Descriptive set theory and the density point property

A. Andretta¹ C. Costantini¹ R. Camerlo²

¹Dipartimento di Matematica Università di Torino

²Dipartimento di Matematica Politecnico di Torino

Freiburg 10th June 2014

I The Density Point Property

- The measure algebra
- The Lebesgue density theorem
- Failure of DPP

2 The range of \mathscr{D}

- Exceptional points in \mathbb{R}
- The influence of the metric
- The case of ${}^{\omega}2$
- The case of \mathbb{R}^n
- *3* Would you like to see a proof?

4 Bibliography

The Density Point Property

└─ The measure algebra

The measure algebra.

 (X, d, μ) a **Polish measure space**, i.e. (X, d) is an uncountable Polish space, and μ a σ -finite Borel measure on X which is **nonsingular** (i.e. $\mu(\{x\}) = 0$ for all $x \in X$) and non-null (i.e. $\mu(X) \neq 0$).

MEAS the μ -measurable sets, NULL the ideal of measure 0 sets. Sets that are neither null nor co-null are called **nontrivial**.

$$MEAS/NULL \cong BOR/NULL = MALG$$

MALG is unique up to isomorphism, that is it does not depend on μ or *X*. MALG is a Polish space with distance

$$\delta([A], [B]) = \mu (A \bigtriangleup B)$$

 $A \subseteq_{\mu} B \Leftrightarrow A \setminus B \in \text{NULL}$, and $A =_{\mu} B \Leftrightarrow A \subseteq_{\mu} B \subseteq_{\mu} A$.

The Density Point Property

The Lebesgue density theorem

The Lebesgue density theorem

(X, d) a metric space, μ a **Radon measure**, i.e. Borel measure such that $0 < \mu(B(x; \varepsilon)) < \infty$ for all $x \in X$ and all sufficiently small ε .

 $x \in X$ has density $r \in [0; 1]$ in $A \in MEAS$ if

$$\mathscr{D}_A(x) \stackrel{ ext{def}}{=} \lim_{arepsilon \downarrow 0} rac{\mu\left(A \cap \mathbf{B}(x;arepsilon)
ight)}{\mu\left(\mathbf{B}(x;arepsilon)
ight)} = r.$$

Definition

 (X, d, μ) has the **Density Point Property** (DPP) iff $\forall A \in MEAS \ \forall x \in X \ (\mathscr{D}_A(x) = \chi_A(x) \text{ almost everywhere})$ equivalently iff $\Phi(A) \stackrel{\text{def}}{=} \{x \in X \mid x \text{ has density } 1 \text{ in } A\}$ is in MEAS and $\mu(A \bigtriangleup \Phi(A)) = 0.$

χ_A is the characteristic function of *A*.

The Density Point Property

The Lebesgue density theorem

The Lebesgue Density Theorem

Theorem (Lebesgue)

If X = [0; 1] or $X = \mathbb{R}$, *d* is the usual distance and μ is the Lebesgue measure, then (X, d, μ) has the DPP.

... this is what we teach in first year calculus: the Fundamental Theorem of Calculus says that if f is continuous then

$$\frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t) \mathrm{d}t \to f(x)$$

The Lebesgue Density Theorem generalizes this to the characteristic function $f = \chi_A$ of a measurable set *A*.

The Density Point Property

└─ The Lebesgue density theorem

Examples of DPP spaces

The Lebesgue Density Theorem remains true when the space *X* is

- the Euclidean space \mathbb{R}^n with the ℓ_p distance, and any Radon measure,
- the Cantor space ${}^{\omega}2$ with the coin-tossing measure,

$$\mu_{\mathcal{C}}(\{x\in{}^{\omega}2\mid s\subseteq x\})=2^{-\ln s}$$

and the usual distance

$$d_{\rm C}(x,y) = 2^{-n}$$
 if *n* is least such that $x(n) \neq y(n)$,

any Polish **ultrametric** space [Mil08].

The metric plays a central role in these questions!

