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2 HEIKE MILDENBERGER AND SAHARON SHELAHWe 
all jjRjj the norm of R. A set Y � A+ is 
alled R-adequate if(8x 2 dom(R)) (9y 2 Y )xRy. We say that � 2 !2 is needed for R if forevery R-adequate set Y there is some y 2 Y su
h that � �T y.If A+ 6� R but 
an be mapped 
ontinuously and inje
tively into Rby a mapping 
 whi
h is, as a fun
tion on the digits, 
omputable in bothdire
tions, then we 
all the real a needed for R and 
 if for any R-adequateset Y � A+ there is some y 2 Y su
h that a �T 
(y). We 
all su
h afun
tion 
 a 
oding. In this situation, a real a is 
alled needed for R, ifit is needed for R and 
 for any 
oding 
.(2) (Weakly needed Reals). We 
all a real a weakly needed for R if for anyR-adequate set Y of minimal 
ardinality there is some y 2 Y su
h thata �T y.Every needed real is weakly needed. Se
tions 3 to 6 will give some informationon the reverse dire
tion.1. Needed reals for Cof(N )In this se
tion we answer Blass' question whether only hyperarithmeti
 reals areneeded for the 
o�nality relation on the ideal of Lebesgue null sets aÆrmatively.In this se
tion we work with two parti
ular relations on the reals: For fun
tionsf; g : ! ! ! we write f �� g and say g eventually dominates f if (9n < !)(8k �n)(f(k) � g(k)). The dominating relation isD = f(f; g) : f; g 2 !! ^ f �� gg;and the 
o�nality relation for the ideal of sets of Lebesgue measure zero isCof(N ) = f(F;G) : F;G are F�-sets of Lebesgue measure 0 and F � Gg:We write 
of (N ) for jjCof(N )jj.Before stating our �rst theorem, we review some notation: For s 2 !>2 = ft :(9m 2 !)(t : m ! 2)g, we write lg(s) = dom(s). If s 2 !�2 and t 2 !�2, wewrite s E t if s = t � lg(s). Let s / t denote that s E t and s 6= t. A subsetT � !>2 is 
alled a tree if it is downward 
losed, i.e., if for all t 2 T for all s E t,we have that s 2 T . We let lim(T ) = ff 2 !2 : (8n 2 !)f � n 2 Tg. An elements 2 T is a leaf if there is no t 2 T su
h that s / t. For a tree T � <!2 and some� 2 <!2 we set T [�℄ = fs 2 T : s E � _ � E sg.Leb denotes the Lebesgue measure on the measurable subsets of !2, the produ
tspa
e of ! 
opies of the spa
e f0; 1g, where ea
h point has measure 12 .



ON NEEDED REALS 3We deal with the following for
ings, where the �rst is the ordinary Amoebafor
ing:Q =�T : T � !>2; T is a tree and Leb(lim(T )) > 12�;Q̂ =�T 2 Q : lim� jT \ n2j2n : n 2 !� > 12 and T has no leaves� :We set hT (�) = Leb(lim(T [�℄)).Q� =nT 2 Q : �8n 2 !)(� 2 n2 \ T ! hT (�) � 22n 2 ! n f0g�o ;Q̂� =Q̂ \ Q� :The partial order on Q and its variants is in
lusion: subtrees are stronger (�,we follow the Jerusalem 
onvention) 
onditions. It is easy to see that Q̂ , Q� andQ̂� are dense suborders of Q.Theorem 1.1. Let G be Q̂ -generi
 over V . Then in V [G℄ the following holds:For every � 2 !2 \ V , if � is re
ursive in the generi
 tree T = TG, then � isneeded for domination.Con
lusion 1.2. Sin
e being needed for domination is a an absolute notion (see[6, 9℄ or 4.1), also in V , every � that is re
ursive in V [G℄ in the generi
 treeT = TG, is needed for domination.Proof of 1.1. For some p 2 Q̂ , � 2 !2, both in V , and Turing ma
hineM (w.l.o.g.also in V ) we have that p 
 \M 
omputes � from T~ ".(�)Let n(�) 2 [1; !) and p� 2 Q̂� be su
h that p � p� and Leb(lim(p�)) = 12+ 1n(�) .Then, by the Lebesgue density theorem (3.10 in [7℄), we may 
hoose m(�) su
hthat for any m � m(�),12 + 1n(�) � jp� \ (m2)j2m � 12 + 1n(�) + 12n(�)+7 :In order to derive from (�) some 
omputation of � relative to a suitable memberof a given D-adequate set, we shall work with the following trees.De�nition 1.3. For r 2 Q̂ and " > 0, if Leb(lim(r)) � 12 + " letT "r;n =�(q \ n>2; hq � n>2) : r � q 2 Q̂� ;Leb(lim(q)) � 12 + "; (8m 2 !)� jq \ m2j2m � 12 + "��:



4 HEIKE MILDENBERGER AND SAHARON SHELAHWe set T "r = SfT "r;n : n 2 !g. For x 2 T "r;n we write x = (x(1); x(2)). Weorder T "r by �T : (q \ n>2; hq � n>2) �T (q0 \ n0>2; hq0 � n0>2) i� n � n0 andq \ n>2 = q0 \ n>2 and hq0 � n>2 = hq � n>2. Equivalently, we may 
onsidert 2 T "r;n as a fun
tion t : q \ n>2 ! R, t(�) = hq(�). We equip T "r with the treetopology given by �T , i.e., basi
 open sets in the topology are ft 2 T "r : t �T t0g,t0 2 T "r .These trees exhibit the following properties:(�)0 T "r is a tree with �nite levels, the nth level being T "r;n.(�)1 If htn : n 2 !i is an !-bran
h of T "r then Leb(lim(S tn(1)) � 12 + " andif " > 0 then S tn(1) 2 Q.(�)2 Moreover, we have if r1 � r2 in Q̂ and Leb(lim(r2)) � 12 � ", thenT "r2 � T "r1 .(�)3 If Leb(lim(r)) � 12 + ", p� � r 2 Q� and n 2 ! and ht` : ` 2 !i is an!-bran
h of T "r , then for some m 2 !, there is t� � dom(tm) (here weregard t's as fun
tions) su
h that(a) Pftm(�) : � 2 t� \ m2g > 12 .(b) If M runs with input n and ora
le fm;t� it will give the value�(n), where fm;t� : m�2! f0; 1g, fm;t�(�) = 1, (9� 2 t�)(� E�).(�)4 Let g";ht` : `2!i(n) be the �rst m > n as in (�)3. For every n; k 2 ! thesetsSn;k = ([̀2! t` : ht` : ` 2 !i is a bran
h of T "r ^ g";ht` : `2!i(n) � k)are open sets in the 
ompa
t tree T "r , and T "r = Sk2! Sn;k is a unionof an in
reasing sequen
e hSn;k : k 2 !i. Hen
e there is K, su
h thatSn;K = T "r and hen
e K � g";ht` : `2!i(n) for all bran
hes ht` : ` 2 !i ofT "r . We let g"(n) be the minimal su
h K.Now we spe
ify the following items:(�) We take some g : ! ! ! is su
h that (8n)g"(n) � g(n). Our aim is toshow that � is re
ursive in su
h a g.(�) " = 14n(�) , and "0 = 34n(�) . We 
hoose some p� as above and some Q̂ -generi
 �lter G su
h that p� 2 G. We �x an ! bran
h of T "p� su
h thattg(`) determines �(`) and the part of the ora
le needed for it in the senseof (�)3 and (�)4, and tg(`)(1) is an initial segment of a 
ondition in G.(
) p�� = f� : � 2 p� \ m(�)2 _ (� 2 !>2 n m(�)2 ^ � � m(�) 2 p�)g.The proof of the following 
laim will �nish the proof of Theorem 1.2.Claim. For every n 2 !, k 2 f0; 1g, the following are equivalent:



ON NEEDED REALS 5(i) �(n) = k,(ii) for some t1 2 T "0p��;g(n) (| and this is re
ursive in g |) for every t0satisfying t0 � t1 and t0 2 T "p��;g(n) there is t2 � t0 su
h that (�)3 (a) +(b) holds with t� = dom(t2) and value �(n) = k.Proof: (i) to (ii): We assume (i). We take t1 = p�� � g(n). If t0 � t1,t0 2 T "0p��;g(n) is given, we may take t2 = t0. Sin
e any bran
h 
ontaining t0 andstronger than p� for
es �(n) = k, we have by the de�nition of g(n), that the partbelow g(n) suÆ
es for the 
omputation. So t2 a
ts as desired.(ii) to (i): Assume that �(n) = 1� k. As we have \(i) ) (ii)" for this situation,there is some s1 2 T "0p��;g(n) su
h that for every s0 � s1 with s0 2 T "p��;g(n) thereis s2 � s0 su
h that the analogues of (�)3 (a) and (b) hold with �(n) = 1 � k.We have t1 as in (ii) for �(n) = k. There are q0; q1 witnessing t1; s1 2 T "0p��;g(n).Sub
laim: q0; q1 are 
ompatible in the Amoeba for
ing.Proof of the 
laim: Both satisfy:lim(p��) � lim(q`);12 + 1n(�) � Leb(lim(p��)) � jp� \ m(�)2j2m(�) � 12 + 1n(�) + 12n(�)+7 ;Leb(lim(q`)) � 12 + "0:We show that Leb(lim(q0) \ lim(q1)) > 12 :We have thatLeb(lim(p��)n(lim(q0) \ lim(q1)))� Leb(lim(p��) n (lim(q0))) + Leb(lim(p��) n lim(q1)))� 2 �� 14n(�) + 12n(�)+7�= 12n(�) + 12n(�)+6 ;hen
eLeb(lim(q0) \ lim(q1)) �Leb(lim(p��))� Leb(lim(p��) n (lim(q0) \ lim(q1)))�12 + 1n(�) � 12n(�) � 12n(�)+6 > 12 :So the sub
laim is proved. We take some q � q` for ` = 0; 1.But: q0 and q1 
annot be 
ompatible in the Amoeba for
ing. By the 
hoi
e ofp� we have that p� 
 \� is 
omputed by M using the ora
le Te ."We have q` � p� and q � q`. But then we �nd t2̀ � q \ 2g(n) su
h that



