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Introdution

The j-invariant of an ellipti urve with omplex multipliation is an algebrai

integer. For a proof of this fat see [Si2, Thm.II.6.1℄. For every z 2 C there

exists an ellipti urve E s.t. j(E) = z. If we pik an arbitrary algebrai in-

teger z does the orresponding ellipti urve have omplex multipliation? In

this projet we show that the answer is no. In fat only �nitely many rational

integers (i.e. elements of Z) orrespond to ellipti urves with omplex multi-

pliation.

Chapter 1 ontains a disussion of plane urves. Many of the proofs are on-

tained in [Kn℄ but I have partly simpli�ed them and added steps for larity.

Chapter 2 de�nes an ellipti urve as a nonsingular ubi in Weierstrass Form.

We de�ne the j-invariant of an ellipti urve in Chapter 2.

Chapter 3 shows that an ellipti urve is topologially a torus. There is a or-

respondene between omplex tori and ellipti urves. The j-invariant allows

us to expliitly forge a bijetion between lasses of omplex tori and lasses of

ellipti urves. Thus we regard omplex tori as ellipti urves.

Chapter 4 de�nes omplex multipliation. We look at omplex multipliation

from the perspetive of plane urves and from the perspetive of omplex tori.

Chapter 5 ontains a lot of algebrai number theory. We need results about

algebrai number �elds in order to understand the proof that the j-invariant of

a urve with omplex multipliation is an algebrai integer. To show that only

�nitely many rational integers orrespond to urves with omplex multiplia-

tion we need the fat that there are exatly nine quadrati imaginary �elds of

lass number 1. This was originally onjetured by Gauss and was proved by

Heegner. See [He℄ for a proof.
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1 Plane Curves

Summary

The set of zeroes of a nonzero homogeneous polynomial is a well-de�ned subset

of the projetive plane P

2

C

. For a disussion of projetive spae see [Re1, 1.4℄. I

think of P

2

R

as R

2

together with points on the horizon "at in�nity". A projetive

hange of oordinates is an invertible linear map. We regard two plane urves

as the same if they are projetively equivalent.

A urve is nonsingular if we an sensibly de�ne a tangent line at every point

of the urve. The tangent line at a point is the unique line through that point

with intersetion multipliity greater than 1. Nonsingularity is preserved by a

projetive hange of oordinates. A ex (or point of inetion) is a nonsingular

point of the urve where the intersetion multipliity of the tangent line is greater

than 2. Of ourse at shool we learn that an inetion point of the urve in R

2

given by y = f(x) is a point where

�

2

f

�x

2

= 0.

1.1 A Few De�nitions

P

2

C

:= (C

3

n f0g)= � where (�; �; ) � (�

0

; �

0

; 

0

) if 9 � 2 C n f0g s.t. (�; �; ) =

�(�

0

; �

0

; 

0

)

A plane urve is a non-zero homogeneous polynomial F 2 C [X;Y; Z℄. The set

of zeroes of F in P

2

C

is well-de�ned sine F is homogeneous. We write F (C )

or E : (F = 0) to denote this lous. If deg(F )=1, 2 or 3 we say F is a line,

oni or ubi respetively. A plane urve F is alled irreduible if F is an

irreduible polynomial. We regard F and �F as the same urve 8� 2 C nf0g

sine F (C ) = �F (C ).

A projetive transformation (or projetive hange of oordinates) is a linear

map � 2 Gl

3

(C ). If �

1

= ��

2

for some � 2 C n f0g then

�

1

(�; �; ) = �

2

(�; �; )8 (�; �; ) 2 P

2

C

.

This leads us to de�ne the projetive group,

PGl

3

(C ) := (Gl

3

(C ))=fsalar matriesg

where a salar matrix is a matrix of the form �I for some � 2 C nf0g. Note that

PGl

3

(C ) ats transitively on P

2

C

(ie.8X;Y 2 P

2

C

9� 2 PGl

3

(C ) s.t. �(X) = Y )

sine Gl

3

(C ) ats transitively on C

3

n f0g.

We say two urves, F

1

&F

2

, are projetively equivalent if 9� 2 PGl

3

(C ) s.t.

F

1

(X;Y; Z) = F

2

(�

�1

(X;Y; Z)). Note that F

1

(C ) = �(F

2

(C )).

De�ne F

�

:= F Æ �

�1

. Then F

�

(C ) = �(F (C )).
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1.2 De�nition

Let (�; �; ) 2 P

2

C

. Choose � 2 PGl

3

(C ) s.t. �(�; �; ) = (0; 0; 1). We de�ne

loal aÆne oordinates at (�; �; ) with the map:

' : �

�1

(C � C � f1g) ! C

2

'(�

�1

(X;Y; 1)) = (X;Y )

' is a bijetion. The most familiar example is � = I :

' : f(X;Y; Z) 2 P

2

C

jZ = 1g ! C

2

'(X;Y; 1) = (X;Y )

' de�nes loal oordinates at (0,0,1) and '

�1

gives us an imbedding of C

2

in

P

2

C

as the aÆne piee (Z=1). In this ase the (Z=0) part of P

2

C

is often referred

to as "the line at in�nity".

If F is a plane urve then about any point (�; �; ) 2 P

2

C

we an de�ne aÆne

loal oordinates by hoosing � 2 PGl

3

(C ) as in De�nition 1.2. We have the

orresponding aÆne urve f de�ned by f(x; y) = F (�

�1

(x; y; 1)) 2 C [x; y℄.

f(x; y) = f

0

(x; y) + f

1

(x; y) + :::+ f

d

(x; y)

where f

i

(x; y) is a homogeneous polynomial of degree i in x & y, d = deg(F ).

f

0

(x; y) = 0 , (�; �; ) 2 F (C )

1.3 De�nition

Let (�; �; ) 2 F (C ). We say (�; �; ) is a singular point of F if f

1

is the zero

polynomial. (�; �; ) is a nonsingular point i� it is not a singular point. F is a

nonsingular urve if all the points in F (C ) are nonsingular points of F .

We need to hek that singularity is well-de�ned (i.e. independent of the hoie

of �).

1.4 Theorem

Let F be a plane urve, (�; �; ) 2 F (C ). Let �;  2 PGl

3

(C ) be projetive

transformations s.t. �(�; �; ) =  (�; �; ) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y)

g(x; y) = F ( 

�1

(x; y; 1)) = g

1

(x; y) + :::+ g

d

(x; y)

where f

i

; g

i

are homogeneous of degree i, d = deg(F ).

Then f

1

and g

1

are either both zero or both non-zero.
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Proof [Kn, p.26℄

f(x; y) = (F Æ  

�1

)( Æ �

�1

)(x; y; 1).

Now  Æ �

�1

2 PGl

3

(C ) and  Æ �

�1

(0; 0; 1) = (0; 0; 1).

Thus  Æ �

�1

=

0

�

a b 0

 d 0

r s 1

1

A

.

Expanding the determinant by the third olumn, we see that

det( Æ �

�1

) = det

�

a b

 d

�

6= 0. Thus

�

a b

 d

�

is invertible. So

f(x; y) = (F Æ  

�1

)(ax+ by; x+ dy; rx + sy + 1)

= (F Æ  

�1

)(rx + sy + 1)

�

ax+ by

rx + sy + 1

;

x+ dy

rx + sy + 1

; 1

�

= (rx + sy + 1)

d

g

�

ax+ by

rx + sy + 1

;

x+ dy

rx + sy + 1

�

= (rx + sy + 1)

d�1

g

1

(ax+ by; x+ dy) + :::+ g

d

(ax+ by; x+ dy)

By regrouping into homogeneous terms we see that f

1

(x; y) = g

1

(ax+ by; x+

dy).

Similarly g

1

(x; y) = f

1

(�x+ �y; x+ Æy) where

�

a b

 d

�

�1

=

�

� �

 Æ

�

.

Thus f

1

is the zero polynomial, f

1

(x; y) = 08x; y 2 C , g

1

(x; y) = 08x; y 2 C

, g

1

is the zero polynomial. ut

Reall in De�nition 1.1 we de�ned F

�

= F Æ �

�1

and noted that F

�

(C ) =

�(F (C )). Corollary 1.5 will show that nonsingularity is preserved by a projetive

hange of oordinates, so F is nonsingular i� F

�

is nonsingular.

1.5 Corollary

If (�; �; ) is a nonsingular point of F then �(�; �; ) is a nonsingular point of

F

�

.

Proof

Choose  s.t.  (�; �; ) = (0; 0; 1) and ' s.t. ' Æ �(�; �; ) = (0; 0; 1). Then  

and 'Æ� satisfy the hypothesis of Theorem 1.4. In the notation of Theorem 1.4

f(x; y) = F ( 

�1

(x; y; 1)) and g(x; y) = f

�

(x; y) = F ((' Æ �)

�1

(x; y; 1)). Thus

by Theorem 1.4 f

1

and f

�

1

are either both zero or both non-zero. ut

At a nonsingular point (�; �; ) 2 F (C ) hoose � s.t. �(�; �; ) = (0; 0; 1) as

in De�nition 1.2. The aÆne urve f has a tangent line in C

2

at (0,0). The
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line is given by f

1

(x; y) = 0. Note that this line is de�ned i� f

1

is not the zero

polynomial i� (�; �; ) is a nonsingular point of F . This motivates our next

de�nition.

1.6 De�nition

Let (�; �; ) be a nonsingular point of a plane urve F and hoose � 2 PGl

3

(C )

s.t. �(�; �; ) = (0; 0; 1). The tangent line L to F at (�; �; ) is de�ned L :=

e

f

1

Æ � where

e

f

1

2 C [X;Y; Z℄ is just f

1

onsidered as a polynomial in 3 variables

independent of Z.

We need to hek that the tangent line is well-de�ned (i.e. independent of the

hoie of � 2 PGl

3

(C )).

1.7 Theorem

Let �;  2 PGl

3

(C ) and suppose �(�; �; ) =  (�; �; ) = (0; 0; 1).

Let L

�

=

e

f

1

Æ � & L

 

= eg

1

Æ  where f

1

and g

1

are as in Theorem 1.4. Then

L

�

= L

 

.

Proof [Kn, p.28℄

 Æ �

�1

(0; 0; 1) = (0; 0; 1) so  Æ �

�1

=

0

�

a b 0

 d 0

r s 1

1

A

with

�

a b

 d

�

invertible (as in proof of 1.4).

e

f

1

(x; y; z) = f

1

(x; y)

�

= g

1

(ax+ by; x+ dy)

��

= eg

1

(ax+ by; x+ dy; rx+ sy + z)

= eg

1

( Æ �

�1

(x; y; z))

L

 

(x; y; z) = eg

1

( (x; y; z)) = eg

1

( Æ �

�1

(�(x; y; z)))

=

e

f

1

(�(x; y; z)) = L

�

(x; y; z)

* by the proof of 1.4.

** sine eg

1

is independent of the last oordinate. ut

1.8 Theorem

P = (�; �; ) 2 F (C ) is a nonsingular point of F i� at least one of

�F

�X

,

�F

�Y

,

�F

�Z

is nonzero at P . At a nonsingular point the tangent line L is given by

L = X

�F

�X

(P ) + Y

�F

�Y

(P ) + Z

�F

�Z

(P ).
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Proof [Kn, Prop.II.2.6℄

Choose � 2 PGl

3

(C ) s.t. �(�; �; ) = (0; 0; 1).

(�; �; ) 2 F (C ) so F Æ �

�1

(0; 0; 1) = 0.

As in De�nition 1.2, let

f(x; y) = F (�

�1

(x; y; 1)) = F

�

�

�1

((x; y) 7! (x; y; 1))

�

:

= f

0

(x; y) + :::+ f

d

(x; y)

F Æ �

�1

(0; 0; 1) = f

0

� 0. f

1

(x; y) = ax+ by where a =

�f

�x

(0; 0), b =

�f

�y

(0; 0).

By the Chain Rule

(a; b) =

�

�f

�x

(0; 0);

�f

�y

(0; 0)

�

=

�

�F

�X

(�; �; );

�F

�Y

(�; �; );

�F

�Z

(�; �; )

�

�

�1

0

�

1 0

0 1

0 0

1

A

:

(�

�1

is a linear map so is equal to its derivative.

0

�

1 0

0 1

0 0

1

A

is the derivative of

(x; y) 7! (x; y; 1)).

e

f

1

(x

0

; y

0

; z

0

) = f

1

(x

0

; y

0

) =

�

�f

�x

(0; 0);

�f

�y

(0; 0)

��

x

0

y

0

�

=

�

�F

�X

(�; �; );

�F

�Y

(�; �; );

�F

�Z

(�; �; )

�

�

�1

0

�

x

0

y

0

0

1

A

:

Thus if all partial derivatives are zero at P , then

e

f

1

� 0 (i.e. P is a singular

point). Now F Æ�

�1

(0; 0; 1) = 0, so F Æ�

�1

is a polynomial with no monomials

just in Z. So

�F

�Z

(�; �; ) �

�1

(0; 0; 1) =

�F

�Z

�

�

�1

(0; 0; 1)

�

�

�1

(0; 0; 1)

=

�

�Z

(F Æ �

�1

)(0; 0; 1)

= 0:

By linearity this means we an put anything we like for the third entry of the

vetor:

e

f

1

(x

0

; y

0

; z

0

) =

�

�F

�X

(�; �; );

�F

�Y

(�; �; );

�F

�Z

(�; �; )

�

�

�1

0

�

x

0

y

0

0

1

A

=

�

�F

�X

(�; �; );

�F

�Y

(�; �; );

�F

�Z

(�; �; )

�

�

�1

0

�

x

0

y

0

z

0

1

A

:
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Let (x

0

; y

0

; z

0

) = �(X;Y; Z) so that

L(X;Y; Z) =

e

f

1

(x

0

; y

0

; z

0

) =

�

�F

�X

(�; �; );

�F

�Y

(�; �; );

�F

�Z

(�; �; )

�

0

�

X

Y

Z

1

A

.

Thus if at least one of the partial derivatives is nonzero at P , then

e

f

1

6= 0 (i.e.

P is a nonsingular point).

We have shown that at least one of the partial derivatives is nonzero at P i� P

is a nonsingular point and that

L = X

�F

�X

(P ) + Y

�F

�Y

(P ) + Z

�F

�Z

(P ). ut

Fix a urve F and a line L in C [X;Y; Z℄.

Let P = (�; �; ) 2 (F = 0) \ (L = 0). As usual hoose � 2 PGl

3

(C ) s.t.

�(�; �; ) = (0; 0; 1) and let f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y),

l(x; y) = L(�

�1

(x; y; 1)).

l(0; 0) = 0 so l(x; y) = bx� ay for some a; b 2 C .

'(t) =

�

at

bt

�

parametrizes l(x; y) = 0.

f('(t)) = f

1

(at; bt) + :::+ f

d

(at; bt) = tf

1

(a; b) + :::+ t

d

f

d

(a; b).

1.9 De�nition

The intersetion multipliity of L with F at P, i(P;L; F ), is de�ned to be the

order of the zero of f('(t)) at t = 0. (We say i(P;L; F ) = +1 if f Æ' � 0 and

i(P;L; F ) = 0 if P =2 (F = 0) \ (L = 0)).

1.10 Theorem

At a nonsingular point P 2 (F = 0) the tangent line, L

T

, to F at P is the

unique line with i(P;L; F ) > 1.

