Definition
Let f(z) € Clz]. Define the discriminant of f,

di= [ (-

1<i<j<deg(f)

22

)

where «; are the roots of f in C. Clearly d = 0 < f(z) has a multiple root.

2.6 Lemma

y? = ax® + bz? + cx + d is a nonsingular cubic if and only if az® + b2? + cx + d

has three distinct roots in C.

Proof [Kn, Prop.II1.3.5]

We are considering the curve F = Y2Z — (aX?® + bX2Z + cXZ? 4+ dZ?). This
is in Weierstrass Form so as was remarked in the comments before Lemma
2.3, singularity is determined on the affine piece (Z=1). This means that any

singular point of F will be of the form (zo, yo, 1)-
By Theorem 1.8 F is singular < AP = (9, yo, 1) € F(C) s.t.

OF oOF OF
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We require (at P):

F = Y?Z—-aX?®-bX?Z—-cXZ?—-dZ®=0
g—)}; = —3aX?-2bXZ—cZ?’=0

2_1}: = 2YZ=0

g—g = Y2-bX?-2cXZ-3dZ> =0

Plug in Z=1:

y?—ax® —ba? —cx—d =
3ax> +2bx +¢ =

2y =

y? —bz? —2cx —3d =

o O O O

So if P is a singular point then yo = 0. Let f(z) = ax® + bx? + cx + d. We are
left with:

flzo) = azxd+bzi+cxo+d = 0
f'(mo) = 3azd+2bzg+c = 0
br? +2cx +3d = 3f(xzo) —zof'(zg) = O

We see these equations are linearly dependent - the third equation is redundant.
We have shown that P = (xg,y0,1) is a singular point of F & yo = f(z0) =
f'(zo) = 0. Such a point exists & f(z) = az® + bz® + cx + d has a multiple
root. a

2.7 Calculating the Discriminant of a Cubic

Let f(z) € C[z] be a cubic polynomial. We know that y?> = f(z) is a singular
curve iff f(z) has a multiple root by Lemma 2.6. ;From Definition 2.5 f(z) has
a multiple root iff the discriminant of f is zero. This gives us a convenient way
of checking if a curve in the Normal Form (defined in 2.4) y? = 23 —27cqx — 54cg
is singular.

At the moment the discriminant of f is defined in terms of the roots of f. It will
be useful to a have a description of the discriminant in terms of the coefficients
of f. Let r1, ro, 73 be the roots of f. Then

fx)=(x—r)(x—r)(x—1r3) =2° —az®+ Bz — v

where o = ry +ry+ 713, f = 1172 + 1173 + 1273, v = 717213 are the three elemen-
tary symmetric polynomials in 7y, r2, r3. A Theorem of Newton tells us that
every symmetric polynomial is expressible as a polynomial of the elementary
symmetric polynomials. The discriminant is a symmetric polynomial in ry, rs,
r3 SO we can express it as a polynomial in a, 3, 7. To do this we use a cunning

determinant trick (see [Kn, Prop.I11.3.3]):

16



1 1 1
Let M = |7 ro 73 ). Then det(M) = (r3 —r2)(rs —r1)(ra — r1).

2 2 2
rH T3 T3

The discriminant of f is given by

d = I i-ry

1<i<j<deg(f)
= (det(M))* = det(M)det(M7T) = det(MMT)
1 1 1 1 r 1} 3 o1 09
Now MMT =|r; 7o rs 1 re r% =|o1 o2 o3
r? r3 r3 1 rg 12 0y O3 04

where o; = ri + 71} +ri.

r+nrot+ry3 =«

ri 4713+ 13 = (r1 +ra+13)? —2(rire + rir3 +1ror3) = 0 — 28
o3 = rif -I-rg +r§

(r1 + 7o +73)% —3(ry + 2 +13)(r1rg + 1173 4+ 7or3) + 3rirars
o® —3aB+ 3y

or = a'—2a%6+ 28+ dar.

01

02

We have expressed the discriminant of a cubic polynomial f in terms of its
coefficients. Let’s use this to find the discriminant, d, of 2® — 27c4x — 54c in
terms of ¢4 and cg.

a=0,8=—-2Tcy,y = 5dcg

oo = a=0
_ 2 _ 3
oy = a° —28=2-3%¢c
o3 = a3—3aﬂ+3fy:2-3406
or = a'—2a°B+26% 4+ 4ay =2-352
3 g1 (2]
d = det|o1 oo o3
09 03 04
3 0 2-3304

= det 0 2:3%¢c, 2-3%4
2:-3%, 2-3% 2- 36031

= 3(22-3%] —22-3%2) + 2 - 3%c4(—2235¢3)

= 22.3%c} —cd).

17



2.8 More About Discriminants

The roots of the quadratic polynomial az? + bz + ¢ are —bEvb-—dac V;’;"“” and the
discriminant is b> — 4ac.

Let 2° 4+ ax® + bx + ¢ be a cubic. Complete the cube to bring it to the form
X3 +pX +q. If p=0 we have X3 + ¢ which has discriminant —27¢2. If ¢ =0
we have X (X2 + p) which has discriminant —4p?.

Now assume that pg # 0. Note that X = 0 is a solution iff ¢ = 0.
f:C\{0} = C\{0}, Z = Z — 3% is a 2-to-1 function since for each X € C\ {0},

2
w — X. We find the roots of the cubic by substituting Z — J for

X and solving for Z. We get Z3 + q — 2;’%. So solve Z¢ + qZ3 — % which is a

quadratic in Z%: 73 = 1 + 4/ % + %. The six solutions for Z must yield the

three solutions for X (i.e. the solutions for Z pair off). We can calculate that
the discriminant of X3 + pX + ¢ is therefore —4p® — 27¢2.

Above we showed that the discriminant of the cubic 2® — 27c4z — 54cg is
22-3%(c} — c2). Plug p = —27c4, ¢ = H4cg into —4p® — 27¢* and we do indeed
get 22 - 3%(c} — c2).

2.9 Definition

Recall from Lemma 2.3 that any curve in Weierstrass Form y? + aj2y + asy =

23 + azx® + aux + ag is projectively equivalent to a curve in the Normal Form

y? = 2 — 27¢c4x — 54cg. The discriminant of a curve in Weierstrass Form is

-
1728

Singularity is preserved by projective changes of coordinates so a curve in
Weierstrass Form is singular iff the corresponding curve in Normal Form from
Lemma 2.3 is singular. By Lemma 2.6 the curve in Normal Form is singular iff
x® — 27c4x — 54cg has repeated roots. 3 — 27c4x — 54cg has repeated roots iff
its discriminant (Definition 2.5), d = 22 - 3°(c} — c2) is zero. d is zero iff A is
zero by the definition of A.

So a curve in Weierstrass Form is singular iff its discriminant, A = 0. We
see that elliptic curves are precisely curves in Weierstrass Form with non-zero
discriminant.

2.10 Definition

An admissable change of coordinates is a projective change of coordinates of the
form

18



w 0 r

¢p=|su® u® t| wherer,s, t,ueC, u#0.
0 0 1
Note that det(¢) = u® # 0 so ¢ € PGI3(C).

2.11 Lemma

The set of admissable changes of coordinates is a subgroup of PGl3(C).

Proof

Inverse:
w2 0 —ru2 U? 0 R
pt=—-su? u? udrs—t)|=|SU> U* T
0 0 1 0 0 1

where R=—ru 2, S=—-su ', T=u3(rs—t),U=u"t#0.

Closure:
u? 0 n u3 0 ry
sju? ud ot soud u3 ty
0 0 1 0 0 1
u?ul 0 rou? 411 U? 0 R
= | siufu3 + soudud wiud rosiud +udte+t, | = | SU? U T
0 0 1 0 0 1

where R = rou?+ry, S = sy +saugtug, T = rosjul +ulta+t, U = ujus #0. 0O

2.12 Theorem
Let F(X,Y,Z) = (Y2Z + ay XY Z + asY Z2) — (X® + a2 X2Z + as X Z2 + a6 Z%)

2
U 0 r

be a curve in Weierstrass Form and ¢—' = [ su®> «® t | be an admissable
0 0 1

change of coordinates. Then F'¢ is a curve in Weierstrass Form. Under this
change of coordinates the flex at (0,1,0) remains at (0,1,0) and the tangent line
at (0,1,0) remains (Z = 0).

Admissable changes of coordinates are the only projective changes of coordinates

that keep F' in Weierstrass Form, send the flex at (0, 1,0) to itself and preserve
its tangent line (Z = 0).

Proof

For the first part Z is preserved by an admissable change of coordinates. As was
remarked in Definition 1.1 F¢(C) = ¢(F(C)). So the only point at infinity in
F?(C) is ¢(0,1,0) = (0,1,0). So instead of plugging in ¢(X,Y, Z) for (X,Y,Z)
and then putting Z=1, we can work in the affine piece (Z=1), taking

19



' =u?z + 1y =udy + suz 4+t as our admissable change of coordinates.