The Density Point Property

The Lebesgue density theorem

Properties of Φ *for a general* (X, d, μ)

- $A \subseteq_{\mu} B \Rightarrow \Phi(A) \subseteq \Phi(B), \text{ hence } A =_{\mu} B \Rightarrow \Phi(A) = \Phi(B).$ The map $MALG_{\mu} \rightarrow \mathscr{P}(X), [A] \mapsto \Phi(A), \text{ is well-defined.}$
- 2 $\Phi(A \cap B) = \Phi(A) \cap \Phi(B), \ \Phi(\emptyset) = \emptyset \text{ and } \Phi(X) = X.$
- **3** $\Phi(CA) \subseteq C\Phi(A)$ and $\Phi(A \cup B) \supseteq \Phi(A) \cup \Phi(B)$. More generally,
- 5 $\Phi(U) \supseteq U$, for *U* open, and $\Phi(C) \subseteq C$, for *C* closed.
- 6 $\Phi(C_1 \cup C_2) = \Phi(C_1) \cup \Phi(C_2)$, if C_1, C_2 are disjoint closed sets.
- **7** If *X* is separable, then $\Phi(A)$ is Borel.
- $\Phi \colon \text{MEAS} \to \text{MEAS}$ is not a homomorphism.

The Density Point Property

The Lebesgue density theorem

Properties of Φ on ^{ω}2 [AC13]

- **7** ran $\Phi \subseteq \Pi_3^0$, (also true when the ambient space is \mathbb{R}^n with the Lebesgue measure and usual distance),
- **2** $\Phi : \text{BOR} \to \Pi_3^0$ is Borel-in-the-codes,
- 3 $\Phi(U)$ can attain *any* complexity in the Wadge hierarchy below Π_3^0 , for *U* an open set or a closed set,
- *i* for all *B* ∈ Π⁰₃ with $\emptyset \neq B \neq {}^{\omega}2$, the set {[*A*] | Φ(*A*) ≡_W *B*} is dense in the Polish space MALG,
- **5** $\{[A] \mid \Phi(A) \text{ is complete } \Pi_3^0\}$ is comeager in the Polish space MALG,
- **6** $\{[A] \mid \Phi(A) \text{ is complete } \Pi_3^0\}$ is dense in the complete Boolean algebra MALG.

— The Density Point Property

The Lebesgue density theorem

Key result:

Proposition

If $K \subseteq {}^{\omega}2$ is compact, non-null, with empty interior, then $\Phi(K)$ is Π_3^0 -complete.

G. Carotenuto has shown that the Proposition is still true when the Cantor measure μ_C is replaced by a μ such that there is $0 such that <math>p \le \mu(N_{s \frown \langle i \rangle})/\mu(N_s) \le 1 - p$, with i = 0, 1. In particular it holds for all Bernoulli measures.

Question

Is this result true for all nonsingular probability measures on $^{\omega}2?$

Density The Density Point Property The Lebesgue density theorem

What about \mathbb{R} ?

A Cantor set $K \subseteq \mathbb{R}$ is of the form $[a; b] \setminus \bigcup_{s \in \langle \omega_s} I_s$ with I_s open interval. It is **uniform** if at stage *n* the intervals I_s with $\ln s = n$ have all the same length; it is **centered** if each I_s is centered in the interval from which it is removed.

Theorem (G. Carotenuto)

If $K \subseteq \mathbb{R}$ is centered and uniform Cantor set of positive measure, then $\Phi(K)$ is Π_3^0 -complete.

If the result can be extended to *all* Cantor sets of positive measure, then $\{[A] \mid \Phi(A) \text{ is complete } \Pi_3^0\}$ is comeager in the Polish space MALG.

Failure of DPP

Theorem (Käenmäki-Rajala-Suomala [KRS])

There is a complete metric δ on $^{\omega}2$ compatible with the standard topology, a Borel finite measure ν , and a compact *C* of positive measure such that $\Phi(C) = \emptyset$.

Thus the density point property fails in $(^{\omega}2, \delta, \nu)$. By [Mil08] δ cannot be an ultrametric. In fact the DPP can fail in *any* Polish space (if you perturb the metric).

Lemma

If ν is a Borel measure on ${}^{\omega}2$ and μ is a Radon measure on XPolish such that $\mu(X) > \nu({}^{\omega}2)$, then there is a continuous, injective, measure preserving map $F : {}^{\omega}2 \to X$. Density — The Density Point Property — Failure of DPP

When does the DPP hold?

Let $({}^{\omega}2, \delta, \nu)$ be the Finnish counterexample, let *X* be Polish and μ a Borel measure on *X*, with $\mu(X) > \nu({}^{\omega}2)$. Let $K \subseteq X$ be compact and $F \colon {}^{\omega}2 \to K$ be measure preserving homeomorphism. Copy the distance δ onto *K*. Thus $(K, \delta, \mu \upharpoonright K)$ is not DPP and there is a closed set $C \subseteq K$ such that $\mu(C) > 0$ and and $\mathscr{D}_{C}^{K,\delta}(x) \neq 1$ for all $x \in K$. By a theorem of Hausdorff from 1932 [BP75], δ can be extended to a complete metric $\overline{\delta}$ on *X* compatible with the topology. Since $\mu(\mathbf{B}^{X,\overline{\delta}}(x;r)) \geq \mu(\mathbf{B}^{K,\delta}(x;r))$, then $\mathscr{D}_{C}^{X,\overline{\delta}}(x) \neq 1$ for all $x \in X$.