Proof [Kn, p.35℄

Let L be a line through P.

i(P;L; F ) = 1,

df('(t))

dt

6= 0 at t = 0 , f

1

(a; b) 6= 0, (a; b) =2 (L

T

= 0)

sine L

T

=

e

f

1

Æ � by De�nition 1.6.

So (P;L; F ) = 1, image(') * L

T

(C ) , L 6= L

T

. ut

1.11 De�nition

A nonsingular point P 2 F (C ) is alled a ex or inetion point of F if

3 6 i(P;L; F ) <1.
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We have that a point P is on the urve, f

0

= 0. Given a point P on the urve,

P is a nonsingular point , f

1

(x; y) 6= 0. Given a nonsingular point P on the

urve, l(x; y) = bx�ay where f

1

(x; y) = bx�ay, and P is a ex, f

2

(a; b) = 0.

Let f

2

(x; y) = x

2

+ dxy + ey

2

. If f

1

j f

2

then f

2

(a; b) = 0. Conversely if

f

2

(a; b) = 0 then (when a; b 6= 0) f

2

(x; y) = x

2

+dxy+ey

2

= (bx�ay)(rx+sy)

where r = =b; s = �e=a. So f

1

j f

2

. The ases a = 0,b = 0 an be heked

separately.

Thus a nonsingular point is a ex , f

1

j f

2

.

1.12 De�nition

The Hessian matrix of F is de�ned to be

H :=

0

B

�

�

2

F

�x

2

�

2

F

�x�y

�

2

F

�x�z

�

2

F

�x�y

�

2

F

�y

2

�

2

F

�y�z

�

2

F

�x�z

�

2

F

�y�z

�

2

F

�z

2

1

C

A

1.13 Theorem

A nonsingular point P 2 F is a ex , detH(P ) = 0.

To prove this we need a few results �rst.

1.14 Lemma

Let F;G 2 C [X;Y; Z℄ be plane urves and P = (�; �; ) 2 F (C ) \ G(C ). Then

P is a singular point of the urve FG.

Proof [Kn, Prop.II.2.3℄

Choose � 2 PGl

3

(C ) s.t. �(P ) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y)

g(x; y) = G(�

�1

(x; y; 1)) = g

1

(x; y) + :::+ g

d

(x; y):

Then

fg(x; y) = FG(�

�1

(x; y; 1)) = F (�

�1

(x; y; 1))G(�

�1

(x; y; 1))

= f

1

g

1

(x; y) + :::+ f

d

g

d

(x; y):

So fg has no �rst degree terms and hene P is a singular point of FG. ut

1.15 Theorem - B�ezout's Theorem

Let F;G 2 C [X;Y; Z℄, deg(F ) = m, deg(G) = n. Then F (C )\G(C ) is nonempty

and ontains more than mn points i� F and G have a ommon fator. In fat, if

F and G have no ommon fator, then F (C )\G(C ) ontains exatly mn points

if they are ounted with the orret multipliities.
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Proof

For a omplete proof see advaned texts on Algebrai Geometry. For a proof in

the ase when one of the urves is a line or a oni see [Re1, Thm.1.9℄.

1.16 Corollary

A reduible plane urve F is singular.

Proof [Kn, Cor.II.2.5℄

Let F = F

1

F

2

be plane urves and let d

i

& e

i

be the highest and lowest degrees

of terms in F

i

. Now the produt of the d

1

terms in F

1

with the d

2

terms in F

2

is the d

1

d

2

part of F

1

F

2

. Similarly the produt of the e

1

terms in F

1

with the

e

2

terms in F

2

is the e

1

e

2

part of F

1

F

2

. Sine F is homogeneous d

1

d

2

= e

1

e

2

.

So d

1

> e

1

, d

2

< e

2

whih is a ontradition as by de�nition d

2

� e

2

. Thus

d

1

= e

1

and d

2

= e

2

.

We have shown that F

1

and F

2

are homogeneous, ie. they are plane urves.

Theorem 1.15 (B�ezout's Theorem) tells us that F

1

(C ) \F

2

(C ) is nonempty and

Lemma 1.14 says that any point in this intersetion is singular. ut

1.17 Lemma

Let A = (a

ij

) be a 3� 3 symmetri matrix over C . Then the oni

C(X;Y; Z) := (X;Y; Z)A

0

�

X

Y

Z

1

A

is reduible i� detA = 0.

Proof [Kn, Lem.II.2.11℄

If C is reduible then C is singular by Corollary 1.16. Let P 2 C(C ) be a

singular point. By Theorem 1.8

�f

�x

=

�f

�y

=

�f

�z

= 0 at P . A is symmetri so

A(P ) = 0. 0 6= P 2 Ker(A) so det(A) = 0.

Conversely we an diagonalise A sine it is symmetri. One of the diagonal

entries must be zero sine det(A) = 0. so we �nd that the oni C is projetively

equivalent to the urve X

2

+ Y

2

= (X + iY )(X � iY ) whih is reduible. ut

Proof of Theorem 1.13 [Kn, Prop.II.2.12℄

Let L be the tangent line to F at P . Choose � with �(P ) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)). We know that P is a ex , f

1

j f

2

. Now onsider

the oni Q

�

(x; y; z) :=

e

f

2

Æ �(x; y; z). f

1

j f

2

, L j Q

�

.

P is a ex ) L j Q

�

) L divides the oni de�ned by H(P ) ) detH(P ) = 0

9



(by Lemma 1.17).

Conversely detH(P ) = 0 ) oni C de�ned by H(P ) is reduible (by Lemma

1.17). C = L

1

L

2

say. Now L is the tangent line to C at P so L = L

1

or L = L

2

.

L j C ) L j Q

�

) P is a ex. ut

1.18 Corollary

A nonsingular plane urve F with d = deg(F ) > 2 has at least one ex.

Proof

By Theorem 1.13 ex points are solutions of F = 0 = det(H). det(H) is a

plane urve of degree 3(d� 2). B�ezout's Theorem tells us that the intersetion

F (C ) \ det(H)(C ) is non-empty. ut

1.19 Remarks

B�ezout's Theorem tells us that F has 3d(d� 2) ex points (if they are ounted

with orret multipliities) unless F and det(H) have a ommon fator. It turns

out that this annot happen unless F is a produt of lines. But then of ourse

F is reduible and hene singular by Corollary 1.16.

Every point of F (C ) has a tangent line - the unique line with intersetion mul-

tipliity i(P;L; F ) > 1 by Theorem 1.10. Note that i(P;L; F ) = 2 exept at the

�nite number of ex points.

1.20 Summary of Key Points from Chapter 1

1. Let P 2 F (C ). P is a nonsingular point i� at least one of the partials

�F

�X

,

�F

�Y

,

�F

�Z

is not zero at P . The tangent line at P isX

�F

�X

j

P

+Y

�F

�Y

j

P

+Z

�F

�Z

j

P

whih is de�ned i� P is a nonsingular point. Nonsingularity is preserved

by projetive hange of oordinates.

2. A ex is a nonsingular point at whih the tangent line has intersetion

multipliity greater than or equal to 3. A nonsingular point P of a urve

F is a ex i� det(H(P )) = 0 where H is the Hessian of F .

3. Every nonsingular ubi ontains a ex point. A nonsingular ubi has at

most 9 ex points.

10



2 Ellipti Curves

Overview

A ubi is a non-zero homogeneous polynomial F 2 C [X;Y; Z℄ of degree 3. An

ellipti urve is a nonsingular ubi in Weierstrass Form. A ubi is projetively

equivalent to a ubi in Weierstrass Form i� it ontains a ex. We showed in

Corollary 1.18 that every nonsingular ubi ontains a ex. Sine we regard pro-

jetively equivalent urves as the same, ellipti urves are preisely nonsingular

ubis. The j-invariant assigns a di�erent omplex number to eah projetive

equivalene lass of ellipti urves.

2.1 De�nition

A ubi in the form (Y

2

Z+a

1

XY Z+a

3

Y Z

2

)�(X

3

+a

2

X

2

Z+a

4

XZ

2

+a

6

Z

3

),

a

i

2 C is said to be in Weierstrass Form.

A nonsingular ubi in Weierstrass Form is alled an Ellipti Curve.

Let F be a ubi in Weierstrass Form. Plug in Z = 0 and we are left with �X

3

.

So (0; 1; 0) is the only point of F (C ) at in�nity.

�F

�X

= a

1

Y Z � 3X

2

� 2a

2

XZ � a

4

Z

2

�F

�Y

= 2Y Z + a

1

XZ + a

3

Z

2

�F

�Z

= Y

2

+ a

1

XY + 2a

3

Y Z � a

2

X

2

� 2a

4

XZ � 3a

6

Z

2

At (0; 1; 0),

�F

�X

=

�F

�Y

= 0,

�F

�Z

= 1. By Theorem 1.8 (0; 1; 0) is a nonsingular

point of F and the tangent line to F at (0; 1; 0) is Z = 0. We alulate the

Hessian matrix H .

H =

0

�

�6X � 2a

2

Z a

1

Z a

1

Y � 2a

2

X � 2a

4

Z

a

1

Z 2Z 2Y + a

1

X + 2a

3

Z

a

1

Y � 2a

2

X � 2a

4

Z 2Y + a

1

X + 2a

3

Z 2a

3

Y � 2a

4

X � 6a

6

Z

1

A

H (0; 1; 0) =

0

�

0 0 a

1

0 0 2

a

1

2 2a

3

1

A

detH(0; 1; 0) = 0, so by Theorem 1.13 (0; 1; 0) is a ex of F (C ).

2.2 Theorem

A ubi F is projetively equivalent to a ubi in Weierstrass Form , F (C )

ontains a ex.

11



Proof [Kn, pp.40-42℄

()) is done above.

(() Let P be a ex of F. Choose �

1

2 PGl

3

(C ) s.t. �

1

(P ) = (0; 1; 0). Then

F

�

1

has a ex at (0; 1; 0). (Reall that F

�

(X;Y; Z) = F (�

�1

(X;Y; Z))).

Let L = �X + �Z (�,� not both zero) be the tangent line to F

�

1

at (0; 1; 0).

Note there is no term in Y sine the line passes through (0; 1; 0).

We want to make a projetive hange of oordinates �

2

whih leaves the ex

at (0,1,0) and so that L

�

2

= Z. If � = 0 we are done. If � = 0 then just

take �

2

=

0

�

0 0 1

0 1 0

1 0 0

1

A

. If �,� 6= 0 hoose �

2

with �

�1

2

=

0

�

a 0 b

0 1 0

 0 d

1

A

s.t.

det(�

2

)

�1

= ad� b 6= 0 and �a+ � = 0.

L

�

2

(X;Y; Z) = L(aX + bZ; Y; X + dZ) = �(aX + bZ) + �(X + dZ)

= (�a+ �)X + (�b+ �d)Z = (�b+ �d)Z

sine �a + � = 0. Now if �b + �d = 0 then ��ad = ��b so ad � b = 0.

Contradition. So �b+ �d 6= 0 and L

�

2

(X;Y; Z) = Z.

So, (F

�

1

)

�

2

= F

�

1

Æ �

�1

2

= F Æ �

�1

1

Æ �

�1

2

= F Æ (�

2

�

1

)

�1

= F

�

2

�

1

has a ex at

(0,1,0) and (Z=0) is the tangent line at (0,1,0).

Now onsider the most general form of a ubi F:

F = a

X

3

X

3

+ a

X

2

Y

X

2

Y + a

X

2

Z

X

2

Z

+ a

XY

2

XY

2

+ a

XY Z

XY Z + a

XZ

2

XZ

2

+ a

Y

3

Y

3

+ a

Y

2

Z

Y

2

Z + a

Y Z

2

Y Z

2

+ a

Z

3

Z

3

1. (0; 1; 0) 2 F

�

2

�

1

(C ) ) a

Y

3

= 0.

2. (0; 1; 0) is a nonsingular point of F

�

2

�

1

(C ). As in De�nition 1.2, onsider

f(x; y) = F

�

2

�

1

(C )(�

�1

(x; y; 1)) where � =

0

�

1 0 0

0 0 1

0 1 0

1

A

,

�(0; 1; 0) = (0; 0; 1). f

1

(x; y) = a

XY

2

x + a

Y

2

Z

y 6= 0 by the de�nition of a

nonsingular point (De�nition 1.3). So a

XY

2

and a

Y

2

Z

are not both zero.

3. The tangent line to F

�

2

�

1

(C ) at (0; 1; 0) is L = Z. But

L =

e

f

1

(�(X;Y; Z)) = a

XY

2

X+a

Y

2

Z

Z. So a

XY

2

= 0 and by 2, a

Y

2

Z

6= 0.

4. (0; 1; 0) is a ex of F

�

2

�

1

(C ). Now f

1

(x; y) = a

Y

2

Z

y and f

2

(x; y) =

a

X

2

Y

x

2

+a

XY Z

xy+a

Y

2

Z

y

2

. By the omments after De�nition 1.11 f

1

j f

2

.

Hene a

X

2

Y

= 0.
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We have

F

�

2

�

1

= a

X

3

X

3

+ a

X

2

Z

X

2

Z + a

XY Z

XY Z

+ a

XZ

2

XZ

2

+ a

Y

2

Z

Y

2

Z + a

Y Z

2

Y Z

2

+ a

Z

3

Z

3

>From De�nition 1.11 i((0; 1; 0); L; F ) < 1. Now L=Z is the tangent line so Z

does not divide F. Thus a

X

3
6= 0. We know from 3. that a

Y

2

Z

6= 0.

Finally we let �

3

=

0

�

�a

Y

2

Z

=a

X

3

0 0

0 a

Y

2

Z

=a

X

3

0

0 0 1

1

A

. Then the oeÆient of

Y

2

Z in F

�

3

�

2

�

1

is (a

Y

2

Z

)

3

=(a

X

3

)

2

and the oeÆient ofX

3

is �(a

Y

2

Z

)

3

=(a

X

3

)

2

.

Thus after multiplying through by a onstant we obtain

F

�

3

�

2

�

1

= (Y

2

Z + a

1

XY Z + a

3

Y Z

2

)� (X

3

+ a

2

X

2

Z + a

4

XZ

2

+ a

6

Z

3

)

as required. ut

Every nonsingular ubi ontains a ex by Corollary 1.18. By Theorem 2.2 every

nonsingular ubi is projetively equivalent to a urve in Weierstrass Form and

by Corollary 1.5 nonsingularity is preserved by a projetive hange of oordi-

nates. Every nonsingular ubi is projetively equivalent to an Ellipti Curve.

Note that some ubis in Weierstrass Form are singular, eg. F = Y

2

Z �X

3

is

singular at (0; 0; 1). Note also that (0; 1; 0) is always a ex of a ubi in Weier-

strass Form. As was remarked earlier this is the only point of F (C ) on the line

at in�nity. So singularity is determined on the aÆne piee (Z=1).

With this in mind, from now on we write y

2

+a

1

xy+a

3

y = x

3

+a

2

x

2

+a

4

x+a

6

to represent a ubi in Weierstrass Form, taking the ex at (0; 1; 0) as read.