{y/2 + a2’y + asy/} _ {xIS +apz + agr’ + aﬁ}
= {(wy + su’z + t)2 + a1 (v’x + ) (udy + su’z + ) + a3 (vPy + su’z + 1)}
—{(Pz +7)® +ax(u’z + 1) +as(uxr +7) +ag}
={y’+ut(2s+a1)zy + u (2t + arir + a3)y}ub
—{z® +u?(—s? —ar1s + 3r + az)z?
+u~*(—2st — ayt — rs — azgs + 3r> + 2asr + ag)z
+u78(—t? —arrt — ast +r® + asr?® + aqr + ag) yub

We have the curve
v24+ut(2s+a)zy +u 32t + a1r + az)y
=23 +u"2(—s2 —a;s + 3r + ay)z?
+u~4(—2st — art — rs — azs + 3r% + 2asr + aq)x
+u"b(—t? —ayrt — agt + r® + asr® + aqr + ag)
so Weierstrass Form is preserved. We know (0,1,0) was sent to (0,1,0) and by
the comments after Definition 2.1 it is still a flex with tangent line (Z = 0).

Note that the coefficients are powers of u (multiplied by a lot of junk).
This explains the mysterious subscripts chosen for the a; coefficients in
Weierstrass Form. After an admissable change of coordinates they are multiples

w2 0 0
of u=%. In the case that r=s=t=0,ie. = | 0 u® 0], the curve
0 0 1

z° + asz? + a4 + ag  becomes the curve

y2 + alu_lxy + a3u_3y = 2* 4+ agu_QacQ + a4u_4ac + aﬁu_G.

y2 + a1y + asy

It remains to show that admissable changes of coordinates are the only projective
changes of coordinates that keep F' in Weierstrass Form, send the flex at (0,1, 0)
to itself and preserve the tangent line Z = 0.

a B vy
Let o' =0 € ¢
n 6

¢=1(0,1,0) = (0,1,0) so 5 =6 = 0.

We also require that the tangent line to F(¢~1(X,Y, Z)) at (0,1,0) be (Z = 0).

Thus 8(11;7;_1) =0 at (0,1,0). We know from multi-variable calculus that:

8(%"7)‘{1) l(0,1,00= D(F o ¢_1)(0,1’0) (e1) where DG |p is the total derivative of G

at P and e; = (1,0,0). So

% l(0,1,00= D(F o ¢71)(0,170) (e1) = DF|g-1(0,1,0) © D¢71|(0,170) (e1)
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I’ I’
=DF|(0,1,0)°¢_1(€1)=(8F or g—g)|(0,1,0) J =(0 0 1) i =n

X oY
n
(Recall from 2.1 that (22 25 28y |,y =(0 0 1)).

a 0 v
Thusp =0and ¢! = [ § € (|. We are working in PGL3(C) so we can
0 0
multiply ¢—' by ¢~'. This shows that ¢—! preserves Z. So again we can work
in the affine piece (Z = 1) and consider the change of coordinates

!

2 = ar 4+, y = 6x+ ey + (. Take the curve y'> = 2. Our change of

coordinates must preserve Weierstrass Form so we see that a® = €2. Thus
w2 0 v

o' =6 wuP | whereu=a'/? =¢€'/3. After multiplying by ¢~ this is
0 0

an admissable change of coordinates. Note that the § term is OK because we

can choose s so be anything we like. O

2.13 Definition
The mysterious subscripts of the coefficients of a curve in Weierstrass Form were

discussed in the proof of Theorem 2.12. Define i to be the weight of a;.

Note that the product a;a; has weight ¢ + j since if a; is sent to a multiple of
u~¢ by an admissable change of coordinates and a; is sent to a multiple of u ™/
then the product of what they are sent to is a multiple of «w~(+7)_ Similarly
a; ' has weight —i and the sum aa; + 8b; has weight i for any 0 # (a, 8) € C2.

2.14 Remark

100
Let F = Y2Z+YZ2- X3 6= {0 0 1|. Then F¢ = F, but ¢ is not
010

an admissable change of coordinates. In this example the Weierstrass Form is
preserved, but (0,1,0) is taken to (0,0,1). In fact the curve has flexes at (0,1,0)
and (0,0,1). ¢ simply swaps them.

So there are projective changes of coordinates which preserve Weierstrass Form
that are not admissable changes of coordinates, but these do not satisfy the
conditions that the flex at (0,1,0) be preserved and the tangent line remain
(Z=0).

2.15 Definition

Two elliptic curves F; and Fs are isomorphic if there is an admissable change
of coordinates ¢ such that F1¢ = F,. We write I} = F5.
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2.16 Definition

The j-invariant of an elliptic curve is

_ cl _ 1728¢3
A -

where A is the discriminant as defined in 2.9.
Note that j is defined because A # 0 for a nonsingular curve.

By the remarks after Definition 2.13 ¢4 has weight 4, cg has weight 6, A has
weight 12 and j has weight 0. We justify the name invariant in the next Theo-
rem.

2.17 Theorem

Two elliptic curves are isomorphic iff they have the same j-invariant. For every
j € C there exists an elliptic curve with that j-invariant.

Thus j : {isomorphism classes of elliptic curves} — C is a bijection.

Proof

Consider two elliptic curves in Normal Form:

C: (y* =2* — 27cyz — 5dcs)
D : (y* = 2® — 27dyx — 54dy)

Claim C 2 D & Ju # 0 s.t. ¢4 = u*dy and cg = uds.

(=) Recall from the first underlined section of Theorem 2.12 that admissable
changes of coordinates are 2’ = u?z +r,y’ = uy + su?zx +t where r,s,t,u € C,
u # 0. Plug this into C:

(WPy + su’z +1)? = (uPz+7r)® —27cs(u’x 4+ 1) — 5dcg
uSy? + 2sulzy + 2tudy = w2 + (3rut — sPut)a?

+  (3r%u® — 2stu® — 27cqu?)z + (r® — 1* — 27cyr — 54c)
C 2 D so there is a choice of r, s, t,u bringing this mess to the form of D.

The coefficient of zy = 0 so s = 0 (because u # 0)
And the coefficient of y = 0 so t = 0.

And the coefficient of 2 =0 so r = 0.

So we have u%y? = w23 — 27c,u%x — 54cg, which is the same curve as

y? = 23 — 27Tu"*cyx — 54u~%¢cq. This is the only way we can get to this form so
Ju # 0 s.t. ¢s = u'dy and cg = ubds.

(<) Just take 2’ = u%x?, y' = vy as the admissable change of coordinates.

22



Now let E be an elliptic curve. We showed in Lemma 2.3 that E is projectively
equivalent to a curve in Normal Form. In one step the change of coordinates
used was

x' = 36z + 3bs,y' = 216y + 108a,z + 108as.

This is an admissable change of coordinates with u = 6. So we showed in Lemma
2.3 that every elliptic curve E is isomorphic to a curve in Normal Form.

Let E be an elliptic curve isomorphic to C' and F' an Elliptic Curve isomorphic
to D. By Lemma 2.11 the set of admissable changes of coordinates is a group
so E 2 F & (C =2 D. The claim above showed that C = D & Ju # 0 s.t.
¢y = u*dy and cg = ubds.

1728¢3
ci—cZ’

The j-invariant of E is defined to be jp =

E=2F=C=D= Ju#0s.t. cq =u*dy and c5 = uSds.

.. . .. 1728¢5 1728(dau*)® 1728d5
So the j-invariant of F'is jr = %= (daw)  — o)
4

—2 = (dau)P—(dou)? — d3—az _JF-

1728 _ 1718 g
» 1-c3/c} 1—-d3/d}
= %. Now v # 0 s.t. ¢4 = v*dy. But then c2ds = d2v'2d; so ¢z = v'%d: =
= +0%dg. If ¢ = +00dg let uw = v. If ¢g = —0v0dg let uw = /—1v. Then
¢y = u*dy and ¢ = ubdg. So C =2 D and thus E & F.
If ¢4 = 0 then jp = 1728 = jr so dy = 0. Similarly if d4 = 0 then ¢4 = 0. In
this case C' : (y? = 2% — 54cg), D : (y? = 23 — 54dg). There exists u # 0 s.t.
ce = ubcg s0 C = D and thus E = F.

Conversely if jg = jp then (assuming c4,dy # 0)

& »nwwm

We have shown that j : {isomorphism classes of elliptic curves} — C is a well-
defined injection. It remains to show that it is a surjection. Fix j € C.

If j = 0 then take ¢4 = 0 and cg # 0. That is take the curve y? = 2% — 54cg. If
j = 1728 then take ¢g = 0 and ¢4 # 0. Note that in both cases A # 0 so these
are indeed nonsingular and hence elliptic curves.

If j # 0,1728 take ¢y = ¢ =

-2
A= UJW and j-invariant j as required. a

j_lfﬁ. The curve y? = 23 — 27c4z — 54cg has
It will be useful to have a formula for the discriminant and j-invariant of the

curve y? = 423 + byx? + 2bs4x + bg. Recall this was the intermediate curve used
in the proof of Lemma 2.3.

;= b5 —2%.3%5b, +2°- 330303 — 2° - 3%h3
cz = b5 —2% 3%b3by + 2% - 3303bs 4+ 2% - 300202 — 20 - 3Pbobybs + 26 - 3502
- b3bg  3b2b2
A = St = b — 20 — 2 — S 4 3%habubs — 30
bbb
= bg(z‘* - %) — 8b3 — 27b2 + 9bybabg

We define by := 225 — % g0 that A = —b2bs — 8b3 — 2762 + Obsbybs. j = .
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If we had started with a curve in general Weierstrass Form with coefficients a;
then we could express bg in terms of the a; as follows.