Theorem

For any Polish measure space (X, d, μ) there is a compatible metric δ such that (X, δ, μ) does not have the DPP.

└─ The Density Point Property └─ Failure of DPP

Proof of the Lemma

Since every Polish space is the continuous injective image of a closed subset on the Baire space ${}^{\omega}\omega$, we may assume that μ , ν are measures on $X = {}^{\omega}\omega$ and ${}^{\omega}2$ respectively, and that $\mu({}^{\omega}\omega) > \nu({}^{\omega}2)$. Write $\nu(s)$ for $\nu(N_s)$ with $s \in {}^{<\omega}2$, and similarly for μ . Choose $\varepsilon > 0$ such that $\mu({}^{\omega}\omega) > \nu({}^{\omega}2) + \varepsilon$. We want a continuous $F : {}^{\omega}2 \to {}^{\omega}\omega$ that is measure preserving. Pick incompatible $t_1, \ldots, t_n, t_{n+1}, \ldots, t_{n+m} \in {}^{<\omega}\omega$ such that

$$\sum_{i=1}^{n} \mu(t_i) > \nu(0) + \varepsilon/2, \qquad \sum_{i=n+1}^{n+m} \mu(t_i) > \nu(1) + \varepsilon/2$$

and declare that $F(N_0) \subseteq \bigcup_{i=1}^n N_{t_i}$ and $F(N_1) \subseteq \bigcup_{i=1+n}^{n+m} N_{t_i}$. This construction preserves the measure, but does not guarantee that the diameters shrink to 0.

Density The Density Point Property Failure of DPP

Proof of the Lemma

Choose a maximal finite antichain \mathcal{A} below $\langle 0 \rangle$ so that $\mathcal{A} = \bigsqcup_{i=1}^n \mathcal{A}_i$ and

$$\sum_{s\in\mathcal{A}_i}\nu(s)<\mu(t_i)\quad (i=1,\ldots,n).$$

Similarly choose \mathcal{A}' a maximal finite antichain below $\langle 1 \rangle$ so that $\mathcal{A}' = \bigsqcup_{i=n+1}^{n+m} \mathcal{A}_i$ and $\sum_{s \in \mathcal{A}_i} \nu(s) < \mu(t_i)$ for $i = n + 1, \ldots, n + m$. Declare that

$$F(N_s) \subseteq N_{t_i}$$
 for $s \in A_i, i = 1, \dots, n+m$.

This guarantees that the diameters get smaller. We can now repeat the argument as before.

└─ The Density Point Property └─ Failure of DPP

Complexity of DPP

 $(\mathbb{U}, d_{\mathbb{U}})$ Urysohn metric space, $\mathbf{P}(\mathbb{U})$ Polish space of all probability Borel measures on \mathbb{U} . Let (X, d, μ) be a Polish measure space with $\mu(X) = 1$. There is an isometric copy of (X, d) in $(\mathbb{U}, d_{\mathbb{U}})$, so we can extend μ to measure on \mathbb{U} .

Conversely, given any $\mu \in \mathbf{P}(\mathbb{U})$, consider

$$\operatorname{supp}(\mu) = \bigcap \left\{ C \subseteq X \mid C \text{ closed and } \mu(C) = 1 \right\}.$$

Then $(\operatorname{supp}(\mu), d_{\mathbb{U}}, \mu)$ is a Polish measure space. Therefore $\mathbf{P}(\mathbb{U})$ can be see as the Polish space of all Polish measure spaces.

Question

What is the complexity of the collection of DPP spaces?

Density \square The range of \mathscr{D}

Solid and dualistic sets

Work in a DPP space (X, d, μ) .

