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Introdu
tion

The j-invariant of an ellipti
 
urve with 
omplex multipli
ation is an algebrai


integer. For a proof of this fa
t see [Si2, Thm.II.6.1℄. For every z 2 C there

exists an ellipti
 
urve E s.t. j(E) = z. If we pi
k an arbitrary algebrai
 in-

teger z does the 
orresponding ellipti
 
urve have 
omplex multipli
ation? In

this proje
t we show that the answer is no. In fa
t only �nitely many rational

integers (i.e. elements of Z) 
orrespond to ellipti
 
urves with 
omplex multi-

pli
ation.

Chapter 1 
ontains a dis
ussion of plane 
urves. Many of the proofs are 
on-

tained in [Kn℄ but I have partly simpli�ed them and added steps for 
larity.

Chapter 2 de�nes an ellipti
 
urve as a nonsingular 
ubi
 in Weierstrass Form.

We de�ne the j-invariant of an ellipti
 
urve in Chapter 2.

Chapter 3 shows that an ellipti
 
urve is topologi
ally a torus. There is a 
or-

responden
e between 
omplex tori and ellipti
 
urves. The j-invariant allows

us to expli
itly forge a bije
tion between 
lasses of 
omplex tori and 
lasses of

ellipti
 
urves. Thus we regard 
omplex tori as ellipti
 
urves.

Chapter 4 de�nes 
omplex multipli
ation. We look at 
omplex multipli
ation

from the perspe
tive of plane 
urves and from the perspe
tive of 
omplex tori.

Chapter 5 
ontains a lot of algebrai
 number theory. We need results about

algebrai
 number �elds in order to understand the proof that the j-invariant of

a 
urve with 
omplex multipli
ation is an algebrai
 integer. To show that only

�nitely many rational integers 
orrespond to 
urves with 
omplex multipli
a-

tion we need the fa
t that there are exa
tly nine quadrati
 imaginary �elds of


lass number 1. This was originally 
onje
tured by Gauss and was proved by

Heegner. See [He℄ for a proof.
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1 Plane Curves

Summary

The set of zeroes of a nonzero homogeneous polynomial is a well-de�ned subset

of the proje
tive plane P

2

C

. For a dis
ussion of proje
tive spa
e see [Re1, 1.4℄. I

think of P

2

R

as R

2

together with points on the horizon "at in�nity". A proje
tive


hange of 
oordinates is an invertible linear map. We regard two plane 
urves

as the same if they are proje
tively equivalent.

A 
urve is nonsingular if we 
an sensibly de�ne a tangent line at every point

of the 
urve. The tangent line at a point is the unique line through that point

with interse
tion multipli
ity greater than 1. Nonsingularity is preserved by a

proje
tive 
hange of 
oordinates. A 
ex (or point of in
e
tion) is a nonsingular

point of the 
urve where the interse
tion multipli
ity of the tangent line is greater

than 2. Of 
ourse at s
hool we learn that an in
e
tion point of the 
urve in R

2

given by y = f(x) is a point where

�

2

f

�x

2

= 0.

1.1 A Few De�nitions

P

2

C

:= (C

3

n f0g)= � where (�; �; 
) � (�

0

; �

0

; 


0

) if 9 � 2 C n f0g s.t. (�; �; 
) =

�(�

0

; �

0

; 


0

)

A plane 
urve is a non-zero homogeneous polynomial F 2 C [X;Y; Z℄. The set

of zeroes of F in P

2

C

is well-de�ned sin
e F is homogeneous. We write F (C )

or E : (F = 0) to denote this lo
us. If deg(F )=1, 2 or 3 we say F is a line,


oni
 or 
ubi
 respe
tively. A plane 
urve F is 
alled irredu
ible if F is an

irredu
ible polynomial. We regard F and �F as the same 
urve 8� 2 C nf0g

sin
e F (C ) = �F (C ).

A proje
tive transformation (or proje
tive 
hange of 
oordinates) is a linear

map � 2 Gl

3

(C ). If �

1

= ��

2

for some � 2 C n f0g then

�

1

(�; �; 
) = �

2

(�; �; 
)8 (�; �; 
) 2 P

2

C

.

This leads us to de�ne the proje
tive group,

PGl

3

(C ) := (Gl

3

(C ))=fs
alar matri
esg

where a s
alar matrix is a matrix of the form �I for some � 2 C nf0g. Note that

PGl

3

(C ) a
ts transitively on P

2

C

(ie.8X;Y 2 P

2

C

9� 2 PGl

3

(C ) s.t. �(X) = Y )

sin
e Gl

3

(C ) a
ts transitively on C

3

n f0g.

We say two 
urves, F

1

&F

2

, are proje
tively equivalent if 9� 2 PGl

3

(C ) s.t.

F

1

(X;Y; Z) = F

2

(�

�1

(X;Y; Z)). Note that F

1

(C ) = �(F

2

(C )).

De�ne F

�

:= F Æ �

�1

. Then F

�

(C ) = �(F (C )).
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1.2 De�nition

Let (�; �; 
) 2 P

2

C

. Choose � 2 PGl

3

(C ) s.t. �(�; �; 
) = (0; 0; 1). We de�ne

lo
al aÆne 
oordinates at (�; �; 
) with the map:

' : �

�1

(C � C � f1g) ! C

2

'(�

�1

(X;Y; 1)) = (X;Y )

' is a bije
tion. The most familiar example is � = I :

' : f(X;Y; Z) 2 P

2

C

jZ = 1g ! C

2

'(X;Y; 1) = (X;Y )

' de�nes lo
al 
oordinates at (0,0,1) and '

�1

gives us an imbedding of C

2

in

P

2

C

as the aÆne pie
e (Z=1). In this 
ase the (Z=0) part of P

2

C

is often referred

to as "the line at in�nity".

If F is a plane 
urve then about any point (�; �; 
) 2 P

2

C

we 
an de�ne aÆne

lo
al 
oordinates by 
hoosing � 2 PGl

3

(C ) as in De�nition 1.2. We have the


orresponding aÆne 
urve f de�ned by f(x; y) = F (�

�1

(x; y; 1)) 2 C [x; y℄.

f(x; y) = f

0

(x; y) + f

1

(x; y) + :::+ f

d

(x; y)

where f

i

(x; y) is a homogeneous polynomial of degree i in x & y, d = deg(F ).

f

0

(x; y) = 0 , (�; �; 
) 2 F (C )

1.3 De�nition

Let (�; �; 
) 2 F (C ). We say (�; �; 
) is a singular point of F if f

1

is the zero

polynomial. (�; �; 
) is a nonsingular point i� it is not a singular point. F is a

nonsingular 
urve if all the points in F (C ) are nonsingular points of F .

We need to 
he
k that singularity is well-de�ned (i.e. independent of the 
hoi
e

of �).

1.4 Theorem

Let F be a plane 
urve, (�; �; 
) 2 F (C ). Let �;  2 PGl

3

(C ) be proje
tive

transformations s.t. �(�; �; 
) =  (�; �; 
) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y)

g(x; y) = F ( 

�1

(x; y; 1)) = g

1

(x; y) + :::+ g

d

(x; y)

where f

i

; g

i

are homogeneous of degree i, d = deg(F ).

Then f

1

and g

1

are either both zero or both non-zero.
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Proof [Kn, p.26℄

f(x; y) = (F Æ  

�1

)( Æ �

�1

)(x; y; 1).

Now  Æ �

�1

2 PGl

3

(C ) and  Æ �

�1

(0; 0; 1) = (0; 0; 1).

Thus  Æ �

�1

=

0

�

a b 0


 d 0

r s 1

1

A

.

Expanding the determinant by the third 
olumn, we see that

det( Æ �

�1

) = det

�

a b


 d

�

6= 0. Thus

�

a b


 d

�

is invertible. So

f(x; y) = (F Æ  

�1

)(ax+ by; 
x+ dy; rx + sy + 1)

= (F Æ  

�1

)(rx + sy + 1)

�

ax+ by

rx + sy + 1

;


x+ dy

rx + sy + 1

; 1

�

= (rx + sy + 1)

d

g

�

ax+ by

rx + sy + 1

;


x+ dy

rx + sy + 1

�

= (rx + sy + 1)

d�1

g

1

(ax+ by; 
x+ dy) + :::+ g

d

(ax+ by; 
x+ dy)

By regrouping into homogeneous terms we see that f

1

(x; y) = g

1

(ax+ by; 
x+

dy).

Similarly g

1

(x; y) = f

1

(�x+ �y; 
x+ Æy) where

�

a b


 d

�

�1

=

�

� �


 Æ

�

.

Thus f

1

is the zero polynomial, f

1

(x; y) = 08x; y 2 C , g

1

(x; y) = 08x; y 2 C

, g

1

is the zero polynomial. ut

Re
all in De�nition 1.1 we de�ned F

�

= F Æ �

�1

and noted that F

�

(C ) =

�(F (C )). Corollary 1.5 will show that nonsingularity is preserved by a proje
tive


hange of 
oordinates, so F is nonsingular i� F

�

is nonsingular.

1.5 Corollary

If (�; �; 
) is a nonsingular point of F then �(�; �; 
) is a nonsingular point of

F

�

.

Proof

Choose  s.t.  (�; �; 
) = (0; 0; 1) and ' s.t. ' Æ �(�; �; 
) = (0; 0; 1). Then  

and 'Æ� satisfy the hypothesis of Theorem 1.4. In the notation of Theorem 1.4

f(x; y) = F ( 

�1

(x; y; 1)) and g(x; y) = f

�

(x; y) = F ((' Æ �)

�1

(x; y; 1)). Thus

by Theorem 1.4 f

1

and f

�

1

are either both zero or both non-zero. ut

At a nonsingular point (�; �; 
) 2 F (C ) 
hoose � s.t. �(�; �; 
) = (0; 0; 1) as

in De�nition 1.2. The aÆne 
urve f has a tangent line in C

2

at (0,0). The
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line is given by f

1

(x; y) = 0. Note that this line is de�ned i� f

1

is not the zero

polynomial i� (�; �; 
) is a nonsingular point of F . This motivates our next

de�nition.

1.6 De�nition

Let (�; �; 
) be a nonsingular point of a plane 
urve F and 
hoose � 2 PGl

3

(C )

s.t. �(�; �; 
) = (0; 0; 1). The tangent line L to F at (�; �; 
) is de�ned L :=

e

f

1

Æ � where

e

f

1

2 C [X;Y; Z℄ is just f

1


onsidered as a polynomial in 3 variables

independent of Z.

We need to 
he
k that the tangent line is well-de�ned (i.e. independent of the


hoi
e of � 2 PGl

3

(C )).

1.7 Theorem

Let �;  2 PGl

3

(C ) and suppose �(�; �; 
) =  (�; �; 
) = (0; 0; 1).

Let L

�

=

e

f

1

Æ � & L

 

= eg

1

Æ  where f

1

and g

1

are as in Theorem 1.4. Then

L

�

= L

 

.

Proof [Kn, p.28℄

 Æ �

�1

(0; 0; 1) = (0; 0; 1) so  Æ �

�1

=

0

�

a b 0


 d 0

r s 1

1

A

with

�

a b


 d

�

invertible (as in proof of 1.4).

e

f

1

(x; y; z) = f

1

(x; y)

�

= g

1

(ax+ by; 
x+ dy)

��

= eg

1

(ax+ by; 
x+ dy; rx+ sy + z)

= eg

1

( Æ �

�1

(x; y; z))

L

 

(x; y; z) = eg

1

( (x; y; z)) = eg

1

( Æ �

�1

(�(x; y; z)))

=

e

f

1

(�(x; y; z)) = L

�

(x; y; z)

* by the proof of 1.4.

** sin
e eg

1

is independent of the last 
oordinate. ut

1.8 Theorem

P = (�; �; 
) 2 F (C ) is a nonsingular point of F i� at least one of

�F

�X

,

�F

�Y

,

�F

�Z

is nonzero at P . At a nonsingular point the tangent line L is given by

L = X

�F

�X

(P ) + Y

�F

�Y

(P ) + Z

�F

�Z

(P ).
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Proof [Kn, Prop.II.2.6℄

Choose � 2 PGl

3

(C ) s.t. �(�; �; 
) = (0; 0; 1).

(�; �; 
) 2 F (C ) so F Æ �

�1

(0; 0; 1) = 0.

As in De�nition 1.2, let

f(x; y) = F (�

�1

(x; y; 1)) = F

�

�

�1

((x; y) 7! (x; y; 1))

�

:

= f

0

(x; y) + :::+ f

d

(x; y)

F Æ �

�1

(0; 0; 1) = f

0

� 0. f

1

(x; y) = ax+ by where a =

�f

�x

(0; 0), b =

�f

�y

(0; 0).

By the Chain Rule

(a; b) =

�

�f

�x

(0; 0);

�f

�y

(0; 0)

�

=

�

�F

�X

(�; �; 
);

�F

�Y

(�; �; 
);

�F

�Z

(�; �; 
)

�

�

�1

0

�

1 0

0 1

0 0

1

A

:

(�

�1

is a linear map so is equal to its derivative.

0

�

1 0

0 1

0 0

1

A

is the derivative of

(x; y) 7! (x; y; 1)).

e

f

1

(x

0

; y

0

; z

0

) = f

1

(x

0

; y

0

) =

�

�f

�x

(0; 0);

�f

�y

(0; 0)

��

x

0

y

0

�

=

�

�F

�X

(�; �; 
);

�F

�Y

(�; �; 
);

�F

�Z

(�; �; 
)

�

�

�1

0

�

x

0

y

0

0

1

A

:

Thus if all partial derivatives are zero at P , then

e

f

1

� 0 (i.e. P is a singular

point). Now F Æ�

�1

(0; 0; 1) = 0, so F Æ�

�1

is a polynomial with no monomials

just in Z. So

�F

�Z

(�; �; 
) �

�1

(0; 0; 1) =

�F

�Z

�

�

�1

(0; 0; 1)

�

�

�1

(0; 0; 1)

=

�

�Z

(F Æ �

�1

)(0; 0; 1)

= 0:

By linearity this means we 
an put anything we like for the third entry of the

ve
tor:

e

f

1

(x

0

; y

0

; z

0

) =

�

�F

�X

(�; �; 
);

�F

�Y

(�; �; 
);

�F

�Z

(�; �; 
)

�

�

�1

0

�

x

0

y

0

0

1

A

=

�

�F

�X

(�; �; 
);

�F

�Y

(�; �; 
);

�F

�Z

(�; �; 
)

�

�

�1

0

�

x

0

y

0

z

0

1

A

:
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Let (x

0

; y

0

; z

0

) = �(X;Y; Z) so that

L(X;Y; Z) =

e

f

1

(x

0

; y

0

; z

0

) =

�

�F

�X

(�; �; 
);

�F

�Y

(�; �; 
);

�F

�Z

(�; �; 
)

�

0

�

X

Y

Z

1

A

.

Thus if at least one of the partial derivatives is nonzero at P , then

e

f

1

6= 0 (i.e.

P is a nonsingular point).

We have shown that at least one of the partial derivatives is nonzero at P i� P

is a nonsingular point and that

L = X

�F

�X

(P ) + Y

�F

�Y

(P ) + Z

�F

�Z

(P ). ut

Fix a 
urve F and a line L in C [X;Y; Z℄.

Let P = (�; �; 
) 2 (F = 0) \ (L = 0). As usual 
hoose � 2 PGl

3

(C ) s.t.

�(�; �; 
) = (0; 0; 1) and let f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y),

l(x; y) = L(�

�1

(x; y; 1)).

l(0; 0) = 0 so l(x; y) = bx� ay for some a; b 2 C .

'(t) =

�

at

bt

�

parametrizes l(x; y) = 0.

f('(t)) = f

1

(at; bt) + :::+ f

d

(at; bt) = tf

1

(a; b) + :::+ t

d

f

d

(a; b).

1.9 De�nition

The interse
tion multipli
ity of L with F at P, i(P;L; F ), is de�ned to be the

order of the zero of f('(t)) at t = 0. (We say i(P;L; F ) = +1 if f Æ' � 0 and

i(P;L; F ) = 0 if P =2 (F = 0) \ (L = 0)).

1.10 Theorem

At a nonsingular point P 2 (F = 0) the tangent line, L

T

, to F at P is the

unique line with i(P;L; F ) > 1.