L b B

S I
_ (af +4az)(a3 + 4ag) B (2a4 + ajaz)?
B 4 4

2 2 2
ajas + 4azas — arazaq + axaz — aj.

2.18 Summary of Key Points from Chapter 2

1.

An elliptic curve is a nonsingular cubic in Weierstrass Form
(y? + ayzy + azy = 2° + axx® + agw + ag).

by = a3 + 4az, by = 2a4 + a1as3, bg = a3 + 4ae.
(y® = 42° + boz® + 2b47 + bg).

Cy = b% — 24by, cg = —bg + 36b2bs — 216bg.
Normal Form: (y? = 2° — 27c,z — 54x6).

3 2
. . . Cy—C
. The discriminant, A = ¢,
3 3
- ) L. 1728¢
The j-invariant, j = % = 1724,
C47C6

An admissable change of coordinates, 2’ = u?z +r, y' = udy + suz + ¢
where u # 0. Two elliptic curves are isomorphic if they are related by an
admissable change of coordinates.

J : {isomorphism classes of elliptic curves} — C is a bijection.

The subscripts of the coefficients of a curve in Weierstrass Form are called
weights. a;, b;, ¢; have weight 7. A has weight 12 and j has weight 0.
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3 Complex Tori

In this chapter we look at elliptic curves from a different perspective. Define
a lattice A := w1 Z + w.Z C C where wy,ws € C\{0} and ‘u")—; ¢ R. That is w;
and w are linearly independent over R. A complex torus is defined to be C/A.
Topologically it is a torus. We are going to show there is a correspondence
between complex tori and elliptic curves.

3.1 Definition
Fix a lattice A C C. Define

p:C\A — C
1
p(z) = )

1 1
p> ((z—mfﬁ)
weA\{0}

This is called the Weierstrass p - function.

p is a meromorphic function with double poles at the points of A. The —ﬁ

term in the sum insures that the sum converges absolutely. @ is an example of
an elliptic function - a doubly periodic meromorphic function. We can view an
elliptic function as a well-defined meromorphic function from C/A — C.

1 1/w 1 z 22
— =—(14+—4+—=+.....
w—z 1-z/w w( +w+w2+ )
1 _ 1(1+2z+3z2+ )_(1+2z+3z2+ )
w_2F 5 » o T =t Tt
1 1
p) - = ) < — 2——2>
z weA\{0} (z-w)? W
= (k + 1)Gk+22
k=1
1
where G, = Z —- Note that for odd k, G) = 0, and hence
w
weA\{0}
p(z) = ; + 3G422 + 5G624 + .
-2
o(z) = = 6G4z + 20G62> + 42Gg2” + ...

By direct computation we can show that

(p'(2))? = 4p(2) — 60G4p(z) — 140G + P(2) where P(2) is a polynomial in
z with lowest term a multiple of z7. P(z) is an elliptic function since it is the
sum of elliptic functions. P(z) has no poles so is a bounded entire function. By
Liouville’s Theorem P(z) is a constant but its lowest term is 27 so it is zero.
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We have shown that g satisfies the differential equation (p')? = 4% — g2 — g3
where g» := 60G4 and g3 := 140Gg. Define

¢:C/A — P%

(p(2),9'(2),1) if 2 ¢ A,
#(2) {(0, 1,0) it > € A

Because of the differential equation satisfied by g,
©(C/AN) CE: (Y?Z =4X? — goX Z? — g3 Z°) C P.

3.2 Theorem

¢ : C/A — E(C) is a holomorphic bijection with holomorphic inverse.

Proof [Kn, Thm.VI1.6.14]

C/A is a 1-dimensional complex manifold; PZ is a 2-dimensional complex man-
ifold. We want to show ¢ is holomorphic as a map of manifolds. Let (z,y,1) €
©(C/A). Use the chart map (z,y,1) — (z,y) in a neighbourhood of this
point. We then have z — (p(2),9'(z)) which is holomorphic. In a nbhd of
(0,1,0) use the chart map (z,1,y) — (z,y). In this nbhd we have the map

0#2m (%, #Z)) and 0 — (0,0). p and p’ have finitely many poles and
zeroes in a compact subset of C. So there is a punctured disc around 0 where
this map has no zeroes or poles. Thus it is holomorphic on a punctured disc
around 0 and is continuous at 0, so it is holomorphic at 0 too. This shows ¢ is

holomorphic as map of complex manifolds.

Suppose ¢(z1) = ¢(z2). That is p(z1) = p(z2) and p'(21) = p'(22). p has

a pole of order 2 at 0 and no other poles. Let Il be the parallelogram in C

with vertices at 0, wy, w2 and w; + wo. Translate IT in the complex plane to a

parallelogram IT' s.t. g, p' have no zeroes or poles on its boundary. From Com-
zp'(2)

plex Analysis [, Tz)dz = Y zeroes of p — > poles of p. Now the integral

is zero since p is periodic so z; = Z; where Z denotes complex conjugate. Thus
¢'(z1) = ¢'(22) = p'(—22) = —¢'(22) since

p'(z) = =23 ca ﬁ is an odd function. But by assumption @'(21) = @'(22)
50 p'(21) = 9'(22) = 0. Now ' has a pole of order 3 at 0 and no other poles.
J % = (no. of zeroes of ') — (no. of poles of p'). So ' has 3 zeroes. Since it
is a periodic odd function w; /2, ws/2 and (w; + w2)/2 are zeroes and therefore
the only zeroes of p’. Thus z; is one of these three points and so z;1 = z7 and

by the above zo = Z7. Hence z; = z5. Thus ¢ is injective.

To show ¢ is surjective fix (a,b,1) € E(C). Since

- g__g = (no. of zeroes of p —a) — (no. on poles of p —a) and p — a has a
double pole at 0 we see Iz s.t. p(z) = a. Because of the differential equation
satisfied by g, b? = ¢'(2)2. If p/(z) = —b then p'(Z) = b. Thus ¢ is surjective.
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We have shown ¢ is a holomorphic bijection. We can show that it has a holo-
morphic inverse using the Inverse Function Theorem. O

3.3 Corollary
With notations as in Theorem 3.2 ¢(C/A) is an elliptic curve.

Proof

By the proof of Theorem 3.2 the zeroes of ' are w /2, ws/2 and

ws = (w1 +wa)/2. Now p(z) — p(w;) has a double zero at w; /2. By the proof of
Theorem 3.2 p(z) — p(w;) has the same number of zeroes and poles. So w;/2 are
its only zeroes. Thus p(w;) # p(w;) for i # j. This shows that 4p3 — g2 — g3
has distinct zeroes in C.

By Lemma 2.6, ¢(C/A) is a nonsingular cubic. Thus ¢(C/A) is an elliptic curve
except for the factor of 4X? instead of X3. This is a minor point and defining an
elliptic curve to have 4X?2 would not affect the content of Section 2 very much.
In fact the only change would be to substitute y/2 for y in the normal form. Tt
was presented in that way because the notation is absolutely standard. O

In the remarks before Summary 2.18 we looked at A and j for a curve in the
form y? = 4x3 + byx® + 2bsx + bg.

We have the curve y? = 42> — gox — g3. Using notation as in the remarks before
Summary 2.18, by = 0, by = =2, bg = —g3 so A = —8b} — 27b% = g5 — 2743

3 3
9 9313 6. 93,3 . _ ¢ 1728g
and ¢4 = —27-3°b; = 2° - . Thus j = ¢ = 2,
4 3°by 3°g5 J=%= goangz

3.4 Definition
The j-invariant of a lattice A C C is defined to be j(A) :=

172895
95—27g3"

A holomorphic bijection with holomorphic inverse is a homeomorphism so by
Corollary 3.3 a complex torus is topologically equivalent to an elliptic curve.
Given any elliptic curve in PZ we can bring it to the form E : (y*> = 423 —ax —)
and to this we can associate a complex torus, although this is not trivial. The
Uniformization Theorem says that there exists a unique lattice A C C s.t.
92(A) = a and g3(A) = b. For a proof see [Sh, 4.2].

We say two complex tori are conformally equivalent if there is an analytic bijec-

tion between them. Conformal equivalence is an equivalence relation. We want
to know when two complex tori are conformally equivalent.
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3.5 Theorem

Two complex tori C/A; and C/A, are conformally equivalent iff 3G € Aut(C) =
{bijective analytic C — C} s.t. A; = G71A,G.

Proof

Let p; : C — C/A; be the natural covering maps and let f : C/A; — C/Ay be an
analytic bijection. Fix z € C and pick w € C such that py(w) = f(p1(2)). Set
G(z) = w. Take 2’ € C. Let v be a curve with y(0) = z and v(1) = 2’. We get a
curve fopy oy from f(p1(2)) to f(p1(2')). Let T be the lift of fop; o~y starting
at w. Let w' = I'(1) and set G(2') = w'. If 7 is a different curve from z to 2’
then 7 is homotopic to 7. So f o p; o7 is homotopic to f op; oy and so by the
Monochromy Theorem their lifts I' and T" are homotopic as I'(0) = I'(0) = w.
Hence I'(1) = (1) = w’ so G is well-defined. p, o G = f o p;. This shows
that G : C — C is analytic. Because of uniqueness of lifting and because
f is invertible T' determines v uniquely. In particular I'(1) = w' determines
~v(1) = 2'. Hence G is injective and surjective. G € Aut(C).