Definition

The **oscillation** of *x* in *A* is

$$\mathscr{O}_{A}(x) = \limsup_{\varepsilon \downarrow 0} \frac{\mu(A \cap \mathbf{B}(x;\varepsilon))}{\mu(\mathbf{B}(x;\varepsilon))} - \liminf_{\varepsilon \downarrow 0} \frac{\mu(A \cap \mathbf{B}(x;\varepsilon))}{\mu(\mathbf{B}(x;\varepsilon))}$$

Thus $\mathscr{D}_A(x)$ exists iff $\mathscr{O}_A(x) = 0$. The set *A* is

- solid iff $\mathscr{O}_A(x) = 0$ for all $x \in X$,
- **quasi-dualistic** iff $\forall x (\mathscr{O}_A(x) = 0 \Rightarrow \mathscr{D}_A(x) \in \{0, 1\})$, i.e. ran $\mathscr{D}_A \subseteq \{0, 1\}$,
- **dualistic** iff it is quasi-dualistic and solid iff $\forall x \in X (\mathscr{D}_A(x) \in \{0, 1\}).$

 \square The range of \mathscr{D} \square Exceptional points in \mathbb{R}

Exceptional points in \mathbb{R}

Work in \mathbb{R} with the usual metric and the Lebesgue measure λ .

Definition

Let $0 \le \delta \le 1/2$. A point $x \in \mathbb{R}$ is δ -exceptional for A iff

$$\begin{split} \delta &\leq \liminf_{\varepsilon \downarrow 0} \frac{\lambda(A \cap (x - \varepsilon; x + \varepsilon))}{2\varepsilon} \\ &\leq \limsup_{\varepsilon \downarrow 0} \frac{\lambda(A \cap (x - \varepsilon; x + \varepsilon))}{2\varepsilon} \leq 1 - \delta. \end{split}$$

In other words x is δ -exceptional for A if

• either $\mathcal{D}_A(x)$ exists and belongs $[\delta; 1 - \delta]$,

• or else
$$0 < \mathcal{O}_A(x) \le 1 - 2\delta$$
.

If *A* is an interval, the the endpoints are 1/2-exceptional, while the others are 0-exceptional.

 \square The range of \mathscr{D} \square Exceptional points in \mathbb{R}

A surprising result

Let $\mathcal{H}(\delta)$ be the statement:

 $\forall A \text{ nontrivial } \exists x (x \text{ is } \delta \text{-exceptional for } A).$

If $\delta_1 > \delta_2$ then $\mathcal{H}(\delta_1) \Rightarrow \mathcal{H}(\delta_2)$, hence define

 $\delta_{\mathcal{H}} = \sup \left\{ \delta \mid \mathcal{H}(\delta) \text{ holds} \right\}.$

It seems reasonable to conjecture that if this constant is nonzero, then it should be 0.5.

V. Kolyada [Kol83] showed that $1/4 \le \delta_{\mathcal{H}} \le (\sqrt{17} - 3)/4$. These bounds were successively improved in [Sze11, CGO12], and in [Kur12] O. Kurka obtained the exact value:

 $\delta_{\mathcal{H}} =$ the unique real solution to $8x^3 + 8x^2 + x - 1 \approx 0.268486...$

 \square The range of \mathscr{D}

 \sqsubseteq Exceptional points in \mathbb{R}

A surprising result

Corollary

There are nontrivial sets $A \subset \mathbb{R}$ such that $\operatorname{ran}(\mathscr{D}_A) \cap (\delta_{\mathcal{H}}; 1 - \delta_{\mathcal{H}}) = \emptyset$. In other words, for any real x either $\mathscr{O}_A(x) > 1 - 2\delta_{\mathcal{H}}$ or else $\mathscr{D}_A(x) \in [0; \delta_{\mathcal{H}}] \cup [1 - \delta_{\mathcal{H}}; 1]$. In particular:

• there is a set A that does not have points of density 1/2

there are no nontrivial dualistic sets.

Question

Is there a solid $A \subseteq \mathbb{R}$ such that $\mathscr{D}_A(x) \in [0; \delta_{\mathcal{H}}] \cup [1 - \delta_{\mathcal{H}}; 1]$?

The Kolyada-Kurka theorem does not seem to generalize to \mathbb{R}^n .

Density \Box The range of \mathcal{D} \Box Exceptional points in \mathbb{R}

Intermezzo: the density topology

Given (X, d, μ) a Polish metric space, let

$$\mathfrak{T} = \{A \subseteq X \mid A \subseteq \Phi(A)\}.$$

If (X, d, μ) is DPP then \mathfrak{T} is the **density topology** on *X*. But there are spaces which are not DPP, yet \mathfrak{T} is a topology.