6 HEIKE MILDENBERGER AND SAHARON SHELAH(a) Px2t2̀ hp�(x) > 12 , and(b) if M runs on the input n and the ora
le t2̀ it will give the result �(n) for` = 0 and 1� �(n) for ` = 1.Sin
e � 2 V , there 
annot be two di�erent 
omputations, depending on twodi�erent T~ [G℄ \ g(n)2. Hen
e the assumption that q0 and q1 with the aboveproperties both exist leads to a 
ontradi
tion, and the Claim and Theorem 1.2are proved.Theorem 1.4. Every needed real for Cof(N ) is needed for the dominating rela-tion.Proof. : Let fAi : i < �g be a Cof(N )-adequate set, su
h that ea
h Ai is aBorel set. Let � 2 !2.For ea
h i 
hoose a 
ountable elementary submodel Ni of (H(i3);2) to whi
h� and Ai belong. We let Gi be a subset of QNi that is generi
 over Ni and letTi = T~ [Gi℄. Now let A�i beA�i = f� 2 !2 : no �0 2 !2 whi
h is almost equal to �(i.e. �(n) = �0(n) for every large enough n) belongs to TigA�i is a null set: We have A�i = Tn2!(f�0 : (9� 2 Ti) (�0 � [n; !) = � �[n; !))g)
. Furthermore we have that limn!1 Leb(f�0 : (9� 2 T )(�0 � [n; !) =� � [n; !))g) = 1, be
ause for a given ", by the Lebesgue density Theorem (3.20in [7℄) there is some n0 su
h that for n � n0 we have for all s 2 T \ n2 thatLeb(T \ [s℄) �2n > 1�" and hen
e Leb(f�0 : (9� 2 T )(�0 � [n; !) = � � [n; !))g) >1� ".By generi
ity of Ti and be
ause Ai 2 Ni and be
ause Ai is a nullset in Niwe have that Ai � lim(Ti)
. The same argument shows that for all s 2 !>2 wehave that fŝ f : 9s0 (js0j = jsj ^ s0̂ f 2 Ai)g is a subset of (lim(Ti))
. Hen
e wehave that Ai � A�i . Therefore also fA�i : i < �g is a Cof(N )-adequate set. If� is re
ursive in A�i (more pre
ise: in one one of A�i 's simple 
odings) it is alsore
ursive in Ti and hen
e by Theorem 1.2 needed for dominating.Fa
t 1.5. We use the result of Jo
kus
h and Solovay every real that is neededfor the dominating relation is hyperarithmeti
 (Solovay [9℄) and this is optimal(Jo
kus
h, [6℄): every hyperarithmeti
 real is needed for the dominating relation.Blass [4, Theorem 6, Corollary 8℄ showed that every real that is needed for Dis also needed for Cof(N ) and hen
e that all hyperarithmeti
 reals are neededfor Cof(N ). So this gives the other in
lusion in the following 
orollary:Corollary 1.6. Exa
tly the hyperaritmethi
 reals are needed for the Cof(N )-relation.2. Needed reals for the slalom relation and a general s
hemeIn this se
tion we deal with a for
ing L whi
h is 
losely related to the lo
aliza-tion for
ing from [2, page 106℄. Theorem 2.3 is analogous to Theorem 1.1, but



