Mathematik I für Naturwissenschaftler

WS 2014/15 — Blatt 8

Abgabe: Montag, den 15. Dezember, vor der Vorlesung

Aufgabe 1: 4 Punkte

Berechnen Sie die erste Ableitung der folgenden Funktionen und vereinfachen Sie falls möglich das Ergebnis.

a)
$$f(x) = x^3 \sin x$$

e) $v(x) = (x+a)^2 \min a \in \mathbb{R}$
b) $g(x) = \frac{x^3 + 5}{x^2 + 1}$
f) $w(x) = \ln\left(\frac{e^x - 1}{e^x}\right)$
c) $h(x) = \arccos(x)$
g) $k(x) = \sqrt{x^2 + 1}$

d)
$$u(x) = \frac{\ln x + \sin x}{x}$$
 h) $l(x) = a^x \operatorname{mit} a > 0$

Aufgabe 2:

4 Punkte

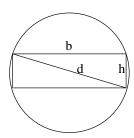
Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} ax^2 & \text{falls } x \le 2, \\ bx^3 + 4 & \text{falls } x > 2. \end{cases}$$

Berechnen Sie für x < 2 und für x > 2 die Ableitung f'(x). Bestimmen Sie $a, b \in \mathbb{R}$ so, dass f und f' auf \mathbb{R} stetig sind.

Aufgabe 3: 4 Punkte

Aus einem Baumstamm mit kreisförmigem Querschnitt soll ein Balken mit rechteckigem Querschnitt so herausgeschnitten werden, dass sein Widerstandsmoment $W = \frac{1}{6}bh^2$ den größtmöglichen Wert annimmt (d.h. der Balken soll so stabil wie möglich sein). Berechnen Sie b und h in Abhängigkeit von d so, dass W maximal wird.



b: Breite des Balkens, h: Höhe des Balkens, d: Durchmesser des Baumstamms

Tipp: Finden Sie anhand der Skizze einen Zusammenhang zwischen b, h und d.

Aufgabe 4 4 Punkte

Die Funktion f sei durch folgende beiden äquivalenten Darstellungen gegeben $f(x)=\frac{1}{2}x+\frac{2}{x}=\frac{1/2x^2+2}{x}.$

- Bestimmen Sie die Polstellen sowie das asymptotische Verhalten der Funktion für $x \to \pm \infty$.
- Bestimmen Sie alle Nullstellen und Minima und/oder Maxima.
- Skizzieren Sie den Graphen der Funktion für $x \in [-5, 5]$.

Tipp: Entscheiden Sie in jedem Aufgabenteil, welche Darstellung der Funktion sich besser für die jeweilige Problemstellung eignet.

Anwesenheitsaufgaben zu Blatt 8

Aufgabe 1:

Gegeben sei die Funktion $f(x) = x^2$ sowie die Punkte $x_0 = 3$ und $x_n = 3 + \frac{1}{n}$, $n \in \mathbb{N}$. Berechnen Sie die Steigung der Sekante durch $(x_0, f(x_0))$ und $(x_n, f(x_n))$, d.h $\frac{f(x_0) - f(x_n)}{x_0 - x_n}$ sowie $\lim_{n \to \infty} \frac{f(x_0) - f(x_n)}{x_0 - x_n}$ und vergleichen Sie Ihr Ergebnis mit f'(3).

Aufgabe 2:

Berechnen Sie die ersten Ableitungen der folgenden Funktionen: Berechnen Sie die erste Ableitung der folgenden Funktionen:

a)
$$f(x) := e^{\cos(2x+x^2)}$$
,

b)
$$g(x) := \sqrt{x}$$
,

c)
$$h(x) := 2^x$$
, Tipp: $2^x = e^{x \ln(2)}$

d)
$$u(x) = \frac{x}{x^5 - 1}$$