- \mathfrak{T} is finer than the topology induced by d,
- $A = \Phi(A)$ iff A is regular open in \mathfrak{T} ,
- A is \mathfrak{T} -clopen iff A is dualistic,
- $(\mathbb{R}, \mathfrak{T})$ is connected,
- there is a Borel measure on ℝ² such that (ℝ², ℑ) is not connected.

- The range of \mathscr{D}

-Exceptional points in \mathbb{R}

Definition

Given (X, d, μ) we say that μ is **continuous** if the map

 $X \times \mathbb{R}_+ \to \mathbb{R}_+, \qquad (x, r) \mapsto \mu(\mathbf{B}(x; r))$

is continuous.

The Lebesgue measure on \mathbb{R}^n and on 2^{ω} is continuous.

Proposition

Suppose μ is continuous and A is solid. Then $\mathscr{D}_A : X \to \mathbb{R}_+$ is Baire class 1, and $\Phi(A) \in \Pi_2^0$. Moreover if 1 is an isolated value of \mathscr{D}_A , that is to say ran $\mathscr{D}_A \subseteq [0; r] \cup \{1\}$ for some r < 1, then $\Phi(A) \in \mathbf{\Delta}_2^0$.

 \square The range of \mathscr{D} \square The influence of the metric

The influence of the metric

Two equivalent metrics d_1 and d_2 on X can give rise to very different density notions.

- i both metrics give rise to DPP-spaces, and $\mathscr{D}^{d_1} = \mathscr{D}^{d_2}$, $\mathscr{O}^{d_1} = \mathscr{O}^{d_2}$, and $\Phi^{d_1} = \Phi^{d_2}$,
- 2 both metrics give rise to DPP-spaces, but $\mathscr{D}_{A}^{d_{1}} \neq \mathscr{D}_{A}^{d_{2}}$ for some *A*, although $\Phi^{d_{1}}(A) = \Phi^{d_{2}}(A)$,
- **3** both metrics give rise to DPP-spaces, $\Phi^{d_1}(A) \neq \Phi^{d_2}(A)$ for some *A* (hence $\mathscr{D}_A^{d_1} \neq \mathscr{D}_A^{d_2}$), yet the density topologies are the homeomorphic,
- both metrics give rise to DPP-spaces, but the density topologies are not homeomorphic,
- one of the two metrics gives rise to DPP-space, the other does not.

n			
,,	on	SITY	
~	cn.	Suy.	

- The range of \mathscr{D}

- The case of $^{\omega}2$

Theorem

For every $S \subseteq [0;1]$ in Σ_1^1 then there is a set $A \subseteq {}^{\omega}2$ such that $\operatorname{ran}(\mathscr{D}_A) = S \cup \{0,1\}$. Moreover A can be taken to be open or closed. Furthermore A can be taken to be solid.

Corollary

 $\begin{array}{l} \blacksquare \ \{K \in \mathbf{K}(^{\omega}2) \mid \operatorname{ran}(\mathscr{D}_K) = \{0,1\}\} \text{ and} \\ \{K \in \mathbf{K}(^{\omega}2) \mid K \text{ solid and } \operatorname{ran}(\mathscr{D}_K) = \{0,1\}\} \text{ are} \\ \Pi_1^1 \text{-complete.} \end{array}$

2 {
$$K \in \mathbf{K}(^{\omega}2) \mid \operatorname{ran}(\mathscr{D}_K) = [0;1]$$
} and
{ $K \in \mathbf{K}(^{\omega}2) \mid K$ solid and $\operatorname{ran}(\mathscr{D}_K) = [0;1]$ } are $\mathbf{\Pi}_2^1$ -complete.

- The range of \mathscr{D}

 \square The case of \mathbb{R}^n

Proposition

There is a set $A \subseteq [0; 1]$ which is quasi-dualistic, i.e. $\forall x \in \mathbb{R} \ (\mathscr{O}_A(x) = 0 \Rightarrow \mathscr{D}_A(x) \in \{0, 1\}).$ Moreover *A* can be taken to be open or closed.

Such set is highly non-solid...

Theorem

Work in \mathbb{R}^n with the ℓ_p metric $(1 \le p \le \infty)$ and the Lebesgue measure.

If $A \subseteq \mathbb{R}^n$ is nontrivial and solid, then $\mathscr{D}_A(\mathbf{x}) = \frac{1}{2}$ for some $\mathbf{x} \in \mathbb{R}^n$. In particular, there are no nontrivial dualistic sets.

Theorem

For every $n \ge 1$ there is a solid set $A \subseteq \mathbb{R}^n$ such that $ran(\mathscr{D}_A) = [0; 1]$. Moreover *A* can be taken to be open or closed.