ON NEEDED REALS 7for the for
ing L. Theorem 2.10 is analogous to Theorem 1.4, but the translationme
hanism in the proof is di�erent.In the se
ond part of the se
tion, we 
olle
t suÆ
ient 
onditions and give ageneral s
heme for the proofs of \being 
omputable in the generi
 and being inV implies being hyperarithmeti
" and of \every real needed for R is �11."De�nition 2.1.L = fp : p = (n; �u) = (np; �up); �u = hu` : ` 2 !i; u` 2 [!℄�`;h(p) := lim suphju`j : ` 2 !i < ! is well-de�nedg;p � q $  ^̀2! up̀ � uq̀ ^ �uq � np = �up � np! :The generi
 is 
onsidered as a 
hara
teristi
 fun
tion � with domain ! � ! su
hthat �(n;m) = 1$ (9p 2 G)(m 2 upn).Notation 2.2. An m-ora
le is a fun
tion from m�m to f0; 1g. If �u = hu` : ` <mi, u` 2 [!℄<` the �u-ora
le ��u 2 m�m2 is de�ned by ��u(n1; n2) = 1$ n2 2 un1 .We allow that (9` < m) max(u`) > lg(�u) = m.Theorem 2.3. Assume that M is a Turing ma
hine and that � 2 !2. Let G~ bea name for an L-generi
 element. Suppose that p� 2 L and thatp� 
L M 
omputes � from G~ :Then � is hyperarithmeti
.Proof. Let n� = np� and �u� = �up� � n�, and h� = h(p�). By a density argumentwe may assume that n� > 4h� ^ (8`)(` � n� ! ju�̀j � h�).We let T = T�u� =f�u : n� � m < !; �u = hu` : ` 2 mi; u` 2 [!℄�`;�u � n� = �u� ^ ` � n� ! ju`j = h�g:We order T by the initial segment relation E.If �u 2 T�u� we let��u =��u;�u� = f��v : lg(�u) = lg(�v); �v � n� = �u�;(n� � ` < lg(�u)! [0; lg(�u)) \ u` � v`)g:Fa
t 2.4. For every j < !, �u = hu` : ` 2 !i 2 lim(T�u�), su
h that for ea
h `,and lg(u`) = `, there are m 2 [n�; !), �v 2 ��u�m \ ��u� su
h thatwith ��v as an ora
le on domain lg(�v)� lg(�v), M �nishes its runand gives the result �(j)(�)Proof. The 
onditions (n�; �u) and p� = (np� ; �up�) are 
ompatible: (n�; �v) =(n�; hu` [ up�` : ` 2 !i) 2 L is stronger or equal to both of them (here we usen� > 4h�) and in ��u�m for all m. We take a generi
 to whi
h (n�; �v) belongs.Consider the run of M , it uses only �v \ (m�m) for m large enough.



8 HEIKE MILDENBERGER AND SAHARON SHELAHFa
t 2.5. For every j < ! there is mj 2 (n�; !) su
h that su
h that for everyhu` : ` 2 !i 2 lim(T�u�), there is ��v 2 ��u�mj \ ��u� su
h that (�) holds.Proof. By the previous lemma and by K�onig's lemma. All the levels of T�u� are�nite. Note that ��u depends only on hu` \ lg(�u) : ` < lg(�u)i.De�nition 2.6. gM;�u� 2 !! is de�ned bygM;�u�(j) = minfmj : mj in as in the Fa
t 2.5g:Claim 2.7. For every j 2 !; k < 2 and m � gM;�u�(j) the following are equiva-lent:(i) �(j) = k,(ii) for some �u = hu` : ` < mi and h�, su
h that (` 2 [n�;m) ! u` 2[m℄�h�), �u � n� = �u� for every �u0 = hu0̀ : ` < mi su
h that ` 2[n�;m)! u0̀ 2 [m℄�h�, �u0 � n� = �u� there is �v 2 ��u \ ��u0 � m�m2 su
hthat M running with ora
le ��v and input j �nishes its run and gives theresult k.Proof. : (i) ) (ii): By the previous fa
t, �up� � m is as required. (ii) ) (i): Let�u be as guaranteed in (ii). It is said there \for every �u0" so in parti
ular for�u0 = �up� � m, there is � 2 ��u \ ��u0 as there. Now we 
an �nd a 
ondition q 2 Lsu
h that nq = m > n�, �uq � n� = �u�, n� � ` < m ) uq̀ = up�` [ v` = u0̀ [ v`,` � m! uq̀ = up�` . So(�) p� � q and q 
 G~ � m�m2 = ��v, hen
e(�) q 
 \M running with the ora
le G~ and input j gives the result k", andre
all(
) p� 
 \M 
omputes �".By (�) + (�) + (
) we get that �(j) = k is as required.Con
lusion 2.8. Assume that � 2 !!, � 2 N , G is L-generi
 over N and that�~[G℄ = � and N [G℄ j= \� �T �". Then � is hyperarithmeti
.Proof. Analogous to the proof of 1.2 for N instead of V . We use 2.7.De�nition 2.9. S 2 !(!>[!℄) is 
alled a slalom i� for all n, jS(n)j � n.Theorem 2.10. Exa
tly the hyperarithmeti
 reals are needed for the slalom re-lationSL = f(f; S) : f 2 !! ^ S is a slalom and (8n 2 !)(f(n) 2 S(n))g:Proof. First show that only hyperarithmeti
 reals are needed for SL: Let fSi :i < jjSKjjg be an SL-adequate set. Let � 2 !2. We take Ni � (H(i3);2) su
hthat �; Si 2 Ni. Then we let Gi be L-generi
 over Ni. Now we set S�i = f� :(9�0 2 Gi)�0 =� �g. Then we have that Si � S�i , S�i is the union of ! slaloms,ea
h of them 
omputable from Gi, and the members of all the unions form anSL-adequate set.