Proof [Kn, p.35℄

Let L be a line through P.

i(P;L; F ) = 1,

df('(t))

dt

6= 0 at t = 0 , f

1

(a; b) 6= 0, (a; b) =2 (L

T

= 0)

sin
e L

T

=

e

f

1

Æ � by De�nition 1.6.

So (P;L; F ) = 1, image(') * L

T

(C ) , L 6= L

T

. ut

1.11 De�nition

A nonsingular point P 2 F (C ) is 
alled a 
ex or in
e
tion point of F if

3 6 i(P;L; F ) <1.
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We have that a point P is on the 
urve, f

0

= 0. Given a point P on the 
urve,

P is a nonsingular point , f

1

(x; y) 6= 0. Given a nonsingular point P on the


urve, l(x; y) = bx�ay where f

1

(x; y) = bx�ay, and P is a 
ex, f

2

(a; b) = 0.

Let f

2

(x; y) = 
x

2

+ dxy + ey

2

. If f

1

j f

2

then f

2

(a; b) = 0. Conversely if

f

2

(a; b) = 0 then (when a; b 6= 0) f

2

(x; y) = 
x

2

+dxy+ey

2

= (bx�ay)(rx+sy)

where r = 
=b; s = �e=a. So f

1

j f

2

. The 
ases a = 0,b = 0 
an be 
he
ked

separately.

Thus a nonsingular point is a 
ex , f

1

j f

2

.

1.12 De�nition

The Hessian matrix of F is de�ned to be

H :=

0

B

�

�

2

F

�x

2

�

2

F

�x�y

�

2

F

�x�z

�

2

F

�x�y

�

2

F

�y

2

�

2

F

�y�z

�

2

F

�x�z

�

2

F

�y�z

�

2

F

�z

2

1

C

A

1.13 Theorem

A nonsingular point P 2 F is a 
ex , detH(P ) = 0.

To prove this we need a few results �rst.

1.14 Lemma

Let F;G 2 C [X;Y; Z℄ be plane 
urves and P = (�; �; 
) 2 F (C ) \ G(C ). Then

P is a singular point of the 
urve FG.

Proof [Kn, Prop.II.2.3℄

Choose � 2 PGl

3

(C ) s.t. �(P ) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)) = f

1

(x; y) + :::+ f

d

(x; y)

g(x; y) = G(�

�1

(x; y; 1)) = g

1

(x; y) + :::+ g

d

(x; y):

Then

fg(x; y) = FG(�

�1

(x; y; 1)) = F (�

�1

(x; y; 1))G(�

�1

(x; y; 1))

= f

1

g

1

(x; y) + :::+ f

d

g

d

(x; y):

So fg has no �rst degree terms and hen
e P is a singular point of FG. ut

1.15 Theorem - B�ezout's Theorem

Let F;G 2 C [X;Y; Z℄, deg(F ) = m, deg(G) = n. Then F (C )\G(C ) is nonempty

and 
ontains more than mn points i� F and G have a 
ommon fa
tor. In fa
t, if

F and G have no 
ommon fa
tor, then F (C )\G(C ) 
ontains exa
tly mn points

if they are 
ounted with the 
orre
t multipli
ities.

8



Proof

For a 
omplete proof see advan
ed texts on Algebrai
 Geometry. For a proof in

the 
ase when one of the 
urves is a line or a 
oni
 see [Re1, Thm.1.9℄.

1.16 Corollary

A redu
ible plane 
urve F is singular.

Proof [Kn, Cor.II.2.5℄

Let F = F

1

F

2

be plane 
urves and let d

i

& e

i

be the highest and lowest degrees

of terms in F

i

. Now the produ
t of the d

1

terms in F

1

with the d

2

terms in F

2

is the d

1

d

2

part of F

1

F

2

. Similarly the produ
t of the e

1

terms in F

1

with the

e

2

terms in F

2

is the e

1

e

2

part of F

1

F

2

. Sin
e F is homogeneous d

1

d

2

= e

1

e

2

.

So d

1

> e

1

, d

2

< e

2

whi
h is a 
ontradi
tion as by de�nition d

2

� e

2

. Thus

d

1

= e

1

and d

2

= e

2

.

We have shown that F

1

and F

2

are homogeneous, ie. they are plane 
urves.

Theorem 1.15 (B�ezout's Theorem) tells us that F

1

(C ) \F

2

(C ) is nonempty and

Lemma 1.14 says that any point in this interse
tion is singular. ut

1.17 Lemma

Let A = (a

ij

) be a 3� 3 symmetri
 matrix over C . Then the 
oni


C(X;Y; Z) := (X;Y; Z)A

0

�

X

Y

Z

1

A

is redu
ible i� detA = 0.

Proof [Kn, Lem.II.2.11℄

If C is redu
ible then C is singular by Corollary 1.16. Let P 2 C(C ) be a

singular point. By Theorem 1.8

�f

�x

=

�f

�y

=

�f

�z

= 0 at P . A is symmetri
 so

A(P ) = 0. 0 6= P 2 Ker(A) so det(A) = 0.

Conversely we 
an diagonalise A sin
e it is symmetri
. One of the diagonal

entries must be zero sin
e det(A) = 0. so we �nd that the 
oni
 C is proje
tively

equivalent to the 
urve X

2

+ Y

2

= (X + iY )(X � iY ) whi
h is redu
ible. ut

Proof of Theorem 1.13 [Kn, Prop.II.2.12℄

Let L be the tangent line to F at P . Choose � with �(P ) = (0; 0; 1). Let

f(x; y) = F (�

�1

(x; y; 1)). We know that P is a 
ex , f

1

j f

2

. Now 
onsider

the 
oni
 Q

�

(x; y; z) :=

e

f

2

Æ �(x; y; z). f

1

j f

2

, L j Q

�

.

P is a 
ex ) L j Q

�

) L divides the 
oni
 de�ned by H(P ) ) detH(P ) = 0

9



(by Lemma 1.17).

Conversely detH(P ) = 0 ) 
oni
 C de�ned by H(P ) is redu
ible (by Lemma

1.17). C = L

1

L

2

say. Now L is the tangent line to C at P so L = L

1

or L = L

2

.

L j C ) L j Q

�

) P is a 
ex. ut

1.18 Corollary

A nonsingular plane 
urve F with d = deg(F ) > 2 has at least one 
ex.

Proof

By Theorem 1.13 
ex points are solutions of F = 0 = det(H). det(H) is a

plane 
urve of degree 3(d� 2). B�ezout's Theorem tells us that the interse
tion

F (C ) \ det(H)(C ) is non-empty. ut

1.19 Remarks

B�ezout's Theorem tells us that F has 3d(d� 2) 
ex points (if they are 
ounted

with 
orre
t multipli
ities) unless F and det(H) have a 
ommon fa
tor. It turns

out that this 
annot happen unless F is a produ
t of lines. But then of 
ourse

F is redu
ible and hen
e singular by Corollary 1.16.

Every point of F (C ) has a tangent line - the unique line with interse
tion mul-

tipli
ity i(P;L; F ) > 1 by Theorem 1.10. Note that i(P;L; F ) = 2 ex
ept at the

�nite number of 
ex points.

1.20 Summary of Key Points from Chapter 1

1. Let P 2 F (C ). P is a nonsingular point i� at least one of the partials

�F

�X

,

�F

�Y

,

�F

�Z

is not zero at P . The tangent line at P isX

�F

�X

j

P

+Y

�F

�Y

j

P

+Z

�F

�Z

j

P

whi
h is de�ned i� P is a nonsingular point. Nonsingularity is preserved

by proje
tive 
hange of 
oordinates.

2. A 
ex is a nonsingular point at whi
h the tangent line has interse
tion

multipli
ity greater than or equal to 3. A nonsingular point P of a 
urve

F is a 
ex i� det(H(P )) = 0 where H is the Hessian of F .

3. Every nonsingular 
ubi
 
ontains a 
ex point. A nonsingular 
ubi
 has at

most 9 
ex points.

10



2 Ellipti
 Curves

Overview

A 
ubi
 is a non-zero homogeneous polynomial F 2 C [X;Y; Z℄ of degree 3. An

ellipti
 
urve is a nonsingular 
ubi
 in Weierstrass Form. A 
ubi
 is proje
tively

equivalent to a 
ubi
 in Weierstrass Form i� it 
ontains a 
ex. We showed in

Corollary 1.18 that every nonsingular 
ubi
 
ontains a 
ex. Sin
e we regard pro-

je
tively equivalent 
urves as the same, ellipti
 
urves are pre
isely nonsingular


ubi
s. The j-invariant assigns a di�erent 
omplex number to ea
h proje
tive

equivalen
e 
lass of ellipti
 
urves.

2.1 De�nition

A 
ubi
 in the form (Y

2

Z+a

1

XY Z+a

3

Y Z

2

)�(X

3

+a

2

X

2

Z+a

4

XZ

2

+a

6

Z

3

),

a

i

2 C is said to be in Weierstrass Form.

A nonsingular 
ubi
 in Weierstrass Form is 
alled an Ellipti
 Curve.

Let F be a 
ubi
 in Weierstrass Form. Plug in Z = 0 and we are left with �X

3

.

So (0; 1; 0) is the only point of F (C ) at in�nity.

�F

�X

= a

1

Y Z � 3X

2

� 2a

2

XZ � a

4

Z

2

�F

�Y

= 2Y Z + a

1

XZ + a

3

Z

2

�F

�Z

= Y

2

+ a

1

XY + 2a

3

Y Z � a

2

X

2

� 2a

4

XZ � 3a

6

Z

2

At (0; 1; 0),

�F

�X

=

�F

�Y

= 0,

�F

�Z

= 1. By Theorem 1.8 (0; 1; 0) is a nonsingular

point of F and the tangent line to F at (0; 1; 0) is Z = 0. We 
al
ulate the

Hessian matrix H .

H =

0

�

�6X � 2a

2

Z a

1

Z a

1

Y � 2a

2

X � 2a

4

Z

a

1

Z 2Z 2Y + a

1

X + 2a

3

Z

a

1

Y � 2a

2

X � 2a

4

Z 2Y + a

1

X + 2a

3

Z 2a

3

Y � 2a

4

X � 6a

6

Z

1

A

H (0; 1; 0) =

0

�

0 0 a

1

0 0 2

a

1

2 2a

3

1

A

detH(0; 1; 0) = 0, so by Theorem 1.13 (0; 1; 0) is a 
ex of F (C ).

2.2 Theorem

A 
ubi
 F is proje
tively equivalent to a 
ubi
 in Weierstrass Form , F (C )


ontains a 
ex.

11



Proof [Kn, pp.40-42℄

()) is done above.

(() Let P be a 
ex of F. Choose �

1

2 PGl

3

(C ) s.t. �

1

(P ) = (0; 1; 0). Then

F

�

1

has a 
ex at (0; 1; 0). (Re
all that F

�

(X;Y; Z) = F (�

�1

(X;Y; Z))).

Let L = �X + �Z (�,� not both zero) be the tangent line to F

�

1

at (0; 1; 0).

Note there is no term in Y sin
e the line passes through (0; 1; 0).

We want to make a proje
tive 
hange of 
oordinates �

2

whi
h leaves the 
ex

at (0,1,0) and so that L

�

2

= Z. If � = 0 we are done. If � = 0 then just

take �

2

=

0

�

0 0 1

0 1 0

1 0 0

1

A

. If �,� 6= 0 
hoose �

2

with �

�1

2

=

0

�

a 0 b

0 1 0


 0 d

1

A

s.t.

det(�

2

)

�1

= ad� b
 6= 0 and �a+ �
 = 0.

L

�

2

(X;Y; Z) = L(aX + bZ; Y; 
X + dZ) = �(aX + bZ) + �(
X + dZ)

= (�a+ �
)X + (�b+ �d)Z = (�b+ �d)Z

sin
e �a + �
 = 0. Now if �b + �d = 0 then ��ad = ��b
 so ad � b
 = 0.

Contradi
tion. So �b+ �d 6= 0 and L

�

2

(X;Y; Z) = Z.

So, (F

�

1

)

�

2

= F

�

1

Æ �

�1

2

= F Æ �

�1

1

Æ �

�1

2

= F Æ (�

2

�

1

)

�1

= F

�

2

�

1

has a 
ex at

(0,1,0) and (Z=0) is the tangent line at (0,1,0).

Now 
onsider the most general form of a 
ubi
 F:

F = a

X

3

X

3

+ a

X

2

Y

X

2

Y + a

X

2

Z

X

2

Z

+ a

XY

2

XY

2

+ a

XY Z

XY Z + a

XZ

2

XZ

2

+ a

Y

3

Y

3

+ a

Y

2

Z

Y

2

Z + a

Y Z

2

Y Z

2

+ a

Z

3

Z

3

1. (0; 1; 0) 2 F

�

2

�

1

(C ) ) a

Y

3

= 0.

2. (0; 1; 0) is a nonsingular point of F

�

2

�

1

(C ). As in De�nition 1.2, 
onsider

f(x; y) = F

�

2

�

1

(C )(�

�1

(x; y; 1)) where � =

0

�

1 0 0

0 0 1

0 1 0

1

A

,

�(0; 1; 0) = (0; 0; 1). f

1

(x; y) = a

XY

2

x + a

Y

2

Z

y 6= 0 by the de�nition of a

nonsingular point (De�nition 1.3). So a

XY

2

and a

Y

2

Z

are not both zero.

3. The tangent line to F

�

2

�

1

(C ) at (0; 1; 0) is L = Z. But

L =

e

f

1

(�(X;Y; Z)) = a

XY

2

X+a

Y

2

Z

Z. So a

XY

2

= 0 and by 2, a

Y

2

Z

6= 0.

4. (0; 1; 0) is a 
ex of F

�

2

�

1

(C ). Now f

1

(x; y) = a

Y

2

Z

y and f

2

(x; y) =

a

X

2

Y

x

2

+a

XY Z

xy+a

Y

2

Z

y

2

. By the 
omments after De�nition 1.11 f

1

j f

2

.

Hen
e a

X

2

Y

= 0.
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We have

F

�

2

�

1

= a

X

3

X

3

+ a

X

2

Z

X

2

Z + a

XY Z

XY Z

+ a

XZ

2

XZ

2

+ a

Y

2

Z

Y

2

Z + a

Y Z

2

Y Z

2

+ a

Z

3

Z

3

>From De�nition 1.11 i((0; 1; 0); L; F ) < 1. Now L=Z is the tangent line so Z

does not divide F. Thus a

X

3
6= 0. We know from 3. that a

Y

2

Z

6= 0.

Finally we let �

3

=

0

�

�a

Y

2

Z

=a

X

3

0 0

0 a

Y

2

Z

=a

X

3

0

0 0 1

1

A

. Then the 
oeÆ
ient of

Y

2

Z in F

�

3

�

2

�

1

is (a

Y

2

Z

)

3

=(a

X

3

)

2

and the 
oeÆ
ient ofX

3

is �(a

Y

2

Z

)

3

=(a

X

3

)

2

.

Thus after multiplying through by a 
onstant we obtain

F

�

3

�

2

�

1

= (Y

2

Z + a

1

XY Z + a

3

Y Z

2

)� (X

3

+ a

2

X

2

Z + a

4

XZ

2

+ a

6

Z

3

)

as required. ut

Every nonsingular 
ubi
 
ontains a 
ex by Corollary 1.18. By Theorem 2.2 every

nonsingular 
ubi
 is proje
tively equivalent to a 
urve in Weierstrass Form and

by Corollary 1.5 nonsingularity is preserved by a proje
tive 
hange of 
oordi-

nates. Every nonsingular 
ubi
 is proje
tively equivalent to an Ellipti
 Curve.

Note that some 
ubi
s in Weierstrass Form are singular, eg. F = Y

2

Z �X

3

is

singular at (0; 0; 1). Note also that (0; 1; 0) is always a 
ex of a 
ubi
 in Weier-

strass Form. As was remarked earlier this is the only point of F (C ) on the line

at in�nity. So singularity is determined on the aÆne pie
e (Z=1).

With this in mind, from now on we write y

2

+a

1

xy+a

3

y = x

3

+a

2

x

2

+a

4

x+a

6

to represent a 
ubi
 in Weierstrass Form, taking the 
ex at (0; 1; 0) as read.