2.3 Lemma

Every ubi in Weierstrass Form is projetively equivalent to a urve in the form

y

2

= x

3

� 27

4

x� 54

6

for some 

4

,

6

2 C .
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Proof

We �rst omplete the square on the left-hand-side of the equation:

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

�

y +

a

1

2

x+

a

3

2

�

2

= y

2

+ a

1

xy + a

3

y +

a

2

1

4

x

2

+

a

1

a

3

2

x+

a

2

3

4

= x

3

+ a

2

x

2

+ a

4

x+ a

6

+

a

2

1

4

x

2

+

a

1

a

3

2

x+

a

2

3

4

Let Y := 2y + a

1

x+ a

3

, X := x

Then Y

2

= 4X

3

+ 4a

2

X

2

+ 4a

4

X + 4a

6

+ a

2

1

X

2

+ 2a

1

a

3

X + a

2

3

= 4X

3

+ (4a

2

+ a

2

1

)X

2

+ 2(2a

4

+ a

1

a

3

)X + (a

2

3

+ 4a

6

)

= 4X

3

+ b

2

X

2

+ 2b

4

X + b

6

where b

2

= (4a

2

+ a

2

1

), b

4

= (2a

4

+ a

1

a

3

), b

6

= (a

2

3

+ 4a

6

).

Now we omplete the ube on the right-hand-side of the equation:

Y

2

4

= X

3

+

b

2

4

X

2

+

b

4

2

X +

b

6

4

�

Y

2

�

2

=

�

X +

b

2

12

�

3

+

�

b

4

2

�

3b

2

2

12

2

�

X +

�

b

6

4

�

b

3

2

12

3

�

:

Now let y

0

:= 108Y andx

0

:= 36X + 3b

2

: Then

�

y

0

216

�

2

=

�

x

0

36

�

3

+

�

b

4

2

�

3b

2

2

12

2

��

x

0

36

�

3b

2

36

�

+

�

b

6

4

�

b

3

2

12

3

�

y

02

= x

03

� 6

6

�

3b

2

2

12

2

�

b

4

2

��

x

0

36

�

+ 6

6

�

3b

2

2

12

2

�

b

4

2

�

3b

2

36

� 6

6

�

b

3

2

12

3

�

b

6

4

�

:

The oeÆient of the x

0

term is

�6

4

�

3b

2

2

12

2

�

b

4

2

�

= �2

4

3

4

�

3b

2

2

2

4

3

2

�

b

4

2

�

= �3

3

�

2

4

3

2

b

2

2

2

4

3

2

�

2

4

3b

4

2

�

= �27

�

b

2

2

� 24b

4

�

:
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And the onstant term is

6

6

�

3b

2

2

12

2

�

b

4

2

�

3b

2

36

� 6

6

�

b

3

2

12

3

�

b

6

4

�

= 2

6

3

6

�

3b

2

2

2

4

3

2

�

b

4

2

�

3b

2

2

2

3

2

� 2

6

3

6

�

b

3

2

2

6

3

3

�

b

6

2

2

�

= (3

4

� 3

3

)b

3

2

� 2

3

3

5

b

2

b

4

+ 2

4

3

6

b

6

= �54

�

�b

3

2

+ 36b

2

b

4

� 216b

6

�

Thus y

02

= x

03

� 27

4

x

0

� 54

6

where 

4

= b

2

2

� 24b

4

and 

6

= �b

3

2

+ 36b

2

b

4

� 216b

6

. ut

2.4 De�nition

y

2

= x

3

� 27

4

x� 54

6

is alled Normal Form.

2.5 De�nition

Let f(x) 2 C [x℄. De�ne the disriminant of f ,

d :=

Y

1�i<j�deg(f)

(�

i

� �

j

)

2

where �

i

are the roots of f in C . Clearly d = 0, f(x) has a multiple root.

2.6 Lemma

y

2

= ax

3

+ bx

2

+ x+ d is a nonsingular ubi if and only if ax

3

+ bx

2

+ x+ d

has three distint roots in C .

Proof [Kn, Prop.III.3.5℄

We are onsidering the urve F = Y

2

Z � (aX

3

+ bX

2

Z + XZ

2

+ dZ

3

). This

is in Weierstrass Form so as was remarked in the omments before Lemma

2.3, singularity is determined on the aÆne piee (Z=1). This means that any

singular point of F will be of the form (x

0

; y

0

; 1).

By Theorem 1.8 F is singular , 9P = (x

0

; y

0

; 1) 2 F (C ) s.t.

�F

�X

=

�F

�Y

=

�F

�Z

= 0 atP:
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We require (at P):

F = Y

2

Z � aX

3

� bX

2

Z � XZ

2

� dZ

3

= 0

�F

�X

= �3aX

2

� 2bXZ � Z

2

= 0

�F

�Y

= 2Y Z = 0

�F

�Z

= Y

2

� bX

2

� 2XZ � 3dZ

2

= 0

Plug in Z=1:

y

2

� ax

3

� bx

2

� x� d = 0

3ax

2

+ 2bx+  = 0

2y = 0

y

2

� bx

2

� 2x� 3d = 0

So if P is a singular point then y

0

= 0. Let f(x) = ax

3

+ bx

2

+ x+ d. We are

left with:

f(x

0

) = ax

3

0

+ bx

2

0

+ x

0

+ d = 0

f

0

(x

0

) = 3ax

2

0

+ 2bx

0

+  = 0

bx

2

+ 2x+ 3d = 3f(x

0

)� x

0

f

0

(x

0

) = 0

We see these equations are linearly dependent - the third equation is redundant.

We have shown that P = (x

0

; y

0

; 1) is a singular point of F , y

0

= f(x

0

) =

f

0

(x

0

) = 0. Suh a point exists , f(x) = ax

3

+ bx

2

+ x + d has a multiple

root. ut

2.7 Calulating the Disriminant of a Cubi

Let f(x) 2 C [x℄ be a ubi polynomial. We know that y

2

= f(x) is a singular

urve i� f(x) has a multiple root by Lemma 2.6. >From De�nition 2.5 f(x) has

a multiple root i� the disriminant of f is zero. This gives us a onvenient way

of heking if a urve in the Normal Form (de�ned in 2.4) y

2

= x

3

�27

4

x�54

6

is singular.

At the moment the disriminant of f is de�ned in terms of the roots of f . It will

be useful to a have a desription of the disriminant in terms of the oeÆients

of f . Let r

1

, r

2

, r

3

be the roots of f . Then

f(x) = (x� r

1

)(x � r

2

)(x� r

3

) = x

3

� �x

2

+ �x� 

where � = r

1

+ r

2

+ r

3

, � = r

1

r

2

+ r

1

r

3

+ r

2

r

3

,  = r

1

r

2

r

3

are the three elemen-

tary symmetri polynomials in r

1

, r

2

, r

3

. A Theorem of Newton tells us that

every symmetri polynomial is expressible as a polynomial of the elementary

symmetri polynomials. The disriminant is a symmetri polynomial in r

1

, r

2

,

r

3

so we an express it as a polynomial in �, �, . To do this we use a unning

determinant trik (see [Kn, Prop.III.3.3℄):
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Let M =

0

�

1 1 1

r

1

r

2

r

3

r

2

1

r

2

2

r

2

3

1

A

. Then det(M) = (r

3

� r

2

)(r

3

� r

1

)(r

2

� r

1

).

The disriminant of f is given by

d =

Y

1�i<j�deg(f)

(r

i

� r

j

)

2

= (det(M))

2

= det(M)det(M

T

) = det(MM

T

)

Now MM

T

=

0

�

1 1 1

r

1

r

2

r

3

r

2

1

r

2

2

r

2

3

1

A

0

�

1 r

1

r

2

1

1 r

2

r

2

2

1 r

3

r

2

3

1

A

=

0

�

3 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

1

A

where �

i

= r

i

1

+ r

i

2

+ r

i

3

.

�

1

= r

1

+ r

2

+ r

3

= �

�

2

= r

2

1

+ r

2

2

+ r

2

3

= (r

1

+ r

2

+ r

3

)

2

� 2(r

1

r

2

+ r

1

r

3

+ r

2

r

3

) = �

2

� 2�

�

3

= r

3

1

+ r

3

2

+ r

3

3

= (r

1

+ r

2

+ r

3

)

3

� 3(r

1

+ r

2

+ r

3

)(r

1

r

2

+ r

1

r

3

+ r

2

r

3

) + 3r

1

r

2

r

3

= �

3

� 3�� + 3

�

4

= �

4

� 2�

2

� + 2�

2

+ 4�:

We have expressed the disriminant of a ubi polynomial f in terms of its

oeÆients. Let's use this to �nd the disriminant, d, of x

3

� 27

4

x � 54

6

in

terms of 

4

and 

6

.

� = 0; � = �27

4

;  = 54

6

�

1

= � = 0

�

2

= �

2

� 2� = 2 � 3

3



4

�

3

= �

3

� 3�� + 3 = 2 � 3

4



6

�

4

= �

4

� 2�

2

� + 2�

2

+ 4� = 2 � 3

6



2

4

d = det

0

�

3 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

1

A

= det

0

�

3 0 2 � 3

3



4

0 2 � 3

3



4

2 � 3

4



6

2 � 3

3



4

2 � 3

4



6

2 � 3

6



2

4

1

A

= 3(2

2

� 3

9



3

4

� 2

2

� 3

8



2

6

) + 2 � 3

3



4

(�2

2

3

6



2

4

)

= 2

2

� 3

9

(

3

4

� 

2

6

):
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2.8 More About Disriminants

The roots of the quadrati polynomial ax

2

+ bx +  are

�b�

p

b

2

�4a

2a

and the

disriminant is b

2

� 4a.

Let x

3

+ ax

2

+ bx +  be a ubi. Complete the ube to bring it to the form

X

3

+ pX + q. If p = 0 we have X

3

+ q whih has disriminant �27q

2

. If q = 0

we have X(X

2

+ p) whih has disriminant �4p

3

.

Now assume that pq 6= 0. Note that X = 0 is a solution i� q = 0.

f : C nf0g ! C nf0g, Z 7! Z�

p

3Z

is a 2-to-1 funtion sine for eah X 2 C nf0g,

X�

p

X

2

+4p=3

2

7! X . We �nd the roots of the ubi by substituting Z �

p

3Z

for

X and solving for Z. We get Z

3

+ q �

p

3

27Z

3

. So solve Z

6

+ qZ

3

�

p

3

27

whih is a

quadrati in Z

3

: Z

3

=

�q

2

�

q

q

2

4

+

p

3

27

. The six solutions for Z must yield the

three solutions for X (i.e. the solutions for Z pair o�). We an alulate that

the disriminant of X

3

+ pX + q is therefore �4p

3

� 27q

2

.

Above we showed that the disriminant of the ubi x

3

� 27

4

x� 54

6

is

2

2

� 3

9

(

3

4

� 

2

6

). Plug p = �27

4

, q = 54

6

into �4p

3

� 27q

2

and we do indeed

get 2

2

� 3

9

(

3

4

� 

2

6

).

2.9 De�nition

Reall from Lemma 2.3 that any urve in Weierstrass Form y

2

+ a

1

xy + a

3

y =

x

3

+ a

2

x

2

+ a

4

x + a

6

is projetively equivalent to a urve in the Normal Form

y

2

= x

3

� 27

4

x� 54

6

. The disriminant of a urve in Weierstrass Form is

� :=



3

4

� 

2

6

1728

Singularity is preserved by projetive hanges of oordinates so a urve in

Weierstrass Form is singular i� the orresponding urve in Normal Form from

Lemma 2.3 is singular. By Lemma 2.6 the urve in Normal Form is singular i�

x

3

� 27

4

x � 54

6

has repeated roots. x

3

� 27

4

x� 54

6

has repeated roots i�

its disriminant (De�nition 2.5), d = 2

2

� 3

9

(

3

4

� 

2

6

) is zero. d is zero i� � is

zero by the de�nition of �.

So a urve in Weierstrass Form is singular i� its disriminant, � = 0. We

see that ellipti urves are preisely urves in Weierstrass Form with non-zero

disriminant.

2.10 De�nition

An admissable hange of oordinates is a projetive hange of oordinates of the

form
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� =

0

�

u

2

0 r

su

2

u

3

t

0 0 1

1

A

where r, s, t, u 2 C , u 6= 0.

Note that det(�) = u

5

6= 0 so � 2 PGl

3

(C ).

2.11 Lemma

The set of admissable hanges of oordinates is a subgroup of PGl

3

(C ).

Proof

Inverse:

�

�1

=

0

�

u

�2

0 �ru

�2

�su

�3

u

�3

u

�3

(rs � t)

0 0 1

1

A

=

0

�

U

2

0 R

SU

2

U

3

T

0 0 1

1

A

where R = �ru

�2

, S = �su

�1

, T = u

�3

(rs� t), U = u

�1

6= 0.

Closure:

0

�

u

2

1

0 r

1

s

1

u

2

1

u

3

1

t

1

0 0 1

1

A

0

�

u

2

2

0 r

2

s

2

u

2

2

u

3

2

t

2

0 0 1

1

A

=

0

�

u

2

1

u

2

2

0 r

2

u

2

1

+ r

1

s

1

u

2

1

u

2

2

+ s

2

u

3

1

u

3

2

u

3

1

u

3

2

r

2

s

1

u

2

1

+ u

3

1

t

2

+ t

1

0 0 1

1

A

=

0

�

U

2

0 R

SU

2

U

3

T

0 0 1

1

A

where R = r

2

u

2

1

+r

1

, S = s

1

+s

2

u

1

u

2

, T = r

2

s

1

u

2

1

+u

3

1

t

2

+t

1

, U = u

1

u

2

6= 0. ut

2.12 Theorem

Let F (X;Y; Z) = (Y

2

Z + a

1

XY Z + a

3

Y Z

2

)� (X

3

+ a

2

X

2

Z + a

4

XZ

2

+ a

6

Z

3

)

be a urve in Weierstrass Form and �

�1

=

0

�

u

2

0 r

su

2

u

3

t

0 0 1

1

A

be an admissable

hange of oordinates. Then F

�

is a urve in Weierstrass Form. Under this

hange of oordinates the ex at (0,1,0) remains at (0,1,0) and the tangent line

at (0,1,0) remains (Z = 0).

Admissable hanges of oordinates are the only projetive hanges of oordinates

that keep F in Weierstrass Form, send the ex at (0; 1; 0) to itself and preserve

its tangent line (Z = 0).

