Übungsaufgaben zur Vorlesung Funktionalanalysis II Prof. Dr. G. Wang Dipl. M Mattuschka

SS 2013, Serie 02 22.4.2013

Aufgabe 1 (4 Punkte)

Es sei $X := C^{\infty}(\mathbb{R}) \cap \mathcal{L}^2(\mathbb{R})$. Die Abbildung $A : X \to X$ werde gegeben durch die Vorschrift

$$(Av)(x) := v'(x) \qquad x \in \mathbb{R}$$

Beweisen oder widerlegen Sie:

- 1. Es gibt eine reelle Zahl λ und eine gerade Funktion in $v \in X \setminus \{0\}$, so dass die Beziehung $A^2v = \lambda v$ gilt.
- 2. Es gibt keine reelle Zahl μ , zu der eine ungerade Funktion in $v \in X \setminus \{0\}$ existiert, so dass $A^2v = \mu v$ gilt.

Betrachten Sie die Unterräume $U := \{(s_n)_{n \in \mathbb{N}} \in l^1 \mid s_{2n} = 0 \ \forall n \in \mathbb{N}\}$ und $V := \{(s_n)_{n \in \mathbb{N}} \in l^1 \mid s_{2n-1} = n \ s_{2n} \ \forall n \in \mathbb{N}\}$. Zeigen Sie, dass U und V abgeschlossen sind, aber dass die direkte Summe $U \oplus V$ nicht abgeschlossen ist.

Sei $(X, \|\cdot\|)$ normierter Raum und (\hat{X}, \hat{d}) seine Vervollständigung für die induzierte Metrik. Zeigen Sie, dass man Struktur und Norm kanonisch von X auf \hat{X} übertragen kann, und dass dadurch \hat{X} ein Banachraum wird.

Sei I=[0,1]. Welche Familie ist präkompakt in $C^0(I)$ bezüglich der C^0 Norm $\|f\|=\sup_I |f|?$

- 1. $f_k(t) = \sin(t+k)$ mit $k \in \mathbb{N}$ oder
- 2. $g_l(t) = \sin(lt) \text{ mit } l \in \mathbb{N}.$

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, im Hörsaal 2, vor der Vorlesung.