Übungsaufgaben zur Vorlesung Funktionalanalysis Prof. Dr. G. Wang Dipl. M Mattuschka

SS 2013, Serie 04 6.5.2013

Aufgabe 1 (4 Punkte)

Sei $X = C^0[0,1]$ normiert mit der Supremumsnorm und $k \in C^0([0,1] \times [0,1])$. a) Berechnen Sie die Norm des Fredholmoperators

$$K: X \to X, f \mapsto Kf = \int_0^1 k(\cdot, t) f(t) dt.$$

b) Sie Zeigen, dass

$$\{Kf: f \in \overline{B_1(0)}\}$$

relativ kompakt in X ist, d.h. der Abschluss der Menge ist kompakt.

Sei (X, \mathcal{A}, μ) ein beschränkter Maßraum, d.h., $\mu(X) < \infty$, außerdem nichttrivial, d.h., $\mu(X) > 0$. Wenn für alle $1 \le p < \infty$ die Funktion $f \in L^p(\mu)$ ist mit $||f||_{L^p} \le C_0$, dann ist auch $f \in L^{\infty}(\mu)$ mit $||f||_{L^{\infty}} \le C_0$. Hinweis. Widerspruch-Argumente.

Aufgabe 3 (8 Punkte)

- a) Wenn ein Banach Raumm X eine Teilmenge M enthält, die keine abzählbare dichte Teilmenge besitzt, so ist X nicht separabel.
- b) Zeigen Sie, dass l^{∞} nicht separabel ist, aber den separablen Unterraum $c_0(\mathbb{N})$ enthält. $(c_0(\mathbb{N})$ ist der Raum der Nullfolgen, der mit $\|\cdot\|_{l^{\infty}}$ versehen wird.) Hinweis. Verwenden Sie a).
- c) Geben Sie einen Unterraum von $(L^{\infty}(\Omega), \|\cdot\|_{L^{\infty}})$ $(\Omega \subset \mathbb{R}^n \text{ offen})$ an, der isometrisch isomorph zu l^{∞} ist.

Bemerkung. Aus a) -c) ist $L^{\infty}(\Omega)$ nicht separabel.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, den 13.5., im Hörsaal 2, vor der Vorlesung.