2.3 Lemma

Every 
ubi
 in Weierstrass Form is proje
tively equivalent to a 
urve in the form

y

2

= x

3

� 27


4

x� 54


6

for some 


4

,


6

2 C .
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Proof

We �rst 
omplete the square on the left-hand-side of the equation:

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

�

y +

a

1

2

x+

a

3

2

�

2

= y

2

+ a

1

xy + a

3

y +

a

2

1

4

x

2

+

a

1

a

3

2

x+

a

2

3

4

= x

3

+ a

2

x

2

+ a

4

x+ a

6

+

a

2

1

4

x

2

+

a

1

a

3

2

x+

a

2

3

4

Let Y := 2y + a

1

x+ a

3

, X := x

Then Y

2

= 4X

3

+ 4a

2

X

2

+ 4a

4

X + 4a

6

+ a

2

1

X

2

+ 2a

1

a

3

X + a

2

3

= 4X

3

+ (4a

2

+ a

2

1

)X

2

+ 2(2a

4

+ a

1

a

3

)X + (a

2

3

+ 4a

6

)

= 4X

3

+ b

2

X

2

+ 2b

4

X + b

6

where b

2

= (4a

2

+ a

2

1

), b

4

= (2a

4

+ a

1

a

3

), b

6

= (a

2

3

+ 4a

6

).

Now we 
omplete the 
ube on the right-hand-side of the equation:

Y

2

4

= X

3

+

b

2

4

X

2

+

b

4

2

X +

b

6

4

�

Y

2

�

2

=

�

X +

b

2

12

�

3

+

�

b

4

2

�

3b

2

2

12

2

�

X +

�

b

6

4

�

b

3

2

12

3

�

:

Now let y

0

:= 108Y andx

0

:= 36X + 3b

2

: Then

�

y

0

216

�

2

=

�

x

0

36

�

3

+

�

b

4

2

�

3b

2

2

12

2

��

x

0

36

�

3b

2

36

�

+

�

b

6

4

�

b

3

2

12

3

�

y

02

= x

03

� 6

6

�

3b

2

2

12

2

�

b

4

2

��

x

0

36

�

+ 6

6

�

3b

2

2

12

2

�

b

4

2

�

3b

2

36

� 6

6

�

b

3

2

12

3

�

b

6

4

�

:

The 
oeÆ
ient of the x

0

term is

�6

4

�

3b

2

2

12

2

�

b

4

2

�

= �2

4

3

4

�

3b

2

2

2

4

3

2

�

b

4

2

�

= �3

3

�

2

4

3

2

b

2

2

2

4

3

2

�

2

4

3b

4

2

�

= �27

�

b

2

2

� 24b

4

�

:
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And the 
onstant term is

6

6

�

3b

2

2

12

2

�

b

4

2

�

3b

2

36

� 6

6

�

b

3

2

12

3

�

b

6

4

�

= 2

6

3

6

�

3b

2

2

2

4

3

2

�

b

4

2

�

3b

2

2

2

3

2

� 2

6

3

6

�

b

3

2

2

6

3

3

�

b

6

2

2

�

= (3

4

� 3

3

)b

3

2

� 2

3

3

5

b

2

b

4

+ 2

4

3

6

b

6

= �54

�

�b

3

2

+ 36b

2

b

4

� 216b

6

�

Thus y

02

= x

03

� 27


4

x

0

� 54


6

where 


4

= b

2

2

� 24b

4

and 


6

= �b

3

2

+ 36b

2

b

4

� 216b

6

. ut

2.4 De�nition

y

2

= x

3

� 27


4

x� 54


6

is 
alled Normal Form.

2.5 De�nition

Let f(x) 2 C [x℄. De�ne the dis
riminant of f ,

d :=

Y

1�i<j�deg(f)

(�

i

� �

j

)

2

where �

i

are the roots of f in C . Clearly d = 0, f(x) has a multiple root.

2.6 Lemma

y

2

= ax

3

+ bx

2

+ 
x+ d is a nonsingular 
ubi
 if and only if ax

3

+ bx

2

+ 
x+ d

has three distin
t roots in C .

Proof [Kn, Prop.III.3.5℄

We are 
onsidering the 
urve F = Y

2

Z � (aX

3

+ bX

2

Z + 
XZ

2

+ dZ

3

). This

is in Weierstrass Form so as was remarked in the 
omments before Lemma

2.3, singularity is determined on the aÆne pie
e (Z=1). This means that any

singular point of F will be of the form (x

0

; y

0

; 1).

By Theorem 1.8 F is singular , 9P = (x

0

; y

0

; 1) 2 F (C ) s.t.

�F

�X

=

�F

�Y

=

�F

�Z

= 0 atP:
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We require (at P):

F = Y

2

Z � aX

3

� bX

2

Z � 
XZ

2

� dZ

3

= 0

�F

�X

= �3aX

2

� 2bXZ � 
Z

2

= 0

�F

�Y

= 2Y Z = 0

�F

�Z

= Y

2

� bX

2

� 2
XZ � 3dZ

2

= 0

Plug in Z=1:

y

2

� ax

3

� bx

2

� 
x� d = 0

3ax

2

+ 2bx+ 
 = 0

2y = 0

y

2

� bx

2

� 2
x� 3d = 0

So if P is a singular point then y

0

= 0. Let f(x) = ax

3

+ bx

2

+ 
x+ d. We are

left with:

f(x

0

) = ax

3

0

+ bx

2

0

+ 
x

0

+ d = 0

f

0

(x

0

) = 3ax

2

0

+ 2bx

0

+ 
 = 0

bx

2

+ 2
x+ 3d = 3f(x

0

)� x

0

f

0

(x

0

) = 0

We see these equations are linearly dependent - the third equation is redundant.

We have shown that P = (x

0

; y

0

; 1) is a singular point of F , y

0

= f(x

0

) =

f

0

(x

0

) = 0. Su
h a point exists , f(x) = ax

3

+ bx

2

+ 
x + d has a multiple

root. ut

2.7 Cal
ulating the Dis
riminant of a Cubi


Let f(x) 2 C [x℄ be a 
ubi
 polynomial. We know that y

2

= f(x) is a singular


urve i� f(x) has a multiple root by Lemma 2.6. >From De�nition 2.5 f(x) has

a multiple root i� the dis
riminant of f is zero. This gives us a 
onvenient way

of 
he
king if a 
urve in the Normal Form (de�ned in 2.4) y

2

= x

3

�27


4

x�54


6

is singular.

At the moment the dis
riminant of f is de�ned in terms of the roots of f . It will

be useful to a have a des
ription of the dis
riminant in terms of the 
oeÆ
ients

of f . Let r

1

, r

2

, r

3

be the roots of f . Then

f(x) = (x� r

1

)(x � r

2

)(x� r

3

) = x

3

� �x

2

+ �x� 


where � = r

1

+ r

2

+ r

3

, � = r

1

r

2

+ r

1

r

3

+ r

2

r

3

, 
 = r

1

r

2

r

3

are the three elemen-

tary symmetri
 polynomials in r

1

, r

2

, r

3

. A Theorem of Newton tells us that

every symmetri
 polynomial is expressible as a polynomial of the elementary

symmetri
 polynomials. The dis
riminant is a symmetri
 polynomial in r

1

, r

2

,

r

3

so we 
an express it as a polynomial in �, �, 
. To do this we use a 
unning

determinant tri
k (see [Kn, Prop.III.3.3℄):
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Let M =

0

�

1 1 1

r

1

r

2

r

3

r

2

1

r

2

2

r

2

3

1

A

. Then det(M) = (r

3

� r

2

)(r

3

� r

1

)(r

2

� r

1

).

The dis
riminant of f is given by

d =

Y

1�i<j�deg(f)

(r

i

� r

j

)

2

= (det(M))

2

= det(M)det(M

T

) = det(MM

T

)

Now MM

T

=

0

�

1 1 1

r

1

r

2

r

3

r

2

1

r

2

2

r

2

3

1

A

0

�

1 r

1

r

2

1

1 r

2

r

2

2

1 r

3

r

2

3

1

A

=

0

�

3 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

1

A

where �

i

= r

i

1

+ r

i

2

+ r

i

3

.

�

1

= r

1

+ r

2

+ r

3

= �

�

2

= r

2

1

+ r

2

2

+ r

2

3

= (r

1

+ r

2

+ r

3

)

2

� 2(r

1

r

2

+ r

1

r

3

+ r

2

r

3

) = �

2

� 2�

�

3

= r

3

1

+ r

3

2

+ r

3

3

= (r

1

+ r

2

+ r

3

)

3

� 3(r

1

+ r

2

+ r

3

)(r

1

r

2

+ r

1

r

3

+ r

2

r

3

) + 3r

1

r

2

r

3

= �

3

� 3�� + 3


�

4

= �

4

� 2�

2

� + 2�

2

+ 4�
:

We have expressed the dis
riminant of a 
ubi
 polynomial f in terms of its


oeÆ
ients. Let's use this to �nd the dis
riminant, d, of x

3

� 27


4

x � 54


6

in

terms of 


4

and 


6

.

� = 0; � = �27


4

; 
 = 54


6

�

1

= � = 0

�

2

= �

2

� 2� = 2 � 3

3




4

�

3

= �

3

� 3�� + 3
 = 2 � 3

4




6

�

4

= �

4

� 2�

2

� + 2�

2

+ 4�
 = 2 � 3

6




2

4

d = det

0

�

3 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

1

A

= det

0

�

3 0 2 � 3

3




4

0 2 � 3

3




4

2 � 3

4




6

2 � 3

3




4

2 � 3

4




6

2 � 3

6




2

4

1

A

= 3(2

2

� 3

9




3

4

� 2

2

� 3

8




2

6

) + 2 � 3

3




4

(�2

2

3

6




2

4

)

= 2

2

� 3

9

(


3

4

� 


2

6

):
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2.8 More About Dis
riminants

The roots of the quadrati
 polynomial ax

2

+ bx + 
 are

�b�

p

b

2

�4a


2a

and the

dis
riminant is b

2

� 4a
.

Let x

3

+ ax

2

+ bx + 
 be a 
ubi
. Complete the 
ube to bring it to the form

X

3

+ pX + q. If p = 0 we have X

3

+ q whi
h has dis
riminant �27q

2

. If q = 0

we have X(X

2

+ p) whi
h has dis
riminant �4p

3

.

Now assume that pq 6= 0. Note that X = 0 is a solution i� q = 0.

f : C nf0g ! C nf0g, Z 7! Z�

p

3Z

is a 2-to-1 fun
tion sin
e for ea
h X 2 C nf0g,

X�

p

X

2

+4p=3

2

7! X . We �nd the roots of the 
ubi
 by substituting Z �

p

3Z

for

X and solving for Z. We get Z

3

+ q �

p

3

27Z

3

. So solve Z

6

+ qZ

3

�

p

3

27

whi
h is a

quadrati
 in Z

3

: Z

3

=

�q

2

�

q

q

2

4

+

p

3

27

. The six solutions for Z must yield the

three solutions for X (i.e. the solutions for Z pair o�). We 
an 
al
ulate that

the dis
riminant of X

3

+ pX + q is therefore �4p

3

� 27q

2

.

Above we showed that the dis
riminant of the 
ubi
 x

3

� 27


4

x� 54


6

is

2

2

� 3

9

(


3

4

� 


2

6

). Plug p = �27


4

, q = 54


6

into �4p

3

� 27q

2

and we do indeed

get 2

2

� 3

9

(


3

4

� 


2

6

).

2.9 De�nition

Re
all from Lemma 2.3 that any 
urve in Weierstrass Form y

2

+ a

1

xy + a

3

y =

x

3

+ a

2

x

2

+ a

4

x + a

6

is proje
tively equivalent to a 
urve in the Normal Form

y

2

= x

3

� 27


4

x� 54


6

. The dis
riminant of a 
urve in Weierstrass Form is

� :=




3

4

� 


2

6

1728

Singularity is preserved by proje
tive 
hanges of 
oordinates so a 
urve in

Weierstrass Form is singular i� the 
orresponding 
urve in Normal Form from

Lemma 2.3 is singular. By Lemma 2.6 the 
urve in Normal Form is singular i�

x

3

� 27


4

x � 54


6

has repeated roots. x

3

� 27


4

x� 54


6

has repeated roots i�

its dis
riminant (De�nition 2.5), d = 2

2

� 3

9

(


3

4

� 


2

6

) is zero. d is zero i� � is

zero by the de�nition of �.

So a 
urve in Weierstrass Form is singular i� its dis
riminant, � = 0. We

see that ellipti
 
urves are pre
isely 
urves in Weierstrass Form with non-zero

dis
riminant.

2.10 De�nition

An admissable 
hange of 
oordinates is a proje
tive 
hange of 
oordinates of the

form

18



� =

0

�

u

2

0 r

su

2

u

3

t

0 0 1

1

A

where r, s, t, u 2 C , u 6= 0.

Note that det(�) = u

5

6= 0 so � 2 PGl

3

(C ).

2.11 Lemma

The set of admissable 
hanges of 
oordinates is a subgroup of PGl

3

(C ).

Proof

Inverse:

�

�1

=

0

�

u

�2

0 �ru

�2

�su

�3

u

�3

u

�3

(rs � t)

0 0 1

1

A

=

0

�

U

2

0 R

SU

2

U

3

T

0 0 1

1

A

where R = �ru

�2

, S = �su

�1

, T = u

�3

(rs� t), U = u

�1

6= 0.

Closure:

0

�

u

2

1

0 r

1

s

1

u

2

1

u

3

1

t

1

0 0 1

1

A

0

�

u

2

2

0 r

2

s

2

u

2

2

u

3

2

t

2

0 0 1

1

A

=

0

�

u

2

1

u

2

2

0 r

2

u

2

1

+ r

1

s

1

u

2

1

u

2

2

+ s

2

u

3

1

u

3

2

u

3

1

u

3

2

r

2

s

1

u

2

1

+ u

3

1

t

2

+ t

1

0 0 1

1

A

=

0

�

U

2

0 R

SU

2

U

3

T

0 0 1

1

A

where R = r

2

u

2

1

+r

1

, S = s

1

+s

2

u

1

u

2

, T = r

2

s

1

u

2

1

+u

3

1

t

2

+t

1

, U = u

1

u

2

6= 0. ut

2.12 Theorem

Let F (X;Y; Z) = (Y

2

Z + a

1

XY Z + a

3

Y Z

2

)� (X

3

+ a

2

X

2

Z + a

4

XZ

2

+ a

6

Z

3

)

be a 
urve in Weierstrass Form and �

�1

=

0

�

u

2

0 r

su

2

u

3

t

0 0 1

1

A

be an admissable


hange of 
oordinates. Then F

�

is a 
urve in Weierstrass Form. Under this


hange of 
oordinates the 
ex at (0,1,0) remains at (0,1,0) and the tangent line

at (0,1,0) remains (Z = 0).

Admissable 
hanges of 
oordinates are the only proje
tive 
hanges of 
oordinates

that keep F in Weierstrass Form, send the 
ex at (0; 1; 0) to itself and preserve

its tangent line (Z = 0).

Proof

For the �rst part Z is preserved by an admissable 
hange of 
oordinates. As was

remarked in De�nition 1.1 F

�

(C ) = �(F (C )). So the only point at in�nity in

F

�

(C ) is �(0; 1; 0) = (0; 1; 0). So instead of plugging in �(X;Y; Z) for (X,Y,Z)

and then putting Z=1, we 
an work in the aÆne pie
e (Z=1), taking
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x

0

= u

2

x+ r; y

0

= u

3

y + su

2

x+ t as our admissable 
hange of 
oordinates.

fy

02

+ a

1

x

0

y

0

+ a

3

y

0

g � fx

03

+ a

2

x

02

+ a

4

x

0

+ a

6

g

= f(u

3

y + su

2

x+ t)

2

+ a

1

(u

2

x+ r)(u

3

y + su

2

x+ t) + a

3

(u

3

y + su

2

x+ t)g

� f(u

2

x+ r)

3

+ a

2

(u

2

x+ r)

2

+ a

4

(u

2

x+ r) + a

6

g

= fy

2

+ u

�1

(2s+ a

1

)xy + u

�3

(2t+ a

1

r + a

3

)ygu

6

� fx

3

+ u

�2

(�s

2

� a

1

s+ 3r + a

2

)x

2

+ u

�4

(�2st� a

1

t� rs� a

3

s+ 3r

2

+ 2a

2

r + a

4

)x

+ u

�6

(�t

2

� a

1

rt� a

3

t+ r

3

+ a

2

r

2

+ a

4

r + a

6

)gu

6

We have the 
urve

y

2

+ u

�1

(2s+ a

1

)xy + u

�3

(2t+ a

1

r + a

3

)y

= x

3

+ u

�2

(�s

2

� a

1

s+ 3r + a

2

)x

2

+u

�4

(�2st� a

1

t� rs� a

3

s+ 3r

2

+ 2a

2

r + a

4

)x

+u

�6

(�t

2

� a

1

rt� a

3

t+ r

3

+ a

2

r

2

+ a

4

r + a

6

)

so Weierstrass Form is preserved. We know (0,1,0) was sent to (0,1,0) and by

the 
omments after De�nition 2.1 it is still a 
ex with tangent line (Z = 0).