Proof

For the �rst part Z is preserved by an admissable hange of oordinates. As was

remarked in De�nition 1.1 F

�

(C ) = �(F (C )). So the only point at in�nity in

F

�

(C ) is �(0; 1; 0) = (0; 1; 0). So instead of plugging in �(X;Y; Z) for (X,Y,Z)

and then putting Z=1, we an work in the aÆne piee (Z=1), taking
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x

0

= u

2

x+ r; y

0

= u

3

y + su

2

x+ t as our admissable hange of oordinates.

fy

02

+ a

1

x

0

y

0

+ a

3

y

0

g � fx

03

+ a

2

x

02

+ a

4

x

0

+ a

6

g

= f(u

3

y + su

2

x+ t)

2

+ a

1

(u

2

x+ r)(u

3

y + su

2

x+ t) + a

3

(u

3

y + su

2

x+ t)g

� f(u

2

x+ r)

3

+ a

2

(u

2

x+ r)

2

+ a

4

(u

2

x+ r) + a

6

g

= fy

2

+ u

�1

(2s+ a

1

)xy + u

�3

(2t+ a

1

r + a

3

)ygu

6

� fx

3

+ u

�2

(�s

2

� a

1

s+ 3r + a

2

)x

2

+ u

�4

(�2st� a

1

t� rs� a

3

s+ 3r

2

+ 2a

2

r + a

4

)x

+ u

�6

(�t

2

� a

1

rt� a

3

t+ r

3

+ a

2

r

2

+ a

4

r + a

6

)gu

6

We have the urve

y

2

+ u

�1

(2s+ a

1

)xy + u

�3

(2t+ a

1

r + a

3

)y

= x

3

+ u

�2

(�s

2

� a

1

s+ 3r + a

2

)x

2

+u

�4

(�2st� a

1

t� rs� a

3

s+ 3r

2

+ 2a

2

r + a

4

)x

+u

�6

(�t

2

� a

1

rt� a

3

t+ r

3

+ a

2

r

2

+ a

4

r + a

6

)

so Weierstrass Form is preserved. We know (0,1,0) was sent to (0,1,0) and by

the omments after De�nition 2.1 it is still a ex with tangent line (Z = 0).

Note that the oeÆients are powers of u (multiplied by a lot of junk).

This explains the mysterious subsripts hosen for the a

i

oeÆients in

Weierstrass Form. After an admissable hange of oordinates they are multiples

of u

�i

. In the ase that r = s = t = 0, i.e. � =

0

�

u

2

0 0

0 u

3

0

0 0 1

1

A

, the urve

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

beomes the urve

y

2

+ a

1

u

�1

xy + a

3

u

�3

y = x

3

+ a

2

u

�2

x

2

+ a

4

u

�4

x+ a

6

u

�6

:

It remains to show that admissable hanges of oordinates are the only projetive

hanges of oordinates that keep F in Weierstrass Form, send the ex at (0; 1; 0)

to itself and preserve the tangent line Z = 0.

Let �

�1

=

0

�

� � 

Æ � �

� � �

1

A

.

�

�1

(0; 1; 0) = (0; 1; 0) so � = � = 0.

We also require that the tangent line to F (�

�1

(X;Y; Z)) at (0,1,0) be (Z = 0).

Thus

�(FÆ�

�1

)

�X

= 0 at (0,1,0). We know from multi-variable alulus that:

�(FÆ�

�1

)

�X

j

(0;1;0)

= D(F Æ�

�1

)

(0;1;0)

(e

1

) where DG j

P

is the total derivative of G

at P and e

1

= (1; 0; 0). So

�(FÆ�

�1

)

�X

j

(0;1;0)

= D(F Æ �

�1

)

(0;1;0)

(e

1

) = DF j

�

�1

(0;1;0)

ÆD�

�1

j

(0;1;0)

(e

1

)
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= DF j

(0;1;0)

Æ �

�1

(e

1

) =

�

�F

�X

�F

�Y

�F

�Z

�

j

(0;1;0)

0

�

�

Æ

�

1

A

=

�

0 0 1

�

0

�

�

Æ

�

1

A

= �

(Reall from 2.1 that

�

�F

�X

�F

�Y

�F

�Z

�

j

(0;0;1)

=

�

0 0 1

�

):

Thus � = 0 and �

�1

=

0

�

� 0 

Æ � �

0 0 �

1

A

. We are working in PGL

3

(C ) so we an

multiply �

�1

by �

�1

. This shows that �

�1

preserves Z. So again we an work

in the aÆne piee (Z = 1) and onsider the hange of oordinates

x

0

= �x + , y

0

= Æx + �y + �. Take the urve y

02

= x

03

. Our hange of

oordinates must preserve Weierstrass Form so we see that �

3

= �

2

. Thus

�

�1

=

0

�

u

2

0 

Æ u

3

�

0 0 �

1

A

where u = �

1=2

= �

1=3

. After multiplying by �

�1

this is

an admissable hange of oordinates. Note that the Æ term is OK beause we

an hoose s so be anything we like. ut

2.13 De�nition

The mysterious subsripts of the oeÆients of a urve in Weierstrass Form were

disussed in the proof of Theorem 2.12. De�ne i to be the weight of a

i

.

Note that the produt a

i

a

j

has weight i + j sine if a

i

is sent to a multiple of

u

�i

by an admissable hange of oordinates and a

j

is sent to a multiple of u

�j

then the produt of what they are sent to is a multiple of u

�(i+j)

. Similarly

a

�1

i

has weight �i and the sum �a

i

+ �b

i

has weight i for any 0 6= (�; �) 2 C

2

.

2.14 Remark

Let F = Y

2

Z + Y Z

2

� X

3

, � =

0

�

1 0 0

0 0 1

0 1 0

1

A

. Then F

�

= F , but � is not

an admissable hange of oordinates. In this example the Weierstrass Form is

preserved, but (0,1,0) is taken to (0,0,1). In fat the urve has exes at (0; 1; 0)

and (0; 0; 1). � simply swaps them.

So there are projetive hanges of oordinates whih preserve Weierstrass Form

that are not admissable hanges of oordinates, but these do not satisfy the

onditions that the ex at (0,1,0) be preserved and the tangent line remain

(Z=0).

2.15 De�nition

Two ellipti urves F

1

and F

2

are isomorphi if there is an admissable hange

of oordinates � suh that F

�

1

= F

2

. We write F

1

�

=

F

2

.
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2.16 De�nition

The j-invariant of an ellipti urve is

j :=



3

4

�

=

1728

3

4



3

4

� 

2

6

,

where � is the disriminant as de�ned in 2.9.

Note that j is de�ned beause � 6= 0 for a nonsingular urve.

By the remarks after De�nition 2.13 

4

has weight 4, 

6

has weight 6, � has

weight 12 and j has weight 0. We justify the name invariant in the next Theo-

rem.

2.17 Theorem

Two ellipti urves are isomorphi i� they have the same j-invariant. For every

j 2 C there exists an ellipti urve with that j-invariant.

Thus j : fisomorphism lasses of ellipti urvesg ! C is a bijetion.

Proof

Consider two ellipti urves in Normal Form:

C : (y

2

= x

3

� 27

4

x� 54

6

)

D : (y

2

= x

3

� 27d

4

x� 54d

6

)

Claim C

�

=

D , 9u 6= 0 s.t. 

4

= u

4

d

4

and 

6

= u

6

d

6

.

()) Reall from the �rst underlined setion of Theorem 2.12 that admissable

hanges of oordinates are x

0

= u

2

x+ r,y

0

= u

3

y+ su

2

x+ t where r; s; t; u 2 C ,

u 6= 0. Plug this into C:

(u

3

y + su

2

x+ t)

2

= (u

2

x+ r)

3

� 27

4

(u

2

x+ r) � 54

6

u

6

y

2

+ 2su

5

xy + 2tu

3

y = u

6

x

3

+ (3ru

4

� s

2

u

4

)x

2

+ (3r

2

u

2

� 2stu

2

� 27

4

u

2

)x+ (r

3

� t

2

� 27

4

r � 54

6

)

C

�

=

D so there is a hoie of r; s; t; u bringing this mess to the form of D.

The oeÆient of xy = 0 so s = 0 (beause u 6= 0)

And the oeÆient of y = 0 so t = 0.

And the oeÆient of x

2

= 0 so r = 0.

So we have u

6

y

2

= u

6

x

3

� 27

4

u

2

x� 54

6

, whih is the same urve as

y

2

= x

3

� 27u

�4



4

x� 54u

�6



6

. This is the only way we an get to this form so

9u 6= 0 s.t. 

4

= u

4

d

4

and 

6

= u

6

d

6

.

(() Just take x

0

= u

2

x

2

, y

0

= u

3

y as the admissable hange of oordinates.
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Now let E be an ellipti urve. We showed in Lemma 2.3 that E is projetively

equivalent to a urve in Normal Form. In one step the hange of oordinates

used was

x

0

= 36x+ 3b

2

; y

0

= 216y+ 108a

1

x+ 108a

3

.

This is an admissable hange of oordinates with u = 6. So we showed in Lemma

2.3 that every ellipti urve E is isomorphi to a urve in Normal Form.

Let E be an ellipti urve isomorphi to C and F an Ellipti Curve isomorphi

to D. By Lemma 2.11 the set of admissable hanges of oordinates is a group

so E

�

=

F , C

�

=

D. The laim above showed that C

�

=

D , 9u 6= 0 s.t.



4

= u

4

d

4

and 

6

= u

6

d

6

.

The j-invariant of E is de�ned to be j

E

=

1728

3

4



3

4

�

2

6

.

E

�

=

F ) C

�

=

D ) 9u 6= 0 s.t. 

4

= u

4

d

4

and 

6

= u

6

d

6

.

So the j-invariant of F is j

E

=

1728

3

4



3

4

�

2

6

=

1728(d

4

u

4

)

3

(d

4

u

4

)

3

�(d

6

u

6

)

2

=

1728d

3

4

d

3

4

�d

2

6

= j

F

.

Conversely if j

E

= j

F

then (assuming 

4

,d

4

6= 0),

1728

1�

2

6

=

3

4

=

1728

1�d

2

6

=d

3

4

. So



2

6



3

4

=

d

2

6

d

3

4

. Now 9v 6= 0 s.t. 

4

= v

4

d

4

. But then 

2

6

d

3

4

= d

2

6

v

12

d

3

4

so 

2

6

= v

12

d

2

6

)



6

= �v

6

d

6

. If 

6

= +v

6

d

6

let u = v. If 

6

= �v

6

d

6

let u =

p

�1v. Then



4

= u

4

d

4

and 

6

= u

6

d

6

. So C

�

=

D and thus E

�

=

F .

If 

4

= 0 then j

E

= 1728 = j

F

so d

4

= 0. Similarly if d

4

= 0 then 

4

= 0. In

this ase C : (y

2

= x

3

� 54

6

), D : (y

2

= x

3

� 54d

6

). There exists u 6= 0 s.t.



6

= u

6



6

so C

�

=

D and thus E

�

=

F .

We have shown that j : fisomorphism lasses of ellipti urvesg ! C is a well-

de�ned injetion. It remains to show that it is a surjetion. Fix j 2 C .

If j = 0 then take 

4

= 0 and 

6

6= 0. That is take the urve y

2

= x

3

� 54

6

. If

j = 1728 then take 

6

= 0 and 

4

6= 0. Note that in both ases � 6= 0 so these

are indeed nonsingular and hene ellipti urves.

If j 6= 0; 1728 take 

4

= 

6

=

j

j�1728

. The urve y

2

= x

3

� 27

4

x � 54

6

has

� =

j

2

(j�1728)

3

and j-invariant j as required. ut

It will be useful to have a formula for the disriminant and j-invariant of the

urve y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

. Reall this was the intermediate urve used

in the proof of Lemma 2.3.



3

4

= b

6

2

� 2

3

� 3

2

b

4

2

b

4

+ 2

6

� 3

3

b

2

2

b

2

4

� 2

9

� 3

3

b

3

4



2

6

= b

6

2

� 2

3

� 3

2

b

4

2

b

4

+ 2

4

� 3

3

b

3

2

b

6

+ 2

4

� 3

4

b

2

2

b

2

4

� 2

6

� 3

5

b

2

b

4

b

6

+ 2

6

� 3

6

b

2

6

� =



3

4

� 

2

6

1728

= b

2

2

b

2

4

� 2

3

b

3

4

�

b

3

2

b

6

2

2

�

3b

2

2

b

2

4

2

2

+ 3

2

b

2

b

4

b

6

� 3

3

b

2

6

= b

2

2

(

b

2

4

4

�

b

2

b

6

4

)� 8b

3

4

� 27b

2

6

+ 9b

2

b

4

b

6

We de�ne b

8

:=

b

2

b

6

4

�

b

2

4

4

so that � = �b

2

2

b

8

� 8b

3

4

� 27b

2

6

+ 9b

2

b

4

b

6

. j =



3

4

�

.
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If we had started with a urve in general Weierstrass Form with oeÆients a

i

then we ould express b

8

in terms of the a

i

as follows.

b

8

=

b

2

b

6

4

�

b

2

4

4

=

(a

2

1

+ 4a

2

)(a

2

3

+ 4a

6

)

4

�

(2a

4

+ a

1

a

3

)

2

4

= a

2

1

a

6

+ 4a

2

a

6

� a

1

a

3

a

4

+ a

2

a

2

3

� a

2

4

:

2.18 Summary of Key Points from Chapter 2

1. An ellipti urve is a nonsingular ubi in Weierstrass Form

(y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

).

2. b

2

= a

2

1

+ 4a

2

, b

4

= 2a

4

+ a

1

a

3

, b

6

= a

2

3

+ 4a

6

.

(y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

).

3. 

4

= b

2

2

� 24b

4

, 

6

= �b

3

2

+ 36b

2

b

4

� 216b

6

.

Normal Form: (y

2

= x

3

� 27

4

x� 54x

6

).

4. The disriminant, � =



3

4

�

2

6

1728

:

The j-invariant, j =



3

4

�

=

1728

3

4



3

4

�

2

6

:

5. An admissable hange of oordinates, x

0

= u

2

x + r, y

0

= u

3

y + su

2

x + t

where u 6= 0. Two ellipti urves are isomorphi if they are related by an

admissable hange of oordinates.

j : fisomorphism lasses of ellipti urvesg ! C is a bijetion.

6. The subsripts of the oeÆients of a urve in Weierstrass Form are alled

weights. a

i

, b

i

, 

i

have weight i. � has weight 12 and j has weight 0.
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3 Complex Tori

In this hapter we look at ellipti urves from a di�erent perspetive. De�ne

a lattie � := !

1

Z+ !

2

Z � C where !

1

; !

2

2 C nf0g and

!

1

!

2

=2 R. That is !

1

and !

2

are linearly independent over R. A omplex torus is de�ned to be C =�.

Topologially it is a torus. We are going to show there is a orrespondene

between omplex tori and ellipti urves.

3.1 De�nition

Fix a lattie � � C . De�ne

} : C n� ! C

}(z) =

1

z

2

+

X

!2�nf0g

�

1

(z � !)

2

�

1

!

2

�

This is alled the Weierstrass } - funtion.

} is a meromorphi funtion with double poles at the points of �. The �

1

!

2

term in the sum insures that the sum onverges absolutely. } is an example of

an ellipti funtion - a doubly periodi meromorphi funtion. We an view an

ellipti funtion as a well-de�ned meromorphi funtion from C =� ! C .

1

! � z

=

1=!

1� z=!

=

1

!

(1 +

z

!

+

z

2

!

2

+ :::::)

1

(! � z)

2

=

1

!

2

(1 +

2z

!

+

3z

2

!

2

+ :::::) = (

1

!

2

+

2z

!

3

+

3z

2

!

4

+ :::::)

}(z)�

1

z

2

=

X

!2�nf0g

�

1

(z � !)

2

�

1

!

