Dr. Susanne Knies — Mathematik für Naturwissenschaftler — Sommer 2016 Blatt 1

Assistant:

Dr. Behrouz Taji (behrouz.taji@math.uni-freiburg.de) — Sprechstunde: Di. 13 - 16 Uhr.

- 1. Berechnen Sie: (4 Punkte)
 - (a) $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1, 5 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix} \begin{pmatrix} 7 \\ -1 \\ 1 \end{pmatrix} =$
 - (b) $4\begin{pmatrix} 1\\ -3\\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1\\ -\frac{1}{2}\\ 0 \end{pmatrix} = (-1)\left(\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} + \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}\right) = 2\left(\begin{pmatrix} 2\\ -1\\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1\\ 1\\ -1 \end{pmatrix}\right) =$
- 2. Sei $\mathbf{x} = r(\cos\phi\sin\vartheta,\sin\phi\sin\vartheta,\cos\vartheta)$ die Darstellung von \mathbf{x} in Polarkoordinaten. Zeigen sie: $\|\mathbf{x}\| = r$.
- 3. (a) Sei $K = \{ \mathbf{x} \in \mathbb{R}^2 \mid ||\mathbf{x}|| \le 2 \} \subset \mathbb{R}^2$ der Kreis um den Ursprung mit Radius 2. Zeigen Sie, dass für $\mathbf{x}_0 = (1,1)$ und $\mathbf{y}_0 = (-2,0)$ gilt $\mathbf{x}_0, \mathbf{y}_0 \in K$.
 - (b) Sei $\mathbf{x}_0 = (3,1) \in \mathbb{R}^2$. Skizzieren Sie die Menge

$$N := \{ \ \mathbf{x}_0 + t\mathbf{x} \ \mid \ \|\mathbf{x}\| = 1, \ 1/2 \le t \le 1 \ \}.$$

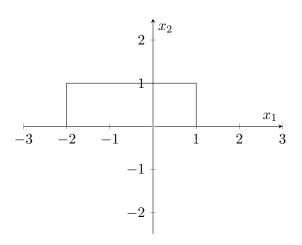
- (c) Finden Sie ein $\alpha \in \mathbb{R}$ so dass $\|\alpha \mathbf{x}\| = 1$, $\mathbf{x} = (1, -4)$.
- (d) Notieren Sie den Kreis um $\mathbf{x}_0 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ mit Radius r=1,5 als Menge. Fertigen Sie zunächst eine Skizze an.

(4 Punkte)

4. (a) Skizzieren Sie:

$$\{\begin{pmatrix}1\\2\end{pmatrix}+r\begin{pmatrix}2\\3\end{pmatrix}\mid r\in[0,1]\}.$$

(b) Welche Teilmenge von \mathbb{R}^2 entspricht dem vom Viereck in der folgenden Abbildung eingeschlossenen Gebiet?



(4 Punkte)

Abgabe: Montag 25.04.2016 bis 12:00

Mehr aufgaben:

1. Skizzieren Sie:

$${x \in \mathbb{R}^2 \mid 2 \le ||x|| \le 3}.$$

2. Welche Teilmenge von \mathbb{R}^2 entspricht dem vom Viereck in der folgenden Abbildung eingeschlossenen Gebiet?