ON NEEDED REALS 9All hyperarithmeti
 reals are needed for SL, be
ause all of then are needed forD. Suppose that fhS�i : i 2 !i : � 2 jjSLjjg is SL-adequate and that � 2 !2 ishyperarithmeti
. Then fhmaxSi : i 2 !i : � 2 jjSLjjg is D-adequate and hen
ethere is some element f in it from whi
h � is 
omputable. But then of 
ourse �is also 
omputable in any slalom where f stems from.From our two examples (Q;Cof (N )) and (L;SL) we 
olle
t the followings
heme:Theorem 2.11. Assume that(a) T � H(�0) is re
ursive, T is a tree with ! levels and ea
h level is �nite,ea
h v 2 T is a �nite fun
tion from H(�0) to H(�0).(b) Q is a for
ing notion, and �n, n 2 !, are Q-names, and
Q (8n 2 !) (�n 2 lim(T )) ^ (8x 2 range(R)) _n2! 8y(yRx! yR�n):(
) For ea
h n 2 ! we have: For a dense set of p0 2 Q there is some p � p0su
h that the following 
onditions are ful�lled:(�) Let Tn;p = f� 2 T : p 
 � � �ng. This is a subtree of T .(�) Let S�n;p = nt : for some subtree T 0 of Tn;p and some k, t =f� 2 T 0 : levelTn;p(�) � kg, and no maximal node of t has levelko, and order S�n;p naturally.(
) Sn;p is a re
ursive subtree of S�n;p su
h that(i) Tn;p is an !-bran
h of Sn;p,(ii) for every bran
h �t = ht` : ` 2 !i of Sn;p there is q 2 Qsu
h that q is 
ompatible with p and Tn;q = S`2! t`.(d) � 2 !2 or !!Then we have for every n 2 !: if 
Q \� is re
ursive in �n~ " then � is hyper-arithmeti
.Proof. So for some p� as in (
) and Turing ma
hine Mp� 
Q \M 
omputes � from �n~ ":Let Sn;p� and S�n;p� be as in 
lause (
). Now we prove some intermediate fa
ts,and the proof of 2.11 will be �nished with 2.15.Fa
t 2.12. For every !-bran
h htk : k 2 !i of Sn;p� and j 2 ! for some (=every) large enough k 2 ! for some � 2 tk \ levelk(Tn;p�) if M runs on input jand ora
le � it �nishes (so we do not ask ora
le questions outside the domain)and gives the result �(j) = k.