We now show Ay = G~'A>G. Take g1 € Aut(C) with gy = (z = 2z + \y) for
some A\ € Ay. Let 2’ = ¢g1(2). Then p1(2') = p1(z) so f(p1(2')) = f(pi1(2)). In
particular f(p1(y(1))) = f(p1(7(0))) so p1 oy and f o p; o are closed loops.
Hence 3g2 € Ay such that I'(1) = g2I'(0). ie. G(g1(2)) = 92(G(2)).

In fact, the same choices work for Z € (neighbourhood of z). By the Identity
Principle Gog; = g2 0 G : C — C. That is A} = G7'A»G. O

3.6 Corollary
Two tori C/A; and C/Ay are conformally equivalent iff 3o € C* s.t. aA; = As.

Proof

Suppose that C/A; and C/A, are conformally equivalent. By Theorem 3.5, 3
G € Aut(C) = {bijective analytic C — C} s.t. Ay = G 1A2G. Tt can be shown
that Aut(C) = {az+8|a # 0}. With notation as in Theorem 3.5, G(2) = az+8,
a#0.Gz)=2-2

[e3

VXM €A,gi=(zm za—l— A1), 3go = (z = 2z + o) such that g = G 1g»G.
(z2z4+X\)= (z|—> é((az+6)+/\2)—§) = (2 2 + 22)
i.e. A2 = a\; so aA; C Ay. By the symmetry of the argument Ay C aAy.

Conversely if 3a € C* s.t. aA; = Ag then f: C/A; — C/As, z — az is an
analytic bijection. 0

3.7 Corollary

Two elliptic curves are isomorphic iff the associated complex tori are conformally
equivalent.
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Proof

By Corollary 3.6 two complex tori C/A; and C/As are conformally equivalent
iff 3o € C* such that aA; = As. Observe that gs(aA) = a=%go(A) and

g3(aA) = a%g3(A). By the proof of Theorem 2.17 the corresponding elliptic
curves y2 = 23 —go(A1)z—g3(A1) and y? = 2% — go(A2)x—g3(As) are isomorphic
iff 3o € C* such that g2(A2) = o *g2(A1) and g3(As) = a g3(Ay). a

The j-invariant is therefore a bijection from the set of conformal equivalence
classes of complex tori to the set of isomorphism classes of elliptic curves. Each
conformal equivalence class contains exactly one lattice Z +77Z where Im(r) > 0.
We aim now to find a subset of the upper half plane containing exactly one
element from each conformal equivalence class of complex tori. Let PSLy(Z) :=

SLo(Z)/{%1}.

3.8 Lemma

Two lattices w1Z + weZ and w{Z + whZ are conformally equivalent <
!
M € PSLy(Z) s.t. M (“’}) = <“’1>
(UQ (UQ

Proof

!

. i fw w
(<) We can express w} and w), in terms of w; and ws. Now M ~1 <w1> - <w}>
2 2

8o we can also express wy and ws in terms of wi and wh. Hence the lattices are
the same.

(=) After multiplying through by some constant « we can write

( )—( >< )forsomeabchZ
Similarly <wé> = < > ( 1) for some e, f,g,h € Z.

Wsy %]

0 a b
s (2 ) (5 D= (0 Do (t )=
Hence M := (Z Z) € PSLy(Z). O
3.9 Definition

The Fundamental Domain, D is defined to be
D:={reC:-1/2< Re(r) <1/2and |r| > 1}.
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3.10 Theorem

For every z in the upper half plane 3 g € PSLy(Z) s.t. g2 € D and this point is
unique (except for identifications on the boundary).

Proof [Kn, Thm.VIII.8.5]

Existence

a b

Fix z in the upper half plane. Let g = <c d) € PSLy(Z). Then Im(gz) =

Im(z)

Since ¢ and d are integers there are are only finitely many choices such

lez+d|? "
that |cz + d] is less than a given number. Thus 3¢ € PSLy(Z) s.t. Im(gz) is
a minimum. Choose n € N s.t. 2’ := (1) 711 z has real part between —1/2

and 1/2. If |2’| < 1 then —1/2' would have imaginary part strictly greater than
Im(gz) contradicting the choice of g. Thus |z/| > 1 and 2’ € D.

Uniqueness

Let z and gz be in D and g # id. We show they are both on the boundary of
D. We can assume I'm(gz) > Im(z) and thus |cz+d| < 1. Thus ¢ € {0, £1}. If
¢ =0 then g = <:|51 :&) so both points lie on the boundary. If ¢ = £1 then
since |cz +d| < 1, d = 0 except when z = €™/ or z = ¢>™/3, If d = 0 then
|2| = 1. We can explicitly check the cases z = e™/% and z = €>77/3, 0

Jj is a bijection from D to C except for identifications along the boundary. These
identifications are z ~ z + 1; and when 22 + 92 = 1, z + iy ~ —x +iy. Given
a conformal equivalence class of complex tori j takes the unique representative
Z + 17 with 7 € D and gives the j-invariant of the corresponding isomorphism
class of elliptic curves. The identifications along the boundary make

j : D/~ — P{L a homeomorphism. D/ ~ denotes the compactification of
D/ ~,which is just D/ ~ plus one point, and P{. is of course C plus one point.

In the proof of Corollary 3.7 we saw that g;(aA) = a~2?g;(A). By Lemma 3.8

and Theorem 3.10 this tells us that g; (Z:Is) = (er+d)*g;(7). g; is an example

of a Modular Form of weight i. This ties in nicely with the notion of weight
defined in 2.13. j has weight 0 which corresponds to it being invariant under a
projective change of coordinates/conformal equivalence. Any modular form of
weight 0 is actually a rational function of j.

3.11 Summary of Key Points from Chapter 3

1. An elliptic function is a doubly periodic meromorphic function. The
Weierstrass g function is an elliptic function. The g function allows us to
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forge a correspondence between complex tori and elliptic curves.

2. Lattices A; and A, are conformally equivalent iff 3a # 0 s.t. aA; = As.

3

3. For a lattice A, j(A) := 91312287952. j defines a bijection from the set of
2 3

conformal equivalence classes of complex tori to the set of isomorphism

classes of elliptic curves.
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4 Complex Multiplication

Every additive abelian group G has trivial homomorphisms g — ng Vn € Z. El-
liptic curves come equipped with the structure of an additive abelian group. An
elliptic curve E(C) has complex multiplication if it has any nontrivial analytic
homomorphisms E(C) — E(C). We begin this section with a key lemma.

4.1 Lemma

If f: C/AxC/A — C/A is a continuous function and is analytic in each variable
then there exist a,b,c € C such that f(z1,22) = az1 + bzs + ¢ mod A for all
21,29 € C.

Proof [Kn, Lem.VI.6.18]

Let A = Zwi ® Zw». Lift to a function F: C x C — C.
Then for all m,n € Z there exist m’,n’ € Z such that F(z; + mw; + nwe, 29) =
F(z1,29) + m'wy + n'ws.

OF _OF

8—21(21 + mwy + nws, 22) = a—zl(21,22)a

OF _OF

8_22(21 + mwy + nwe, 29) = a—z2(21,22).
g—i and g—i are periodic in the first variable. Thus they are bounded analytic
functions and so by Liouville’s Theorem they are constant.
Similarly they are constant in the second variable. We have g—i =aand g—i =b.
Thus f(z1,22) = az1 + bzs + ¢ as required. O

We use this Lemma to show that the group defined on an elliptic curve E(C) is
isomorphic to the group on a torus. The group law on a torus is just addition
mod A.

4.2 Theorem

0:C/A — E(C)

is a group isomorphism.
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Proof

Recall that ¢ is an analytic bijection with analytic inverse.

Define f : C/A x C/A — C/A by f(z1,22) == o~ (p(21) + p(22)). f satisfies
the hypothesis of Lemma 4.1 so f(z1, 22) = az1 + bzs + ¢ mod A.

Now f(0,0) = 0 and f(2,0) = f(0,2) = z. Thus ¢ =0 and a = b = 1.
f(z1,22) = ¢ Hp(21) + 9(22)) = 21 + 2. Hence p(21 +22) = p(21) +p(22). O

4.3 Definition

An isogeny is an analytic map h : E(C) — E(C) which fixes the identity of the
group. That is h(0,1,0) = (0, 1,0).

4.4 Theorem

If h: E(C) — E(C) is an isogeny then h(p(z)) = ¢(az) for some a € C.

Proof

Let f(z1,22) := ¢ Y oho(z). f satisfies the hypothesis of Lemma 4.1 so
f(z1,22) = az1 + bzy + ¢. [ is constant w.r.t. 2o and h(p(0)) = ¢(0) so
f(z1,29) = az.

Thus h(p(z1)) = ¢(az1) as required. O

Now h(p(z1) + ¢(22)) = p(az1 + az) = p(az1) + p(azz) = h(p(21)) + h(p(22))
S0 an isogeny is a group homomorphism. An elliptic curve always has the trivial
isogenies with @ € Z. These are the trivial homomorphisms G — G, g — ng
where n € Z, which exist for any additive abelian group.