2

�

=

1

X

k=1

(k + 1)G

k+2

z

k

where G

k

:=

X

!2�nf0g

1

!

k

: Note that for odd k, G

k

= 0, and hene

}(z) =

1

z

2

+ 3G

4

z

2

+ 5G

6

z

4

+ :::::

}

0

(z) =

�2

z

3

+ 6G

4

z + 20G

6

z

3

+ 42G

8

z

5

+ :::::

By diret omputation we an show that

(}

0

(z))

2

= 4}

3

(z) � 60G

4

}(z) � 140G

6

+ P (z) where P (z) is a polynomial in

z with lowest term a multiple of z

7

. P (z) is an ellipti funtion sine it is the

sum of ellipti funtions. P (z) has no poles so is a bounded entire funtion. By

Liouville's Theorem P (z) is a onstant but its lowest term is z

7

so it is zero.
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We have shown that } satis�es the di�erential equation (}

0

)

2

= 4}

3

� g

2

}� g

3

where g

2

:= 60G

4

and g

3

:= 140G

6

. De�ne

' : C =� ! P

2

C

'(z) =

(

(}(z); }

0

(z); 1) if z =2 �;

(0; 1; 0) if z 2 �:

Beause of the di�erential equation satis�ed by },

'(C =�) � E : (Y

2

Z = 4X

3

� g

2

XZ

2

� g

3

Z

3

) � P

2

C

.

3.2 Theorem

' : C =� ! E(C ) is a holomorphi bijetion with holomorphi inverse.

Proof [Kn, Thm.VI.6.14℄

C =� is a 1-dimensional omplex manifold; P

2

C

is a 2-dimensional omplex man-

ifold. We want to show ' is holomorphi as a map of manifolds. Let (x; y; 1) 2

'(C =�). Use the hart map (x; y; 1) 7! (x; y) in a neighbourhood of this

point. We then have z 7! (}(z); }

0

(z)) whih is holomorphi. In a nbhd of

(0; 1; 0) use the hart map (x; 1; y) 7! (x; y). In this nbhd we have the map

0 6= z 7!

�

}(z)

}

0

(z)

;

1

}

0

(z)

�

and 0 7! (0; 0). } and }

0

have �nitely many poles and

zeroes in a ompat subset of C . So there is a puntured dis around 0 where

this map has no zeroes or poles. Thus it is holomorphi on a puntured dis

around 0 and is ontinuous at 0, so it is holomorphi at 0 too. This shows ' is

holomorphi as map of omplex manifolds.

Suppose '(z

1

) = '(z

2

). That is }(z

1

) = }(z

2

) and }

0

(z

1

) = }

0

(z

2

). } has

a pole of order 2 at 0 and no other poles. Let � be the parallelogram in C

with verties at 0, !

1

, !

2

and !

1

+ !

2

. Translate � in the omplex plane to a

parallelogram �

0

s.t. }, }

0

have no zeroes or poles on its boundary. From Com-

plex Analysis

R

��

0

z}

0

(z)

}(z)

dz =

P

zeroes of } �

P

poles of }. Now the integral

is zero sine } is periodi so z

1

= z

2

where z denotes omplex onjugate. Thus

}

0

(z

1

) = }

0

(z

2

) = }

0

(�z

2

) = �}

0

(z

2

) sine

}

0

(z) = �2

P

!2�

1

(z�!)

3

is an odd funtion. But by assumption }

0

(z

1

) = }

0

(z

2

)

so }

0

(z

1

) = }

0

(z

2

) = 0. Now }

0

has a pole of order 3 at 0 and no other poles.

R

�

0

}

0

}

= (no. of zeroes of }

0

) � (no. of poles of }

0

). So }

0

has 3 zeroes. Sine it

is a periodi odd funtion !

1

=2, !

2

=2 and (!

1

+ !

2

)=2 are zeroes and therefore

the only zeroes of }

0

. Thus z

1

is one of these three points and so z

1

= z

1

and

by the above z

2

= z

1

. Hene z

1

= z

2

. Thus ' is injetive.

To show ' is surjetive �x (a; b; 1) 2 E(C ). Sine

R

�

0

}

0

�a

}�a

= (no. of zeroes of }� a) � (no. on poles of }� a) and } � a has a

double pole at 0 we see 9 z s.t. }(z) = a. Beause of the di�erential equation

satis�ed by }, b

2

= }

0

(z)

2

. If }

0

(z) = �b then }

0

(z) = b. Thus ' is surjetive.
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We have shown ' is a holomorphi bijetion. We an show that it has a holo-

morphi inverse using the Inverse Funtion Theorem. ut

3.3 Corollary

With notations as in Theorem 3.2 '(C =�) is an ellipti urve.

Proof

By the proof of Theorem 3.2 the zeroes of }

0

are !

1

=2, !

2

=2 and

!

3

:= (!

1

+!

2

)=2. Now }(z)�}(!

i

) has a double zero at !

i

=2. By the proof of

Theorem 3.2 }(z)�}(!

i

) has the same number of zeroes and poles. So !

i

=2 are

its only zeroes. Thus }(!

i

) 6= }(!

j

) for i 6= j. This shows that 4}

3

� g

2

}� g

3

has distint zeroes in C .

By Lemma 2.6, '(C =�) is a nonsingular ubi. Thus '(C =�) is an ellipti urve

exept for the fator of 4X

3

instead of X

3

. This is a minor point and de�ning an

ellipti urve to have 4X

3

would not a�et the ontent of Setion 2 very muh.

In fat the only hange would be to substitute y=2 for y in the normal form. It

was presented in that way beause the notation is absolutely standard. ut

In the remarks before Summary 2.18 we looked at � and j for a urve in the

form y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

.

We have the urve y

2

= 4x

3

�g

2

x�g

3

. Using notation as in the remarks before

Summary 2.18, b

2

= 0, b

4

=

�g

2

2

, b

6

= �g

3

so � = �8b

3

4

� 27b

2

6

= g

3

2

� 27g

2

3

and 

4

= �2

9

� 3

3

b

3

4

= 2

6

� 3

3

g

3

2

. Thus j =



3

4

�

=

1728g

3

2

g

3

2

�27g

2

3

.

3.4 De�nition

The j-invariant of a lattie � � C is de�ned to be j(�) :=

1728g

3

2

g

3

2

�27g

2

3

.

A holomorphi bijetion with holomorphi inverse is a homeomorphism so by

Corollary 3.3 a omplex torus is topologially equivalent to an ellipti urve.

Given any ellipti urve in P

2

C

we an bring it to the form E : (y

2

= 4x

3

�ax�b)

and to this we an assoiate a omplex torus, although this is not trivial. The

Uniformization Theorem says that there exists a unique lattie � � C s.t.

g

2

(�) = a and g

3

(�) = b. For a proof see [Sh, 4.2℄.

We say two omplex tori are onformally equivalent if there is an analyti bije-

tion between them. Conformal equivalene is an equivalene relation. We want

to know when two omplex tori are onformally equivalent.
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3.5 Theorem

Two omplex tori C =�

1

and C =�

2

are onformally equivalent i� 9G 2 Aut(C ) =

fbijetive analyti C ! C g s.t. �

1

= G

�1

�

2

G.

Proof

Let p

i

: C ! C =�

i

be the natural overing maps and let f : C =�

1

! C =�

2

be an

analyti bijetion. Fix z 2 C and pik w 2 C suh that p

2

(w) = f(p

1

(z)). Set

G(z) = w. Take z

0

2 C . Let  be a urve with (0) = z and (1) = z

0

. We get a

urve f Æ p

1

Æ  from f(p

1

(z)) to f(p

1

(z

0

)). Let � be the lift of f Æ p

1

Æ  starting

at w. Let w

0

= �(1) and set G(z

0

) = w

0

. If e is a di�erent urve from z to z

0

then e is homotopi to . So f Æ p

1

Æ e is homotopi to f Æ p

1

Æ  and so by the

Monohromy Theorem their lifts � and

e

� are homotopi as �(0) =

e

�(0) = w.

Hene �(1) =

e

�(1) = w

0

so G is well-de�ned. p

2

Æ G = f Æ p

1

. This shows

that G : C ! C is analyti. Beause of uniqueness of lifting and beause

f is invertible � determines  uniquely. In partiular �(1) = w

0

determines

(1) = z

0

. Hene G is injetive and surjetive. G 2 Aut(C ).

We now show �

1

= G

�1

�

2

G. Take g

1

2 Aut(C ) with g

1

= (z 7! z + �

1

) for

some �

1

2 �

1

. Let z

0

= g

1

(z). Then p

1

(z

0

) = p

1

(z) so f(p

1

(z

0

)) = f(p

1

(z)). In

partiular f(p

1

((1))) = f(p

1

((0))) so p

1

Æ  and f Æ p

1

Æ  are losed loops.

Hene 9g

2

2 �

2

suh that �(1) = g

2

�(0). ie. G(g

1

(z)) = g

2

(G(z)).

In fat, the same hoies work for ez 2 (neighbourhood of z). By the Identity

Priniple G Æ g

1

= g

2

ÆG : C ! C . That is �

1

= G

�1

�

2

G. ut

3.6 Corollary

Two tori C =�

1

and C =�

2

are onformally equivalent i� 9� 2 C

�

s.t. ��

1

= �

2

.

Proof

Suppose that C =�

1

and C =�

2

are onformally equivalent. By Theorem 3.5, 9

G 2 Aut(C ) = fbijetive analyti C ! C g s.t. �

1

= G

�1

�

2

G. It an be shown

that Aut(C ) = f�z+�j� 6= 0g. With notation as in Theorem 3.5, G(z) = �z+�,

� 6= 0. G

�1

(z) =

z

�

�

�

�

.

8�

1

2 �

1

, g

1

= (z 7! z + �

1

), 9 g

2

= (z 7! z + �

2

) suh that g

1

= G

�1

g

2

G.

(z 7! z + �

1

) =

�

z 7!

1

�

((�z + �) + �

2

)�

�

�

�

=

�

z 7! z +

�

2

�

�

i.e. �

2

= ��

1

so ��

1

� �

2

. By the symmetry of the argument �

2

� ��

1

.

Conversely if 9� 2 C

�

s.t. ��

1

= �

2

then f : C =�

1

! C =�

2

, z 7! �z is an

analyti bijetion. ut

3.7 Corollary

Two ellipti urves are isomorphi i� the assoiated omplex tori are onformally

equivalent.
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Proof

By Corollary 3.6 two omplex tori C =�

1

and C =�

2

are onformally equivalent

i� 9� 2 C

�

suh that ��

1

= �

2

. Observe that g

2

(��) = �

�4

g

2

(�) and

g

3

(��) = �

�6

g

3

(�). By the proof of Theorem 2.17 the orresponding ellipti

urves y

2

= x

3

�g

2

(�

1

)x�g

3

(�

1

) and y

2

= x

3

�g

2

(�

2

)x�g

3

(�

2

) are isomorphi

i� 9� 2 C

�

suh that g

2

(�

2

) = �

�4

g

2

(�

1

) and g

3

(�

2

) = �

�6

g

3

(�

1

). ut

The j-invariant is therefore a bijetion from the set of onformal equivalene

lasses of omplex tori to the set of isomorphism lasses of ellipti urves. Eah

onformal equivalene lass ontains exatly one lattie Z+�Zwhere Im(�) > 0.

We aim now to �nd a subset of the upper half plane ontaining exatly one

element from eah onformal equivalene lass of omplex tori. Let PSL

2

(Z) :=

SL

2

(Z)=f�1g.

3.8 Lemma

Two latties !

1

Z+ !

2

Z and !

0

1

Z+ !

0

2

Z are onformally equivalent ,

9M 2 PSL

2

(Z) s.t. M

�

!

0

1

!

0

2

�

=

�

!

1

!

2

�

Proof

(() We an express !

0

1

and !

0

2

in terms of !

1

and !

2

. NowM

�1

�

!

1

!

2

�

=

�

!

0

1

!

0

2

�

so we an also express !

1

and !

2

in terms of !

0

1

and !

0

2

. Hene the latties are

the same.

()) After multiplying through by some onstant � we an write

�

!

1

!

2

�

=

�

a b

 d

��

!

0

1

!

0

2

�

for some a; b; ; d 2 Z.

Similarly

�

!

0

1

!

0

2

�

=

�

e f

g h

��

!

1

!

2

�

for some e; f; g; h 2 Z.

Thus

�

a b

 d

��

e f

g h

�

=

�

1 0

0 1

�

so det

�

a b

 d

�

= �1.

Hene M :=

�

a b

 d

�

2 PSL

2

(Z). ut

3.9 De�nition

The Fundamental Domain, D is de�ned to be

D := f� 2 C : �1=2 � Re(�) � 1=2 and j� j � 1g.
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3.10 Theorem

For every z in the upper half plane 9 g 2 PSL

2

(Z) s.t. gz 2 D and this point is

unique (exept for identi�ations on the boundary).

Proof [Kn, Thm.VIII.8.5℄

Existene

Fix z in the upper half plane. Let g =

�

a b

 d

�

2 PSL

2

(Z). Then Im(gz) =

Im(z)

jz+dj

2

. Sine  and d are integers there are are only �nitely many hoies suh

that jz + dj is less than a given number. Thus 9 g 2 PSL

2

(Z) s.t. Im(gz) is

a minimum. Choose n 2 N s.t. z

0

:=

�

1 n

0 1

�

z has real part between �1=2

and 1=2. If jz

0

j < 1 then �1=z

0

would have imaginary part stritly greater than

Im(gz) ontraditing the hoie of g. Thus jz

0

j � 1 and z

0

2 D.

Uniqueness

Let z and gz be in D and g 6= id. We show they are both on the boundary of

D. We an assume Im(gz) � Im(z) and thus jz+ dj � 1. Thus  2 f0;�1g. If

 = 0 then g =

�

�1 b

0 �1

�

so both points lie on the boundary. If  = �1 then

sine jz + dj � 1, d = 0 exept when z = e

�i=3

or z = e

2�i=3

. If d = 0 then

jzj = 1. We an expliitly hek the ases z = e

�i=3

and z = e

2�i=3

. ut

j is a bijetion from D to C exept for identi�ations along the boundary. These

identi�ations are z � z + 1; and when x

2

+ y

2

= 1, x + iy � �x + iy. Given

a onformal equivalene lass of omplex tori j takes the unique representative

Z+ �Z with � 2 D and gives the j-invariant of the orresponding isomorphism

lass of ellipti urves. The identi�ations along the boundary make

j : D= � ! P

1

C

a homeomorphism. D= � denotes the ompati�ation of

D= �,whih is just D= � plus one point, and P

1

C

is of ourse C plus one point.

In the proof of Corollary 3.7 we saw that g

i

(��) = �

�2i

g

i

(�). By Lemma 3.8

and Theorem 3.10 this tells us that g

i

�

a�+b

�+d

�

= (�+d)

2i

g

i

(�). g

i

is an example

of a Modular Form of weight i. This ties in niely with the notion of weight

de�ned in 2.13. j has weight 0 whih orresponds to it being invariant under a

projetive hange of oordinates/onformal equivalene. Any modular form of

weight 0 is atually a rational funtion of j.

3.11 Summary of Key Points from Chapter 3

1. An ellipti funtion is a doubly periodi meromorphi funtion. The

Weierstrass } funtion is an ellipti funtion. The } funtion allows us to
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forge a orrespondene between omplex tori and ellipti urves.

2. Latties �

1

and �

2

are onformally equivalent i� 9� 6= 0 s.t. ��

1

= �

2

.

