Monochromatic paths and path squares in infinite graphs

Lajos Soukup

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

http://www.renyi.hu/~soukup

Freiburg, 2014

The beginning: an infinite result

Theorem (Erdős, Rado, (published in 1987))

Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with *r* colors. Then there are *r* disjoint monochromatic paths with different colours which cover all vertices of K_{ω} .

 $K_{\omega} \sqsubset (Path_0, \ldots, Path_{r-1})$

 $K_{\omega} \sqsubset (Path_0, \ldots, Path_{r-1})$

- Proof (Rado): $\boldsymbol{c}: [\omega]^2 \rightarrow \boldsymbol{r}$
- $T \subset r$ is perfect iff \exists disjoint finite paths $\{P_t = \dots x_t : t \in T\}$ with $c[P_t] = \{t\}$ and $\exists A \in [\omega]^{\omega}$ such that $c(x_t, y) = t$ for all $y \in A$.
- Let T be a maximal perfect set.
- The vertices of K_ω can be partitioned into monochromatic disjoint paths {P'_t : t ∈ T} s.t. c[P'_t] = {t}.

Prelude

• $K_{\omega} \sqsubset (Path_0, \ldots, Path_{r-1})$

Theorem (Gerencsér, Gyárfás, 1967)

Suppose that the edges of a finite complete graph K_n is coloured with 2 colors. Then there are 2 disjoint monochromatic paths with different colours which cover all vertices of K_n .

 $K_n \sqsubset (Path_0, Path_1)$

More colors? Cycles instead paths?

Covers of finite graphs by monochromatic paths and cycles

• $K_{\omega} \sqsubset (Path_0, \dots, Path_{r-1})$ • $K_n \sqsubset (Path_0, Path_1)$

Theorem (Kathy Heinrich)

Some 3-edge-coloured K_n can not be covered by disjoint monochromatic paths of different colours.

 $K_n \not \subset (Path_0, Path_1, Path_2)$

$$|A| = |B| = |C| = |D| = n$$

Conjectures: Every *r*-edge-coloured K_n can be covered with *r* vertex-disjoint monochromatic

- paths (Gyárfás, 1989): $K_n \sqsubset (Path)_r$

- cycles (Erdős, Gyárfás, Pyber; Lehel for r = 2): $K_n \sqsubset (Cycle)_r$ Theorems:

Covers of infinite graphs

(Erdős, Rado) Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with *r* colors. Then there are *r* disjoint, finite or one-way infinite monochromatic paths with different colours which cover all vertices of K_{ω} .

 $K_{\omega} \sqsubset (Path_0, Path_1, \ldots, Path_{r-1})$

Theorem

Let $r \in \omega$. Suppose that the edges of the countable complete graph K_{ω} is coloured with r colors. Then there are r disjoint, monochromatic two-way infinite paths and cycles with different colours which cover all vertices of K_{ω} .

$$K_{\omega} \sqsubset (Cycle_0, Cycle_1, \ldots, Cycle_{r-1})$$

Need: ultrafilter argument

Covers of infinite hypergraphs

A tight path in a k-uniform hypergraph is a sequence of distinct vertices such that every consecutive set of k vertices forms an edge.

Theorem (Gyárfás, G. N. Sárközy, 2012)

Given any r-edge colouring of K_{ω}^{ℓ} the vertex set can be partitioned into monochromatic loose paths of distinct colors.

Theorem (M. Elekes, D. Soukup, -, Z. Szentmiklóssy)

Given any r-edge colouring of K_{ω}^{ℓ} the vertex set can be partitioned into monochromatic tight paths of distinct colors.

Covers by power of paths

Definition

Suppose that G is a graph and $k \in \omega$. The k^{th} power of G is the graph $G^k = (V, E^k)$ where $\{v, w\} \in E^k$ iff $dist_G(v, w) \leq k$.

What is a power of a path?

Theorem (M. Elekes, D. Soukup, -, Z. Szentmiklóssy)

Let $k, r \in \omega$. Suppose that c is a colouring of the edges K_{ω} with r colours. Then the vertices can be partitioned into $\leq r^{(k-1)r+1}$ infinite monochromatic k^{th} powers of paths and a finite set. For k = r = 2 we have a partition into **5** monochromatic squares of paths.

$K_{\omega} \sqsubset (PathSquare)_{2.5}$

- $\mathbf{c}: [\omega]^2 \rightarrow 2$
- \mathcal{U} ultrafilter on ω
- $A_0 \in \mathcal{U}$
- $B_0 \in \mathcal{U}$
- $B_1 \sqsubset PathSquare_1$

- $N_G(x, i) = \{y : c(x, y) = i\}$
- $A_i = \{x \in \omega : N_G(x, i) \in \mathcal{U}\}$
- $A_0 \sqsubset PathSquare_0$ $A_1 \sqsubset Path_1$
- \mathcal{V} ultrafilter on A_1 $B_i = \{x \in A_1 : N_G(x, i) \cap A_1 \in \mathcal{V}\}$
 - $B_0 \sqsubset PathSquare_0$

Covers of uncountable graphs

Definition (Rado)

P = (V, E) is a path iff there is a well ordering \leq on V such that any two vertices is connected by a \leq -monotone (finite) path.

- $\{\mathbf{p}_{\alpha}: \alpha < \delta\}$ is a path iff
 - $\{p_{\alpha}, p_{\alpha+1}\} \in E$ for $\alpha + 1 < \delta$
 - $\{\alpha < \beta : \{p_{\alpha}, p_{\beta}\} \in E\}$ is cofinal in β for all limit $\beta < \delta$

Theorem (M. Elekes, D.Soukup, -, Z. Szentmiklóssy)

Given any 2-edge colouring of K_{ω_1} we can partition the vertices into two monochromatic paths of different colors.

 $K_{\omega_1} \sqsubset (Path_0, Path_1).$

Theorem (D. Soukup)

If G is an infinite complete graph and $r \in \omega$, then for every r-edge colouring of G we can partition the vertices into finitely many monochromatic paths.

 $K_{\kappa} \sqsubset (Path)_{r,<\omega}.$

Problems

- $K_{\omega}^{\ell} \sqsubset (TightPath_0, \ldots, TightPath_{r-1}).$
- Problem: $K_{\omega}^{\ell} \sqsubset (TightCycle_0, \dots, TightCyle_{r-1})$??
- $K_{\kappa} \sqsubset (Path)_{r,<\omega}$.
- Problem: $K_{\kappa} \sqsubset (Path)_{r,f(r)}$.
- $K_{\omega} \sqsubset^* (k^{\text{th}}\text{-PowerofPath})_{r,r^{(k-1)r+1}}$
- ★ Problem $K_{\omega} \sqsubset (k^{\text{th}}-PowerofPath)_{r,g(k,r)}$
- $K_{\omega} \sqsubset (PathSquare)_{2,5}$
- Problem $K_{\omega} \sqsubset (PathSquare)_{2,3}$

Infinitely many colors????

Thank you!