4.5 Definition

An elliptic curve with any non-trivial isogenies is said to have
complex multiplication (or CM for short).

That is, there exist isogenies h : E(C) — E(C), h(¢(z)) = p(az) with a € C\Z.

Note that if a € R\Z then h is not well-defined as h(p(wi)) = h(0,1,0) =
(0,1,0) # ¢(awy), since aw; ¢ A. Thus any non-trivial isogenies are given by
multiplication by a number a € C\R. Hence the name complex multiplication.

4.6 Theorem

An elliptic curve Z + 77 has complex multiplication h(p(z)) = p(az) iff T lies
in a quadratic imaginary extension field of Q.
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Proof

If h: E(C) — E(C) is well-defined then Vz € A

p(az) = h(p(2)) = h((0,1,0)) = (0,1,0).

Thus az € A Vz € A and so aA C A.

Conversely, if aA C A then define h(p(z)) = ¢(az). Let 21 = 2z mod A. Say
21 = 2z +w. Then az; = azy + aw € azy + A. Thus az; = azs mod A. So h is
well-defined. Thus h(p(2)) = ¢(az) is an isogeny iff aA C A.

Suppose that E(C) has complex multiplication. 1 € A so a = m + nr for some
m,n € Z. Also by the above ar = m’ + n't for some m',n’ € Z.

Now ar = (m + n7)7, so n7? + (m —n')r —m' = 0.

7 satisfies a quadratic polynomial over Z and 7 € C\R so 7 lies in a quadratic
imaginary extension of Q.

Conversely, if 7 lies in a quadratic imaginary extension of Q then Ja, 3,7 € Z
such that ar? + 87 + v = 0. Define a = ar € A. Then at = —f7 — v € A and
thus aA C A. Also a € C\R as required. O

4.7 Corollary
The following categories are equivalent:

Objects: Elliptic curves up to isomorphism < Lattices up to homothety
Maps: Isogenies <+ {a € ClaA C A}

4.8 Definition

The set of isogenies of an elliptic curve E forms a ring with multiplication being
composition of maps. This is called the Endomorphism Ring of E, denoted
End(E).

We know that End(FE) always contains Z as a subring. An elliptic curve has
complex multiplication precisely when End(FE) ; Z.
With notation as in Theorem 4.6 a = m +nt, ar = m' +n'r.

a’> = n’72+2mnr+m? = —mnr +nn't + m'n + 2mnt + m?>

= (m+nr)(m+n)+mn—mn =(m+n)a— (mn —m'n)
a®> — (m+n"a+ (mn' —m'n)=0
Thus a is in the ring of integers of a quadratic imaginary extension field of Q.
Since a € Q(7), End(E) is a subring of the ring of integers of Q(7). End(E)
strictly contains Z and therefore has rank 2 as an additive abelian group. Thus
End(E) is an order of Q(7) (a subring of the ring of integers of Q(7) containing
Z with rank 2 as an additive abelian group).
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Summary of Key Points from Chapter 4

. An isogeny is an analytic map E(C) — E(C) which fixes (0, 1,0).

Let h be an isogeny. Then h(p(z)) = p(az) for some a € C. An isogeny
is a group homomorphism.

The set of isogenies of an elliptic curve E form a ring called the endomor-
phism ring of E, denoted End(E). End(E) always contains Z as these
correspond to the trivial homomorphisms g — ng which any additive
abelian group possesses.

An elliptic curve is said to have complex multiplication if End(E) 73: 7.
Any nontrivial isogeny is given by h(¢(z)) = ¢(az) for some a in the ring
of integers of a quadratic imaginary field.

An elliptic curve has complex multiplication iff 7 lies in a quadratic imag-
inary extension field of Q.
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5 Complex Multiplication and the j-invariant

In this final Chapter we are going to show that every CM elliptic curve has an
algebraic integer for its j-invariant. Since the algebraic integers are countable
(see Appendix on Cardinality) this shows that CM curves are very rare. We will
also show that the converse is false. That is not all choices of algebraic integers
for the j-invariant give CM curves. Some algebraic number theory is required
and is built up first.

5.1 Definition

Let R be a commutative ring with 1 and K the field fractions of R. An element
k € K is said to be integral over R if there is a monic polynomial f(X) € R[X]
s.t. f(k) = 0. The set of elements of K which are integral over R is called the
integral closure of R. R is said to be integrally closed if it is its own integral
closure.

5.2 Definition

An integral domain with 1 is called a Dedekind Domain if it is noetherian,
integrally closed, and every nonzero prime ideal is maximal.

5.3 Definition

Let I, J be nonzero proper ideals of a Dedekind domain R. We say I divides J,
written I|.J, if 3 H < R such that J = IH.

5.4 Lemma

Let I be an ideal of a Dedekind domain R. Then I contains a product of prime
ideals. If I # R then 3k € K\R s.t. kI C R (where K denotes the field of
fractions of R).

Proof [Mo, Lem.3.13 and 3.14]

For the first part let S be the set of ideals which do not contain a product of
prime ideals. If S # () then since R is noetherian S contains a maximal element
M. M cannot be prime so Ar,s ¢ M s.t. rs € M. Now M g M+rM,M+ sM
so these ideals contain products of prime ideals. But (M +rM)(M +sM) C M
so M contains a product of primes. Contradiction so S = ().

For the second part let a € I. Let P;...P, C aR be a product of primes with n
as small as possible. Now [ is contained in a maximal ideal by Zorn’s Lemma.

(Let T={R# J<R:IC J} ordered by inclusion. Then if {J)} is a totally
ordered subset of T', UJy € T is an upper bound of {J\}, so T contains a
maximal element).
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Now maximal ideals are prime so I C P for some prime ideal P. P,...P, C P
so since P is prime P; C P for some i, say i = 1 for convenience. Since R is
a Dedekind domain prime ideals are maximal so P, = P. By assumption aR
does not contain products of fewer than n primes so 3b € P5...P,\aR. Thus
% € ﬁPQ...Pn\R C K\R. Now bP C PP,...P, C aR, soif d € I C P then
bd € aR and so 2d € R. That is 21 C R and we have found our k(= 2). O

5.5 Lemma

Let R be a Dedekind domain and 0 # A < R. Then 30 # B < R s.t. AB is
principal.

Proof [Mo, Thm.3.15]

Let 0 #a € Aand let B:={be R: Ab CaR} < R. Then AB C aR.

Let M := %AB < R. We show M = R which implies AB = aR.

If M g R3Ik € K\Rs.t. kM C R by Lemma 5.4. R is a Dedekind domain so is
integrally closed. We show £ is the root of a monic polynomial over R obtaining
a contradiction. b= 1ab Vb€ B so BC M.

Thus kBC kM C R = kAB CaR = kB C B.

R is noetherian so take a finite set of generators {by, ...,b.} for B,

that is B = Zby + ... + Zb,..

kb; = Z;Zl n;;b; for some integers n;;. We see that

niy —k ni2 T Nir
UP) noy —k - Nop
det ) ) ) ) =0
Nr1 nr2 o Nypr — k
since 0 # (b1, -+ ,b,) is in its kernel. By expanding the determinant we have
found a monic polynomial over R of which k is a root. O

5.6 Lemma

Let I,.J be nonzero proper ideals of a Dedekind domain R. Then I|J < I D J.

Proof

(=) By the definition of an ideal I D IH = J.

(<) By Lemma 5530 # LI R and a € I st. LI = aR. Let H := 1LJ.
Since J C I by assumption, H is an ideal of R and LIH = LJ. By Lemma 5.5
FJ0#N<<R,beL,st. NL=>bR. Then bRIH = NLIH = NLJ =bRJ.

So bRIH = bRJ = IH = b 'RbRIH = b 'RbRJ = J. O
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5.7 Theorem

Let I be a nonzero proper ideal of a Dedekind domain R. Then 3 P, ..., P, dis-
tinct prime ideals of R and nq,...,n, € Ns.t. I = P/"...P"*" and this expression
is unique (up to the order of the factors).

Proof [Mo, Thm.3.19]

Existence

Let S = {0,R # I < R : I is not expressible as a product of primes}. Suppose
S # 0. By Zorn’s Lemma S has a maximal element M (w.r.t. inclusion). By
Zorn’s Lemma M is contained in a maximal ideal P (see proof of Lemma 5.4).
P is prime and M C P. By Lemma 5.6 3T <R s.t. M =IP. Thus I O M.
Suppose I = M. Then IR = I = IP. By Lemma 5.5 AL < R, a € I, s.t.
LI =aR. So R=a"'"aRR =a"'LIR = a 'LIP = P. Hence P = R but P
is a maximal ideal. This is a contradiction so I 2 M. I is then a product of
primes but M = IP so M is a product of primes. Contradiction so S = 0.