Density — The range of \mathscr{D} \square The case of \mathbb{R}^n

What is ran \mathcal{D}_A when $A \subseteq \mathbb{R}$ is solid?

Theorem

Let $S \subseteq [0;1]$ be \mathbf{F}_{σ} . Then there is a solid set $A \subseteq \mathbb{R}$ such that ran $\mathscr{D}_A = S \cup \{0, 1/2, 1\}$. Moreover A can be taken to be open or closed.

Question

Is the result true if *S* is G_{δ} ?

Theorem

For any $S \subseteq [0; 1]$ which is Σ_1^1 there is a (non-necessarily solid) set $A \subseteq \mathbb{R}$ such that ran $\mathscr{D}_A = S \cup \{0, 1\}$. As before, *A* can be taken to be open or closed.

Would you like to see a proof?

NO WAY MAN! OK, just a sketch...¹

For every $S \subseteq [0; 1]$ in Σ_1^1 then there is an open set $A \subseteq {}^{\omega}2$ such that $ran(\mathscr{D}_A) = S \cup \{0, 1\}$.

Let $F: \omega_2 \twoheadrightarrow [0; 1]$, $F(x) = \sum_{n=0}^{\infty} \frac{x(n)}{2^{n+1}}$, so that $F^{-1}[S]$ is the projection of a closed subset of $\omega_2 \times \omega_\omega$. Since ω_ω is homeomorphic to $\mathcal{N} = \{y \in \omega_2 \mid \exists^{\infty} n y(n) = 1\}$, there is a pruned tree T on 2×2 such that

$$\forall x \in {}^{\omega}2 \ (F(x) \in S \Leftrightarrow \exists y \in \mathcal{N} \ (x, y) \in [T])$$

¹Homer and Lisa Simpsons appear by courtesy of Matt Groening and Raymond Chen's package simpsons

Sketch of a proof

Let \oplus : ${}^{\omega}2 \times {}^{\omega}2 \to {}^{\omega}2$ be some standard pairing function. $C \stackrel{\text{def}}{=} \{z \in {}^{\omega}2 \mid \forall n z(3n+2) = 0\}$ is null and $z \mapsto \tilde{z}$ is the homeomorphism between ${}^{\omega}2$ and *C*. We shall construct an open set $A \subseteq {}^{\omega}2 \setminus C$ such that

$$z \notin C \Rightarrow \mathscr{D}_A(z) \in \{0, 1\},$$

$$x \in F^{-1}[S] \Rightarrow \mathscr{D}_A(\widetilde{x \oplus y}) = F(x),$$

$$x \notin F^{-1}[S] \Rightarrow \mathscr{O}_A(\widetilde{x \oplus y}) > 0.$$

The idea is to add clopen sets U_s inside the neighborhoods of the form N_{t-1} where $\ln t = 3k + 1$ so that the requirements above are satisfied: if $z \in C$, then $z = \widetilde{x \oplus y}$ and

- either $(x, y) \in [T]$ and $\mathscr{D}_A(z) = F(x)$,
- or else $(x, y) \notin [T]$ and $\mathscr{D}_A(z)$ does not exist.

Thank-you for your attention!

Density	
Bibli	ography

Alessandro Andretta, and Riccardo Camerlo The descriptive set theory of the Lebesgue density theorem.

Adv. Math., 234 1–42, 2013.

Bessaga, Czesław, and Pełczyński, Aleksander Selected topics in infinite-dimensional topology. *PWN—Polish Scientific Publishers*, 1975.

Marianna Csörnyei, Jack Grahl, and Toby C O'neil. Points of middle density in the real line. Real Anal. Exchange, 37(2):243–248, 2012.

Antti Käenmäki, Tapio Rajala, and Ville Suomala. Local homogeneity and dimensions of measures in doubling metric spaces. arXiv:1003.2895 V. I. Kolyada. On the metric Darboux property. *Anal. Math.*, 9(4):291–312, 1983.

Ondřej Kurka.

Optimal quality of exceptional points for the Lebesgue density theorem.

Acta Math. Hungar., 134 (3) (2012), 209-268, 05 2012.

Benjamin Miller.

The existence of measures of a given cocycle. I. Atomless, ergodic σ -finite measures.

Ergodic Theory Dynam. Systems, 28(5):1599–1613, 2008.

András Szenes.

Exceptional points for Lebesgue's density theorem on the real line.

Adv. Math., 226(1):764-778, 2011.