Note that the 
oeÆ
ients are powers of u (multiplied by a lot of junk).

This explains the mysterious subs
ripts 
hosen for the a

i


oeÆ
ients in

Weierstrass Form. After an admissable 
hange of 
oordinates they are multiples

of u

�i

. In the 
ase that r = s = t = 0, i.e. � =

0

�

u

2

0 0

0 u

3

0

0 0 1

1

A

, the 
urve

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

be
omes the 
urve

y

2

+ a

1

u

�1

xy + a

3

u

�3

y = x

3

+ a

2

u

�2

x

2

+ a

4

u

�4

x+ a

6

u

�6

:

It remains to show that admissable 
hanges of 
oordinates are the only proje
tive


hanges of 
oordinates that keep F in Weierstrass Form, send the 
ex at (0; 1; 0)

to itself and preserve the tangent line Z = 0.

Let �

�1

=

0

�

� � 


Æ � �

� � �

1

A

.

�

�1

(0; 1; 0) = (0; 1; 0) so � = � = 0.

We also require that the tangent line to F (�

�1

(X;Y; Z)) at (0,1,0) be (Z = 0).

Thus

�(FÆ�

�1

)

�X

= 0 at (0,1,0). We know from multi-variable 
al
ulus that:

�(FÆ�

�1

)

�X

j

(0;1;0)

= D(F Æ�

�1

)

(0;1;0)

(e

1

) where DG j

P

is the total derivative of G

at P and e

1

= (1; 0; 0). So

�(FÆ�

�1

)

�X

j

(0;1;0)

= D(F Æ �

�1

)

(0;1;0)

(e

1

) = DF j

�

�1

(0;1;0)

ÆD�

�1

j

(0;1;0)

(e

1

)
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= DF j

(0;1;0)

Æ �

�1

(e

1

) =

�

�F

�X

�F

�Y

�F

�Z

�

j

(0;1;0)

0

�

�

Æ

�

1

A

=

�

0 0 1

�

0

�

�

Æ

�

1

A

= �

(Re
all from 2.1 that

�

�F

�X

�F

�Y

�F

�Z

�

j

(0;0;1)

=

�

0 0 1

�

):

Thus � = 0 and �

�1

=

0

�

� 0 


Æ � �

0 0 �

1

A

. We are working in PGL

3

(C ) so we 
an

multiply �

�1

by �

�1

. This shows that �

�1

preserves Z. So again we 
an work

in the aÆne pie
e (Z = 1) and 
onsider the 
hange of 
oordinates

x

0

= �x + 
, y

0

= Æx + �y + �. Take the 
urve y

02

= x

03

. Our 
hange of


oordinates must preserve Weierstrass Form so we see that �

3

= �

2

. Thus

�

�1

=

0

�

u

2

0 


Æ u

3

�

0 0 �

1

A

where u = �

1=2

= �

1=3

. After multiplying by �

�1

this is

an admissable 
hange of 
oordinates. Note that the Æ term is OK be
ause we


an 
hoose s so be anything we like. ut

2.13 De�nition

The mysterious subs
ripts of the 
oeÆ
ients of a 
urve in Weierstrass Form were

dis
ussed in the proof of Theorem 2.12. De�ne i to be the weight of a

i

.

Note that the produ
t a

i

a

j

has weight i + j sin
e if a

i

is sent to a multiple of

u

�i

by an admissable 
hange of 
oordinates and a

j

is sent to a multiple of u

�j

then the produ
t of what they are sent to is a multiple of u

�(i+j)

. Similarly

a

�1

i

has weight �i and the sum �a

i

+ �b

i

has weight i for any 0 6= (�; �) 2 C

2

.

2.14 Remark

Let F = Y

2

Z + Y Z

2

� X

3

, � =

0

�

1 0 0

0 0 1

0 1 0

1

A

. Then F

�

= F , but � is not

an admissable 
hange of 
oordinates. In this example the Weierstrass Form is

preserved, but (0,1,0) is taken to (0,0,1). In fa
t the 
urve has 
exes at (0; 1; 0)

and (0; 0; 1). � simply swaps them.

So there are proje
tive 
hanges of 
oordinates whi
h preserve Weierstrass Form

that are not admissable 
hanges of 
oordinates, but these do not satisfy the


onditions that the 
ex at (0,1,0) be preserved and the tangent line remain

(Z=0).

2.15 De�nition

Two ellipti
 
urves F

1

and F

2

are isomorphi
 if there is an admissable 
hange

of 
oordinates � su
h that F

�

1

= F

2

. We write F

1

�

=

F

2

.
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2.16 De�nition

The j-invariant of an ellipti
 
urve is

j :=




3

4

�

=

1728


3

4




3

4

� 


2

6

,

where � is the dis
riminant as de�ned in 2.9.

Note that j is de�ned be
ause � 6= 0 for a nonsingular 
urve.

By the remarks after De�nition 2.13 


4

has weight 4, 


6

has weight 6, � has

weight 12 and j has weight 0. We justify the name invariant in the next Theo-

rem.

2.17 Theorem

Two ellipti
 
urves are isomorphi
 i� they have the same j-invariant. For every

j 2 C there exists an ellipti
 
urve with that j-invariant.

Thus j : fisomorphism 
lasses of ellipti
 
urvesg ! C is a bije
tion.

Proof

Consider two ellipti
 
urves in Normal Form:

C : (y

2

= x

3

� 27


4

x� 54


6

)

D : (y

2

= x

3

� 27d

4

x� 54d

6

)

Claim C

�

=

D , 9u 6= 0 s.t. 


4

= u

4

d

4

and 


6

= u

6

d

6

.

()) Re
all from the �rst underlined se
tion of Theorem 2.12 that admissable


hanges of 
oordinates are x

0

= u

2

x+ r,y

0

= u

3

y+ su

2

x+ t where r; s; t; u 2 C ,

u 6= 0. Plug this into C:

(u

3

y + su

2

x+ t)

2

= (u

2

x+ r)

3

� 27


4

(u

2

x+ r) � 54


6

u

6

y

2

+ 2su

5

xy + 2tu

3

y = u

6

x

3

+ (3ru

4

� s

2

u

4

)x

2

+ (3r

2

u

2

� 2stu

2

� 27


4

u

2

)x+ (r

3

� t

2

� 27


4

r � 54


6

)

C

�

=

D so there is a 
hoi
e of r; s; t; u bringing this mess to the form of D.

The 
oeÆ
ient of xy = 0 so s = 0 (be
ause u 6= 0)

And the 
oeÆ
ient of y = 0 so t = 0.

And the 
oeÆ
ient of x

2

= 0 so r = 0.

So we have u

6

y

2

= u

6

x

3

� 27


4

u

2

x� 54


6

, whi
h is the same 
urve as

y

2

= x

3

� 27u

�4




4

x� 54u

�6




6

. This is the only way we 
an get to this form so

9u 6= 0 s.t. 


4

= u

4

d

4

and 


6

= u

6

d

6

.

(() Just take x

0

= u

2

x

2

, y

0

= u

3

y as the admissable 
hange of 
oordinates.
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Now let E be an ellipti
 
urve. We showed in Lemma 2.3 that E is proje
tively

equivalent to a 
urve in Normal Form. In one step the 
hange of 
oordinates

used was

x

0

= 36x+ 3b

2

; y

0

= 216y+ 108a

1

x+ 108a

3

.

This is an admissable 
hange of 
oordinates with u = 6. So we showed in Lemma

2.3 that every ellipti
 
urve E is isomorphi
 to a 
urve in Normal Form.

Let E be an ellipti
 
urve isomorphi
 to C and F an Ellipti
 Curve isomorphi


to D. By Lemma 2.11 the set of admissable 
hanges of 
oordinates is a group

so E

�

=

F , C

�

=

D. The 
laim above showed that C

�

=

D , 9u 6= 0 s.t.




4

= u

4

d

4

and 


6

= u

6

d

6

.

The j-invariant of E is de�ned to be j

E

=

1728


3

4




3

4

�


2

6

.

E

�

=

F ) C

�

=

D ) 9u 6= 0 s.t. 


4

= u

4

d

4

and 


6

= u

6

d

6

.

So the j-invariant of F is j

E

=

1728


3

4




3

4

�


2

6

=

1728(d

4

u

4

)

3

(d

4

u

4

)

3

�(d

6

u

6

)

2

=

1728d

3

4

d

3

4

�d

2

6

= j

F

.

Conversely if j

E

= j

F

then (assuming 


4

,d

4

6= 0),

1728

1�


2

6

=


3

4

=

1728

1�d

2

6

=d

3

4

. So




2

6




3

4

=

d

2

6

d

3

4

. Now 9v 6= 0 s.t. 


4

= v

4

d

4

. But then 


2

6

d

3

4

= d

2

6

v

12

d

3

4

so 


2

6

= v

12

d

2

6

)




6

= �v

6

d

6

. If 


6

= +v

6

d

6

let u = v. If 


6

= �v

6

d

6

let u =

p

�1v. Then




4

= u

4

d

4

and 


6

= u

6

d

6

. So C

�

=

D and thus E

�

=

F .

If 


4

= 0 then j

E

= 1728 = j

F

so d

4

= 0. Similarly if d

4

= 0 then 


4

= 0. In

this 
ase C : (y

2

= x

3

� 54


6

), D : (y

2

= x

3

� 54d

6

). There exists u 6= 0 s.t.




6

= u

6




6

so C

�

=

D and thus E

�

=

F .

We have shown that j : fisomorphism 
lasses of ellipti
 
urvesg ! C is a well-

de�ned inje
tion. It remains to show that it is a surje
tion. Fix j 2 C .

If j = 0 then take 


4

= 0 and 


6

6= 0. That is take the 
urve y

2

= x

3

� 54


6

. If

j = 1728 then take 


6

= 0 and 


4

6= 0. Note that in both 
ases � 6= 0 so these

are indeed nonsingular and hen
e ellipti
 
urves.

If j 6= 0; 1728 take 


4

= 


6

=

j

j�1728

. The 
urve y

2

= x

3

� 27


4

x � 54


6

has

� =

j

2

(j�1728)

3

and j-invariant j as required. ut

It will be useful to have a formula for the dis
riminant and j-invariant of the


urve y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

. Re
all this was the intermediate 
urve used

in the proof of Lemma 2.3.




3

4

= b

6

2

� 2

3

� 3

2

b

4

2

b

4

+ 2

6

� 3

3

b

2

2

b

2

4

� 2

9

� 3

3

b

3

4




2

6

= b

6

2

� 2

3

� 3

2

b

4

2

b

4

+ 2

4

� 3

3

b

3

2

b

6

+ 2

4

� 3

4

b

2

2

b

2

4

� 2

6

� 3

5

b

2

b

4

b

6

+ 2

6

� 3

6

b

2

6

� =




3

4

� 


2

6

1728

= b

2

2

b

2

4

� 2

3

b

3

4

�

b

3

2

b

6

2

2

�

3b

2

2

b

2

4

2

2

+ 3

2

b

2

b

4

b

6

� 3

3

b

2

6

= b

2

2

(

b

2

4

4

�

b

2

b

6

4

)� 8b

3

4

� 27b

2

6

+ 9b

2

b

4

b

6

We de�ne b

8

:=

b

2

b

6

4

�

b

2

4

4

so that � = �b

2

2

b

8

� 8b

3

4

� 27b

2

6

+ 9b

2

b

4

b

6

. j =




3

4

�

.
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If we had started with a 
urve in general Weierstrass Form with 
oeÆ
ients a

i

then we 
ould express b

8

in terms of the a

i

as follows.

b

8

=

b

2

b

6

4

�

b

2

4

4

=

(a

2

1

+ 4a

2

)(a

2

3

+ 4a

6

)

4

�

(2a

4

+ a

1

a

3

)

2

4

= a

2

1

a

6

+ 4a

2

a

6

� a

1

a

3

a

4

+ a

2

a

2

3

� a

2

4

:

2.18 Summary of Key Points from Chapter 2

1. An ellipti
 
urve is a nonsingular 
ubi
 in Weierstrass Form

(y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

).

2. b

2

= a

2

1

+ 4a

2

, b

4

= 2a

4

+ a

1

a

3

, b

6

= a

2

3

+ 4a

6

.

(y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

).

3. 


4

= b

2

2

� 24b

4

, 


6

= �b

3

2

+ 36b

2

b

4

� 216b

6

.

Normal Form: (y

2

= x

3

� 27


4

x� 54x

6

).

4. The dis
riminant, � =




3

4

�


2

6

1728

:

The j-invariant, j =




3

4

�

=

1728


3

4




3

4

�


2

6

:

5. An admissable 
hange of 
oordinates, x

0

= u

2

x + r, y

0

= u

3

y + su

2

x + t

where u 6= 0. Two ellipti
 
urves are isomorphi
 if they are related by an

admissable 
hange of 
oordinates.

j : fisomorphism 
lasses of ellipti
 
urvesg ! C is a bije
tion.

6. The subs
ripts of the 
oeÆ
ients of a 
urve in Weierstrass Form are 
alled

weights. a

i

, b

i

, 


i

have weight i. � has weight 12 and j has weight 0.
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3 Complex Tori

In this 
hapter we look at ellipti
 
urves from a di�erent perspe
tive. De�ne

a latti
e � := !

1

Z+ !

2

Z � C where !

1

; !

2

2 C nf0g and

!

1

!

2

=2 R. That is !

1

and !

2

are linearly independent over R. A 
omplex torus is de�ned to be C =�.

Topologi
ally it is a torus. We are going to show there is a 
orresponden
e

between 
omplex tori and ellipti
 
urves.

3.1 De�nition

Fix a latti
e � � C . De�ne

} : C n� ! C

}(z) =

1

z

2

+

X

!2�nf0g

�

1

(z � !)

2

�

1

!

2

�

This is 
alled the Weierstrass } - fun
tion.

} is a meromorphi
 fun
tion with double poles at the points of �. The �

1

!

2

term in the sum insures that the sum 
onverges absolutely. } is an example of

an ellipti
 fun
tion - a doubly periodi
 meromorphi
 fun
tion. We 
an view an

ellipti
 fun
tion as a well-de�ned meromorphi
 fun
tion from C =� ! C .

1

! � z

=

1=!

1� z=!

=

1

!

(1 +

z

!

+

z

2

!

2

+ :::::)

1

(! � z)

2

=

1

!

2

(1 +

2z

!

+

3z

2

!

2

+ :::::) = (

1

!

2

+

2z

!

3

+

3z

2

!

4

+ :::::)

}(z)�

1

z

2

=

X

!2�nf0g

�

1

(z � !)

2

�

1

!

2

�

=

1

X

k=1

(k + 1)G

k+2

z

k

where G

k

:=

X

!2�nf0g

1

!

k

: Note that for odd k, G

k

= 0, and hen
e

}(z) =

1

z

2

+ 3G

4

z

2

+ 5G

6

z

4

+ :::::

}

0

(z) =

�2

z

3

+ 6G

4

z + 20G

6

z

3

+ 42G

8

z

5

+ :::::

By dire
t 
omputation we 
an show that

(}

0

(z))

2

= 4}

3

(z) � 60G

4

}(z) � 140G

6

+ P (z) where P (z) is a polynomial in

z with lowest term a multiple of z

7

. P (z) is an ellipti
 fun
tion sin
e it is the

sum of ellipti
 fun
tions. P (z) has no poles so is a bounded entire fun
tion. By

Liouville's Theorem P (z) is a 
onstant but its lowest term is z

7

so it is zero.
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We have shown that } satis�es the di�erential equation (}

0

)

2

= 4}

3

� g

2

}� g

3

where g

2

:= 60G

4

and g

3

:= 140G

6

. De�ne

' : C =� ! P

2

C

'(z) =

(

(}(z); }

0

(z); 1) if z =2 �;

(0; 1; 0) if z 2 �:

Be
ause of the di�erential equation satis�ed by },

'(C =�) � E : (Y

2

Z = 4X

3

� g

2

XZ

2

� g

3

Z

3

) � P

2

C

.

