Mathematik I für Naturwissenschaftler

WS 2012/13 — Blatt 6

Abgabe: Montag, den 3. Dezember, vor der Vorlesung

Aufgabe 1: 4 Punkte

Betrachten Sie die Abbildung $T:\mathbb{C}\to\mathbb{C},\,T(z):=\frac{z}{|z|+a}$ für a>0.

- 1. Drücken Sie die Abbildung mit Hilfe von Polarkoordinaten aus.
- 2. Zeigen Sie: $T(\mathbb{C}) \subset B := \{ z \in \mathbb{C} \mid |z| < 1 \}$ und zeigen Sie, dass $z_0 = 0$ der einzige Punkt ist für den gilt T(z) = z.
- 3. Sei \mathbb{R} die reelle Achse. Was ist $T(\mathbb{R})$? Begründen Sie Ihre Antwort.

Aufgabe 2: 4 Punkte

Sei $z=re^{i\varphi},\,r,\varphi\in\mathbb{R}$, eine beliebige komplexe Zahl. Zeigen Sie, dass durch $w_k:=\sqrt[n]{r}e^{i\frac{\varphi+k2\pi}{n}},\,\,k=0,...,n-1$, alle Lösungen der Gleichung $w^n=z$ gegeben sind.

Aufgabe 3: 4 Punkte

In der komplexen Ebene bilden die Punkte A = -2 + 3i, B = 1 - i und C = 5 + 4i ein Dreieck. Berechnen Sie die Seitenlängen des Dreiecks.

Aufgabe 4: 4 Punkte

Das Referenzformat für die Papiergröße DINA0 =: A(0) hat die Seitenlängen $2^{\frac{1}{4}}$ Meter und $2^{-\frac{1}{4}}$ Meter. Hiervon ausgehend erhält man das Format A(n), $n \ge 1$, indem man beim Format A(n-1) die längere Seite halbiert, das heißt $S_0 = 2^{\frac{1}{4}}$ m, $S_1 = 2^{-\frac{1}{4}}$ m, $S_{n+1} = \frac{S_{n-1}}{2}$ und A(n) hat die Seitenlängen S_n und S_{n+1} .

- 1. Mit F(n) werde die Fläche von A(n) bezeichnet. Berechnen sie F(0) und geben Sie eine Formel für F(n) in Abhängigkeit von n an. Wie groß ist F(4)?
- 2. Bestimmen Sie das Format A(4), indem sie die Seitenlängen rekursiv berechnen. Berechnen Sie außerdem F(4) und vergleichen Sie Ihr Ergebnis mit dem für F(4) aus dem ersten Teil.

Bringen Sie bitte einen Taschenrechner mit in die Übung. Sie dürfen in Zweiergruppen abgeben!

Anwesenheitsaufgaben zu Blatt 6

Aufgabe 1:

- 1. Sei p ein Polynom vom Grad $n \ge 1$ mit reellen Koeffizienten. Zeigen Sie, dass für $z \in \mathbb{C}$ dann gilt: $p(\overline{z}) = \overline{p(z)}$.
- 2. Sei p ein Polynom vom Grad n=2 mit reellen Koeffizienten. Ist es möglich, dass p sowohl eine komplexe als auch eine reelle Nullstelle hat? Begründen Sie Ihre Antwort.

Aufgabe 2:

Sei $D:\{z\in\mathbb{C}\,|\,|z|>2\}\to\mathbb{C}$ gegeben durch $D(z):=\frac{z}{|z|-2}$ und sei $S_3=\{z\in\mathbb{C}\,|\,|z|=3\}$. Zeigen Sie, dass für alle Punkte $w\in S_3$ gilt: D(w)=w.

Aufgabe 3:

Für eine Population unterstellen wir ein logistisches Wachstum der Form $x_n = \frac{1}{K-E}(K-x_{n-1})x_{n-1}$.

- 1. Berechnen Sie die ersten sechs Folgenglieder für $K=100,\,E=70$ und $x_0=80.$
- 2. Berechnen Sie die ersten fünf Folgenglieder für $K=100,\,E=50$ und $x_0=80.$