Uniqueness

Suppose Pi...P, = Q;...Qs are products of (not necessarily distinct) primes.
P D @1...Qs so P, D @; for some i. Say ¢ = 1 for convenience since we can
reorder anyway. R is a Dedekind domain so prime ideals are maximal. Thus
P, =@;. By Lemma 5.530# L<R,a € Pi,st. LP, = L@Q; = aR. Thus
P,..P, =a 'LPP...P, = a 'LQ1Q>...Q, = Q»...Qr. By induction we have
uniqueness. a

5.8 Definition

Let R be Dedekind domain and K its field of fractions. A fractional ideal of R
is a nonzero finitely generated R-submodule of K.

Let M be a fractional ideal with generators my,...,m;. Each m; is in K so
there exists s € R such that m;s € R for all i. Thus Ms C R. This explains
the name fractional ideal.

5.9 Definition

Let M be a fractional ideal of a Dedekind domain R.
Define M~' := {z € K|zM C R}. A fractional ideal M is said to be invertible
if MM~! =R.

We aim to define an abelian group structure on the set of fractional ideals
of R. The product of two fractional ideals M and N is the set MN :=
{3 gnite minilm; € M, n; € N}. If {z;} and {y;} are sets of generators for
M and N then the set of products {z;y;} is a set of generators for M N. Thus
M N is finitely generated and so is a fractional ideal. The identity element is R.
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It remains to show that every fractional ideal has an inverse. We do this by
showing every fractional ideal is invertible (as defined in Definition 5.9). First
let’s check that M~! is a fractional ideal. M ~! is a non-zero R-submodule of
K. Choose 0 #m € M. Then M~ 'm C Rso M~! € Rm~'. Rm™! is a finitely
generated R module and because R is noetherian, the submodule M ~! is also
finitely generated. Hence M ! is a fractional ideal.

5.10 Definition

Let R be a Dedekind domain and K its field of fractions.

A principal fractional ideal of R is a fractional ideal of the form Rz for some
0£xz€eK.

(Rz)™' = Rz~! so (Rx)(Rr)"! = Rzz~! = R. Thus a principal fractional
ideal is invertible.

5.11 Lemma

Let R be an integral domain with 1 and ) # S C R a multiplicative set. That
is 0 ¢ S and S is closed under multiplication. Then there is a ring Rg which
contains R as a subring such that every element of S has a multiplicative inverse.

Proof [Ja, Prop.1.1]

Define an equivalence relation on R X S by (a,b) ~ (¢,d) iff ad = be. Let
Rs = Rx S/ ~. Addition and multiplication are defined in the same way as for
the field of fractions of R. R is isomorphically imbedded in Rg by fixing s € S
and using the mapping r — (rs, s). O

We write r/s to denote (r,s). Note that Rs = Rgy(1} so we can assume 1 € S
and the mapping of R into Rg can be taken as r — r/1.

5.12 Definition
The ring Rg is called the localization of R at S.

5.13 Lemma [Ja, Prop.1.2]

There is a one-to-one correspondence between prime ideals of Rg and prime
ideals of R which have empty intersection with S.
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Proof

Define
¢ : {prime ideals of Rg} — {primeideals P14 R:PNS =0}
(@) = QNR
¢ : {prime ideals P<<R: PNS =0} — {prime ideals of Rg}
¥(P) = PRsg

We show ¢ and ¢ are inverse maps. That is

PRsNR = P for every prime ideal PR st. PNS =
(@NR)Rs

Q for every prime ideal Q < Rs.

Let @ be a prime ideal of Rg. QNR is a prime ideal of R and (QNR)Rs C @ is an
ideal of Rg. Let ¢/s € @ then ¢ = (¢/s)s € QNRso q(1/s) =q/s € (QNR)Rg
Thus Q@ C (Q N R)Rs.

Let P be a prime ideal of R with PNS = (). PRg is an ideal of Rg. It is prime
since if (ry/s1)(r2/s2) € PRg with (r1/s1),(r2/s2) € Rg then (r1/s1)(r2/s2) =
x/s for some z € P and s € S. Now 11738 = 28152 € P and P is prime so r; or
ro € P. So (r1/s1) or (r2/s2) € PRs and PRg is prime. If u € PRs N R then
u = x/s with € P. But u € R so since P is prime, x = us = u € P. Thus
PRsNPCP. PCPRsNP is clear. a

Take a prime ideal P < R and let S = R\P. We write Rp to denote the
localization of R at S. Since 0 € P a prime ideal can never be a multiplicative
set so this notation is not ambiguous. The prime ideals of R which have empty
intersection with S = R\P are those prime ideals contained in P. By Lemma
5.12 the only ideals of Rp are those contained in PRp. Maximal ideals are
always prime so PRp is the only maximal ideal in Rp.

5.14 Definitions

An integral domain with 1 with only one maximal ideal is called a Local Ring.
By the above comments if we localize at a prime ideal we get a local ring.

A local ring which is also a principal ideal domain is called a

Discrete Valuation Ring (DVR).

5.15 Lemma

Let R be a Dedekind domain. Then Rp is a DVR for every nonzero prime ideal
P of R.
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Proof [Ja, Prop.3.20]

R is Noetherian by definition. Let J; C J, C ... be an ascending chain of ideals
of Rp. Then J1 N R C J,N R C ... is an ascending chain of ideals of R which
therefore terminates. That is 3n e Nst. J,NR=J,p1 NR = ....

Observe that (J; N R)Rp C J;. Let r/s € J;. Thenr = (r/s)s € J;NR
sor(l/s)=r/se (JiNnR)Rp. Thus J; C (J; N R)Rp.

So J, = Jpt1 = ... and Rp is Noetherian.

By the comments after Lemma, 5.13 the only maximal ideal of Rp is PRp. Since
R is a Dedekind domain there is no distinction between prime and maximal
ideals. So PRp is the only prime ideal of Rp. Also Rp is integrally closed
because R is.

Fix0#a € Rp. Let M = Rp/aRp. For each m € M let

null(m) = {r € Rp : rm = aRp}. This is an ideal of Rp for each m € M.
Choose m € M s.t. null(m) is maximal in the set of ideals

{null(m) : 0 #m € M}. Pick a representative of this coset, m = b + aRp with
b€ Rp. @ :=null(b+ aRp) is nonzero because a € Q). Q is prime for suppose
z,y ¢ Q but zy € . Then y(b+ aRp) # aRp so null(yb+ aRp) contains Q
and z which contradicts the maximality of (). @ is therefore the unique prime
ideal, i.e. Q@ = PRp.

We have shown bPRp C aRp but b ¢ aRp since b+aRp # Rp. So % ¢ Rp and
LPRp C Rp. Suppose LPRp C Rp. Then since PRp is the unique maximal
ideal we have %PRP C PRp. By exactly the same determinant trick as used
in Lemma 5.5 g is integral over Rp. Rp is integrally closed by definition so
% € Rp contradicting the above. Thus gPRp = Rp and so PRp = 7 Rp. This
shows the unique maximal ideal is principal. Write PRp = zRp.

Let U be a nonzero ideal of Rp. Consider the chain U C 271U C 272U C ....
If z7"U = 7" 'U then by the determinant trick z=! is integral over Rp
which is impossible because 2~! ¢ Rp and Rp is integrally closed. Since Rp is
noetherian the part of the chain which falls into Rp must be finite. There exists
nst. z7"U C Rp but 27" 'U ¢ Rp. If z7"U C PRp then 27 ""'U C Rp so
7 "U = Rp and U = 2" Rp. U is a principal ideal as required. O

5.16 Theorem

Let R be a Dedekind domain. Any nonzero prime ideal of R is invertible.

Proof

Let P be a nonzero prime ideal of R. Then PP~! = U is an ideal of R.
For any maximal ideal () we know that Rg is a PID by Lemma 5.15 so PRg
is principal and hence invertible by the remarks after Definition 5.10. Thus
URg = (PP~ '")g = Rg. This holds for all maximal ideals @ of R. Let
b€ R bRg CURgsoda€eUand s € R\Q s.t. b =a/s. The ideal of
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R, {y € R: by C U} contains s so does not belong to Q. The ideal must then
be the whole of R. So b € U and so R C U and thus R = U as required. O

5.17 Corollary

Let R be a Dedekind domain. Let M be a fractional ideal of R. Then 3P, ..., P,
distinct prime ideals of R and ay,...,a, € Z st. M = P'..P% and this
expression is unique (up to the order of the factors).

Proof [Ja, Thm.4.2]

Let M be a fractional ideal with generators my,...,m;. Each m; is in K so
there exists s € R such that m;s € R for all ¢. Thus Ms C R. By Theorem 5.7

there exist factorizations of the ideals Rs and M's as Rs =[] Q?" , Ms =T] P
where the P; and @; are prime ideals of R. It follows M [] Q;’." =[] P". Prime
ideals are invertible so M =[] P ] Q;b". This establishes existence.

For uniqueness suppose M = [] P [] Qj_bj =TI1X/ 11 Yj_dj where
P;,Q;,X;,Y; are prime ideals and a;, b;, ¢;, d; are positive integers.
Thus [] P [] de" =[1X11] Q;’." is a factorization of ideals in R so we have
uniqueness by Theorem 5.7. O

We have shown that the set of all fractional ideals is a group with respect
to multiplication and inverses described above. The uniqueness statement of
Corollary 5.17 shows that it is a free abelian group with the set of nonzero
prime ideals as generators. The collection of all principal fractional ideals is a
subgroup.

