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The Density Point Property

The measure algebra

The measure algebra.

(X, d, µ) a Polish measure space, i.e. (X, d) is an uncountable
Polish space, and µ a σ-finite Borel measure on X which is
nonsingular (i.e. µ({x}) = 0 for all x ∈ X) and non-null (i.e.
µ(X) 6= 0).
MEAS the µ-measurable sets, NULL the ideal of measure 0
sets. Sets that are neither null nor co-null are called nontrivial.

MEAS/NULL ∼= BOR/NULL = MALG

MALG is unique up to isomorphism, that is it does not depend
on µ or X. MALG is a Polish space with distance

δ([A], [B]) = µ (A4B)

A ⊆µ B⇔ A \ B ∈ NULL, and A =µ B⇔ A ⊆µ B ⊆µ A.
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The Density Point Property

The Lebesgue density theorem

The Lebesgue density theorem

(X, d) a metric space, µ a Radon measure, i.e. Borel measure
such that 0 < µ(B(x; ε)) <∞ for all x ∈ X and all sufficiently
small ε.
x ∈ X has density r ∈ [0; 1] in A ∈ MEAS if

DA(x)
def
= lim

ε↓0

µ (A ∩ B(x; ε))

µ (B(x; ε))
= r.

Definition

(X, d, µ) has the Density Point Property (DPP) iff
∀A ∈ MEAS ∀x ∈ X (DA(x) = χA(x) almost everywhere)
equivalently iff
Φ(A)

def
= {x ∈ X | x has density 1 in A} is in MEAS and

µ(A4Φ(A)) = 0.

χA is the characteristic function of A.
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The Density Point Property

The Lebesgue density theorem

The Lebesgue Density Theorem

Theorem (Lebesgue)

If X = [0; 1] or X = R, d is the usual distance and µ is the
Lebesgue measure, then (X, d, µ) has the DPP.

. . . this is what we teach in first year calculus: the Fundamental
Theorem of Calculus says that if f is continuous then

1
2ε

∫ x+ε

x−ε
f (t)dt→ f (x)

The Lebesgue Density Theorem generalizes this to the
characteristic function f = χA of a measurable set A.
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The Density Point Property

The Lebesgue density theorem

Examples of DPP spaces

The Lebesgue Density Theorem remains true when the space
X is

the Euclidean space Rn with the `p distance, and any
Radon measure,
the Cantor space ω2 with the coin-tossing measure,

µC({x ∈ ω2 | s ⊆ x}) = 2− lh s

and the usual distance

dC(x, y) = 2−n if n is least such that x(n) 6= y(n),

any Polish ultrametric space [Mil08].
The metric plays a central role in these questions!
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The Density Point Property

The Lebesgue density theorem

Properties of Φ for a general (X, d, µ)

1 A ⊆µ B ⇒ Φ(A) ⊆ Φ(B), hence A =µ B⇒ Φ(A) = Φ(B).
The map MALGµ →P(X), [A] 7→ Φ(A), is well-defined.

2 Φ(A ∩ B) = Φ(A) ∩ Φ(B), Φ(∅) = ∅ and Φ(X) = X.
3 Φ({A) ⊆ {Φ(A) and Φ(A ∪ B) ⊇ Φ(A) ∪ Φ(B). More

generally,
4 Φ(

⋃
i∈I Ai) ⊇

⋃
i∈I Φ(Ai), provided

⋃
i∈I Ai ∈ MEASµ.

5 Φ(U) ⊇ U, for U open, and Φ(C) ⊆ C, for C closed.
6 Φ(C1 ∪ C2) = Φ(C1) ∪ Φ(C2), if C1,C2 are disjoint closed

sets.
7 If X is separable, then Φ(A) is Borel.

Φ: MEAS → MEAS is not a homomorphism.
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The Density Point Property

The Lebesgue density theorem

Properties of Φ on ω2 [AC13]

1 ran Φ ⊆ Π0
3, (also true when the ambient space is Rn with

the Lebesgue measure and usual distance),
2 Φ: BOR → Π0

3 is Borel-in-the-codes,
3 Φ(U) can attain any complexity in the Wadge hierarchy

below Π0
3, for U an open set or a closed set,

4 for all B ∈ Π0
3 with ∅ 6= B 6= ω2, the set {[A] | Φ(A) ≡W B} is

dense in the Polish space MALG,
5
{
[A] | Φ(A) is complete Π0

3
}

is comeager in the Polish
space MALG,

6
{
[A] | Φ(A) is complete Π0

3
}

is dense in the complete
Boolean algebra MALG.
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The Density Point Property

The Lebesgue density theorem

Key result:

Proposition

If K ⊆ ω2 is compact, non-null, with empty interior, then Φ(K) is
Π0

3-complete.