3. For a lattie �, j(�) :=

1728g

3

2

g

3

2

�27g

2

3

. j de�nes a bijetion from the set of

onformal equivalene lasses of omplex tori to the set of isomorphism

lasses of ellipti urves.
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4 Complex Multipliation

Every additive abelian group G has trivial homomorphisms g 7! ng 8n 2 Z. El-

lipti urves ome equipped with the struture of an additive abelian group. An

ellipti urve E(C ) has omplex multipliation if it has any nontrivial analyti

homomorphisms E(C ) ! E(C ). We begin this setion with a key lemma.

4.1 Lemma

If f : C =��C =� ! C =� is a ontinuous funtion and is analyti in eah variable

then there exist a; b;  2 C suh that f(z

1

; z

2

) � az

1

+ bz

2

+  mod � for all

z

1

; z

2

2 C .

Proof [Kn, Lem.VI.6.18℄

Let � = Z!

1

�Z!

2

. Lift to a funtion F : C � C ! C .

Then for all m;n 2 Z there exist m

0

; n

0

2 Z suh that F (z

1

+m!

1

+ n!

2

; z

2

) =

F (z

1

; z

2

) +m

0

!

1

+ n

0

!

2

.

�F

�z

1

(z

1

+m!

1

+ n!

2

; z

2

) =

�F

�z

1

(z

1

; z

2

),

�F

�z

2

(z

1

+m!

1

+ n!

2

; z

2

) =

�F

�z

2

(z

1

; z

2

).

�F

�z

1

and

�F

�z

2

are periodi in the �rst variable. Thus they are bounded analyti

funtions and so by Liouville's Theorem they are onstant.

Similarly they are onstant in the seond variable. We have

�F

�z

1

= a and

�F

�z

2

= b.

Thus f(z

1

; z

2

) = az

1

+ bz

2

+  as required. ut

We use this Lemma to show that the group de�ned on an ellipti urve E(C ) is

isomorphi to the group on a torus. The group law on a torus is just addition

mod �.

4.2 Theorem

' : C =� ! E(C )

z 7!

(

(}(z); }

0

(z); 1) if z =2 �;

(0; 1; 0) if z 2 �:

is a group isomorphism.
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Proof

Reall that ' is an analyti bijetion with analyti inverse.

De�ne f : C =� � C =� ! C =� by f(z

1

; z

2

) := '

�1

('(z

1

) + '(z

2

)). f satis�es

the hypothesis of Lemma 4.1 so f(z

1

; z

2

) � az

1

+ bz

2

+  mod �.

Now f(0; 0) = 0 and f(z; 0) = f(0; z) = z. Thus  = 0 and a = b = 1.

f(z

1

; z

2

) = '

�1

('(z

1

)+'(z

2

)) = z

1

+ z

2

. Hene '(z

1

+ z

2

) = '(z

1

)+'(z

2

). ut

4.3 De�nition

An isogeny is an analyti map h : E(C ) ! E(C ) whih �xes the identity of the

group. That is h(0; 1; 0) = (0; 1; 0).

4.4 Theorem

If h : E(C ) ! E(C ) is an isogeny then h('(z)) = '(az) for some a 2 C .

Proof

Let f(z

1

; z

2

) := '

�1

Æ h Æ '(z

1

). f satis�es the hypothesis of Lemma 4.1 so

f(z

1

; z

2

) = az

1

+ bz

2

+ . f is onstant w.r.t. z

2

and h('(0)) = '(0) so

f(z

1

; z

2

) = az

1

.

Thus h('(z

1

)) = '(az

1

) as required. ut

Now h('(z

1

) +'(z

2

)) = '(az

1

+ az

2

) = '(az

1

) +'(az

2

) = h('(z

1

)) + h('(z

2

))

so an isogeny is a group homomorphism. An ellipti urve always has the trivial

isogenies with a 2 Z. These are the trivial homomorphisms G ! G, g 7! ng

where n 2 Z, whih exist for any additive abelian group.

4.5 De�nition

An ellipti urve with any non-trivial isogenies is said to have

omplex multipliation (or CM for short).

That is, there exist isogenies h : E(C ) ! E(C ), h('(z)) = '(az) with a 2 C nZ.

Note that if a 2 RnZ then h is not well-de�ned as h('(!

1

)) = h(0; 1; 0) =

(0; 1; 0) 6= '(a!

1

), sine a!

1

=2 �. Thus any non-trivial isogenies are given by

multipliation by a number a 2 C nR. Hene the name omplex multipliation.

4.6 Theorem

An ellipti urve Z+ �Z has omplex multipliation h('(z)) = '(az) i� � lies

in a quadrati imaginary extension �eld of Q.
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Proof

If h : E(C ) ! E(C ) is well-de�ned then 8z 2 �

'(az) = h('(z)) = h((0; 1; 0)) = (0; 1; 0).

Thus az 2 � 8z 2 � and so a� � �.

Conversely, if a� � � then de�ne h('(z)) = '(az). Let z

1

� z

2

mod �. Say

z

1

= z

2

+ !. Then az

1

= az

2

+ a! 2 az

2

+ �. Thus az

1

� az

2

mod �. So h is

well-de�ned. Thus h('(z)) = '(az) is an isogeny i� a� � �.

Suppose that E(C ) has omplex multipliation. 1 2 � so a = m+ n� for some

m;n 2 Z. Also by the above a� = m

0

+ n

0

� for some m

0

; n

0

2 Z.

Now a� = (m+ n�)� , so n�

2

+ (m� n

0

)� �m

0

= 0.

� satis�es a quadrati polynomial over Z and � 2 C nR so � lies in a quadrati

imaginary extension of Q.

Conversely, if � lies in a quadrati imaginary extension of Q then 9�; �;  2 Z

suh that ��

2

+ �� +  = 0. De�ne a = �� 2 �. Then a� = ��� �  2 � and

thus a� � �. Also a 2 C nR as required. ut

4.7 Corollary

The following ategories are equivalent:

Objets: Ellipti urves up to isomorphism $ Latties up to homothety

Maps: Isogenies $ fa 2 C ja� � �g

4.8 De�nition

The set of isogenies of an ellipti urve E forms a ring with multipliation being

omposition of maps. This is alled the Endomorphism Ring of E, denoted

End(E).

We know that End(E) always ontains Z as a subring. An ellipti urve has

omplex multipliation preisely when End(E) % Z.

With notation as in Theorem 4.6 a = m+ n� , a� = m

0

+ n

0

� .

a

2

= n

2

�

2

+ 2mn� +m

2

= �mn� + nn

0

� +m

0

n+ 2mn� +m

2

= (m+ n�)(m+ n

0

) +m

0

n�mn

0

= (m+ n

0

)a� (mn

0

�m

0

n)

a

2

� (m+ n

0

)a+ (mn

0

�m

0

n) = 0

Thus a is in the ring of integers of a quadrati imaginary extension �eld of Q.

Sine a 2 Q(�), End(E) is a subring of the ring of integers of Q(� ). End(E)

stritly ontains Z and therefore has rank 2 as an additive abelian group. Thus

End(E) is an order of Q(� ) (a subring of the ring of integers of Q(�) ontaining

Z with rank 2 as an additive abelian group).
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4.9 Summary of Key Points from Chapter 4

1. An isogeny is an analyti map E(C ) ! E(C ) whih �xes (0; 1; 0).

2. Let h be an isogeny. Then h('(z)) = '(az) for some a 2 C . An isogeny

is a group homomorphism.

3. The set of isogenies of an ellipti urve E form a ring alled the endomor-

phism ring of E, denoted End(E). End(E) always ontains Z as these

orrespond to the trivial homomorphisms g 7! ng whih any additive

abelian group possesses.

4. An ellipti urve is said to have omplex multipliation if End(E) % Z.

Any nontrivial isogeny is given by h('(z)) = '(az) for some a in the ring

of integers of a quadrati imaginary �eld.

5. An ellipti urve has omplex multipliation i� � lies in a quadrati imag-

inary extension �eld of Q.

35



5 Complex Multipliation and the j-invariant

In this �nal Chapter we are going to show that every CM ellipti urve has an

algebrai integer for its j-invariant. Sine the algebrai integers are ountable

(see Appendix on Cardinality) this shows that CM urves are very rare. We will

also show that the onverse is false. That is not all hoies of algebrai integers

for the j-invariant give CM urves. Some algebrai number theory is required

and is built up �rst.

5.1 De�nition

Let R be a ommutative ring with 1 and K the �eld frations of R. An element

k 2 K is said to be integral over R if there is a moni polynomial f(X) 2 R[X ℄

s.t. f(k) = 0. The set of elements of K whih are integral over R is alled the

integral losure of R. R is said to be integrally losed if it is its own integral

losure.

5.2 De�nition

An integral domain with 1 is alled a Dedekind Domain if it is noetherian,

integrally losed, and every nonzero prime ideal is maximal.

5.3 De�nition

Let I; J be nonzero proper ideals of a Dedekind domain R. We say I divides J ,

written I jJ , if 9H �R suh that J = IH .

5.4 Lemma

Let I be an ideal of a Dedekind domain R. Then I ontains a produt of prime

ideals. If I 6= R then 9 k 2 KnR s.t. kI � R (where K denotes the �eld of

frations of R).

Proof [Mo, Lem.3.13 and 3.14℄

For the �rst part let S be the set of ideals whih do not ontain a produt of

prime ideals. If S 6= ; then sine R is noetherian S ontains a maximal element

M . M annot be prime so 9 r; s =2M s.t. rs 2M . NowM $M + rM;M + sM

so these ideals ontain produts of prime ideals. But (M + rM)(M + sM) �M

so M ontains a produt of primes. Contradition so S = ;.

For the seond part let a 2 I . Let P

1

:::P

n

� aR be a produt of primes with n

as small as possible. Now I is ontained in a maximal ideal by Zorn's Lemma.

(Let T = fR 6= J � R : I � Jg ordered by inlusion. Then if fJ

�

g is a totally

ordered subset of T , [J

�

2 T is an upper bound of fJ

�

g, so T ontains a

maximal element).
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Now maximal ideals are prime so I � P for some prime ideal P . P

1

:::P

n

� P

so sine P is prime P

i

� P for some i, say i = 1 for onveniene. Sine R is

a Dedekind domain prime ideals are maximal so P

1

= P . By assumption aR

does not ontain produts of fewer than n primes so 9 b 2 P

2

:::P

n

naR. Thus

b

a

2

1

aR

P

2

:::P

n

nR � KnR. Now bP � PP

2

:::P

n

� aR, so if d 2 I � P then

bd 2 aR and so

b

a

d 2 R. That is

b

a

I � R and we have found our k(=

b

a

). ut

5.5 Lemma

Let R be a Dedekind domain and 0 6= A � R. Then 9 0 6= B � R s.t. AB is

prinipal.

Proof [Mo, Thm.3.15℄

Let 0 6= a 2 A and let B := fb 2 R : Ab � aRg�R. Then AB � aR.

Let M :=

1

a

AB �R. We show M = R whih implies AB = aR.

IfM $ R 9 k 2 KnR s.t. kM � R by Lemma 5.4. R is a Dedekind domain so is

integrally losed. We show k is the root of a moni polynomial over R obtaining

a ontradition. b =

1

a

ab 8b 2 B so B �M .

Thus kB � kM � R) kAB � aR) kB � B.

R is noetherian so take a �nite set of generators fb

1

; :::; b

r

g for B,

that is B = Zb

1

+ :::+Zb

r

.

kb

i

=

P

r

j=1

n

ij

b

j

for some integers n

ij

. We see that

det

0

B

B

B

�

n

11

� k n

12

� � � n

1r

n

21

n

22

� k � � � n

2r

.

.

.

.

.

.

.

.

.

.

.

.

n

r1

n

r2

� � � n

rr

� k

1

C

C

C

A

= 0

sine 0 6= (b

1

; � � � ; b

r

) is in its kernel. By expanding the determinant we have

found a moni polynomial over R of whih k is a root. ut

5.6 Lemma

Let I; J be nonzero proper ideals of a Dedekind domain R. Then I jJ , I � J .

Proof

()) By the de�nition of an ideal I � IH = J .

(() By Lemma 5.5 9 0 6= L � R and a 2 I s.t. LI = aR. Let H :=

1

a

LJ .

Sine J � I by assumption, H is an ideal of R and LIH = LJ . By Lemma 5.5

9 0 6= N �R, b 2 L, s.t. NL = bR. Then bRIH = NLIH = NLJ = bRJ .

So bRIH = bRJ ) IH = b

�1

RbRIH = b

�1

RbRJ = J . ut
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5.7 Theorem

Let I be a nonzero proper ideal of a Dedekind domain R. Then 9P

1

; :::; P

r

dis-

tint prime ideals of R and n

1

; :::; n

r

2 N s.t. I = P

n

1

1

:::P

n

r

r

and this expression

is unique (up to the order of the fators).

Proof [Mo, Thm.3.19℄

Existene

Let S = f0; R 6= I � R : I is not expressible as a produt of primesg. Suppose

S 6= ;. By Zorn's Lemma S has a maximal element M (w.r.t. inlusion). By

Zorn's Lemma M is ontained in a maximal ideal P (see proof of Lemma 5.4).

P is prime and M � P . By Lemma 5.6 9 I � R s.t. M = IP . Thus I � M .

Suppose I = M . Then IR = I = IP . By Lemma 5.5 9L � R, a 2 I , s.t.

LI = aR. So R = a

�1

aRR = a

�1

LIR = a

�1

LIP = P . Hene P = R but P

is a maximal ideal. This is a ontradition so I % M . I is then a produt of

primes but M = IP so M is a produt of primes. Contradition so S = ;.

Uniqueness

Suppose P

1

:::P

r

= Q

1

:::Q

s

are produts of (not neessarily distint) primes.

P

1

� Q

1

:::Q

s

so P

1

� Q

i

for some i. Say i = 1 for onveniene sine we an

reorder anyway. R is a Dedekind domain so prime ideals are maximal. Thus

P

1

= Q

1

. By Lemma 5.5 9 0 6= L � R, a 2 P

1

, s.t. LP

1

= LQ

1

= aR. Thus

P

2

:::P

r

= a

�1

LP

1

P

2

:::P

r

= a

�1

LQ

1

Q

2

:::Q

r

= Q

2

:::Q

R

. By indution we have

uniqueness. ut

5.8 De�nition

Let R be Dedekind domain and K its �eld of frations. A frational ideal of R

is a nonzero �nitely generated R-submodule of K.

Let M be a frational ideal with generators m

1

; :::;m

k

. Eah m

i

is in K so

there exists s 2 R suh that m

i

s 2 R for all i. Thus Ms � R. This explains

the name frational ideal.

5.9 De�nition

Let M be a frational ideal of a Dedekind domain R.

De�ne M

�1

:= fx 2 KjxM � Rg. A frational ideal M is said to be invertible

if MM

�1

= R.

We aim to de�ne an abelian group struture on the set of frational ideals

of R. The produt of two frational ideals M and N is the set MN :=

f

P

�nite

m

i

n

i

jm

i

2 M , n

i

2 Ng. If fx

i

g and fy

j

g are sets of generators for

M and N then the set of produts fx

i

y

j

g is a set of generators for MN . Thus

MN is �nitely generated and so is a frational ideal. The identity element is R.
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It remains to show that every frational ideal has an inverse. We do this by

showing every frational ideal is invertible (as de�ned in De�nition 5.9). First

let's hek that M

�1

is a frational ideal. M

�1

is a non-zero R-submodule of

K. Choose 0 6= m 2M . ThenM

�1

m � R soM

�1

� Rm

�1

. Rm

�1

is a �nitely

generated R module and beause R is noetherian, the submodule M

�1

is also

�nitely generated. Hene M

�1

is a frational ideal.

