Monochromatic paths and path squares in infinite graphs

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
http://www.renyi.hu/~soukup
Freiburg, 2014

The beginning: an infinite result

Theorem (Erdős, Rado, (published in 1987))
Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with r colors. Then there are r disjoint monochromatic paths with different colours which cover all vertices of K_{ω}.

$$
K_{\omega} \sqsubset\left(\text { Path }_{0}, \ldots, \text { Path }_{r-1}\right)
$$

$$
K_{\omega} \sqsubset\left(\text { Path }_{0}, \ldots, \text { Path }_{r-1}\right)
$$

-

T
-
-

r

- Proof (Rado): $c:[\omega]^{2} \rightarrow r$
- $T \subset r$ is perfect iff \exists disjoint finite paths $\left\{P_{t}=\ldots x_{t}: t \in T\right\}$ with $c\left[P_{t}\right]=\{t\}$ and $\exists A \in[\omega]^{\omega}$ such that $c\left(x_{t}, y\right)=t$ for all $y \in A$.
- Let T be a maximal perfect set.
- The vertices of K_{ω} can be partitioned into monochromatic disjoint paths $\left\{P_{t}^{\prime}: t \in T\right\}$ s.t. $c\left[P_{t}^{\prime}\right]=\{t\}$.

Prelude

- $K_{\omega} \sqsubset\left(\right.$ Path $_{0}, \ldots$, Path $\left._{r-1}\right)$

Theorem (Gerencsér, Gyárfás, 1967)
Suppose that the edges of a finite complete graph K_{n} is coloured with 2 colors. Then there are 2 disjoint monochromatic paths with different colours which cover all vertices of K_{n}.

$$
K_{n} \sqsubset\left(\text { Path }_{0}, \text { Path }_{1}\right)
$$

More colors? Cycles instead paths?

Covers of finite graphs by monochromatic paths and cycles

- $K_{\omega} \sqsubset\left(\right.$ Path $_{0}, \ldots$, Path $\left._{r-1}\right) \quad$ - $K_{n} \sqsubset\left(\right.$ Path $_{0}$, Path $\left._{1}\right)$

Theorem (Kathy Heinrich)
Some 3-edge-coloured K_{n} can not be covered by disjoint monochromatic paths of different colours.

$$
K_{n} \not \subset\left(\text { Path }_{0}, \text { Path }_{1}, \text { Path }_{2}\right)
$$

$$
|A|=|B|=|C|=|D|=n
$$

Conjectures: Every r-edge-coloured K_{n} can be covered with r vertex-disjoint monochromatic

- paths (Gyárfás, 1989): $K_{n} \sqsubset(\text { Path })_{r}$
- cycles (Erdős, Gyárfás, Pyber; Lehel for $r=2$): $K_{n} \sqsubset(\text { Cycle })_{r}$

Theorems:

Covers of infinite graphs

(Erdős, Rado) Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with r colors. Then there are r disjoint, finite or one-way infinite monochromatic paths with different colours which cover all vertices of K_{ω}.

$$
K_{\omega} \sqsubset\left(\text { Path }_{0}, \text { Path }_{1}, \ldots, \text { Path }_{r-1}\right)
$$

Theorem
Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with r colors. Then there are r disjoint, monochromatic two-way infinite paths and cycles with different colours which cover all vertices of K_{ω}.

$$
K_{\omega} \sqsubset\left(\text { Cycle }_{0}, \text { Cycle }_{1}, \ldots, \text { Cycle }_{r-1}\right)
$$

Need: ultrafilter argument

Covers of infinite hypergraphs

Definition

A loose path in a k-uniform hypergraph is a sequence of edges, e_{1}, e_{2}, \ldots such that for $\left|e_{i} \cap e_{i+1}\right|=1$ and $e_{i} \cap e_{j}=\emptyset$ for $i+1<j$.

A tight path in a k-uniform hypergraph is a sequence of distinct vertices such that every consecutive set of k vertices forms an edge.

Theorem (Gyárfás, G. N. Sárközy, 2012)
Given any r-edge colouring of K_{ω}^{ℓ} the vertex set can be partitioned into monochromatic loose paths of distinct colors.

Theorem (M. Elekes, D. Soukup, -, Z. Szentmiklóssy)
Given any r-edge colouring of K_{ω}^{ℓ} the vertex set can be partitioned into monochromatic tight paths of distinct colors.

Covers by power of paths

Definition

Suppose that G is a graph and $k \in \omega$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff $\operatorname{dist}_{G}(v, w) \leq k$.
What is a power of a path?
P_{6}

P_{6}^{2}
P_{6}^{3}

Theorem (M. Elekes, D. Soukup, -, Z. Szentmiklóssy)
Let $k, r \in \omega$. Suppose that c is a colouring of the edges K_{ω} with r colours. Then the vertices can be partitioned into $\leq r^{(k-1) r+1}$ infinite monochromatic $k^{\text {th }}$ powers of paths and a finite set. For $k=r=2$ we have a partition into 5 monochromatic squares of paths.

$K_{\omega} \sqsubset(\text { PathSquare })_{2,5}$

- c: $[\omega]^{2} \rightarrow 2$
- \mathcal{U} ultrafilter on ω
- $A_{0} \in \mathcal{U}$
- \mathcal{V} ultrafilter on A_{1}
- $B_{0} \in \mathcal{U}$
- $B_{1} \sqsubset$ PathSquare $_{1}$

Covers of uncountable graphs

Definition (Rado)

$P=(V, E)$ is a path iff there is a well ordering \preceq on V such that any two vertices is connected by $a \preceq$-monotone (finite) path.
$\left\{p_{\alpha}: \alpha<\delta\right\}$ is a path iff

- $\left\{p_{\alpha}, p_{\alpha+1}\right\} \in E$ for $\alpha+1<\delta$
- $\left\{\alpha<\beta:\left\{\boldsymbol{p}_{\alpha}, \boldsymbol{p}_{\beta}\right\} \in E\right\}$ is cofinal in β for all limit $\beta<\delta$

Theorem (M. Elekes, D.Soukup, -, Z. Szentmiklóssy)
Given any 2-edge colouring of $K_{\omega_{1}}$ we can partition the vertices into two monochromatic paths of different colors.

$$
K_{\omega_{1}} \sqsubset\left(\text { Path }_{0}, \text { Path }_{1}\right) .
$$

Theorem (D. Soukup)
If G is an infinite complete graph and $r \in \omega$, then for every r-edge colouring of G we can partition the vertices into finitely many monochromatic paths.

$$
K_{\kappa} \sqsubset(\text { Path })_{r,<\omega} .
$$

Problems

- $K_{\omega}^{\ell} \sqsubset\left(\right.$ TightPath $_{0}, \ldots$, TightPath $\left._{r-1}\right)$.
- Problem: $K_{\omega}^{\ell} \sqsubset\left(\right.$ TightCycle $_{0}, \ldots$, TightCyle $\left._{r-1}\right)$??
- $K_{\kappa} \sqsubset(\text { Path })_{r,<\omega}$.
- Problem: $K_{\kappa} \sqsubset(\text { Path })_{r, f(r)}$.
- $K_{\omega} \sqsubset^{*}\left(k^{\text {th }} \text {-PowerofPath }\right)_{r, r^{(k-1) r+1}}$
* Problem $K_{\omega} \sqsubset\left(k^{\text {th }} \text {-PowerofPath }\right)_{r, g(k, r)}$
- $K_{\omega} \sqsubset(\text { PathSquare })_{2,5}$
- Problem $K_{\omega} \sqsubset(\text { PathSquare })_{2,3}$

Infinitely many colors????

Thank you!