5.18 Definition

Let R be a Dedekind domain. The group of fractional ideals is called the ideal
group of R and is denoted I(R). The subgroup of principal fractional ideals is
denoted P(R).

The class group of R is defined to be C(R) := I(R)/P(R).

We now apply this theory to algebraic number fields. An algebraic number field
K C C is a finite field extension of Q. The ring of algebraic integers in C is
denoted A. Define the ring of integers in K to be R := K N A.

5.19 Theorem

If K is an algebraic number field then Rg is a Dedekind domain.
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Proof

Rk is an integral domain finitely generated as an abelian group. Therefore
every ideal of Ry is finitely generated and so Rx is noetherian.

Suppose a/b € K is the root of a monic polynomial over Ri. Then a/b € A so
a/b€ KNA = Rg. Rk is integrally closed.

Let 0 # I <Rk and 0 # r € I. Let Rk have rank n as a free abelian group and
choose a basis fi,..., fn of Rg. Then 3b;; € Z s.t.

r b1 big ... bin h
: ba1 ba o oo bag :
rntl bnt1,1 bnt12 o0 bptim fn

Now rank(b;;) < n so 3a; € Z s.t. appr™™ +a,r™ + ... + ap = 0. Then
ag = —T(an+1rn e al).

Choose a polynomial over Z with smallest degree possible of which r is a zero.
Then ag # 0 because a,417" + ... + a3 # 0.

Now agp = —r(apr1m™ + ... +a1) € I so I D agRk.

Ri/aoRik =27 [aoZ @ ..... D Z ] apZ and Rk /I is a homomorphic image of this,
so has the same number of elements or fewer. |Rx/I| < |Rkx/aoRk| = af. If
we take I to be a prime ideal then Ry /I is a finite integral domain and hence
a field. Therefore I is a maximal ideal of R a

5.20 Theorem

Let K be an algebraic number field and Rk its ring of integers. Then C'(Rk)
is finite.

Proof

Let I be a nonzero proper ideal of Rg. By Theorem 5.7 3 Py, ..., P, prime ideals
of Rk and ny,...,n, € Ns.t. I = P"...P" and this expression is unique up to
the order of the factors.

For a prime ideal P of Ry the ideal rad(P) is prime. By Theorem 5.19 Rk is
a Dedekind domain so rad(P) is maximal. P C rad(P) so P = rad(P). Now
rad(IJ) =rad(INJ) =rad(I) Nrad(J) so rad(P") = rad(P). We have

H;:l PZ = rad(H::l PZ) = 02:1 ra’d(Pl) = m::l P’

If P +P]?” = A G R, then A|P}" and A|P]?” which contradicts P;, P; distinct
primes so P} + Pjnj = Rk.

By the Chinese Remainder Theorem

RJT= R/ TI, P = R/, P = [ R/P}".
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By the proof of Theorem 5.19 these sets are finite so
(R/I| = I1|R/P,|".

Define the norm of an ideal to be N(I) := |Rk/I|.
Note that N(I.J) = N(I)N(J).

It can be shown by an argument using lattice theory that every class in C(Rg)
contains an ideal I of R s.t. N(I) < M where M is a finite number called the
Minkowski Bound. See [Ja, Thm.11.8]. Now [ is expressible as a product of
primes so there are only finitely many ideals of R that divide I. Namely they
are products of subsets of the ideals that compose I. It follows that there are
only finitely many ideals with a given norm and so there are only finitely many
choices for the classes in C(Rk). |

5.21 Definition

Let K be an algebraic number field. The cardinality of the class group of Rx
is called the class number of K.

5.22 Lemma

Let R be a Dedekind domain. Then R is a UFD iff the class group of R has
cardinality 1.

Proof [Mo, Thm.3.32]

JFrom the definition of the C(R) we see that |C(R)|=1< R is a PID. A PID
is always a UFD. It remains to show that in a Dedekind domain a UFD is a
PID.

Suppose R is a UFD and I < R is not a principal ideal. I is expressible as a
product of primes by Theorem 5.7 so there is a prime ideal P which is not a
principal ideal. Let S be the set of ideals I <1 R s.t. PI is principal. We know
S is non-empty by Lemma 5.5. By Zorn’s Lemma S has a maximal element
M. PM = (a) and a must be irreducible by the maximality of M. There exist
nonzero b € P\(a),c € M\(a) s.t. bc € PM C (a). So a|bc but a does not divide
b or c. a is irreducible but not prime. This contradicts R being a UFD. O

5.23 Theorem

Let K be a quadratic imaginary field. There is a one-to-one correspondence
between ideal classes in C'(Ry) and isomorphism classes of elliptic curves with
End(E) = Rk.

Proof

Take an ideal A of Rg. The elliptic curve C/A has End(C/A) 2 {a € C:aA C
A} = Ri. Two elliptic curves are isomorphic precisely if they are homothetic
and this corresponds to multiplication by a principal fractional ideal. O
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5.24 Corollary

Let E be an Elliptic Curve with End(E) = Rk. Then j(E) is an algebraic
number.

Proof

By Theorem 5.20 C(Rk) is finite so there are only finitely many isomorphism
classes of elliptic curves with End(E) = Rk.

Let 0 € Aut(C/Q). End(E?) = End(E) = Rk. By the above {j(E)? : 0 €
Aut(C/Q)} is finite. We have a finite field extension which from Galois theory
we know is algebraic. O

5.25 Theorem

Let E be an elliptic curve with complex multiplication such that End(E) is
the ring of integers in a quadratic imaginary field. Then j(E) is an algebraic
integer.

Proof

A complex analytic proof of this is given in [Si2, Thm.I1.6.1]. O

5.26 Corollary

Let E be an elliptic curve with complex multiplication. Then j(E) is an alge-
braic integer.

Proof

We follow the proof in [Si2, Cor.I1.6.3.1] and use the same notations. Let
End(E) = R, an order in K. Let A = wiZ + wyZ be a lattice for E. Now
K = Qw1 /we). By multiplying by a suitable A € C*, we may assume A C
Rk =7+ T174.

Then there exist integers a, b, ¢, d such that

wi = ar+b,

ws = cr+d.

Let n = ad — be. After switching wy and ws if necessary we may assume n > 1.
The matrix a = <Z Z) € D, so j o« is integral over the ring Z[j]. Now
F,(j, X) = 0 so evaluating at 7 we find that j(ar) is integral over Z[j(7)]. But
jlar) = j(E) and j(r) is integral over Z by the above Theorem. Hence j(E) is
integral over Z. O

Since the algebraic integers are countable this implies that the number of
elliptic curves (up to isomorphism) with CM is countable. Complex multipli-

cation is therefore a rare property of an elliptic curve. See the Appendix for a
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discussion of cardinality.

The converse of the above theorem is false. That is, given an algebraic integer
for j the corresponding elliptic curve is not always CM. We show this below
in 5.29 onwards. We know that an elliptic curve is CM iff 7 is in a quadratic
imaginary extension field of Q. We show now that if 3 < [Q(7) : Q] < oo then
j(r) is transcendental. This will mean that any 7 whose elliptic curve is not
CM, but for who j(7) an algebraic integer, must be transcendental.

5.27 Theorem

Let K be a finite field extension of Q and let fi,...f,, be meromorphic functions
of finite order. Suppose that the ring K{[f1, ..., f»] is mapped to itself by differ-
entiation and has transcendence degree at least 2 over K. Then there are only
finitely many numbers z at which fi, ..., f,, simultaneously assume values in K.

Proof
See [Ba, Thm.6.1]. a

A meromorphic function f is said to have finite order if f = g/h where g,h are
entire functions and 3p > 0 s.t. VR > 2, Vz with |z| < R, maz(|g(2)|, |h(z)]) <
exp(R”). The transcendence degree of the ring K|[fi,..., fn] is the maximum
number of elements in an algebraically independent subset.

5.28 Corollary [Ba, Thm.6.3]
Let 7 be an algebraic number with 3 < [Q(7) : Q], then j(7) is transcendental.

Proof

Suppose j(7) is algebraic. Then there is a p-function with algebraic invari-
ants g2, g3 and fundamental periods wq, ws such that 7 = ws/w;. When
2 = 3un/2 the functions fi = p(2), fo = p(r2), fs = ¢(2), f1 = '(r2)
assume the same values in an algebraic number field, say K. By the above The-
orem K[f1, f2, fs, f4] has transcendence degree at most 1. f; and f» are thus
algebraically dependent. This implies that lws is a period of p(7z) for some
1 €N. lrwy = mw;i + nws for some m,n € Z,solt> —nr—m =0and 7 is a
quadratic irrational. O

5.29 Lemma
Every quadratic field is of the form @(\/ E) where d is a square-free integer.
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Proof

Let K = Q(a) be a quadratic field and a be a solution of 2> + ax + b for
some a,b € Z. Thus K = (@(L W’) = Q(v/a% — 4b). By uniqueness of

factorization in Z, a® — 4b = p{'...p¢" for primes p; with powers e;. Thus

. NN 2
a? —4b = Hei odd Pi (Hei odd pz('el 1)/2(1_[6]‘ even pg'e])/Q) = dr? for some
d,r € Z, d square-free. Thus K = Q(rv/d) = Q(/d). O

5.30 Theorem

The ring of integers in a quadratic field Q(v/d) is Z(V/d) if d = 2 or 3 mod 4
and Z(% + £V/d) if d =1 mod 4.