5.10 De�nition

Let R be a Dedekind domain and K its �eld of frations.

A prinipal frational ideal of R is a frational ideal of the form Rx for some

0 6= x 2 K.

(Rx)

�1

= Rx

�1

so (Rx)(Rx)

�1

= Rxx

�1

= R. Thus a prinipal frational

ideal is invertible.

5.11 Lemma

Let R be an integral domain with 1 and ; 6= S � R a multipliative set. That

is 0 =2 S and S is losed under multipliation. Then there is a ring R

S

whih

ontains R as a subring suh that every element of S has a multipliative inverse.

Proof [Ja, Prop.1.1℄

De�ne an equivalene relation on R � S by (a; b) � (; d) i� ad = b. Let

R

S

= R�S= �. Addition and multipliation are de�ned in the same way as for

the �eld of frations of R. R is isomorphially imbedded in R

S

by �xing s 2 S

and using the mapping r 7! (rs; s). ut

We write r=s to denote (r; s). Note that R

S

= R

S[f1g

so we an assume 1 2 S

and the mapping of R into R

S

an be taken as r 7! r=1.

5.12 De�nition

The ring R

S

is alled the loalization of R at S.

5.13 Lemma [Ja, Prop.1.2℄

There is a one-to-one orrespondene between prime ideals of R

S

and prime

ideals of R whih have empty intersetion with S.
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Proof

De�ne

' : fprime ideals of R

S

g ! fprime ideals P �R : P \ S = ;g

'(Q) := Q \ R

 : fprime ideals P �R : P \ S = ;g ! fprime ideals of R

S

g

 (P ) := PR

S

We show ' and  are inverse maps. That is

PR

S

\ R = P for every prime ideal P �R s.t. P \ S = ;

(Q \R)R

S

= Q for every prime ideal Q�R

S

:

LetQ be a prime ideal of R

S

. Q\R is a prime ideal of R and (Q\R)R

S

� Q is an

ideal of R

S

. Let q=s 2 Q then q = (q=s)s 2 Q\R so q(1=s) = q=s 2 (Q\R)R

S

.

Thus Q � (Q \ R)R

S

.

Let P be a prime ideal of R with P \S = ;. PR

S

is an ideal of R

S

. It is prime

sine if (r

1

=s

1

)(r

2

=s

2

) 2 PR

S

with (r

1

=s

1

); (r

2

=s

2

) 2 R

S

then (r

1

=s

1

)(r

2

=s

2

) =

x=s for some x 2 P and s 2 S. Now r

1

r

2

s = xs

1

s

2

2 P and P is prime so r

1

or

r

2

2 P . So (r

1

=s

1

) or (r

2

=s

2

) 2 PR

S

and PR

S

is prime. If u 2 PR

S

\ R then

u = x=s with x 2 P . But u 2 R so sine P is prime, x = us ) u 2 P . Thus

PR

S

\ P � P . P � PR

S

\ P is lear. ut

Take a prime ideal P � R and let S = RnP . We write R

P

to denote the

loalization of R at S. Sine 0 2 P a prime ideal an never be a multipliative

set so this notation is not ambiguous. The prime ideals of R whih have empty

intersetion with S = RnP are those prime ideals ontained in P . By Lemma

5.12 the only ideals of R

P

are those ontained in PR

P

. Maximal ideals are

always prime so PR

P

is the only maximal ideal in R

P

.

5.14 De�nitions

An integral domain with 1 with only one maximal ideal is alled a Loal Ring.

By the above omments if we loalize at a prime ideal we get a loal ring.

A loal ring whih is also a prinipal ideal domain is alled a

Disrete Valuation Ring (DVR).

5.15 Lemma

Let R be a Dedekind domain. Then R

P

is a DVR for every nonzero prime ideal

P of R.
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Proof [Ja, Prop.3.20℄

R is Noetherian by de�nition. Let J

1

� J

2

� ::: be an asending hain of ideals

of R

P

. Then J

1

\ R � J

2

\ R � ::: is an asending hain of ideals of R whih

therefore terminates. That is 9n 2 N s.t. J

n

\ R = J

n+1

\R = :::.

Observe that (J

i

\ R)R

P

� J

i

. Let r=s 2 J

i

. Then r = (r=s)s 2 J

i

\ R

so r(1=s) = r=s 2 (J

i

\ R)R

P

. Thus J

i

� (J

i

\ R)R

P

.

So J

n

= J

n+1

= ::: and R

P

is Noetherian.

By the omments after Lemma 5.13 the only maximal ideal of R

P

is PR

P

. Sine

R is a Dedekind domain there is no distintion between prime and maximal

ideals. So PR

P

is the only prime ideal of R

P

. Also R

P

is integrally losed

beause R is.

Fix 0 6= a 2 R

P

. Let M = R

P

=aR

P

. For eah m 2M let

null(m) = fr 2 R

P

: rm = aR

P

g. This is an ideal of R

P

for eah m 2 M .

Choose m 2M s.t. null(m) is maximal in the set of ideals

fnull(m) : 0 6= m 2Mg. Pik a representative of this oset, m = b+ aR

P

with

b 2 R

P

. Q := null(b+ aR

P

) is nonzero beause a 2 Q. Q is prime for suppose

x; y =2 Q but xy 2 Q. Then y(b + aR

P

) 6= aR

P

so null(yb+ aR

P

) ontains Q

and x whih ontradits the maximality of Q. Q is therefore the unique prime

ideal, i.e. Q = PR

P

.

We have shown bPR

P

� aR

P

but b =2 aR

P

sine b+aR

P

6= R

P

. So

b

a

=2 R

P

and

b

a

PR

P

� R

P

. Suppose

b

a

PR

P

$ R

P

. Then sine PR

P

is the unique maximal

ideal we have

b

a

PR

P

� PR

P

. By exatly the same determinant trik as used

in Lemma 5.5

b

a

is integral over R

P

. R

P

is integrally losed by de�nition so

b

a

2 R

P

ontraditing the above. Thus

b

a

PR

P

= R

P

and so PR

P

=

a

b

R

P

. This

shows the unique maximal ideal is prinipal. Write PR

P

= xR

P

.

Let U be a nonzero ideal of R

P

. Consider the hain U � x

�1

U � x

�2

U � :::.

If x

�n

U = x

�n�1

U then by the determinant trik x

�1

is integral over R

P

whih is impossible beause x

�1

=2 R

P

and R

P

is integrally losed. Sine R

P

is

noetherian the part of the hain whih falls into R

P

must be �nite. There exists

n s.t. x

�n

U � R

P

but x

�n�1

U * R

P

. If x

�n

U � PR

P

then x

�n�1

U � R

P

so

x

�n

U = R

P

and U = x

n

R

P

. U is a prinipal ideal as required. ut

5.16 Theorem

Let R be a Dedekind domain. Any nonzero prime ideal of R is invertible.

Proof

Let P be a nonzero prime ideal of R. Then PP

�1

= U is an ideal of R.

For any maximal ideal Q we know that R

Q

is a PID by Lemma 5.15 so PR

Q

is prinipal and hene invertible by the remarks after De�nition 5.10. Thus

UR

Q

= (PP

�1

)

Q

= R

Q

. This holds for all maximal ideals Q of R. Let

b 2 R. bR

Q

� UR

Q

so 9 a 2 U and s 2 RnQ s.t. b = a=s. The ideal of

41



R, fy 2 R : by � Ug ontains s so does not belong to Q. The ideal must then

be the whole of R. So b 2 U and so R � U and thus R = U as required. ut

5.17 Corollary

Let R be a Dedekind domain. LetM be a frational ideal of R. Then 9P

1

; :::; P

n

distint prime ideals of R and a

1

; :::; a

n

2 Z s.t. M = P

a

1

1

:::P

a

n

n

and this

expression is unique (up to the order of the fators).

Proof [Ja, Thm.4.2℄

Let M be a frational ideal with generators m

1

; :::;m

k

. Eah m

i

is in K so

there exists s 2 R suh that m

i

s 2 R for all i. Thus Ms � R. By Theorem 5.7

there exist fatorizations of the ideals Rs and Ms as Rs =

Q

Q

b

j

j

, Ms =

Q

P

a

i

i

where the P

i

and Q

j

are prime ideals of R. It followsM

Q

Q

b

j

j

=

Q

P

a

i

i

. Prime

ideals are invertible so M =

Q

P

a

i

i

Q

Q

�b

j

j

. This establishes existene.

For uniqueness suppose M =

Q

P

a

i

i

Q

Q

�b

j

j

=

Q

X



i

i

Q

Y

�d

j

j

where

P

i

; Q

j

; X

i

; Y

j

are prime ideals and a

i

; b

j

; 

i

; d

j

are positive integers.

Thus

Q

P

a

i

i

Q

Y

d

j

j

=

Q

X



i

i

Q

Q

b

j

j

is a fatorization of ideals in R so we have

uniqueness by Theorem 5.7. ut

We have shown that the set of all frational ideals is a group with respet

to multipliation and inverses desribed above. The uniqueness statement of

Corollary 5.17 shows that it is a free abelian group with the set of nonzero

prime ideals as generators. The olletion of all prinipal frational ideals is a

subgroup.

5.18 De�nition

Let R be a Dedekind domain. The group of frational ideals is alled the ideal

group of R and is denoted I(R). The subgroup of prinipal frational ideals is

denoted P (R).

The lass group of R is de�ned to be C(R) := I(R)=P (R).

We now apply this theory to algebrai number �elds. An algebrai number �eld

K � C is a �nite �eld extension of Q. The ring of algebrai integers in C is

denoted A . De�ne the ring of integers in K to be R

K

:= K \ A .

5.19 Theorem

If K is an algebrai number �eld then R

K

is a Dedekind domain.
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Proof

R

K

is an integral domain �nitely generated as an abelian group. Therefore

every ideal of R

K

is �nitely generated and so R

K

is noetherian.

Suppose a=b 2 K is the root of a moni polynomial over R

K

. Then a=b 2 A so

a=b 2 K \ A = R

K

. R

K

is integrally losed.

Let 0 6= I �R

K

and 0 6= r 2 I . Let R

K

have rank n as a free abelian group and

hoose a basis f

1

; :::; f

n

of R

K

. Then 9 b

i;j

2 Z s.t.

0

B

B

B

B

�

r

.

.

.

.

.

.

r

n+1

1

C

C

C

C

A

=

0

B

B

B

�

b

1;1

b

1;2

: : : b

1;n

b

2;1

b

2;2

: : : b

2;n

.

.

.

.

.

.

.

.

.

.

.

.

b

n+1;1

b

n+1;2

: : : b

n+1;n

1

C

C

C

A

0

B

B

B

B

�

f

1

.

.

.

.

.

.

f

n

1

C

C

C

C

A

Now rank(b

i;j

) 6 n so 9 a

i

2 Z s.t. a

n+1

r

n+1

+ a

n

r

n

+ ::: + a

0

= 0. Then

a

0

= �r(a

n+1

r

n

+ :::+ a

1

).

Choose a polynomial over Z with smallest degree possible of whih r is a zero.

Then a

0

6= 0 beause a

n+1

r

n

+ :::+ a

1

6= 0.

Now a

0

= �r(a

n+1

r

n

+ :::+ a

1

) 2 I so I � a

0

R

K

.

R

K

=a

0

R

K

�

=

Z=a

0

Z

L

:::::

L

Z=a

0

Z and R

K

=I is a homomorphi image of this,

so has the same number of elements or fewer. jR

K

=I j 6 jR

K

=a

0

R

K

j = a

n

0

. If

we take I to be a prime ideal then R

K

=I is a �nite integral domain and hene

a �eld. Therefore I is a maximal ideal of R

K

. ut

5.20 Theorem

Let K be an algebrai number �eld and R

K

its ring of integers. Then C(R

K

)

is �nite.

Proof

Let I be a nonzero proper ideal of R

K

. By Theorem 5.7 9P

1

; :::; P

r

prime ideals

of R

K

and n

1

; :::; n

r

2 N s.t. I = P

n

1

1

:::P

n

r

r

and this expression is unique up to

the order of the fators.

For a prime ideal P of R

K

the ideal rad(P ) is prime. By Theorem 5.19 R

K

is

a Dedekind domain so rad(P ) is maximal. P � rad(P ) so P = rad(P ). Now

rad(IJ) = rad(I \ J) = rad(I) \ rad(J) so rad(P

n

) = rad(P ). We have

Q

r

i=1

P

i

= rad(

Q

r

i=1

P

i

) =

T

r

i=1

rad(P

i

) =

T

r

i=1

P

i

If P

n

i

i

+P

n

j

j

= A $ R

K

, then AjP

n

i

i

and AjP

n

j

j

whih ontradits P

i

; P

j

distint

primes so P

n

i

i

+ P

n

j

j

= R

K

.

By the Chinese Remainder Theorem

R=I = R=

Q

r

i=1

P

n

i

i

= R=

T

r

i=1

P

n

i

i

�

=

Q

R=P

n

i

i

.
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By the proof of Theorem 5.19 these sets are �nite so

jR=I j =

Q

jR=P

i

j

n

i

:

De�ne the norm of an ideal to be N(I) := jR

K

=I j.

Note that N(IJ) = N(I)N(J).

It an be shown by an argument using lattie theory that every lass in C(R

K

)

ontains an ideal I of R s.t. N(I) 6 M where M is a �nite number alled the

Minkowski Bound. See [Ja, Thm.11.8℄. Now I is expressible as a produt of

primes so there are only �nitely many ideals of R that divide I . Namely they

are produts of subsets of the ideals that ompose I . It follows that there are

only �nitely many ideals with a given norm and so there are only �nitely many

hoies for the lasses in C(R

K

). ut

5.21 De�nition

Let K be an algebrai number �eld. The ardinality of the lass group of R

K

is alled the lass number of K.

5.22 Lemma

Let R be a Dedekind domain. Then R is a UFD i� the lass group of R has

ardinality 1.

Proof [Mo, Thm.3.32℄

>From the de�nition of the C(R) we see that jC(R)j = 1, R is a PID. A PID

is always a UFD. It remains to show that in a Dedekind domain a UFD is a

PID.

Suppose R is a UFD and I � R is not a prinipal ideal. I is expressible as a

produt of primes by Theorem 5.7 so there is a prime ideal P whih is not a

prinipal ideal. Let S be the set of ideals I � R s.t. PI is prinipal. We know

S is non-empty by Lemma 5.5. By Zorn's Lemma S has a maximal element

M . PM = (a) and a must be irreduible by the maximality of M . There exist

nonzero b 2 Pn(a);  2Mn(a) s.t. b 2 PM � (a). So ajb but a does not divide

b or . a is irreduible but not prime. This ontradits R being a UFD. ut

5.23 Theorem

Let K be a quadrati imaginary �eld. There is a one-to-one orrespondene

between ideal lasses in C(R

K

) and isomorphism lasses of ellipti urves with

End(E)

�

=

R

K

.

Proof

Take an ideal � of R

K

. The ellipti urve C =� has End(C =�)

�

=

fa 2 C : a� �

�g = R

K

. Two ellipti urves are isomorphi preisely if they are homotheti

and this orresponds to multipliation by a prinipal frational ideal. ut
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5.24 Corollary

Let E be an Ellipti Curve with End(E)

�

=

R

K

. Then j(E) is an algebrai

number.