3.2 Theorem

' : C =� ! E(C ) is a holomorphi
 bije
tion with holomorphi
 inverse.

Proof [Kn, Thm.VI.6.14℄

C =� is a 1-dimensional 
omplex manifold; P

2

C

is a 2-dimensional 
omplex man-

ifold. We want to show ' is holomorphi
 as a map of manifolds. Let (x; y; 1) 2

'(C =�). Use the 
hart map (x; y; 1) 7! (x; y) in a neighbourhood of this

point. We then have z 7! (}(z); }

0

(z)) whi
h is holomorphi
. In a nbhd of

(0; 1; 0) use the 
hart map (x; 1; y) 7! (x; y). In this nbhd we have the map

0 6= z 7!

�

}(z)

}

0

(z)

;

1

}

0

(z)

�

and 0 7! (0; 0). } and }

0

have �nitely many poles and

zeroes in a 
ompa
t subset of C . So there is a pun
tured dis
 around 0 where

this map has no zeroes or poles. Thus it is holomorphi
 on a pun
tured dis


around 0 and is 
ontinuous at 0, so it is holomorphi
 at 0 too. This shows ' is

holomorphi
 as map of 
omplex manifolds.

Suppose '(z

1

) = '(z

2

). That is }(z

1

) = }(z

2

) and }

0

(z

1

) = }

0

(z

2

). } has

a pole of order 2 at 0 and no other poles. Let � be the parallelogram in C

with verti
es at 0, !

1

, !

2

and !

1

+ !

2

. Translate � in the 
omplex plane to a

parallelogram �

0

s.t. }, }

0

have no zeroes or poles on its boundary. From Com-

plex Analysis

R

��

0

z}

0

(z)

}(z)

dz =

P

zeroes of } �

P

poles of }. Now the integral

is zero sin
e } is periodi
 so z

1

= z

2

where z denotes 
omplex 
onjugate. Thus

}

0

(z

1

) = }

0

(z

2

) = }

0

(�z

2

) = �}

0

(z

2

) sin
e

}

0

(z) = �2

P

!2�

1

(z�!)

3

is an odd fun
tion. But by assumption }

0

(z

1

) = }

0

(z

2

)

so }

0

(z

1

) = }

0

(z

2

) = 0. Now }

0

has a pole of order 3 at 0 and no other poles.

R

�

0

}

0

}

= (no. of zeroes of }

0

) � (no. of poles of }

0

). So }

0

has 3 zeroes. Sin
e it

is a periodi
 odd fun
tion !

1

=2, !

2

=2 and (!

1

+ !

2

)=2 are zeroes and therefore

the only zeroes of }

0

. Thus z

1

is one of these three points and so z

1

= z

1

and

by the above z

2

= z

1

. Hen
e z

1

= z

2

. Thus ' is inje
tive.

To show ' is surje
tive �x (a; b; 1) 2 E(C ). Sin
e

R

�

0

}

0

�a

}�a

= (no. of zeroes of }� a) � (no. on poles of }� a) and } � a has a

double pole at 0 we see 9 z s.t. }(z) = a. Be
ause of the di�erential equation

satis�ed by }, b

2

= }

0

(z)

2

. If }

0

(z) = �b then }

0

(z) = b. Thus ' is surje
tive.

26



We have shown ' is a holomorphi
 bije
tion. We 
an show that it has a holo-

morphi
 inverse using the Inverse Fun
tion Theorem. ut

3.3 Corollary

With notations as in Theorem 3.2 '(C =�) is an ellipti
 
urve.

Proof

By the proof of Theorem 3.2 the zeroes of }

0

are !

1

=2, !

2

=2 and

!

3

:= (!

1

+!

2

)=2. Now }(z)�}(!

i

) has a double zero at !

i

=2. By the proof of

Theorem 3.2 }(z)�}(!

i

) has the same number of zeroes and poles. So !

i

=2 are

its only zeroes. Thus }(!

i

) 6= }(!

j

) for i 6= j. This shows that 4}

3

� g

2

}� g

3

has distin
t zeroes in C .

By Lemma 2.6, '(C =�) is a nonsingular 
ubi
. Thus '(C =�) is an ellipti
 
urve

ex
ept for the fa
tor of 4X

3

instead of X

3

. This is a minor point and de�ning an

ellipti
 
urve to have 4X

3

would not a�e
t the 
ontent of Se
tion 2 very mu
h.

In fa
t the only 
hange would be to substitute y=2 for y in the normal form. It

was presented in that way be
ause the notation is absolutely standard. ut

In the remarks before Summary 2.18 we looked at � and j for a 
urve in the

form y

2

= 4x

3

+ b

2

x

2

+ 2b

4

x+ b

6

.

We have the 
urve y

2

= 4x

3

�g

2

x�g

3

. Using notation as in the remarks before

Summary 2.18, b

2

= 0, b

4

=

�g

2

2

, b

6

= �g

3

so � = �8b

3

4

� 27b

2

6

= g

3

2

� 27g

2

3

and 


4

= �2

9

� 3

3

b

3

4

= 2

6

� 3

3

g

3

2

. Thus j =




3

4

�

=

1728g

3

2

g

3

2

�27g

2

3

.

3.4 De�nition

The j-invariant of a latti
e � � C is de�ned to be j(�) :=

1728g

3

2

g

3

2

�27g

2

3

.

A holomorphi
 bije
tion with holomorphi
 inverse is a homeomorphism so by

Corollary 3.3 a 
omplex torus is topologi
ally equivalent to an ellipti
 
urve.

Given any ellipti
 
urve in P

2

C

we 
an bring it to the form E : (y

2

= 4x

3

�ax�b)

and to this we 
an asso
iate a 
omplex torus, although this is not trivial. The

Uniformization Theorem says that there exists a unique latti
e � � C s.t.

g

2

(�) = a and g

3

(�) = b. For a proof see [Sh, 4.2℄.

We say two 
omplex tori are 
onformally equivalent if there is an analyti
 bije
-

tion between them. Conformal equivalen
e is an equivalen
e relation. We want

to know when two 
omplex tori are 
onformally equivalent.
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3.5 Theorem

Two 
omplex tori C =�

1

and C =�

2

are 
onformally equivalent i� 9G 2 Aut(C ) =

fbije
tive analyti
 C ! C g s.t. �

1

= G

�1

�

2

G.

Proof

Let p

i

: C ! C =�

i

be the natural 
overing maps and let f : C =�

1

! C =�

2

be an

analyti
 bije
tion. Fix z 2 C and pi
k w 2 C su
h that p

2

(w) = f(p

1

(z)). Set

G(z) = w. Take z

0

2 C . Let 
 be a 
urve with 
(0) = z and 
(1) = z

0

. We get a


urve f Æ p

1

Æ 
 from f(p

1

(z)) to f(p

1

(z

0

)). Let � be the lift of f Æ p

1

Æ 
 starting

at w. Let w

0

= �(1) and set G(z

0

) = w

0

. If e
 is a di�erent 
urve from z to z

0

then e
 is homotopi
 to 
. So f Æ p

1

Æ e
 is homotopi
 to f Æ p

1

Æ 
 and so by the

Mono
hromy Theorem their lifts � and

e

� are homotopi
 as �(0) =

e

�(0) = w.

Hen
e �(1) =

e

�(1) = w

0

so G is well-de�ned. p

2

Æ G = f Æ p

1

. This shows

that G : C ! C is analyti
. Be
ause of uniqueness of lifting and be
ause

f is invertible � determines 
 uniquely. In parti
ular �(1) = w

0

determines


(1) = z

0

. Hen
e G is inje
tive and surje
tive. G 2 Aut(C ).

We now show �

1

= G

�1

�

2

G. Take g

1

2 Aut(C ) with g

1

= (z 7! z + �

1

) for

some �

1

2 �

1

. Let z

0

= g

1

(z). Then p

1

(z

0

) = p

1

(z) so f(p

1

(z

0

)) = f(p

1

(z)). In

parti
ular f(p

1

(
(1))) = f(p

1

(
(0))) so p

1

Æ 
 and f Æ p

1

Æ 
 are 
losed loops.

Hen
e 9g

2

2 �

2

su
h that �(1) = g

2

�(0). ie. G(g

1

(z)) = g

2

(G(z)).

In fa
t, the same 
hoi
es work for ez 2 (neighbourhood of z). By the Identity

Prin
iple G Æ g

1

= g

2

ÆG : C ! C . That is �

1

= G

�1

�

2

G. ut

3.6 Corollary

Two tori C =�

1

and C =�

2

are 
onformally equivalent i� 9� 2 C

�

s.t. ��

1

= �

2

.

Proof

Suppose that C =�

1

and C =�

2

are 
onformally equivalent. By Theorem 3.5, 9

G 2 Aut(C ) = fbije
tive analyti
 C ! C g s.t. �

1

= G

�1

�

2

G. It 
an be shown

that Aut(C ) = f�z+�j� 6= 0g. With notation as in Theorem 3.5, G(z) = �z+�,

� 6= 0. G

�1

(z) =

z

�

�

�

�

.

8�

1

2 �

1

, g

1

= (z 7! z + �

1

), 9 g

2

= (z 7! z + �

2

) su
h that g

1

= G

�1

g

2

G.

(z 7! z + �

1

) =

�

z 7!

1

�

((�z + �) + �

2

)�

�

�

�

=

�

z 7! z +

�

2

�

�

i.e. �

2

= ��

1

so ��

1

� �

2

. By the symmetry of the argument �

2

� ��

1

.

Conversely if 9� 2 C

�

s.t. ��

1

= �

2

then f : C =�

1

! C =�

2

, z 7! �z is an

analyti
 bije
tion. ut

3.7 Corollary

Two ellipti
 
urves are isomorphi
 i� the asso
iated 
omplex tori are 
onformally

equivalent.
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Proof

By Corollary 3.6 two 
omplex tori C =�

1

and C =�

2

are 
onformally equivalent

i� 9� 2 C

�

su
h that ��

1

= �

2

. Observe that g

2

(��) = �

�4

g

2

(�) and

g

3

(��) = �

�6

g

3

(�). By the proof of Theorem 2.17 the 
orresponding ellipti



urves y

2

= x

3

�g

2

(�

1

)x�g

3

(�

1

) and y

2

= x

3

�g

2

(�

2

)x�g

3

(�

2

) are isomorphi


i� 9� 2 C

�

su
h that g

2

(�

2

) = �

�4

g

2

(�

1

) and g

3

(�

2

) = �

�6

g

3

(�

1

). ut

The j-invariant is therefore a bije
tion from the set of 
onformal equivalen
e


lasses of 
omplex tori to the set of isomorphism 
lasses of ellipti
 
urves. Ea
h


onformal equivalen
e 
lass 
ontains exa
tly one latti
e Z+�Zwhere Im(�) > 0.

We aim now to �nd a subset of the upper half plane 
ontaining exa
tly one

element from ea
h 
onformal equivalen
e 
lass of 
omplex tori. Let PSL

2

(Z) :=

SL

2

(Z)=f�1g.

3.8 Lemma

Two latti
es !

1

Z+ !

2

Z and !

0

1

Z+ !

0

2

Z are 
onformally equivalent ,

9M 2 PSL

2

(Z) s.t. M

�

!

0

1

!

0

2

�

=

�

!

1

!

2

�

Proof

(() We 
an express !

0

1

and !

0

2

in terms of !

1

and !

2

. NowM

�1

�

!

1

!

2

�

=

�

!

0

1

!

0

2

�

so we 
an also express !

1

and !

2

in terms of !

0

1

and !

0

2

. Hen
e the latti
es are

the same.

()) After multiplying through by some 
onstant � we 
an write

�

!

1

!

2

�

=

�

a b


 d

��

!

0

1

!

0

2

�

for some a; b; 
; d 2 Z.

Similarly

�

!

0

1

!

0

2

�

=

�

e f

g h

��

!

1

!

2

�

for some e; f; g; h 2 Z.

Thus

�

a b


 d

��

e f

g h

�

=

�

1 0

0 1

�

so det

�

a b


 d

�

= �1.

Hen
e M :=

�

a b


 d

�

2 PSL

2

(Z). ut

3.9 De�nition

The Fundamental Domain, D is de�ned to be

D := f� 2 C : �1=2 � Re(�) � 1=2 and j� j � 1g.
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3.10 Theorem

For every z in the upper half plane 9 g 2 PSL

2

(Z) s.t. gz 2 D and this point is

unique (ex
ept for identi�
ations on the boundary).

Proof [Kn, Thm.VIII.8.5℄

Existen
e

Fix z in the upper half plane. Let g =

�

a b


 d

�

2 PSL

2

(Z). Then Im(gz) =

Im(z)

j
z+dj

2

. Sin
e 
 and d are integers there are are only �nitely many 
hoi
es su
h

that j
z + dj is less than a given number. Thus 9 g 2 PSL

2

(Z) s.t. Im(gz) is

a minimum. Choose n 2 N s.t. z

0

:=

�

1 n

0 1

�

z has real part between �1=2

and 1=2. If jz

0

j < 1 then �1=z

0

would have imaginary part stri
tly greater than

Im(gz) 
ontradi
ting the 
hoi
e of g. Thus jz

0

j � 1 and z

0

2 D.

Uniqueness

Let z and gz be in D and g 6= id. We show they are both on the boundary of

D. We 
an assume Im(gz) � Im(z) and thus j
z+ dj � 1. Thus 
 2 f0;�1g. If


 = 0 then g =

�

�1 b

0 �1

�

so both points lie on the boundary. If 
 = �1 then

sin
e j
z + dj � 1, d = 0 ex
ept when z = e

�i=3

or z = e

2�i=3

. If d = 0 then

jzj = 1. We 
an expli
itly 
he
k the 
ases z = e

�i=3

and z = e

2�i=3

. ut

j is a bije
tion from D to C ex
ept for identi�
ations along the boundary. These

identi�
ations are z � z + 1; and when x

2

+ y

2

= 1, x + iy � �x + iy. Given

a 
onformal equivalen
e 
lass of 
omplex tori j takes the unique representative

Z+ �Z with � 2 D and gives the j-invariant of the 
orresponding isomorphism


lass of ellipti
 
urves. The identi�
ations along the boundary make

j : D= � ! P

1

C

a homeomorphism. D= � denotes the 
ompa
ti�
ation of

D= �,whi
h is just D= � plus one point, and P

1

C

is of 
ourse C plus one point.

In the proof of Corollary 3.7 we saw that g

i

(��) = �

�2i

g

i

(�). By Lemma 3.8

and Theorem 3.10 this tells us that g

i

�

a�+b


�+d

�

= (
�+d)

2i

g

i

(�). g

i

is an example

of a Modular Form of weight i. This ties in ni
ely with the notion of weight

de�ned in 2.13. j has weight 0 whi
h 
orresponds to it being invariant under a

proje
tive 
hange of 
oordinates/
onformal equivalen
e. Any modular form of

weight 0 is a
tually a rational fun
tion of j.

3.11 Summary of Key Points from Chapter 3

1. An ellipti
 fun
tion is a doubly periodi
 meromorphi
 fun
tion. The

Weierstrass } fun
tion is an ellipti
 fun
tion. The } fun
tion allows us to
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forge a 
orresponden
e between 
omplex tori and ellipti
 
urves.

2. Latti
es �

1

and �

2

are 
onformally equivalent i� 9� 6= 0 s.t. ��

1

= �

2

.