G. Carotenuto has shown that the Proposition is still true when
the Cantor measure µC is replaced by a µ such that there is
0 < p ≤ 1/2 such that p ≤ µ(Nsa〈i〉)/µ(Ns) ≤ 1− p, with i = 0, 1.
In particular it holds for all Bernoulli measures.

Question

Is this result true for all nonsingular probability measures on ω2?
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The Density Point Property

The Lebesgue density theorem

What about R?

A Cantor set K ⊆ R is of the form [a; b] \
⋃

s∈<ωs Is with Is open
interval. It is uniform if at stage n the intervals Is with lh s = n
have all the same length; it is centered if each Is is centered in
the interval from which it is removed.

Theorem (G. Carotenuto)

If K ⊆ R is centered and uniform Cantor set of positive
measure, then Φ(K) is Π0

3-complete.

If the result can be extended to all Cantor sets of positive
measure, then

{
[A] | Φ(A) is complete Π0

3
}

is comeager in the
Polish space MALG.
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Failure of DPP

Failure of DPP

Theorem (Käenmäki-Rajala-Suomala [KRS])

There is a complete metric δ on ω2 compatible with the
standard topology, a Borel finite measure ν, and a compact C of
positive measure such that Φ(C) = ∅.

Thus the density point property fails in (ω2, δ, ν). By [Mil08] δ
cannot be an ultrametric. In fact the DPP can fail in any Polish
space (if you perturb the metric).

Lemma
If ν is a Borel measure on ω2 and µ is a Radon measure on X
Polish such that µ(X) > ν(ω2), then there is a continuous,
injective, measure preserving map F : ω2→ X.
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The Density Point Property

Failure of DPP

When does the DPP hold?

Let (ω2, δ, ν) be the Finnish counterexample, let X be Polish and
µ a Borel measure on X, with µ(X) > ν(ω2). Let K ⊆ X be
compact and F : ω2→ K be measure preserving
homeomorphism. Copy the distance δ onto K. Thus
(K, δ, µ � K) is not DPP and there is a closed set C ⊆ K such
that µ(C) > 0 and and DK,δ

C (x) 6= 1 for all x ∈ K. By a theorem of
Hausdorff from 1932 [BP75], δ can be extended to a complete
metric δ on X compatible with the topology. Since
µ(BX,δ(x; r)) ≥ µ(BK,δ(x; r)), then DX,δ

C (x) 6= 1 for all x ∈ X.

Theorem
For any Polish measure space (X, d, µ) there is a compatible
metric δ such that (X, δ, µ) does not have the DPP.
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Failure of DPP

Proof of the Lemma

Since every Polish space is the continuous injective image of a
closed subset on the Baire space ωω, we may assume that µ, ν
are measures on X = ωω and ω2 respectively, and that
µ(ωω) > ν(ω2). Write ν(s) for ν(Ns) with s ∈ <ω2, and similarly
for µ. Choose ε > 0 such that µ(ωω) > ν(ω2) + ε.
We want a continuous F : ω2→ ωω that is measure preserving.
Pick incompatible t1, . . . , tn, tn+1, . . . , tn+m ∈ <ωω such that

n∑
i=1

µ(ti) > ν(0) + ε/2,
n+m∑

i=n+1

µ(ti) > ν(1) + ε/2

and declare that F(N0) ⊆
⋃n

i=1 Nti and F(N1) ⊆
⋃n+m

i=1+n Nti . This
construction preserves the measure, but does not guarantee
that the diameters shrink to 0.

(continued)
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Failure of DPP

Proof of the Lemma

Choose a maximal finite antichain A below 〈0〉 so that
A =

⊔n
i=1Ai and∑

s∈Ai

ν(s) < µ(ti) (i = 1, . . . , n).

Similarly choose A′ a maximal finite antichain below 〈1〉 so that
A′ =

⊔n+m
i=n+1Ai and

∑
s∈Ai

ν(s) < µ(ti) for i = n + 1, . . . , n + m.
Declare that

F(Ns) ⊆ Nti for s ∈ Ai, i = 1, . . . , n + m.

