Übungsaufgaben zur Vorlesung Funktionalanalysis Prof. Dr. G. Wang Dipl. M Mattuschka

SS 2013, Serie 10 1.7.2013

Aufgabe 1 (4 Punkte)

Nehmen Sie an, dass Ω ein Gebiet im \mathbb{R}^n und $u \in W^{1,1}_{loc}(\Omega)$ ist. Zeigen Sie, dass auch $u \circ \phi \in W^{1,1}_{loc}(\Omega')$, falls $\phi \in C^1(\Omega', \Omega)$ ein Diffeomorphismus ist. Berechnen Sie auch die Ableitung $D(u \circ \phi)$!

Aufgabe 2 (4 Punkte)

Zeigen Sie sowohl Separabiltät als auch Reflexivität der Räume $W^{1,p}(\Omega)$ mit $1 \le p < \infty$. Benutzen Sie dabei bitte die Abbildung

$$\Lambda: W^{1,p}(\Omega) \to L^p(\Omega, \mathbb{R} \times \mathbb{R}^n), \quad \Lambda(f) = (f, Df).$$

Aufgabe 3 (4 Punkte)

Zeigen Sie, dass die Folge $\{f_n\}_{n\in\mathbb{N}}\subset L^2((0,\pi))$ mit

$$f_n(x) := \sin(nx)$$

schwach gegen $0 \in L^2((0,\pi))$ konvergiert.

Aufgabe 4 (4 Punkte)

 $\|\cdot\|$, $\|\cdot\|_2$ und $\|\cdot\|_3$ seien Normen auf X. Es gelte

- (x_k) in $\|\cdot\|$ beschränkt $\Rightarrow x_l \to x$ bezüglich $\|\cdot\|_2$ mit einer Teilfolge von (x_k) .
- Für eine Konstante $c < \infty$ gilt $\|\cdot\|_3 \le c \|\cdot\|_2$.

Zeigen Sie, dass es zu jedem $\varepsilon > 0$ ein $C = C(\varepsilon) < \infty$ gibt, so dass

$$\|\cdot\|_2 < \varepsilon \|\cdot\| + C \|\cdot\|_3$$
.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, den 8.7, im Hörsaal 2, vor der Vorlesung.