Proof

By Theorem 5.20 C(R

K

) is �nite so there are only �nitely many isomorphism

lasses of ellipti urves with End(E)

�

=

R

K

.

Let � 2 Aut(C =Q ). End(E

�

)

�

=

End(E)

�

=

R

K

. By the above fj(E)

�

: � 2

Aut(C =Q )g is �nite. We have a �nite �eld extension whih from Galois theory

we know is algebrai. ut

5.25 Theorem

Let E be an ellipti urve with omplex multipliation suh that End(E) is

the ring of integers in a quadrati imaginary �eld. Then j(E) is an algebrai

integer.

Proof

A omplex analyti proof of this is given in [Si2, Thm.II.6.1℄. ut

5.26 Corollary

Let E be an ellipti urve with omplex multipliation. Then j(E) is an alge-

brai integer.

Proof

We follow the proof in [Si2, Cor.II.6.3.1℄ and use the same notations. Let

End(E)

�

=

R, an order in K. Let � = !

1

Z+ !

2

Z be a lattie for E. Now

K = Q(!

1

=!

2

). By multiplying by a suitable � 2 C

�

, we may assume � �

R

K

= Z+ �Z.

Then there exist integers a; b; ; d suh that

!

1

= a� + b,

!

2

= � + d.

Let n = ad� b. After swithing !

1

and !

2

if neessary we may assume n � 1.

The matrix � =

�

a b

 d

�

2 D

n

so j Æ � is integral over the ring Z[j℄. Now

F

n

(j;X) = 0 so evaluating at � we �nd that j(��) is integral over Z[j(�)℄. But

j(��) = j(E) and j(�) is integral over Z by the above Theorem. Hene j(E) is

integral over Z. ut

Sine the algebrai integers are ountable this implies that the number of

ellipti urves (up to isomorphism) with CM is ountable. Complex multipli-

ation is therefore a rare property of an ellipti urve. See the Appendix for a
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disussion of ardinality.

The onverse of the above theorem is false. That is, given an algebrai integer

for j the orresponding ellipti urve is not always CM. We show this below

in 5.29 onwards. We know that an ellipti urve is CM i� � is in a quadrati

imaginary extension �eld of Q. We show now that if 3 � [Q(�) : Q℄ < 1 then

j(�) is transendental. This will mean that any � whose ellipti urve is not

CM, but for who j(�) an algebrai integer, must be transendental.

5.27 Theorem

Let K be a �nite �eld extension of Q and let f

1

,...f

n

be meromorphi funtions

of �nite order. Suppose that the ring K[f

1

; :::; f

n

℄ is mapped to itself by di�er-

entiation and has transendene degree at least 2 over K. Then there are only

�nitely many numbers z at whih f

1

; :::; f

n

simultaneously assume values in K.

Proof

See [Ba, Thm.6.1℄. ut

A meromorphi funtion f is said to have �nite order if f = g=h where g,h are

entire funtions and 9� > 0 s.t. 8R � 2, 8z with jzj � R, max(jg(z)j; jh(z)j) <

exp(R

�

). The transendene degree of the ring K[f

1

; :::; f

n

℄ is the maximum

number of elements in an algebraially independent subset.

5.28 Corollary [Ba, Thm.6.3℄

Let � be an algebrai number with 3 � [Q(�) : Q℄, then j(�) is transendental.

Proof

Suppose j(�) is algebrai. Then there is a }-funtion with algebrai invari-

ants g

2

, g

3

and fundamental periods !

1

, !

2

suh that � = !

2

=!

1

. When

z = 3!

1

=2 the funtions f

1

= }(z), f

2

= }(�z), f

3

= }

0

(z), f

4

= }

0

(�z)

assume the same values in an algebrai number �eld, say K. By the above The-

orem K[f

1

; f

2

; f

3

; f

4

℄ has transendene degree at most 1. f

1

and f

2

are thus

algebraially dependent. This implies that l!

2

is a period of }(�z) for some

l 2 N. l�!

2

= m!

1

+ n!

2

for some m;n 2 Z, so l�

2

� n� �m = 0 and � is a

quadrati irrational. ut

5.29 Lemma

Every quadrati �eld is of the form Q(

p

d) where d is a square-free integer.
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Proof

Let K = Q(�) be a quadrati �eld and � be a solution of x

2

+ ax + b for

some a; b 2 Z. Thus K = Q

�

�a�

p

a

2

�4b

2

�

= Q(

p

a

2

� 4b). By uniqueness of

fatorization in Z, a

2

� 4b = p

e

1

1

:::p

e

r

r

for primes p

i

with powers e

i

. Thus

a

2

� 4b =

Q

e

i

odd

p

i

�

Q

e

i

odd

p

(e

i

�1)=2

i

(

Q

e

j

even

p

(e

j

)=2

j

�

2

= dr

2

for some

d; r 2 Z, d square-free. Thus K = Q(r

p

d) = Q(

p

d). ut

5.30 Theorem

The ring of integers in a quadrati �eld Q(

p

d) is Z(

p

d) if d � 2 or 3 mod 4

and Z(

1

2

+

1

2

p

d) if d � 1 mod 4.

Proof

This proof is taken from the 2nd year essay "Algebrai Number Fields" by John

Hudson, an undergraduate at the University of Warwik. Let z 2 Q(

p

d) be

an algebrai integer. Then z =

a+b

p

d



for some a; b;  2 Z. We may assume

the highest ommon fator of a,b and  is 1. The oeÆients of the minimum

polynomial of z,

�

x�

a+b

p

d



��

x�

a�b

p

d



�

are integers. Thus

a

2

�b

2

d



2

2 Z and

2a



2 Z. If a and  have a ommon prime divisor p then p

2

divides b

2

d and

sine d is square-free, p

2

divides b

2

. Thus p divides b ontraditing the highest

ommon fator of a, b,  being 1. Hene  is 1 or 2. This shows that the ring of

integers is either Z(

p

d) or Z(

1

2

+

1

2

p

d).

Consider the ase  = 2. Now

a

2

�b

2

d



2

2 Z so a

2

� b

2

d � 0 mod 4. a must be

odd sine it does not have a ommon prime divisor with . Thus b must be odd.

Thus a

2

� b

2

� 1 mod 4 and therefore d � 1 mod 4. Conversely if d � 1 mod 4

then

a+b

p

d

2

for a, b odd is an algebrai integer sine

a

2

�b

2

d

4

2 Z. ut

5.31 Corollary

An order � in a quadrati imaginary �eld K is given by � = Z+ fR

K

for some

f 2 Z. f is alled the ondutor of �.

Proof

Suppose R

K

= Z(

p

d). � has a basis 1,� for some � 2 R

K

. � = e+f

p

d for some

e; f 2 Z so � = fm+n�jm;n 2 Zg= fm+ne+nf

p

djm;n 2 Zg= Z+fZ(

p

d).

Suppose R

K

= Z(

1

2

+

1

2

p

d). � has a basis 1,� for some � 2 R

K

. � =

x

2

+ f

y

2

p

d

for some integers x and y and by a similar argument we have the result. ut
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5.32 Theorem

Let K be a quadrati imaginary �eld and let E be an ellipti urve with endo-

morphism ring an order in K. By Corollary 5.26 j(E) is an algebrai integer.

The degree of the minimum polynomial of j(E) over Z is greater than or equal

to the lass number of K.

Proof

See [Si2, Thm.II.4.3℄ for a proof that if End(E) is the full ring of integers then

the degree of the minimum polynomial of j(E) over Z equals the lass number

of K. By [Si2, Thm.II.6.3℄ and Exerise 2.28 in [Si2℄ we have the result. ut

Note that the endomorphism ring of a CM urve C =� is the lattie �. By

Theorem 5.32 the only andidates for CM ellipti urves with j-invariant in

Z are therefore those with End(E) an order in a quadrati imaginary �eld of

lass number 1. By Lemma 5.22 this is the same as asking that the ring of

integers be a UFD. We use the lassi�ation of all quadrati imaginary �elds

whose ring of integers is a UFD. There are 9 of them. They are Q(

p

d) where

d 2 f�1;�2;�3;�7;�11;�19;�43;�67;�163g. It an be shown that as the

size of the ondutor goes up, the degree of the minimum polynomial of j goes

up. In fat only �nitely many orders in eah of these �elds have j with minimum

polynomial of degree 1 over Z. There are preisely 13 of them.

Only 13 j-invariants in Z orrespond to CM ellipti urves. They are listed in

[Si2, App.A.3℄. Pik any other integer and we have an example of j an algebrai

integer but the orresponding ellipti urve not CM. In partiular j = 1 gives a

non-CM urve.

5.33 A non-CM ellipti urve with integer j-invariant

j = 1 does not orrespond to a CM urve. Let's �nd an ellipti urve with

j-invariant 1. As in the proof of Theorem 2.17 the urve

y

2

= x

3

� 27

j

j�1728

x� 54

j

j�1728

has j-invariant j. Thus

y

2

= x

3

+

27

1727

x+

54

1727

has j-invariant 1.

It would be nie to �nd � for suh a urve. I have written omputer programs in

BASIC whih approximate j from � and � from j for j > 1728 using a method of

Gauss involving the arithmeti-geometri mean. j > 1728 orresponds preisely

to � = it with t > 1. j grows rapidly with t. In fat we know that j(i) = 1728,

j(

p

2i) = 8000, j(

p

3i) = 54000 and j(2i) = 287496 as these are CM urves

listed in [Si2, App.A.3℄. My programs alulate these values aurately so we

an be on�dent that they give me an aurate numerial approximation for �

with j(�) = 1729. The Gauss method is summarized in Setion VI.9 in [Kn,

VI.9℄.
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5.34 Summary of Key Points from Chapter 5

1. A Dedekind domain is a noetherian, integrally losed integral domain with

1 in whih every prime ideal is maximal.

2. A frational ideal of a Dedekind domain, R, is a nonzero �nitely generated

R-submodule of K, the �eld of frations of R. A prinipal frational ideal

of R is a frational ideal of the form Rx for some 0 6= x 2 K.

3. The lass group of R, C(R) := I(R)=P (R) where I(R) is the group of

frational ideals of R and P (R) is the subgroup of prinipal frational

ideals of R.

4. The ring of integers R

K

of an algebrai number �eld K is a Dedekind

domain. The lass group C(R

K

) is �nite. The ardinality of C(R

K

) is

alled the lass number of K.

5. There is a one-to-one orrespondene between ideal lasses in C(R

K

) and

isomorphism lasses of ellipti urves with End(E)

�

=

R

K

.

6. The j-invariant of a CM ellipti urve is an algebrai integer.

7. The ellipti urve y

2

= x

3

+

27

1727

x+

54

1727

does not have omplex multipli-

ation and its j-invariant is 1.
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Suggestions for Further Study

1. j = 1 is an attrative example of a urve that is not CM. It would be nie

to expliitly have � 2 C s.t. j(Z+ �Z) = 1. >From Corollary 5.28 we

know that suh a � must be transendental. One suh � is near e

2�i=3

and

satis�es j� j = 1.

2. For any integer greater than 1728 we an use the Gauss method to approx-

imate an appropriate � = it for some t > 1. It might be possible to �nd

suh a � whose ontinued fration expansion does not reur. This implies

that � does not lie in a quadrati extension of Q and therefore that the

urve Z+ �Z is not CM by Theorem 4.6. One idea is to try out stritly

inreasing ontinued fration expansions, e.g. 2�

1

1�

1

2�

1

3�

1

4�:::

.

3. It is known that there are only �nitely many quadrati imaginary �elds

with any given lass number. See [Ba, 5.5℄. The quadrati imaginary �elds

with lass number 2 have been ompletely lassi�ed. The next step is to

�nd all hoies j with [Q(j):Q ℄= 2 s.t. the orresponding ellipti urve is

CM.

4. We know that when the endomorphism ring of an ellipti urve E is the

full ring of integers R

K

, [Q(j(E)) : Q℄= jC(R

K

)j. When End(E) is an

order of K, [Q(j(E)) : Q℄ � jC(R

K

)j. The degree of the �eld extension

seems to go up as the ondutor goes up. This needs verifying. If this

is true then it is possible to prove that for any n 2 N there are only

�nitely many algebrai integers j with [Q(j) : Q℄= n s.t.the orrespond-

ing ellipti urve is CM. In this projet we have only proved this for n = 1.
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6 Appendix on Cardinality

Two sets have the same ardinality if there is a bijetion between them. The

Shr�oder-Bernstein Theorem says that given two sets A and B, if there exist

well-de�ned injetions f : A ! B and g : B ! A then there is a bijetion

between A and B. We say a set is ountable if it has the same ardinality as N.

6.1 Theorem

R is unountable.

Proof

Assume for ontradition that jRj = jNj. Then there exists a numeration R =

fa

n

jn 2 Ng. Consider a deimal expansion for eah a

n

: a

n

= m

n

+

P

1

i=1

b

ni

10

i

for some m

n

2 Z; b

ni

2 f0; :::; 9g.

Let 

i

:=

(

1 if b

ii

6= 1

5 if b

ii

= 1



i

6= b

i

i

; 0; 9 8i 2 N so

P

1

i=1



i

10

i

=2 R. Contradition. ut

6.2 Theorem

(a) jRj = j(0; 1)j and (b) j[0; 1℄j = j[0; 1℄� [0; 1℄j.

Proof

(a) f : (0; 1)! R, f(x) = tan

�

�x �

�

2

�

is a bijetion.

(b) By the Shr�oder-Bernstein Theorem we just have to �nd a well-de�ned

injetion f : [0; 1℄ � [0; 1℄ ! [0; 1℄. To do this we use a unning trik. We use

binary expansions for the elements of [0; 1℄ � [0; 1℄ and deimal expansions for

the elements of [0; 1℄. That is

[0; 1℄� [0; 1℄ = f

�

P

1

n=1

a

n

2

n

;

P

1

n=1

b

n

2

n

�

ja

n

; b

n

2 f0; 1gg

[0; 1℄ = f

P

1

n=1



n

10

n

j

n

2 f0; :::; 9gg

We have to be areful here and hoose reurring zeroes if there is a hoie (reall

0:19999::: = 0:20000:::). We de�ne

f

�

P

1

n=1

a

n

2

n

;

P

1

n=1

b

n

2

n

�

:=

P

1

n=1



n

10

n

where 

n

= 2a

n

+ b

n

+ 1. ut

Using Shr�oder-Bernstein it is not hard to see that if jAj = jA

0

j and jBj =

jB

0

j then jA�Bj = jA

0

�B

0

j. Therefore jC j = jR

2

j = jRj.

The algebrai numbers Q are the omplex numbers whih are zeroes of a poly-

nomial over Z.

6.3 Theorem

Q is ountable.
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Proof

For a polynomial f(t) = a

0

+ a

1

t + ::: + a

n

t

n

2 Z[t℄ de�ne its height to be

h(f) := n+ ja

0

j+ :::+ ja

n

j. There are only a �nite number of polynomials over

Z of a given height h.

Now eah height h polynomial has less than h roots in C .

So jQ j �

P

1

h=0

h:(number of height h polynomials), whih is a ountable in�n-

ity. ut
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