This guarantees that the diameters get smaller. We can now
repeat the argument as before.
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Failure of DPP

Complexity of DPP

(U, dU) Urysohn metric space,
P(U) Polish space of all probability Borel measures on U.
Let (X, d, µ) be a Polish measure space with µ(X) = 1. There is
an isometric copy of (X, d) in (U, dU), so we can extend µ to
measure on U.
Conversely, given any µ ∈ P(U), consider

supp(µ) =
⋂
{C ⊆ X | C closed and µ(C) = 1} .

Then (supp(µ), dU, µ) is a Polish measure space.
Therefore P(U) can be see as the Polish space of all Polish
measure spaces.

Question

What is the complexity of the collection of DPP spaces?
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The range of D

Solid and dualistic sets

Work in a DPP space (X, d, µ).

Definition

The oscillation of x in A is

OA(x) = lim sup
ε↓0

µ(A ∩ B(x; ε))

µ(B(x; ε))
− lim inf

ε↓0

µ(A ∩ B(x; ε))

µ(B(x; ε))

Thus DA(x) exists iff OA(x) = 0.
The set A is

solid iff OA(x) = 0 for all x ∈ X,
quasi-dualistic iff ∀x (OA(x) = 0⇒ DA(x) ∈ {0, 1}), i.e.
ran DA ⊆ {0, 1},
dualistic iff it is quasi-dualistic and solid iff
∀x ∈ X (DA(x) ∈ {0, 1}).
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Exceptional points in R

Exceptional points in R
Work in R with the usual metric and the Lebesgue measure λ.

Definition

Let 0 ≤ δ ≤ 1/2. A point x ∈ R is δ-exceptional for A iff

δ ≤ lim inf
ε↓0

λ(A ∩ (x− ε; x + ε))

2ε

≤ lim sup
ε↓0

λ(A ∩ (x− ε; x + ε))

2ε
≤ 1− δ.

In other words x is δ-exceptional for A if
either DA(x) exists and belongs [δ; 1− δ],
or else 0 < OA(x) ≤ 1− 2δ.

If A is an interval, the the endpoints are 1/2-exceptional, while
the others are 0-exceptional.
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Exceptional points in R

A surprising result

Let H(δ) be the statement:

∀A nontrivial∃x (x is δ-exceptional for A).

If δ1 > δ2 then H(δ1)⇒ H(δ2), hence define

δH = sup {δ | H(δ) holds} .

It seems reasonable to conjecture that if this constant is
nonzero, then it should be 0.5.
V. Kolyada [Kol83] showed that 1/4 ≤ δH ≤ (

√
17− 3)/4. These

bounds were successively improved in [Sze11, CGO12], and
in [Kur12] O. Kurka obtained the exact value:

δH = the unique real solution to 8x3 +8x2 +x−1 ≈ 0.268486 . . . .
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Exceptional points in R

A surprising result

Corollary

There are nontrivial sets A ⊂ R such that
ran(DA) ∩ (δH; 1− δH) = ∅. In other words, for any real x either
OA(x) > 1− 2δH or else DA(x) ∈ [0; δH] ∪ [1− δH; 1].
In particular:

there is a set A that does not have points of density 1/2

there are no nontrivial dualistic sets.

Question

Is there a solid A ⊆ R such that DA(x) ∈ [0; δH] ∪ [1− δH; 1]?

The Kolyada-Kurka theorem does not seem to generalize to Rn.
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Exceptional points in R

Intermezzo: the density topology

Given (X, d, µ) a Polish metric space, let

T = {A ⊆ X | A ⊆ Φ(A)} .

If (X, d, µ) is DPP then T is the density topology on X. But
there are spaces which are not DPP, yet T is a topology.

T is finer than the topology induced by d,
A = Φ(A) iff A is regular open in T,
A is T-clopen iff A is dualistic,
(R,T) is connected,
there is a Borel measure on R2 such that (R2,T) is not
connected.
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Exceptional points in R

Definition

Given (X, d, µ) we say that µ is continuous if the map

X × R+ → R+, (x, r) 7→ µ(B(x; r))

is continuous.

The Lebesgue measure on Rn and on 2ω is continuous.

Proposition

Suppose µ is continuous and A is solid. Then DA : X → R+ is
Baire class 1, and Φ(A) ∈ Π0

2.
Moreover if 1 is an isolated value of DA, that is to say
ran DA ⊆ [0; r] ∪ {1} for some r < 1, then Φ(A) ∈∆0

2.
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The influence of the metric

The influence of the metric

Two equivalent metrics d1 and d2 on X can give rise to very
different density notions.