3. For a latti
e �, j(�) :=

1728g

3

2

g

3

2

�27g

2

3

. j de�nes a bije
tion from the set of


onformal equivalen
e 
lasses of 
omplex tori to the set of isomorphism


lasses of ellipti
 
urves.
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4 Complex Multipli
ation

Every additive abelian group G has trivial homomorphisms g 7! ng 8n 2 Z. El-

lipti
 
urves 
ome equipped with the stru
ture of an additive abelian group. An

ellipti
 
urve E(C ) has 
omplex multipli
ation if it has any nontrivial analyti


homomorphisms E(C ) ! E(C ). We begin this se
tion with a key lemma.

4.1 Lemma

If f : C =��C =� ! C =� is a 
ontinuous fun
tion and is analyti
 in ea
h variable

then there exist a; b; 
 2 C su
h that f(z

1

; z

2

) � az

1

+ bz

2

+ 
 mod � for all

z

1

; z

2

2 C .

Proof [Kn, Lem.VI.6.18℄

Let � = Z!

1

�Z!

2

. Lift to a fun
tion F : C � C ! C .

Then for all m;n 2 Z there exist m

0

; n

0

2 Z su
h that F (z

1

+m!

1

+ n!

2

; z

2

) =

F (z

1

; z

2

) +m

0

!

1

+ n

0

!

2

.

�F

�z

1

(z

1

+m!

1

+ n!

2

; z

2

) =

�F

�z

1

(z

1

; z

2

),

�F

�z

2

(z

1

+m!

1

+ n!

2

; z

2

) =

�F

�z

2

(z

1

; z

2

).

�F

�z

1

and

�F

�z

2

are periodi
 in the �rst variable. Thus they are bounded analyti


fun
tions and so by Liouville's Theorem they are 
onstant.

Similarly they are 
onstant in the se
ond variable. We have

�F

�z

1

= a and

�F

�z

2

= b.

Thus f(z

1

; z

2

) = az

1

+ bz

2

+ 
 as required. ut

We use this Lemma to show that the group de�ned on an ellipti
 
urve E(C ) is

isomorphi
 to the group on a torus. The group law on a torus is just addition

mod �.

4.2 Theorem

' : C =� ! E(C )

z 7!

(

(}(z); }

0

(z); 1) if z =2 �;

(0; 1; 0) if z 2 �:

is a group isomorphism.
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Proof

Re
all that ' is an analyti
 bije
tion with analyti
 inverse.

De�ne f : C =� � C =� ! C =� by f(z

1

; z

2

) := '

�1

('(z

1

) + '(z

2

)). f satis�es

the hypothesis of Lemma 4.1 so f(z

1

; z

2

) � az

1

+ bz

2

+ 
 mod �.

Now f(0; 0) = 0 and f(z; 0) = f(0; z) = z. Thus 
 = 0 and a = b = 1.

f(z

1

; z

2

) = '

�1

('(z

1

)+'(z

2

)) = z

1

+ z

2

. Hen
e '(z

1

+ z

2

) = '(z

1

)+'(z

2

). ut

4.3 De�nition

An isogeny is an analyti
 map h : E(C ) ! E(C ) whi
h �xes the identity of the

group. That is h(0; 1; 0) = (0; 1; 0).

4.4 Theorem

If h : E(C ) ! E(C ) is an isogeny then h('(z)) = '(az) for some a 2 C .

Proof

Let f(z

1

; z

2

) := '

�1

Æ h Æ '(z

1

). f satis�es the hypothesis of Lemma 4.1 so

f(z

1

; z

2

) = az

1

+ bz

2

+ 
. f is 
onstant w.r.t. z

2

and h('(0)) = '(0) so

f(z

1

; z

2

) = az

1

.

Thus h('(z

1

)) = '(az

1

) as required. ut

Now h('(z

1

) +'(z

2

)) = '(az

1

+ az

2

) = '(az

1

) +'(az

2

) = h('(z

1

)) + h('(z

2

))

so an isogeny is a group homomorphism. An ellipti
 
urve always has the trivial

isogenies with a 2 Z. These are the trivial homomorphisms G ! G, g 7! ng

where n 2 Z, whi
h exist for any additive abelian group.

4.5 De�nition

An ellipti
 
urve with any non-trivial isogenies is said to have


omplex multipli
ation (or CM for short).

That is, there exist isogenies h : E(C ) ! E(C ), h('(z)) = '(az) with a 2 C nZ.

Note that if a 2 RnZ then h is not well-de�ned as h('(!

1

)) = h(0; 1; 0) =

(0; 1; 0) 6= '(a!

1

), sin
e a!

1

=2 �. Thus any non-trivial isogenies are given by

multipli
ation by a number a 2 C nR. Hen
e the name 
omplex multipli
ation.

4.6 Theorem

An ellipti
 
urve Z+ �Z has 
omplex multipli
ation h('(z)) = '(az) i� � lies

in a quadrati
 imaginary extension �eld of Q.
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Proof

If h : E(C ) ! E(C ) is well-de�ned then 8z 2 �

'(az) = h('(z)) = h((0; 1; 0)) = (0; 1; 0).

Thus az 2 � 8z 2 � and so a� � �.

Conversely, if a� � � then de�ne h('(z)) = '(az). Let z

1

� z

2

mod �. Say

z

1

= z

2

+ !. Then az

1

= az

2

+ a! 2 az

2

+ �. Thus az

1

� az

2

mod �. So h is

well-de�ned. Thus h('(z)) = '(az) is an isogeny i� a� � �.

Suppose that E(C ) has 
omplex multipli
ation. 1 2 � so a = m+ n� for some

m;n 2 Z. Also by the above a� = m

0

+ n

0

� for some m

0

; n

0

2 Z.

Now a� = (m+ n�)� , so n�

2

+ (m� n

0

)� �m

0

= 0.

� satis�es a quadrati
 polynomial over Z and � 2 C nR so � lies in a quadrati


imaginary extension of Q.

Conversely, if � lies in a quadrati
 imaginary extension of Q then 9�; �; 
 2 Z

su
h that ��

2

+ �� + 
 = 0. De�ne a = �� 2 �. Then a� = ��� � 
 2 � and

thus a� � �. Also a 2 C nR as required. ut

4.7 Corollary

The following 
ategories are equivalent:

Obje
ts: Ellipti
 
urves up to isomorphism $ Latti
es up to homothety

Maps: Isogenies $ fa 2 C ja� � �g

4.8 De�nition

The set of isogenies of an ellipti
 
urve E forms a ring with multipli
ation being


omposition of maps. This is 
alled the Endomorphism Ring of E, denoted

End(E).

We know that End(E) always 
ontains Z as a subring. An ellipti
 
urve has


omplex multipli
ation pre
isely when End(E) % Z.

With notation as in Theorem 4.6 a = m+ n� , a� = m

0

+ n

0

� .

a

2

= n

2

�

2

+ 2mn� +m

2

= �mn� + nn

0

� +m

0

n+ 2mn� +m

2

= (m+ n�)(m+ n

0

) +m

0

n�mn

0

= (m+ n

0

)a� (mn

0

�m

0

n)

a

2

� (m+ n

0

)a+ (mn

0

�m

0

n) = 0

Thus a is in the ring of integers of a quadrati
 imaginary extension �eld of Q.

Sin
e a 2 Q(�), End(E) is a subring of the ring of integers of Q(� ). End(E)

stri
tly 
ontains Z and therefore has rank 2 as an additive abelian group. Thus

End(E) is an order of Q(� ) (a subring of the ring of integers of Q(�) 
ontaining

Z with rank 2 as an additive abelian group).
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4.9 Summary of Key Points from Chapter 4

1. An isogeny is an analyti
 map E(C ) ! E(C ) whi
h �xes (0; 1; 0).

2. Let h be an isogeny. Then h('(z)) = '(az) for some a 2 C . An isogeny

is a group homomorphism.

3. The set of isogenies of an ellipti
 
urve E form a ring 
alled the endomor-

phism ring of E, denoted End(E). End(E) always 
ontains Z as these


orrespond to the trivial homomorphisms g 7! ng whi
h any additive

abelian group possesses.

4. An ellipti
 
urve is said to have 
omplex multipli
ation if End(E) % Z.

Any nontrivial isogeny is given by h('(z)) = '(az) for some a in the ring

of integers of a quadrati
 imaginary �eld.

5. An ellipti
 
urve has 
omplex multipli
ation i� � lies in a quadrati
 imag-

inary extension �eld of Q.
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5 Complex Multipli
ation and the j-invariant

In this �nal Chapter we are going to show that every CM ellipti
 
urve has an

algebrai
 integer for its j-invariant. Sin
e the algebrai
 integers are 
ountable

(see Appendix on Cardinality) this shows that CM 
urves are very rare. We will

also show that the 
onverse is false. That is not all 
hoi
es of algebrai
 integers

for the j-invariant give CM 
urves. Some algebrai
 number theory is required

and is built up �rst.

5.1 De�nition

Let R be a 
ommutative ring with 1 and K the �eld fra
tions of R. An element

k 2 K is said to be integral over R if there is a moni
 polynomial f(X) 2 R[X ℄

s.t. f(k) = 0. The set of elements of K whi
h are integral over R is 
alled the

integral 
losure of R. R is said to be integrally 
losed if it is its own integral


losure.

5.2 De�nition

An integral domain with 1 is 
alled a Dedekind Domain if it is noetherian,

integrally 
losed, and every nonzero prime ideal is maximal.

5.3 De�nition

Let I; J be nonzero proper ideals of a Dedekind domain R. We say I divides J ,

written I jJ , if 9H �R su
h that J = IH .

5.4 Lemma

Let I be an ideal of a Dedekind domain R. Then I 
ontains a produ
t of prime

ideals. If I 6= R then 9 k 2 KnR s.t. kI � R (where K denotes the �eld of

fra
tions of R).

Proof [Mo, Lem.3.13 and 3.14℄

For the �rst part let S be the set of ideals whi
h do not 
ontain a produ
t of

prime ideals. If S 6= ; then sin
e R is noetherian S 
ontains a maximal element

M . M 
annot be prime so 9 r; s =2M s.t. rs 2M . NowM $M + rM;M + sM

so these ideals 
ontain produ
ts of prime ideals. But (M + rM)(M + sM) �M

so M 
ontains a produ
t of primes. Contradi
tion so S = ;.

For the se
ond part let a 2 I . Let P

1

:::P

n

� aR be a produ
t of primes with n

as small as possible. Now I is 
ontained in a maximal ideal by Zorn's Lemma.

(Let T = fR 6= J � R : I � Jg ordered by in
lusion. Then if fJ

�

g is a totally

ordered subset of T , [J

�

2 T is an upper bound of fJ

�

g, so T 
ontains a

maximal element).
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Now maximal ideals are prime so I � P for some prime ideal P . P

1

:::P

n

� P

so sin
e P is prime P

i

� P for some i, say i = 1 for 
onvenien
e. Sin
e R is

a Dedekind domain prime ideals are maximal so P

1

= P . By assumption aR

does not 
ontain produ
ts of fewer than n primes so 9 b 2 P

2

:::P

n

naR. Thus

b

a

2

1

aR

P

2

:::P

n

nR � KnR. Now bP � PP

2

:::P

n

� aR, so if d 2 I � P then

bd 2 aR and so

b

a

d 2 R. That is

b

a

I � R and we have found our k(=

b

a

). ut

5.5 Lemma

Let R be a Dedekind domain and 0 6= A � R. Then 9 0 6= B � R s.t. AB is

prin
ipal.

Proof [Mo, Thm.3.15℄

Let 0 6= a 2 A and let B := fb 2 R : Ab � aRg�R. Then AB � aR.

Let M :=

1

a

AB �R. We show M = R whi
h implies AB = aR.

IfM $ R 9 k 2 KnR s.t. kM � R by Lemma 5.4. R is a Dedekind domain so is

integrally 
losed. We show k is the root of a moni
 polynomial over R obtaining

a 
ontradi
tion. b =

1

a

ab 8b 2 B so B �M .

Thus kB � kM � R) kAB � aR) kB � B.

R is noetherian so take a �nite set of generators fb

1

; :::; b

r

g for B,

that is B = Zb

1

+ :::+Zb

r

.

kb

i

=

P

r

j=1

n

ij

b

j

for some integers n

ij

. We see that

det

0

B

B

B

�

n

11

� k n

12

� � � n

1r

n

21

n

22

� k � � � n

2r

.

.

.

.

.

.

.

.

.

.

.

.

n

r1

n

r2

� � � n

rr

� k

1

C

C

C

A

= 0

sin
e 0 6= (b

1

; � � � ; b

r

) is in its kernel. By expanding the determinant we have

found a moni
 polynomial over R of whi
h k is a root. ut

5.6 Lemma

Let I; J be nonzero proper ideals of a Dedekind domain R. Then I jJ , I � J .

Proof

()) By the de�nition of an ideal I � IH = J .

(() By Lemma 5.5 9 0 6= L � R and a 2 I s.t. LI = aR. Let H :=

1

a

LJ .

Sin
e J � I by assumption, H is an ideal of R and LIH = LJ . By Lemma 5.5

9 0 6= N �R, b 2 L, s.t. NL = bR. Then bRIH = NLIH = NLJ = bRJ .

So bRIH = bRJ ) IH = b

�1

RbRIH = b

�1

RbRJ = J . ut
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5.7 Theorem

Let I be a nonzero proper ideal of a Dedekind domain R. Then 9P

1

; :::; P

r

dis-

tin
t prime ideals of R and n

1

; :::; n

r

2 N s.t. I = P

n

1

1

:::P

n

r

r

and this expression

is unique (up to the order of the fa
tors).

Proof [Mo, Thm.3.19℄

Existen
e

Let S = f0; R 6= I � R : I is not expressible as a produ
t of primesg. Suppose

S 6= ;. By Zorn's Lemma S has a maximal element M (w.r.t. in
lusion). By

Zorn's Lemma M is 
ontained in a maximal ideal P (see proof of Lemma 5.4).

P is prime and M � P . By Lemma 5.6 9 I � R s.t. M = IP . Thus I � M .

Suppose I = M . Then IR = I = IP . By Lemma 5.5 9L � R, a 2 I , s.t.

LI = aR. So R = a

�1

aRR = a

�1

LIR = a

�1

LIP = P . Hen
e P = R but P

is a maximal ideal. This is a 
ontradi
tion so I % M . I is then a produ
t of

primes but M = IP so M is a produ
t of primes. Contradi
tion so S = ;.

Uniqueness

Suppose P

1

:::P

r

= Q

1

:::Q

s

are produ
ts of (not ne
essarily distin
t) primes.

P

1

� Q

1

:::Q

s

so P

1

� Q

i

for some i. Say i = 1 for 
onvenien
e sin
e we 
an

reorder anyway. R is a Dedekind domain so prime ideals are maximal. Thus

P

1

= Q

1

. By Lemma 5.5 9 0 6= L � R, a 2 P

1

, s.t. LP

1

= LQ

1

= aR. Thus

P

2

:::P

r

= a

�1

LP

1

P

2

:::P

r

= a

�1

LQ

1

Q

2

:::Q

r

= Q

2

:::Q

R

. By indu
tion we have

uniqueness. ut

5.8 De�nition

Let R be Dedekind domain and K its �eld of fra
tions. A fra
tional ideal of R

is a nonzero �nitely generated R-submodule of K.

Let M be a fra
tional ideal with generators m

1

; :::;m

k

. Ea
h m

i

is in K so

there exists s 2 R su
h that m

i

s 2 R for all i. Thus Ms � R. This explains

the name fra
tional ideal.

5.9 De�nition

Let M be a fra
tional ideal of a Dedekind domain R.

De�ne M

�1

:= fx 2 KjxM � Rg. A fra
tional ideal M is said to be invertible

if MM

�1

= R.

We aim to de�ne an abelian group stru
ture on the set of fra
tional ideals

of R. The produ
t of two fra
tional ideals M and N is the set MN :=

f

P

�nite

m

i

n

i

jm

i

2 M , n

i

2 Ng. If fx

i

g and fy

j

g are sets of generators for

M and N then the set of produ
ts fx

i

y

j

g is a set of generators for MN . Thus

MN is �nitely generated and so is a fra
tional ideal. The identity element is R.
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It remains to show that every fra
tional ideal has an inverse. We do this by

showing every fra
tional ideal is invertible (as de�ned in De�nition 5.9). First

let's 
he
k that M

�1

is a fra
tional ideal. M

�1

is a non-zero R-submodule of

K. Choose 0 6= m 2M . ThenM

�1

m � R soM

�1

� Rm

�1

. Rm

�1

is a �nitely

generated R module and be
ause R is noetherian, the submodule M

�1

is also

�nitely generated. Hen
e M

�1

is a fra
tional ideal.