10 HEIKE MILDENBERGER AND SAHARON SHELAHProof. There is q 
ompatible with p� su
h that Tn;q � Sn2! tn . Let r � p�; q,and let G � Q be generi
 with r 2 G, so p� 2 G. If M runs with �n~ [G℄ it gives�(j), so for some � 2 T , � � �n~ [G℄. And M 
an use as an ora
le only �, but asq 2 G, � 2 Tn;q � S`2! t`. Of 
ourse any �0, � � �0 2 Tn;p� 
an serve.Fa
t 2.13. For j 2 !, for every large enough m, for every t 2 levelm(Sn) thereis � 2 t\ levelm(Tn;p�) su
h that if M runs with � as an ora
le then it 
omputes�(j).Proof. By the previous fa
t and K�onig's lemma.De�nition 2.14. We de�ne gp� 2 !! by gp�(j) = minfm : m as in 2:13g.Cru
ial Fa
t 2.15. For j; n 2 !, k 2 2, the following are equivalent for anym � gp�(j):(i) �(j) = k.(ii) there is t1 2 levelm(Sn;p�) su
h that for every t2 2 levelm(Sn;p�) there is� 2 t1 \ t2 su
h that if we let run M with input j and ora
le � then therun �nishes and there are no questions to the ora
le that do not have ananswer, and it gives answer k.Proof. Analogous to 2.7 2:11Remark 2.16. 1. Usually, Sn;p� is not so dependent on p�, rather we have thatQ = Sk2! Qk, and for all k 2 ! we have Sn;p� as above being the same for ea
hp� 2 Qk.2. A
tually we use in (
)(
)(i) only Tn;q = Sk2! tk. But we use Tn;p� =Sk2! tk for some !-bran
h.Theorem 2.17. A suÆ
ient 
ondition for \every real needed for R is �11" is:For some for
ing notion Q and some Q-names �n~ , n 2 !, we have(a) 
Q \�n~ 2 lim(T ); �n~ 2 range(R)"(b) 
q\for every x 2 dom(R) for some n, xR�n~ "(
) for ea
h n: Q, T and �n~ satisfy the 
onditions in 2.10 or just its 
on
lu-sion.Proof. Like the �rst half of the proof of Theorem 2.10.3. Weakly needed reals for the reaping relationIn this se
tion we show that it is 
onsistent that all hyperarithmeti
 reals areweakly needed for the reaping relation. In Se
tion 5 we shall prove in ZFC thatnot all hyperarithmeti
 reals are are needed for the reaping relation, answeringanother question from Blass' work [4℄. In a model of CH, the notions \neededreal" and \weakly needed real" 
oin
ide, and thus in su
h a model not all hyper-arithmeti
 reals are weakly needed for the reaping relation. The model of thisse
tion, together with the result from Se
tion 5, gives an example for the fa
t



ON NEEDED REALS 11that in 
ontrast to the notion of \being needed", the notion of \being weaklyneeded" is not absolute.De�nition 3.1. The relationR = f(f;X) : f 2 !2; X 2 ![!℄ ^ f � X is 
onstantgis 
alled the reaping or the re�ning or the unsplitting relation. We say \X re�nesf" if f � X is 
onstant. We say \R re�nes f" if there is some X 2 R that re�nesf . Finally we say \R re�nes F" if for every f 2 F we have that R re�nes f .The norm of this relation is 
alled r, the reaping number or the re�ning numberor the unsplitting number.De�nition 3.2. Let g 2 !! be stri
tly in
reasing and g(n) > n.(1) We say A 2 [!℄! is g-slow if (91n)jA \ g(n)j � n.(2)Fg = ff : dom(f) 2 [!℄!; for i 2 dom(f) we have that f(i) = (f1(i); f2(i))and f2(i) 2 [g(f1(i))℄�f1(i) and lim suphf1(i) : i 2 dom(f)i = !g:(3) We say that �A is (g; �)-o.k. if(a) �A = hAi : i < �i, and(b) Ai 2 [!℄!,(
) if k < !, f0; : : : ; fk�1 2 Fg, T`2! dom(f`) = B 2 [!℄! andlim suphminff 1̀(i) : ` 2 kg : i 2 Bi = !, then for some � =�(hf` : ` < ki) we have that:For every u` 2 [� n �℄<! and �` 2 u`2 the setfn 2 B : (8` < k)(f 2̀(n) \ �A[�`℄ 6= ;)gis in�nite;(3.1) where �A[�`℄ = \i2u` A�`(i)i ; andAì = � Ai; if ` = 1;! nAi; if ` = 0:Remark: f 2 Fg implies that Si2dom(f) f2(i) is not g-slow.Claim 3.3. We get an equivalent notion to \ �A is (g; �)-o.k.", if we modify theDe�nition 3.2(
) as in (a) and/or as in (b), where(a) We demand 3.2(
) only for f` 2 Fg that additionally satisfy dom(f0) =� � � = dom(fk�1) = !.



