Mathematik I für Naturwissenschaftler

Webseite zur Vorlesung: http://home.mathematik.uni-freiburg.de/mfnw/

Abgabe: bis Montag, den 9.November 2015 um 14 Uhr in den Briefkästen im UG der Eckerstr. 1

Aufgabe 1: 4 Punkte

Es seien die Folgen $a_n = \frac{1}{n^2}$ und $b_n = 1 - \frac{1}{n}$ gegeben.

- 1. Berechnen Sie jeweils die ersten vier Folgeglieder der beiden Folgen, d.h. a_1, a_2, a_3, a_4 und b_1, b_2, b_3, b_4 .
- 2. Zeigen Sie, dass die Folgen a_n und b_n monoton und beschränkt sind und folgern Sie, dass beide Folgen konvergieren.

Aufgabe 2: 4 Punkte

Es sei $x_n = aq^n$ (für positive Zahlen $a, q \in \mathbb{R}$) die geometrische Folge und $y_n = \frac{1}{n}$ die harmonische Folge.

- 1. Zeigen Sie, dass für $n \ge 1$ gilt $x_n = \sqrt{x_{n+1} \cdot x_{n-1}}$ (geometrisches Mittel).
- 2. Zeigen Sie, dass für $n \ge 2$ gilt $\frac{1}{y_n} = \frac{1}{2} \left(\frac{1}{y_{n+1}} + \frac{1}{y_{n-1}} \right)$ (harmonisches Mittel).
- 3. Es sei

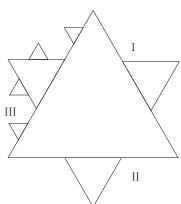
$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

Berechnen Sie F_1 , F_2 , F_3 , und F_4 . (Tipp: Anwesenheitsaufgabe 1.1 und $(x+(-y))^n=\sum_{k=0}^n \binom{n}{k} x^k (-y)^{n-k}$.)

Überprüfen Sie, dass F_1 , F_2 , F_3 , und F_4 mit den ersten vier Folgeliedern der Fibonacci-Folge (vgl. Vorlesung) übereinstimmen.

Aufgabe 3: 4 Punkte

Die Ausgangsfigur D_0 sei ein gleichseitiges Dreieck mit Seitenlänge 1cm. Die Berandung von D_1 entsteht iterativ aus D_0 indem auf dem mittleren Drittel jeder Seite von D_0 ein gleichseitiges Dreieck aufgesetzt wird. D_2 entsteht dann aus D_1 indem auf dem mittleren Drittel jeder geradlinigen Berandung von D_1 ein gleichseitiges Dreieck aufgesetzt wird:



Auf den Seiten I, II des Ausgansdreiecks D_0 ist je ein Iterationsschritt ausgeführt, auf der Seite III sind zwei Schritte ausgeführt.

- a) Der Umfang von D_0 ist $U_0 = 3$. Finden Sie eine rekursive Vorschrift, mit der sich U_{n+1} aus U_n berechnen lässt.
- b) Finden Sie nun eine explizite Vorschrift für U_{n+1} . Was können Sie über das Konvergenzverhalten von $(U_n)_{n\in\mathbb{N}}$ aussagen?
- c) Haben Sie eine Vermutung über das Konvergenzverhalten der (Hier nicht zu berechnenden!) Fläche der D_n ?

Aufgabe 4: 4 Punkte

- 1. Gibt es eine divergente Folge a_n , die monoton ist?
- 2. Gibt es eine monoton wachsende Folge a_n mit $a_n \leq 7$ für alle $n \in \mathbb{N}$?
- 3. Gibt es eine konvergente Folge a_n mit $\lim_{n\to\infty} a_n = 0$ und $a_n \neq 0$ für alle $n \in \mathbb{N}$, sodass $\frac{1}{a_n}$ nicht bestimmt gegen $+\infty$ divergiert?
- 4. Gibt es konvergente Folge a_n mit $a_n > 0$ für alle geraden n und $a_n < 0$ für alle ungeraden n?

Geben Sie jeweils ein Beispiel an oder begründen Sie, warum kein Beispiel existiert.

Anwesenheitsaufgaben zu Blatt 3

Aufgabe 1:

- 1. Berechnen Sie $(1+\sqrt{5})^4$ mit der allgemeinen binomischen Formel $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
- 2. Es seien $a, b \in \mathbb{R}$ und $x_n = a + nb$. Zeigen Sie, dass die Folgeglieder x_n die Eigenschaft haben, dass

$$x_n = \frac{x_{n+1} + x_{n-1}}{2}$$
 (arithmetisches Mittel)

für $n \ge 1$.

Aufgabe 2:

Finden Sie Beispiele für

- 1. eine nicht-konstante, konvergente Folge a_n mit $\lim a_n = \frac{27}{5}$,
- 2. eine konvergente Folge a_n mit $a_n = 0$ falls n < 100000 und $\lim_{n \to \infty} a_n = 1$,
- 3. eine divergente Folge a_n mit der Eigenschaft, dass $|a_n|$ konvergiert,
- 4. eine konvergente Folge a_n , die nicht monoton ist.