Proof

This proof is taken from the 2nd year essay ” Algebraic Number Fields” by John
Hudson, an undergraduate at the University of Warwick. Let z € Q(\/ d) be
an algebraic integer. Then z = %‘/& for some a,b,c € Z. We may assume
the highest common factor of a,b and ¢ is 1. The coefficients of the minimum

polynomial of z, {z — atbVd) (5 a=bVd) a6 integers. Thus £=22¢ € 7 and
c c g

2

20 ¢ 7. If a and c have a common prime divisor p then p? divides b?d and
since d is square-free, p? divides 2. Thus p divides b contradicting the highest
common factor of a, b, ¢ being 1. Hence ¢ is 1 or 2. This shows that the ring of
integers is either Z(v/d) or Z(3 + 1V/d).

Consider the case ¢ = 2. Now “2;2b2d € Z so a®> — b®’d = 0 mod 4. a must be
odd since it does not have a common prime divisor with ¢. Thus b must be odd.
Thus a? = b?> = 1 mod 4 and therefore d = 1 mod 4. Conversely if d = 1 mod 4

then %‘/E for a, b odd is an algebraic integer since “2_4b2d €Z. O

5.31 Corollary

An order 0 in a quadratic imaginary field K is given by 8 = Z + f Rk for some
f €7Z. f is called the conductor of 6.

Proof

Suppose Rx = Z(+/d). 6 has a basis 1,3 for some 3 € Rg. 8 = e+ f+/d for some
e,f €Zsob ={m+nbm,nel}={m+ne+nfVdm,necZ} =7+ fLHd).

Suppose Rx = Z(§1 + %\/3) 0 has a basis 1,4 for some 8 € Rg. 8 = §+f}21\/3
for some integers = and y and by a similar argument we have the result. O
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5.32 Theorem

Let K be a quadratic imaginary field and let E be an elliptic curve with endo-
morphism ring an order in K. By Corollary 5.26 j(FE) is an algebraic integer.
The degree of the minimum polynomial of j(E) over Z is greater than or equal
to the class number of K.

Proof

See [Si2, Thm.IT1.4.3] for a proof that if End(FE) is the full ring of integers then
the degree of the minimum polynomial of j(FE) over Z equals the class number
of K. By [Si2, Thm.II.6.3] and Exercise 2.28 in [Si2] we have the result. o

Note that the endomorphism ring of a CM curve C/A is the lattice A. By
Theorem 5.32 the only candidates for CM elliptic curves with j-invariant in
Z are therefore those with End(E) an order in a quadratic imaginary field of
class number 1. By Lemma 5.22 this is the same as asking that the ring of
integers be a UFD. We use the classification of all quadratic imaginary fields
whose ring of integers is a UFD. There are 9 of them. They are Q(v/d) where
de{-1,-2,-3,-7,—11,-19,-43, —67,—163}. It can be shown that as the
size of the conductor goes up, the degree of the minimum polynomial of j goes
up. In fact only finitely many orders in each of these fields have j with minimum
polynomial of degree 1 over Z. There are precisely 13 of them.

Only 13 j-invariants in Z correspond to CM elliptic curves. They are listed in
[Si2, App.A.3]. Pick any other integer and we have an example of j an algebraic
integer but the corresponding elliptic curve not CM. In particular j = 1 gives a
non-CM curve.

5.33 A non-CM elliptic curve with integer j-invariant

j = 1 does not correspond to a CM curve. Let’s find an elliptic curve with
J- 1nvar1ant 1. As in the proof of Theorem 2.17 the curve
y? =23 —27 1728:17 54] {—g has j-invariant j. Thus

y? =3+ ﬁm + 1727 has j-invariant 1.

It would be nice to find 7 for such a curve. I have written computer programs in
BASIC which approximate j from 7 and 7 from j for j > 1728 using a method of
Gauss involving the arithmetic-geometric mean. j > 1728 corresponds precisely
to 7 =it with ¢ > 1. j grows rapidly with ¢. In fact we know that j(i) = 1728,
§(v/2i) = 8000, j(v/3i) = 54000 and j(2i) = 287496 as these are CM curves
listed in [Si2, App.A.3]. My programs calculate these values accurately so we
can be confident that they give me an accurate numerical approximation for 7
with j(7) = 1729. The Gauss method is summarized in Section VI.9 in [Kn,
VI1.9].
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5.34 Summary of Key Points from Chapter 5

1. A Dedekind domain is a noetherian, integrally closed integral domain with
1 in which every prime ideal is maximal.

2. A fractional ideal of a Dedekind domain, R, is a nonzero finitely generated
R-submodule of K, the field of fractions of R. A principal fractional ideal
of R is a fractional ideal of the form Rz for some 0 # z € K.

3. The class group of R, C(R) := I(R)/P(R) where I(R) is the group of
fractional ideals of R and P(R) is the subgroup of principal fractional
ideals of R.

4. The ring of integers Rx of an algebraic number field K is a Dedekind
domain. The class group C(Rk) is finite. The cardinality of C'(Rk) is
called the class number of K.

5. There is a one-to-one correspondence between ideal classes in C(Rg) and
isomorphism classes of elliptic curves with End(E) = Rg.

6. The j-invariant of a CM elliptic curve is an algebraic integer.

7. The elliptic curve y* = 2 + 2L

cation and its j-invariant is 1.

T+ % does not have complex multipli-
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Suggestions for Further Study

1. j = 1is an attractive example of a curve that is not CM. It would be nice
to explicitly have 7 € C s.t. j(Z + 7Z) = 1. jFrom Corollary 5.28 we
know that such a 7 must be transcendental. One such 7 is near e2™/3 and
satisfies |7| = 1.

2. For any integer greater than 1728 we can use the Gauss method to approx-
imate an appropriate T = it for some ¢ > 1. It might be possible to find
such a 7 whose continued fraction expansion does not recur. This implies
that 7 does not lie in a quadratic extension of Q and therefore that the
curve Z + 77 is not CM by Theorem 4.6. One idea is to try out strictly
increasing continued fraction expansions, e.g. 2 — 17%1

s —
4—...

3. It is known that there are only finitely many quadratic imaginary fields
with any given class number. See [Ba, 5.5]. The quadratic imaginary fields
with class number 2 have been completely classified. The next step is to
find all choices j with [Q(j):Q]= 2 s.t. the corresponding elliptic curve is
CM.

4. We know that when the endomorphism ring of an elliptic curve E is the
full ring of integers Rk, [Q(j(E)) : Q)= |C(Rk)|. When End(E) is an
order of K, [Q(4(E)) : Q] > |C(Rk)|. The degree of the field extension
seems to go up as the conductor goes up. This needs verifying. If this
is true then it is possible to prove that for any n € N there are only
finitely many algebraic integers j with [Q(j) : Q]= n s.t.the correspond-
ing elliptic curve is CM. In this project we have only proved this for n = 1.
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6 Appendix on Cardinality

Two sets have the same cardinality if there is a bijection between them. The
Schrioder-Bernstein Theorem says that given two sets A and B, if there exist
well-defined injections f : A — B and g : B — A then there is a bijection
between A and B. We say a set is countable if it has the same cardinality as N.

6.1 Theorem

R is uncountable.

Proof
Assume for contradiction that |R| = |N|. Then there exists a numeration R =
{an|n € N}. Consider a decimal expansion for each an: ap = m, + Y oo, bat
for some m,, € Z,by; € {0, ...,9}.

1 ifby; #1
Let C; = 1 ;é

5 if b“ =1
ci #0i;,0,9 Vi € Nso Y72, £ ¢ R. Contradiction. 0

6.2 Theorem
(a) [R[ =1(0,1)[ and (b) [[0,1]] = [[0,1] x [0, 1]].

Proof
(a) f:(0,1) = R, f(z) = tan (mz — Z) is a bijection.

(b) By the Schréder-Bernstein Theorem we just have to find a well-defined

injection f : [0,1] x [0,1] — [0,1]. To do this we use a cunning trick. We use

binary expansions for the elements of [0,1] x [0,1] and decimal expansions for

the elements of [0, 1]. That is

0,1] % [0,1] = {(5, 5,57, 5) lan, b € {0,1}}

[07 1] = {Z'Zozl 1c[)_n"|cn € {07 79}}

We have to be careful here and choose recurring zeroes if there is a choice (recall

0.19999... = 0.20000...). We define

F(X00 5720 ba) =32 | £ where ¢, = 2a, + by + 1. O
Using Schréder-Bernstein it is not hard to see that if |A| = |A'| and |B| =

|B'| then |A x B| =|A’ x B'|. Therefore |C| = |R?| = |R].

The algebraic numbers Q are the complex numbers which are zeroes of a poly-
nomial over Z.

6.3 Theorem

Q is countable.
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Proof

For a polynomial f(t) = ag + a1t + ... + apt™ € Z[t] define its height to be
h(f) := n+lao| + ... + |ap|. There are only a finite number of polynomials over
7 of a given height h.

Now each height h polynomial has less than h roots in C.

So [Q| < =72, h.(number of height h polynomials), which is a countable infin-
ity. a
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