5.10 De�nition

Let R be a Dedekind domain and K its �eld of fra
tions.

A prin
ipal fra
tional ideal of R is a fra
tional ideal of the form Rx for some

0 6= x 2 K.

(Rx)

�1

= Rx

�1

so (Rx)(Rx)

�1

= Rxx

�1

= R. Thus a prin
ipal fra
tional

ideal is invertible.

5.11 Lemma

Let R be an integral domain with 1 and ; 6= S � R a multipli
ative set. That

is 0 =2 S and S is 
losed under multipli
ation. Then there is a ring R

S

whi
h


ontains R as a subring su
h that every element of S has a multipli
ative inverse.

Proof [Ja, Prop.1.1℄

De�ne an equivalen
e relation on R � S by (a; b) � (
; d) i� ad = b
. Let

R

S

= R�S= �. Addition and multipli
ation are de�ned in the same way as for

the �eld of fra
tions of R. R is isomorphi
ally imbedded in R

S

by �xing s 2 S

and using the mapping r 7! (rs; s). ut

We write r=s to denote (r; s). Note that R

S

= R

S[f1g

so we 
an assume 1 2 S

and the mapping of R into R

S


an be taken as r 7! r=1.

5.12 De�nition

The ring R

S

is 
alled the lo
alization of R at S.

5.13 Lemma [Ja, Prop.1.2℄

There is a one-to-one 
orresponden
e between prime ideals of R

S

and prime

ideals of R whi
h have empty interse
tion with S.
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Proof

De�ne

' : fprime ideals of R

S

g ! fprime ideals P �R : P \ S = ;g

'(Q) := Q \ R

 : fprime ideals P �R : P \ S = ;g ! fprime ideals of R

S

g

 (P ) := PR

S

We show ' and  are inverse maps. That is

PR

S

\ R = P for every prime ideal P �R s.t. P \ S = ;

(Q \R)R

S

= Q for every prime ideal Q�R

S

:

LetQ be a prime ideal of R

S

. Q\R is a prime ideal of R and (Q\R)R

S

� Q is an

ideal of R

S

. Let q=s 2 Q then q = (q=s)s 2 Q\R so q(1=s) = q=s 2 (Q\R)R

S

.

Thus Q � (Q \ R)R

S

.

Let P be a prime ideal of R with P \S = ;. PR

S

is an ideal of R

S

. It is prime

sin
e if (r

1

=s

1

)(r

2

=s

2

) 2 PR

S

with (r

1

=s

1

); (r

2

=s

2

) 2 R

S

then (r

1

=s

1

)(r

2

=s

2

) =

x=s for some x 2 P and s 2 S. Now r

1

r

2

s = xs

1

s

2

2 P and P is prime so r

1

or

r

2

2 P . So (r

1

=s

1

) or (r

2

=s

2

) 2 PR

S

and PR

S

is prime. If u 2 PR

S

\ R then

u = x=s with x 2 P . But u 2 R so sin
e P is prime, x = us ) u 2 P . Thus

PR

S

\ P � P . P � PR

S

\ P is 
lear. ut

Take a prime ideal P � R and let S = RnP . We write R

P

to denote the

lo
alization of R at S. Sin
e 0 2 P a prime ideal 
an never be a multipli
ative

set so this notation is not ambiguous. The prime ideals of R whi
h have empty

interse
tion with S = RnP are those prime ideals 
ontained in P . By Lemma

5.12 the only ideals of R

P

are those 
ontained in PR

P

. Maximal ideals are

always prime so PR

P

is the only maximal ideal in R

P

.

5.14 De�nitions

An integral domain with 1 with only one maximal ideal is 
alled a Lo
al Ring.

By the above 
omments if we lo
alize at a prime ideal we get a lo
al ring.

A lo
al ring whi
h is also a prin
ipal ideal domain is 
alled a

Dis
rete Valuation Ring (DVR).

5.15 Lemma

Let R be a Dedekind domain. Then R

P

is a DVR for every nonzero prime ideal

P of R.
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Proof [Ja, Prop.3.20℄

R is Noetherian by de�nition. Let J

1

� J

2

� ::: be an as
ending 
hain of ideals

of R

P

. Then J

1

\ R � J

2

\ R � ::: is an as
ending 
hain of ideals of R whi
h

therefore terminates. That is 9n 2 N s.t. J

n

\ R = J

n+1

\R = :::.

Observe that (J

i

\ R)R

P

� J

i

. Let r=s 2 J

i

. Then r = (r=s)s 2 J

i

\ R

so r(1=s) = r=s 2 (J

i

\ R)R

P

. Thus J

i

� (J

i

\ R)R

P

.

So J

n

= J

n+1

= ::: and R

P

is Noetherian.

By the 
omments after Lemma 5.13 the only maximal ideal of R

P

is PR

P

. Sin
e

R is a Dedekind domain there is no distin
tion between prime and maximal

ideals. So PR

P

is the only prime ideal of R

P

. Also R

P

is integrally 
losed

be
ause R is.

Fix 0 6= a 2 R

P

. Let M = R

P

=aR

P

. For ea
h m 2M let

null(m) = fr 2 R

P

: rm = aR

P

g. This is an ideal of R

P

for ea
h m 2 M .

Choose m 2M s.t. null(m) is maximal in the set of ideals

fnull(m) : 0 6= m 2Mg. Pi
k a representative of this 
oset, m = b+ aR

P

with

b 2 R

P

. Q := null(b+ aR

P

) is nonzero be
ause a 2 Q. Q is prime for suppose

x; y =2 Q but xy 2 Q. Then y(b + aR

P

) 6= aR

P

so null(yb+ aR

P

) 
ontains Q

and x whi
h 
ontradi
ts the maximality of Q. Q is therefore the unique prime

ideal, i.e. Q = PR

P

.

We have shown bPR

P

� aR

P

but b =2 aR

P

sin
e b+aR

P

6= R

P

. So

b

a

=2 R

P

and

b

a

PR

P

� R

P

. Suppose

b

a

PR

P

$ R

P

. Then sin
e PR

P

is the unique maximal

ideal we have

b

a

PR

P

� PR

P

. By exa
tly the same determinant tri
k as used

in Lemma 5.5

b

a

is integral over R

P

. R

P

is integrally 
losed by de�nition so

b

a

2 R

P


ontradi
ting the above. Thus

b

a

PR

P

= R

P

and so PR

P

=

a

b

R

P

. This

shows the unique maximal ideal is prin
ipal. Write PR

P

= xR

P

.

Let U be a nonzero ideal of R

P

. Consider the 
hain U � x

�1

U � x

�2

U � :::.

If x

�n

U = x

�n�1

U then by the determinant tri
k x

�1

is integral over R

P

whi
h is impossible be
ause x

�1

=2 R

P

and R

P

is integrally 
losed. Sin
e R

P

is

noetherian the part of the 
hain whi
h falls into R

P

must be �nite. There exists

n s.t. x

�n

U � R

P

but x

�n�1

U * R

P

. If x

�n

U � PR

P

then x

�n�1

U � R

P

so

x

�n

U = R

P

and U = x

n

R

P

. U is a prin
ipal ideal as required. ut

5.16 Theorem

Let R be a Dedekind domain. Any nonzero prime ideal of R is invertible.

Proof

Let P be a nonzero prime ideal of R. Then PP

�1

= U is an ideal of R.

For any maximal ideal Q we know that R

Q

is a PID by Lemma 5.15 so PR

Q

is prin
ipal and hen
e invertible by the remarks after De�nition 5.10. Thus

UR

Q

= (PP

�1

)

Q

= R

Q

. This holds for all maximal ideals Q of R. Let

b 2 R. bR

Q

� UR

Q

so 9 a 2 U and s 2 RnQ s.t. b = a=s. The ideal of
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R, fy 2 R : by � Ug 
ontains s so does not belong to Q. The ideal must then

be the whole of R. So b 2 U and so R � U and thus R = U as required. ut

5.17 Corollary

Let R be a Dedekind domain. LetM be a fra
tional ideal of R. Then 9P

1

; :::; P

n

distin
t prime ideals of R and a

1

; :::; a

n

2 Z s.t. M = P

a

1

1

:::P

a

n

n

and this

expression is unique (up to the order of the fa
tors).

Proof [Ja, Thm.4.2℄

Let M be a fra
tional ideal with generators m

1

; :::;m

k

. Ea
h m

i

is in K so

there exists s 2 R su
h that m

i

s 2 R for all i. Thus Ms � R. By Theorem 5.7

there exist fa
torizations of the ideals Rs and Ms as Rs =

Q

Q

b

j

j

, Ms =

Q

P

a

i

i

where the P

i

and Q

j

are prime ideals of R. It followsM

Q

Q

b

j

j

=

Q

P

a

i

i

. Prime

ideals are invertible so M =

Q

P

a

i

i

Q

Q

�b

j

j

. This establishes existen
e.

For uniqueness suppose M =

Q

P

a

i

i

Q

Q

�b

j

j

=

Q

X




i

i

Q

Y

�d

j

j

where

P

i

; Q

j

; X

i

; Y

j

are prime ideals and a

i

; b

j

; 


i

; d

j

are positive integers.

Thus

Q

P

a

i

i

Q

Y

d

j

j

=

Q

X




i

i

Q

Q

b

j

j

is a fa
torization of ideals in R so we have

uniqueness by Theorem 5.7. ut

We have shown that the set of all fra
tional ideals is a group with respe
t

to multipli
ation and inverses des
ribed above. The uniqueness statement of

Corollary 5.17 shows that it is a free abelian group with the set of nonzero

prime ideals as generators. The 
olle
tion of all prin
ipal fra
tional ideals is a

subgroup.

5.18 De�nition

Let R be a Dedekind domain. The group of fra
tional ideals is 
alled the ideal

group of R and is denoted I(R). The subgroup of prin
ipal fra
tional ideals is

denoted P (R).

The 
lass group of R is de�ned to be C(R) := I(R)=P (R).

We now apply this theory to algebrai
 number �elds. An algebrai
 number �eld

K � C is a �nite �eld extension of Q. The ring of algebrai
 integers in C is

denoted A . De�ne the ring of integers in K to be R

K

:= K \ A .

5.19 Theorem

If K is an algebrai
 number �eld then R

K

is a Dedekind domain.
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Proof

R

K

is an integral domain �nitely generated as an abelian group. Therefore

every ideal of R

K

is �nitely generated and so R

K

is noetherian.

Suppose a=b 2 K is the root of a moni
 polynomial over R

K

. Then a=b 2 A so

a=b 2 K \ A = R

K

. R

K

is integrally 
losed.

Let 0 6= I �R

K

and 0 6= r 2 I . Let R

K

have rank n as a free abelian group and


hoose a basis f

1

; :::; f

n

of R

K

. Then 9 b

i;j

2 Z s.t.

0

B

B

B

B

�

r

.

.

.

.

.

.

r

n+1

1

C

C

C

C

A

=

0

B

B

B

�

b

1;1

b

1;2

: : : b

1;n

b

2;1

b

2;2

: : : b

2;n

.

.

.

.

.

.

.

.

.

.

.

.

b

n+1;1

b

n+1;2

: : : b

n+1;n

1

C

C

C

A

0

B

B

B

B

�

f

1

.

.

.

.

.

.

f

n

1

C

C

C

C

A

Now rank(b

i;j

) 6 n so 9 a

i

2 Z s.t. a

n+1

r

n+1

+ a

n

r

n

+ ::: + a

0

= 0. Then

a

0

= �r(a

n+1

r

n

+ :::+ a

1

).

Choose a polynomial over Z with smallest degree possible of whi
h r is a zero.

Then a

0

6= 0 be
ause a

n+1

r

n

+ :::+ a

1

6= 0.

Now a

0

= �r(a

n+1

r

n

+ :::+ a

1

) 2 I so I � a

0

R

K

.

R

K

=a

0

R

K

�

=

Z=a

0

Z

L

:::::

L

Z=a

0

Z and R

K

=I is a homomorphi
 image of this,

so has the same number of elements or fewer. jR

K

=I j 6 jR

K

=a

0

R

K

j = a

n

0

. If

we take I to be a prime ideal then R

K

=I is a �nite integral domain and hen
e

a �eld. Therefore I is a maximal ideal of R

K

. ut

5.20 Theorem

Let K be an algebrai
 number �eld and R

K

its ring of integers. Then C(R

K

)

is �nite.

Proof

Let I be a nonzero proper ideal of R

K

. By Theorem 5.7 9P

1

; :::; P

r

prime ideals

of R

K

and n

1

; :::; n

r

2 N s.t. I = P

n

1

1

:::P

n

r

r

and this expression is unique up to

the order of the fa
tors.

For a prime ideal P of R

K

the ideal rad(P ) is prime. By Theorem 5.19 R

K

is

a Dedekind domain so rad(P ) is maximal. P � rad(P ) so P = rad(P ). Now

rad(IJ) = rad(I \ J) = rad(I) \ rad(J) so rad(P

n

) = rad(P ). We have

Q

r

i=1

P

i

= rad(

Q

r

i=1

P

i

) =

T

r

i=1

rad(P

i

) =

T

r

i=1

P

i

If P

n

i

i

+P

n

j

j

= A $ R

K

, then AjP

n

i

i

and AjP

n

j

j

whi
h 
ontradi
ts P

i

; P

j

distin
t

primes so P

n

i

i

+ P

n

j

j

= R

K

.

By the Chinese Remainder Theorem

R=I = R=

Q

r

i=1

P

n

i

i

= R=

T

r

i=1

P

n

i

i

�

=

Q

R=P

n

i

i

.
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By the proof of Theorem 5.19 these sets are �nite so

jR=I j =

Q

jR=P

i

j

n

i

:

De�ne the norm of an ideal to be N(I) := jR

K

=I j.

Note that N(IJ) = N(I)N(J).

It 
an be shown by an argument using latti
e theory that every 
lass in C(R

K

)


ontains an ideal I of R s.t. N(I) 6 M where M is a �nite number 
alled the

Minkowski Bound. See [Ja, Thm.11.8℄. Now I is expressible as a produ
t of

primes so there are only �nitely many ideals of R that divide I . Namely they

are produ
ts of subsets of the ideals that 
ompose I . It follows that there are

only �nitely many ideals with a given norm and so there are only �nitely many


hoi
es for the 
lasses in C(R

K

). ut

5.21 De�nition

Let K be an algebrai
 number �eld. The 
ardinality of the 
lass group of R

K

is 
alled the 
lass number of K.

5.22 Lemma

Let R be a Dedekind domain. Then R is a UFD i� the 
lass group of R has


ardinality 1.

Proof [Mo, Thm.3.32℄

>From the de�nition of the C(R) we see that jC(R)j = 1, R is a PID. A PID

is always a UFD. It remains to show that in a Dedekind domain a UFD is a

PID.

Suppose R is a UFD and I � R is not a prin
ipal ideal. I is expressible as a

produ
t of primes by Theorem 5.7 so there is a prime ideal P whi
h is not a

prin
ipal ideal. Let S be the set of ideals I � R s.t. PI is prin
ipal. We know

S is non-empty by Lemma 5.5. By Zorn's Lemma S has a maximal element

M . PM = (a) and a must be irredu
ible by the maximality of M . There exist

nonzero b 2 Pn(a); 
 2Mn(a) s.t. b
 2 PM � (a). So ajb
 but a does not divide

b or 
. a is irredu
ible but not prime. This 
ontradi
ts R being a UFD. ut

5.23 Theorem

Let K be a quadrati
 imaginary �eld. There is a one-to-one 
orresponden
e

between ideal 
lasses in C(R

K

) and isomorphism 
lasses of ellipti
 
urves with

End(E)

�

=

R

K

.

Proof

Take an ideal � of R

K

. The ellipti
 
urve C =� has End(C =�)

�

=

fa 2 C : a� �

�g = R

K

. Two ellipti
 
urves are isomorphi
 pre
isely if they are homotheti


and this 
orresponds to multipli
ation by a prin
ipal fra
tional ideal. ut
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5.24 Corollary

Let E be an Ellipti
 Curve with End(E)

�

=

R

K

. Then j(E) is an algebrai


number.

