Mathematik I für Naturwissenschaftler

WS 2012/13 — Blatt 1

Abgabe: Montag, den 29. Oktober, vor der Vorlesung

Aufgabe 1: 4 Punkte

Beschreiben Sie die Menge der Quadratzahlen 0,1,4,9,... mit Mengenklammern und die Menge $B:=\{\,x\in\mathbb{R}\,|\,(2x^2-x)\cdot(x^2-2)=0\,\}$ in aufzählender Form.

Aufgabe 2: 4 Punkte

Verneinen Sie die folgenden Aussagen:

- 1. Jeder Student besitzt einen Internetanschluss.
- 2. Es gibt in der Vorlesung höchstens zwei Hörer, die mindestens dreimal in der Woche in die Mensa gehen.

Aufgabe 3: 4 Punkte

Gegeben seien die Mengen $A = \{k \in \mathbb{N} \mid \text{es gibt ein } l \in \mathbb{N} \text{ mit } k = 2l\}$ und $B = \{k \in \mathbb{N} \mid \text{es gibt ein } l \in \mathbb{N} \text{ mit } k = 4l\}$. Geben Sie den Durchschnitt $A \cap B$, die Vereinigung $A \cup B$ sowie die Differenzmengen $A \setminus B$ und $B \setminus A$ explizit in der Form $\{k \in \mathbb{N} \mid \dots\}$ an.

Aufgabe 4: 4 Punkte

Die De Morganschen Regeln lauten:

- 1. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 2. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Uberprüfen Sie 1. und 2. konkret für den Fall $A = \{1, 2, 3, 4, 5\}, B = \{1, 2, 3\}$ und $C = \{2, 4, 6\}$ und schreiben Sie dabei auch Zwischenschritte auf!

Für die ersten drei Übungsblätter gilt Einzelabgabe, danach dürfen Sie in Zweiergruppen abgeben. Wir wünschen Ihnen viel Erfolg für Ihr Studium;-)

Anwesenheitsaufgaben zu Blatt 1

Aufgabe 1:

- 1. Schreiben Sie die Menge $A = \{ x \in \mathbb{Z} \mid -64 \le x^3 \le 64 \}$ in aufzählender Form.
- 2. Schreiben Sie die folgenden Mengen mit Mengenklammern:
 - (a) die Menge der ungeraden natürlichen Zahlen.
 - (b) die Menge der rationalen Zahlen die kleiner als 0 oder größer als $4 \, \text{sind.}$

Aufgabe 2:

Verneinen Sie die folgenden Aussagen:

- 1. In Freiburg scheint im Sommer an allen Tagen die Sonne.
- 2. Im Institusviertel gibt es keine blauen und keine gelben Häuser.
- 3. Für alle $a, b, c \in \mathbb{N}$ gilt $a^2 + b^2 \neq c^2$.

Aufgabe 3:

- 1. Machen Sie sich klar, dass für beliebige Zahlen $k, l \in \mathbb{N}, a \in \mathbb{R}$ und $b \in \mathbb{R} \setminus \{0\}$ die folgenden Rechenregeln gelten und püfen Sie sie anhand von Zahlenbeispielen nach:
 - $\bullet \ a^k a^l = a^l a^k = a^{k+l}.$
 - $\bullet \ \frac{b^k}{b^l} = b^{k-l},$
 - $\bullet \ \left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}.$
 - Im Allgemeinen gilt $(a^k)^l \neq a^{(k^l)}$.
- 2. Vereinfachen Sie die folgenden Terme so weit wie möglich:
 - $(1-x)^2-0,5(1-x)^2,$
 - $\bullet (a^x a^{-x})^2,$
 - $x^6(\frac{x}{3})^23^5$.
- 3. Lösen Sie in den folgenden Gleichungen nach allen vorkommenden Variablen auf:
 - $\bullet \ F = \gamma \frac{m_1 m_2}{r^2}, \qquad r > 0,$
 - $\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2}, \qquad R_{ges}, R_1, R_2 \in \mathbb{R}_+ \setminus \{0\}.$