Übungsaufgaben zur Vorlesung Funktionalanalysis Prof. Dr. G. Wang Dipl. M Mattuschka

SS 2013, Serie 11 1.7.2013

Aufgabe 1 (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt sowie $a \in L^{\infty}(\Omega, M_n(\mathbb{R}))$ elliptisch. Betrachten Sie $G = I \circ L^{-1} \circ I' : L^2(\Omega) \to L^2(\Omega)$ mit $L : W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)'$ definiert als

$$Lv(u) = \int_{\Omega} \langle Du, aDv \rangle$$

und $I:W_0^{1,2}(\Omega)\to L^2(\Omega)$ definiert als Iv=v und $I':L^2(\Omega)\to W_0^{1,2}(\Omega)'$ definiert als

$$I'f(u) = \int_{\Omega} fu.$$

Beweisen Sie zunächst LGf=f. Nehmen Sie nun an, dass a symmetrisch und zeigen Sie $G=G^*$ bezüglich des L^2 Skalarproduktes. $G^*:L^2\to L^2$ ist definiert über die Identität

$$\int_{\Omega} (Gu)v = \int_{\Omega} u(G^*v) \quad \text{ für alle } u, v \in L^2(\Omega).$$

Aufgabe 2 (4 Punkte)

Sei $I=(0,\infty)$ und $\lambda\neq 0$. Betrachten Sie $A_\lambda:W_0^{1,2}(I)\to L^2(I)$ definiert als $A_\lambda u=u'+\lambda u$. Beweisen Sie

- 1. $||u'||_{L^2} \le ||A_{\lambda}u||_{L^2}$ und $||u||_{L^2} \le \frac{1}{|\lambda|} ||A_{\lambda}u||_{L^2}$.
- 2. A_{λ} ist injektiv und hat abgeschlossenes Bild.
- 3. (Bild A_{λ}) $^{\perp}=\{0\}$ und ind $(A_{\lambda})=0$ für $\lambda>0$, (Bild A_{λ}) $^{\perp}=\mathrm{Span}\{e^{\lambda x}\}$ und ind $(A_{\lambda})=-1$ für $\lambda<0$.
- 4. Der Operator $A_0(u) = u'$, d. h. $\lambda = 0$, ist injektiv, jedoch ist Bild A_0 dicht und nicht abgeschlossen.

(Hinweis: Verwenden Sie die Vertauschbarkeit von Glättung und schwacher Ableitung.)

Zeigen Sie, dass das unendliche Gleichungssystem

$$x_i + \sum_{i=1}^{\infty} a_{ij} x_j = b_i \quad (1 \le i < \infty)$$

für jedes $b \in l^2(\mathbb{R})$ eine eindeutig bestimmte Lösung $x \in l^2(\mathbb{R})$ besitzt, falls für jedes $N \in \mathbb{N}$ die $N \times N$ Matrix $(a_{k_i k_j})_{1 \le i,j \le N}$ positiv semidefinit ist und $\sum_{i,j=1}^{\infty} a_{ij} < \infty$.

Sei $\Omega \subset \mathbb{R}^n$ beschränktes C^1 -Gebiet, $a \in L^{\infty}(\Omega, M_n(\mathbb{R}))$ und $q \in L^{\infty}(\Omega)$. Sei $L: W^{1,2}(\Omega) \to W^{1,2}(\Omega)'$ schwach definert über

$$Lv = -\operatorname{div}(aDv) + qv.$$

Außerdem sei a symmetrisch und elliptisch mit $\mu > 0$, d.h. es gelte $a_{ij}\xi_i\xi_j \ge \mu > 0$ für alle $\xi \in \mathbb{R}^n$. Zeigen Sie

- 1. L ist ein Isomorphismus, falls $q(x) \ge \lambda > 0$ für alle $x \in \Omega$.
- 2. L ist Fredholmsch mit Index Null.
- 3. Für die Existenz einer schwachen Lösung von

$$-\operatorname{div}(aDv) = f \text{ in } L^2$$
$$Dv \cdot an = 0 \text{ auf } \partial\Omega.$$

ist die Bedingung $\int_{\Omega} f = 0$ notwendig und hinreichend. Hier ist n das äußere Normalenvektorfeld an $\partial\Omega$ und $(an)_j = \sum_i a_{ij} n_i$ in lokalen Koordinaten.

(Hinweis: die einbettung $W^{1,2}(\Omega) \subset L^2(\Omega)$ ist für solche Ω kompakt nach dem Satz von Rellich, benutzen Sie dies als black box.) $(v \in W^{1,2}(\Omega))$ ist eine schwache Lösung von obiger Differentialgleichung, falls gilt

$$\int_{\Omega}\langle Dv,aDu\rangle=fu,\quad \text{ für alle }u\in W^{1,2}(\Omega).$$

)

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, den 8.7, im Hörsaal 2, vor der Vorlesung.