Proof

By Theorem 5.20 C(R

K

) is �nite so there are only �nitely many isomorphism


lasses of ellipti
 
urves with End(E)

�

=

R

K

.

Let � 2 Aut(C =Q ). End(E

�

)

�

=

End(E)

�

=

R

K

. By the above fj(E)

�

: � 2

Aut(C =Q )g is �nite. We have a �nite �eld extension whi
h from Galois theory

we know is algebrai
. ut

5.25 Theorem

Let E be an ellipti
 
urve with 
omplex multipli
ation su
h that End(E) is

the ring of integers in a quadrati
 imaginary �eld. Then j(E) is an algebrai


integer.

Proof

A 
omplex analyti
 proof of this is given in [Si2, Thm.II.6.1℄. ut

5.26 Corollary

Let E be an ellipti
 
urve with 
omplex multipli
ation. Then j(E) is an alge-

brai
 integer.

Proof

We follow the proof in [Si2, Cor.II.6.3.1℄ and use the same notations. Let

End(E)

�

=

R, an order in K. Let � = !

1

Z+ !

2

Z be a latti
e for E. Now

K = Q(!

1

=!

2

). By multiplying by a suitable � 2 C

�

, we may assume � �

R

K

= Z+ �Z.

Then there exist integers a; b; 
; d su
h that

!

1

= a� + b,

!

2

= 
� + d.

Let n = ad� b
. After swit
hing !

1

and !

2

if ne
essary we may assume n � 1.

The matrix � =

�

a b


 d

�

2 D

n

so j Æ � is integral over the ring Z[j℄. Now

F

n

(j;X) = 0 so evaluating at � we �nd that j(��) is integral over Z[j(�)℄. But

j(��) = j(E) and j(�) is integral over Z by the above Theorem. Hen
e j(E) is

integral over Z. ut

Sin
e the algebrai
 integers are 
ountable this implies that the number of

ellipti
 
urves (up to isomorphism) with CM is 
ountable. Complex multipli-


ation is therefore a rare property of an ellipti
 
urve. See the Appendix for a
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dis
ussion of 
ardinality.

The 
onverse of the above theorem is false. That is, given an algebrai
 integer

for j the 
orresponding ellipti
 
urve is not always CM. We show this below

in 5.29 onwards. We know that an ellipti
 
urve is CM i� � is in a quadrati


imaginary extension �eld of Q. We show now that if 3 � [Q(�) : Q℄ < 1 then

j(�) is trans
endental. This will mean that any � whose ellipti
 
urve is not

CM, but for who j(�) an algebrai
 integer, must be trans
endental.

5.27 Theorem

Let K be a �nite �eld extension of Q and let f

1

,...f

n

be meromorphi
 fun
tions

of �nite order. Suppose that the ring K[f

1

; :::; f

n

℄ is mapped to itself by di�er-

entiation and has trans
enden
e degree at least 2 over K. Then there are only

�nitely many numbers z at whi
h f

1

; :::; f

n

simultaneously assume values in K.

Proof

See [Ba, Thm.6.1℄. ut

A meromorphi
 fun
tion f is said to have �nite order if f = g=h where g,h are

entire fun
tions and 9� > 0 s.t. 8R � 2, 8z with jzj � R, max(jg(z)j; jh(z)j) <

exp(R

�

). The trans
enden
e degree of the ring K[f

1

; :::; f

n

℄ is the maximum

number of elements in an algebrai
ally independent subset.

5.28 Corollary [Ba, Thm.6.3℄

Let � be an algebrai
 number with 3 � [Q(�) : Q℄, then j(�) is trans
endental.

Proof

Suppose j(�) is algebrai
. Then there is a }-fun
tion with algebrai
 invari-

ants g

2

, g

3

and fundamental periods !

1

, !

2

su
h that � = !

2

=!

1

. When

z = 3!

1

=2 the fun
tions f

1

= }(z), f

2

= }(�z), f

3

= }

0

(z), f

4

= }

0

(�z)

assume the same values in an algebrai
 number �eld, say K. By the above The-

orem K[f

1

; f

2

; f

3

; f

4

℄ has trans
enden
e degree at most 1. f

1

and f

2

are thus

algebrai
ally dependent. This implies that l!

2

is a period of }(�z) for some

l 2 N. l�!

2

= m!

1

+ n!

2

for some m;n 2 Z, so l�

2

� n� �m = 0 and � is a

quadrati
 irrational. ut

5.29 Lemma

Every quadrati
 �eld is of the form Q(

p

d) where d is a square-free integer.
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Proof

Let K = Q(�) be a quadrati
 �eld and � be a solution of x

2

+ ax + b for

some a; b 2 Z. Thus K = Q

�

�a�

p

a

2

�4b

2

�

= Q(

p

a

2

� 4b). By uniqueness of

fa
torization in Z, a

2

� 4b = p

e

1

1

:::p

e

r

r

for primes p

i

with powers e

i

. Thus

a

2

� 4b =

Q

e

i

odd

p

i

�

Q

e

i

odd

p

(e

i

�1)=2

i

(

Q

e

j

even

p

(e

j

)=2

j

�

2

= dr

2

for some

d; r 2 Z, d square-free. Thus K = Q(r

p

d) = Q(

p

d). ut

5.30 Theorem

The ring of integers in a quadrati
 �eld Q(

p

d) is Z(

p

d) if d � 2 or 3 mod 4

and Z(

1

2

+

1

2

p

d) if d � 1 mod 4.

Proof

This proof is taken from the 2nd year essay "Algebrai
 Number Fields" by John

Hudson, an undergraduate at the University of Warwi
k. Let z 2 Q(

p

d) be

an algebrai
 integer. Then z =

a+b

p

d




for some a; b; 
 2 Z. We may assume

the highest 
ommon fa
tor of a,b and 
 is 1. The 
oeÆ
ients of the minimum

polynomial of z,

�

x�

a+b

p

d




��

x�

a�b

p

d




�

are integers. Thus

a

2

�b

2

d




2

2 Z and

2a




2 Z. If a and 
 have a 
ommon prime divisor p then p

2

divides b

2

d and

sin
e d is square-free, p

2

divides b

2

. Thus p divides b 
ontradi
ting the highest


ommon fa
tor of a, b, 
 being 1. Hen
e 
 is 1 or 2. This shows that the ring of

integers is either Z(

p

d) or Z(

1

2

+

1

2

p

d).

Consider the 
ase 
 = 2. Now

a

2

�b

2

d




2

2 Z so a

2

� b

2

d � 0 mod 4. a must be

odd sin
e it does not have a 
ommon prime divisor with 
. Thus b must be odd.

Thus a

2

� b

2

� 1 mod 4 and therefore d � 1 mod 4. Conversely if d � 1 mod 4

then

a+b

p

d

2

for a, b odd is an algebrai
 integer sin
e

a

2

�b

2

d

4

2 Z. ut

5.31 Corollary

An order � in a quadrati
 imaginary �eld K is given by � = Z+ fR

K

for some

f 2 Z. f is 
alled the 
ondu
tor of �.

Proof

Suppose R

K

= Z(

p

d). � has a basis 1,� for some � 2 R

K

. � = e+f

p

d for some

e; f 2 Z so � = fm+n�jm;n 2 Zg= fm+ne+nf

p

djm;n 2 Zg= Z+fZ(

p

d).

Suppose R

K

= Z(

1

2

+

1

2

p

d). � has a basis 1,� for some � 2 R

K

. � =

x

2

+ f

y

2

p

d

for some integers x and y and by a similar argument we have the result. ut
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5.32 Theorem

Let K be a quadrati
 imaginary �eld and let E be an ellipti
 
urve with endo-

morphism ring an order in K. By Corollary 5.26 j(E) is an algebrai
 integer.

The degree of the minimum polynomial of j(E) over Z is greater than or equal

to the 
lass number of K.

Proof

See [Si2, Thm.II.4.3℄ for a proof that if End(E) is the full ring of integers then

the degree of the minimum polynomial of j(E) over Z equals the 
lass number

of K. By [Si2, Thm.II.6.3℄ and Exer
ise 2.28 in [Si2℄ we have the result. ut

Note that the endomorphism ring of a CM 
urve C =� is the latti
e �. By

Theorem 5.32 the only 
andidates for CM ellipti
 
urves with j-invariant in

Z are therefore those with End(E) an order in a quadrati
 imaginary �eld of


lass number 1. By Lemma 5.22 this is the same as asking that the ring of

integers be a UFD. We use the 
lassi�
ation of all quadrati
 imaginary �elds

whose ring of integers is a UFD. There are 9 of them. They are Q(

p

d) where

d 2 f�1;�2;�3;�7;�11;�19;�43;�67;�163g. It 
an be shown that as the

size of the 
ondu
tor goes up, the degree of the minimum polynomial of j goes

up. In fa
t only �nitely many orders in ea
h of these �elds have j with minimum

polynomial of degree 1 over Z. There are pre
isely 13 of them.

Only 13 j-invariants in Z 
orrespond to CM ellipti
 
urves. They are listed in

[Si2, App.A.3℄. Pi
k any other integer and we have an example of j an algebrai


integer but the 
orresponding ellipti
 
urve not CM. In parti
ular j = 1 gives a

non-CM 
urve.

5.33 A non-CM ellipti
 
urve with integer j-invariant

j = 1 does not 
orrespond to a CM 
urve. Let's �nd an ellipti
 
urve with

j-invariant 1. As in the proof of Theorem 2.17 the 
urve

y

2

= x

3

� 27

j

j�1728

x� 54

j

j�1728

has j-invariant j. Thus

y

2

= x

3

+

27

1727

x+

54

1727

has j-invariant 1.

It would be ni
e to �nd � for su
h a 
urve. I have written 
omputer programs in

BASIC whi
h approximate j from � and � from j for j > 1728 using a method of

Gauss involving the arithmeti
-geometri
 mean. j > 1728 
orresponds pre
isely

to � = it with t > 1. j grows rapidly with t. In fa
t we know that j(i) = 1728,

j(

p

2i) = 8000, j(

p

3i) = 54000 and j(2i) = 287496 as these are CM 
urves

listed in [Si2, App.A.3℄. My programs 
al
ulate these values a

urately so we


an be 
on�dent that they give me an a

urate numeri
al approximation for �

with j(�) = 1729. The Gauss method is summarized in Se
tion VI.9 in [Kn,

VI.9℄.
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5.34 Summary of Key Points from Chapter 5

1. A Dedekind domain is a noetherian, integrally 
losed integral domain with

1 in whi
h every prime ideal is maximal.

2. A fra
tional ideal of a Dedekind domain, R, is a nonzero �nitely generated

R-submodule of K, the �eld of fra
tions of R. A prin
ipal fra
tional ideal

of R is a fra
tional ideal of the form Rx for some 0 6= x 2 K.

3. The 
lass group of R, C(R) := I(R)=P (R) where I(R) is the group of

fra
tional ideals of R and P (R) is the subgroup of prin
ipal fra
tional

ideals of R.

4. The ring of integers R

K

of an algebrai
 number �eld K is a Dedekind

domain. The 
lass group C(R

K

) is �nite. The 
ardinality of C(R

K

) is


alled the 
lass number of K.

5. There is a one-to-one 
orresponden
e between ideal 
lasses in C(R

K

) and

isomorphism 
lasses of ellipti
 
urves with End(E)

�

=

R

K

.

6. The j-invariant of a CM ellipti
 
urve is an algebrai
 integer.

7. The ellipti
 
urve y

2

= x

3

+

27

1727

x+

54

1727

does not have 
omplex multipli-


ation and its j-invariant is 1.
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Suggestions for Further Study

1. j = 1 is an attra
tive example of a 
urve that is not CM. It would be ni
e

to expli
itly have � 2 C s.t. j(Z+ �Z) = 1. >From Corollary 5.28 we

know that su
h a � must be trans
endental. One su
h � is near e

2�i=3

and

satis�es j� j = 1.

2. For any integer greater than 1728 we 
an use the Gauss method to approx-

imate an appropriate � = it for some t > 1. It might be possible to �nd

su
h a � whose 
ontinued fra
tion expansion does not re
ur. This implies

that � does not lie in a quadrati
 extension of Q and therefore that the


urve Z+ �Z is not CM by Theorem 4.6. One idea is to try out stri
tly

in
reasing 
ontinued fra
tion expansions, e.g. 2�

1

1�

1

2�

1

3�

1

4�:::

.

3. It is known that there are only �nitely many quadrati
 imaginary �elds

with any given 
lass number. See [Ba, 5.5℄. The quadrati
 imaginary �elds

with 
lass number 2 have been 
ompletely 
lassi�ed. The next step is to

�nd all 
hoi
es j with [Q(j):Q ℄= 2 s.t. the 
orresponding ellipti
 
urve is

CM.

4. We know that when the endomorphism ring of an ellipti
 
urve E is the

full ring of integers R

K

, [Q(j(E)) : Q℄= jC(R

K

)j. When End(E) is an

order of K, [Q(j(E)) : Q℄ � jC(R

K

)j. The degree of the �eld extension

seems to go up as the 
ondu
tor goes up. This needs verifying. If this

is true then it is possible to prove that for any n 2 N there are only

�nitely many algebrai
 integers j with [Q(j) : Q℄= n s.t.the 
orrespond-

ing ellipti
 
urve is CM. In this proje
t we have only proved this for n = 1.

50



6 Appendix on Cardinality

Two sets have the same 
ardinality if there is a bije
tion between them. The

S
hr�oder-Bernstein Theorem says that given two sets A and B, if there exist

well-de�ned inje
tions f : A ! B and g : B ! A then there is a bije
tion

between A and B. We say a set is 
ountable if it has the same 
ardinality as N.

6.1 Theorem

R is un
ountable.

Proof

Assume for 
ontradi
tion that jRj = jNj. Then there exists a numeration R =

fa

n

jn 2 Ng. Consider a de
imal expansion for ea
h a

n

: a

n

= m

n

+

P

1

i=1

b

ni

10

i

for some m

n

2 Z; b

ni

2 f0; :::; 9g.

Let 


i

:=

(

1 if b

ii

6= 1

5 if b

ii

= 1




i

6= b

i

i

; 0; 9 8i 2 N so

P

1

i=1




i

10

i

=2 R. Contradi
tion. ut

6.2 Theorem

(a) jRj = j(0; 1)j and (b) j[0; 1℄j = j[0; 1℄� [0; 1℄j.

Proof

(a) f : (0; 1)! R, f(x) = tan

�

�x �

�

2

�

is a bije
tion.

(b) By the S
hr�oder-Bernstein Theorem we just have to �nd a well-de�ned

inje
tion f : [0; 1℄ � [0; 1℄ ! [0; 1℄. To do this we use a 
unning tri
k. We use

binary expansions for the elements of [0; 1℄ � [0; 1℄ and de
imal expansions for

the elements of [0; 1℄. That is

[0; 1℄� [0; 1℄ = f

�

P

1

n=1

a

n

2

n

;

P

1

n=1

b

n

2

n

�

ja

n

; b

n

2 f0; 1gg

[0; 1℄ = f

P

1

n=1




n

10

n

j


n

2 f0; :::; 9gg

We have to be 
areful here and 
hoose re
urring zeroes if there is a 
hoi
e (re
all

0:19999::: = 0:20000:::). We de�ne

f

�

P

1

n=1

a

n

2

n

;

P

1

n=1

b

n

2

n

�

:=

P

1

n=1




n

10

n

where 


n

= 2a

n

+ b

n

+ 1. ut

Using S
hr�oder-Bernstein it is not hard to see that if jAj = jA

0

j and jBj =

jB

0

j then jA�Bj = jA

0

�B

0

j. Therefore jC j = jR

2

j = jRj.

The algebrai
 numbers Q are the 
omplex numbers whi
h are zeroes of a poly-

nomial over Z.

6.3 Theorem

Q is 
ountable.
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Proof

For a polynomial f(t) = a

0

+ a

1

t + ::: + a

n

t

n

2 Z[t℄ de�ne its height to be

h(f) := n+ ja

0

j+ :::+ ja

n

j. There are only a �nite number of polynomials over

Z of a given height h.

Now ea
h height h polynomial has less than h roots in C .

So jQ j �

P

1

h=0

h:(number of height h polynomials), whi
h is a 
ountable in�n-

ity. ut
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