12 HEIKE MILDENBERGER AND SAHARON SHELAH(b) We demand 3.2(
) only for f0; : : : ; fk�1 2 Fg su
h that hminff 1̀(i) : i <kg : i < Bi is stri
tly in
reasing (we 
an even demand, in
reasing fasterthan any given h), and for i 2 B, maxff 1̀(i) : ` < kg < minff 1̀(i+1) :` < kg.Proof. (a) Suppose the f0; : : : ; fk�1 2 Fg in the original sense, and that we haverequired the analogue of 3.2(
) only for Fg in the restri
ted sense. We supposethat T`<k dom(f`) = B and take a stri
tly in
reasing enumeration fbr : r 2 !gof B. Then we take ~f` : ! ! [!℄<!, ~f`(r) = f`(br) for r 2 !. The analogue of 3.2for the Fg in the restri
ted sense gives � 2 � and in�nite interse
tions in (3.1)for the ~f`. The interse
tions are also in�nite for the original f`.(b) Suppose that k < !, f0; : : : ; fk�1 2 Fg, T`2! dom(f`) = B 2 [!℄! andlim suphminff 1̀(i) : ` 2 kg : i 2 Bi = !. Then we 
an thin out the domain B tosome in�nite B0, indu
tively on i su
h that the f` � B0 ful�l all the requirementsfrom 3.3(b).Cru
ial Fa
t 3.4. Let g 2 !!. If r < � = 
f(�) and if there is some �A thatis (g; �)-o.k., then every �11-real that is 
omputable in every fun
tion g0 �� g isweakly needed for the re�ning relation.Proof. Let R = fB� : � < jRjg witness r < �. The family �A is re�ned by R:For i < � for some �i < jRj and �(i) 2 f0; 1g we have that B�i � A�(i)i . Sin
e �is regular and sin
e r < �, there are for some ` < 2 and some � < jRj su
h thatY = fi < � : �(i) = ` ^ �i = �gis unbounded. So B� � Ti2Y A�(i)i . We 
laim that B� is not g-slow. Why?Otherwise we have C = fn < ! : jB� \ g(n)j > ng 2 [!℄!, and we may takef 2 Fg su
h that C = dom(f), f1(n) = n and f2(n) = B� \ g(n). Take any� 2 �. Then we take u0 su
h that u0 = f
g, 
 2 Y , 
 > � and �0 = f(
; 0)g and�00 = f(
; 1)g. Then we do not have (91n)f2(n)\A0
 6= ; and (91n)f2(n)\A1
 6=; at the same time, be
ause B� is re�ning A
 . So �A is not (g; �)-o.k., in 
ontrastto our assumption.But now we 
an 
ompute re
ursively from B� some g0 �� g, for example wemay take g0(n) =(the nth element of B�) +1. Hen
e every hyperarithmeti
 realthat is 
omputable in every fun
tion g0 �� g is re
ursive in B� .So, how do we get the premises of the 
ru
ial fa
t? The rest of this se
tion willbe devoted to this issue. We 
onsider the 
ase � = 
f(�) > �1 and intend toshow the 
onsisten
y of \r = �1 and there is some �A that is (g; �)-o.k. for everyg."De�nition 3.5. (1) Kg = K = f(P; �A~ ) : P is a 


 for
ing and 
P \ �A~ is(g; �)-o.k."g: For a �xed g, we often leave out the subs
ript.(2) (P1; �A1~ ) �K (P2; �A2~ ) i� P1 l P2 and �A1~ = �A2~ .



ON NEEDED REALS 13Claim 3.6. (1) We have that K 6= ;. In fa
t, if P is the for
ing adding �Cohen reals and �A~ is the enumeration of the � Cohen reals, then (P; �A~ ) 2Kg for any fun
tion g. (This is true for any fun
tion g.)(2) If (P�; �A~ ) 2 K for � < Æ, Æ a limit 
ardinal, and hP� : � < Æi isin
reasing and 
ontinuous, and P = S�<Æ P�, then (P; �A~ ) 2 K and� < Æ ) (P�; �A~ ) �K (P; �A~ ).Proof. (1) Suppose that f0; : : : ; fk�1 2 V [G�℄ are inje
tive fun
tions. We take �su
h that f0; : : : ; fk�1 2 V [G�℄ where G� is a generi
 �lter for the �rst � Cohenreals. Suppose that �` 2 u`2. Now a density argument gives that these �A[�`℄ \
ipfor in�nitely many n 2 B" to 0 or to 1 within f 2̀(n) for every ` < k.(2) P has the 
.
.
. by a Fodor argument. Now we show that 
P \ �A~ is (g; �)-o.k."g: Only the 
ase of 
f(Æ) = ! is not so easy. We suppose that Æ = Sn2! �(n),0 < �(n) < �(n+ 1). Towards a 
ontradi
tion we assume that p� 2 P�(0), andp� 
 \B~ ; hf~̀ : ` < ki form a 
ounterexample to �A being (g; �)-o.k."For ea
h n 2 ! we �nd hqn;i : i 2 !i su
h that(�) qn;i 2 P ,(�) qn;0 = p�,(
) P j= qn;i � qn;i+1,(Æ) for some bn;i~ , f1n;`;i~ , f2n;`;i~ P�(n)-names we haveqn;i 
 \bn;i~ is the i-th member of B~ ; f~̀ (bn;i~ ) = (f1n;`;i~ ; f2n;`;i~ )";(") qn;i � �(n) = qn;0 � �(n) = p� � �(n).How do we 
hoose these? Let n and �(n) be given. Then we 
hoose q0n;iin
reasing in i su
h that q0n;i 2 P and b0n;i, (f1)0n;i, (f2)0n;`;i in V andq0n;i 
 ^̀<k the ith element of B~ = �b0n;i ^ f~̀ ( �b0n;i) = ( �(f1)0n;`;i; �(f2)0n;`;i):Then we take bn;i~ = (b0n;i; q0n;i � P�(n));f1n;`;i~ = ((f1)0n;`;i; q0n;i � P�(n));f2n;`;i~ = ((f2)0n;`;i; q0n;i � P�(n));pn;i = p� � �(n) [ q0n;i � [�(n); Æ):Here, the restri
tion � � is any redu
tion fun
tion witnessing P�lP (see [1℄), andin the general 
ase, if P� is not the initial segment of length � of some iteration,the term q0n;i � [�(n); Æ) has to be interpreted as some element from a quotientfor
ing algebra.



