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Theorem (Gerencsér, Gyárfás, 1967)
Suppose that the edges of a finite complete graph Kn is coloured with
2 colors. Then there are 2 disjoint monochromatic paths with different
colours which cover all vertices of Kn.

Kn ⊏ (Path0,Path1)
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More colors? Cycles instead paths?
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• The “cycle” conjecture holds for r = 2 for large n (Luczak, Rödl,
Szemerédi, 1998 )

• The “cycle” conjecture holds for r = 2 (Bessy, Thomassé, 2010)

• The “path” conjecture holds for r = 3, but the “cycle” conjecture
fails for r ≥ 3 (Pokrovskiy, 2012).
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Covers of infinite graphs

(Erdős, Rado) Let r ∈ ω. Suppose that the edges of the countable
complete graph Kω is coloured with r colors. Then there are r disjoint,
finite or one-way infinite monochromatic paths with different colours
which cover all vertices of Kω.

Kω ⊏ (Path0,Path1, . . . ,Pathr−1)

Theorem
Let r ∈ ω. Suppose that the edges of the countable complete graph
Kω is coloured with r colors. Then there are r disjoint, monochromatic
two-way infinite paths and cycles with different colours which cover all
vertices of Kω.

Kω ⊏ (Cycle0,Cycle1, . . . ,Cycler−1)

Need: ultrafilter argument
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Covers by power of paths

Definition
Suppose that G is a graph and k ∈ ω. The k th power of G is the graph
Gk = (V ,Ek ) where {v ,w} ∈ Ek iff distG(v ,w) ≤ k.

What is a power of a path?
P6

P2
6

P3
6

Theorem (M. Elekes, D. Soukup, -, Z. Szentmiklóssy)
Let k , r ∈ ω. Suppose that c is a colouring of the edges Kω with r
colours. Then the vertices can be partitioned into ≤ r (k−1)r+1 infinite
monochromatic k th powers of paths and a finite set.
For k = r = 2 we have a partition into 5 monochromatic squares of
paths.
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Definition (Rado)
P = (V ,E) is a path iff there is a well ordering � on V such that any
two vertices is connected by a �-monotone (finite) path.

{pα : α < δ} is a path iff

• {pα, pα+1} ∈ E for α+ 1 < δ

• {α < β : {pα, pβ} ∈ E} is cofinal in β for all limit β < δ

Theorem (M. Elekes, D.Soukup, -, Z. Szentmiklóssy)
Given any 2-edge colouring of Kω1 we can partition the vertices into
two monochromatic paths of different colors.

Kω1 ⊏ (Path0,Path1).

Theorem (D. Soukup)
If G is an infinite complete graph and r ∈ ω, then for every r -edge
colouring of G we can partition the vertices into finitely many
monochromatic paths.

Kκ ⊏ (Path)r ,<ω .
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• K ℓ
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• Problem: K ℓ
ω ⊏ (TightCycle0, . . . ,TightCyler−1) ??

• Kκ ⊏ (Path)r ,<ω .

• Problem: Kκ ⊏ (Path)r ,f (r).

• Kω ⊏
∗ (k th-PowerofPath)r ,r (k−1)r+1

⋆ Problem Kω ⊏ (k th-PowerofPath)r ,g(k ,r)

• Kω ⊏ (PathSquare)2,5

• Problem Kω ⊏ (PathSquare)2,3

Infinitely many colors????



Thank you!