1 both metrics give rise to DPP-spaces, and Dd1 = Dd2 ,
Od1 = Od2 , and Φd1 = Φd2 ,

2 both metrics give rise to DPP-spaces, but Dd1
A 6= Dd2

A for
some A, although Φd1(A) = Φd2(A),

3 both metrics give rise to DPP-spaces, Φd1(A) 6= Φd2(A) for
some A (hence Dd1

A 6= Dd2
A ), yet the density topologies are

the homeomorphic,
4 both metrics give rise to DPP-spaces, but the density

topologies are not homeomorphic,
5 one of the two metrics gives rise to DPP-space, the other

does not.
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The case of ω2

Theorem

For every S ⊆ [0; 1] in Σ1
1 then there is a set A ⊆ ω2 such that

ran(DA) = S ∪ {0, 1}.
Moreover A can be taken to be open or closed.
Furthermore A can be taken to be solid.

Corollary

1 {K ∈ K(ω2) | ran(DK) = {0, 1}} and
{K ∈ K(ω2) | K solid and ran(DK) = {0, 1}} are
Π1

1-complete.

2 {K ∈ K(ω2) | ran(DK) = [0; 1]} and
{K ∈ K(ω2) | K solid and ran(DK) = [0; 1]} are
Π1

2-complete.
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The case of Rn

Proposition

There is a set A ⊆ [0; 1] which is quasi-dualistic, i.e.
∀x ∈ R (OA(x) = 0⇒ DA(x) ∈ {0, 1}).
Moreover A can be taken to be open or closed.

Such set is highly non-solid. . .

Theorem
Work in Rn with the `p metric (1 ≤ p ≤ ∞) and the Lebesgue
measure.
If A ⊆ Rn is nontrivial and solid, then DA(x) = 1

2 for some x ∈ Rn.
In particular, there are no nontrivial dualistic sets.

Theorem
For every n ≥ 1 there is a solid set A ⊆ Rn such that
ran(DA) = [0; 1].
Moreover A can be taken to be open or closed.
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The case of Rn

What is ran DA when A ⊆ R is solid?

Theorem
Let S ⊆ [0; 1] be Fσ. Then there is a solid set A ⊆ R such that
ran DA = S ∪ {0, 1/2, 1}.
Moreover A can be taken to be open or closed.

Question

Is the result true if S is Gδ?

Theorem

For any S ⊆ [0; 1] which is Σ1
1 there is a (non-necessarily solid)

set A ⊆ R such that ran DA = S ∪ {0, 1}.
As before, A can be taken to be open or closed.
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Would you like to see a proof?

� �
�NO WAY MAN!

� ��OK, just a sketch. . . 1

For every S ⊆ [0; 1] in Σ1
1 then there is an open set A ⊆ ω2 such

that ran(DA) = S ∪ {0, 1}.

Let F : ω2� [0; 1], F(x) =
∑∞

n=0
x(n)
2n+1 , so that F−1[S] is the

projection of a closed subset of ω2× ωω. Since ωω is
homeomorphic to N = {y ∈ ω2 | ∃∞n y(n) = 1}, there is a
pruned tree T on 2× 2 such that

∀x ∈ ω2 (F(x) ∈ S ⇔ ∃y ∈ N (x, y) ∈ [T])

1Homer and Lisa Simpsons appear by courtesy of Matt Groening and
Raymond Chen’s package simpsons
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Sketch of a proof

Let ⊕ : ω2× ω2→ ω2 be some standard pairing function.
C def

= {z ∈ ω2 | ∀n z(3n + 2) = 0} is null and z 7→ z̃ is the
homeomorphism between ω2 and C.
We shall construct an open set A ⊆ ω2 \ C such that

z /∈ C ⇒ DA(z) ∈ {0, 1} ,
x ∈ F−1[S] ⇒ DA(x̃⊕ y) = F(x),

x /∈ F−1[S] ⇒ OA(x̃⊕ y) > 0.

The idea is to add clopen sets Us inside the neighborhoods of
the form Nta1 where lh t = 3k + 1 so that the requirements
above are satisfied: if z ∈ C, then z = x̃⊕ y and

either (x, y) ∈ [T] and DA(z) = F(x),
or else (x, y) /∈ [T] and DA(z) does not exist.
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Thank-you for your attention!
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