14 HEIKE MILDENBERGER AND SAHARON SHELAHNow for every n we de�ne P�(n)-namesB0n~ = fbn;i~ : i < !g;f`;n~ : B0n~ ! V;f`;n~ (bn;i~ ) = (f 1̀;n~ (bn;i~ ); f 2̀;n~ (bn;i~ )) = (f 1̀;n;i~ ; f 2̀;n;i~ ):Now we have thatp� 
 \B0n~ 2 [!℄�0 ; f`;n~ is a fun
tion with domain B0n~ andlim suphf 1̀;n~ (b) : b 2 B0n~ i = ! andf 2̀;n;i~ when de�ned is a subset of [0; g(f 1̀;n;i~ )) of 
ardinality > f 1̀;n;i~ ":As (P�(n); �A~ ) is in K we for every np� � �(n) 
P�(n) \ for some �~ < � for every u` � [� n �~ ℄�0 for every �` 2 u`2(b 2 B0n~ : ^̀<k f 2̀;n(b)~ \ �A~ [�`℄ 6= ;) is in�nite."Let �n~ < � be su
h a P�(n)-name. Sin
e P�(n) has the 


, there is some ��n < �su
h that 
P�(n) �n~ < ��n < �. Sin
e � is regular we have that �� = Sn2! ��n < �.It suÆ
es to prove thatp� 
 \�� is as required in the de�nition of (g; �)-o.k."If not, then there are 
ounterexamples u` 2 [�n��℄<�0 , �` 2 u`2, q and b� su
hthat p� � q 2 P = PÆq 
 \nb 2 B~ : (8` < k)(f 2̀~ (b) \ �A[�`℄~ 6= ;)o � [0; b�℄".(�)For some n(�) < ! we have that q 2 P�(n(�)). Let G � P be generi
 over V ,and let q 2 G�(n(�)). So by the 
hoi
e of �n(�) < �� we have thatp 
P�(n(�)) C = fb 2 B0n(�)~ : (8` < k)(f 2̀;n(�)~ (b) \ �A[�`℄~ 6= ;)g is in�nite".Re
all that B0n(�)~ and f`;n(�)~ (b) are P�(n(�))-names and that �A[�`℄~ is a P0-name.Now B0n(�)~ = fbn(�);i~ : i < !g, so for some i we have that bn(�);i~ [G℄ > b�. Soqn(�);i 2 G \ P�(n(�)) for
es \the i-th member of B~ is bn(�);i~ and f~̀ (bn(�);i~ ) =f`;n(�)~ (bn(�);i~ ) = (f 1̀;n(�);i~ ; f 2̀;n(�);i~ ). Note that qn(�);i � �(n(�)) = p� � �(n(�))a

ording to "), and hen
e qn(�);i 6? q. So there is some r � q and r � qn(�);i.Su
h an r for
es the 
ontrary of the property for
ed in (�), and �nally we rea
heda 
ontradi
tion.Now 3.7 and 3.8 are like [8℄. For h : ! ! ! We write limDhh(i) : i 2 !i = ! iffor all m < ! we have that fi : h(i) > mg 2 D.



ON NEEDED REALS 15Claim 3.7. Assume that in V :(a) �A is (g; �)-o.k.(b) � = 2�0 .Then there is an ultra�lter D on ! su
h thatif f 2 Fg and dom(f) 2 D and limDhf1(i) : i 2 dom(f)i = !then for some �f < � for every u 2 [� n �f ℄<�0 and � 2 u2we have that fn 2 dom(f) : f2(n) \ �A[�℄ 6= ;g 2 D.(�)Proof. Let Fg = ffj : j < �g. Let AP be the set of tuples (D; i; �) su
h that(i) D is a �lter on ! 
ontaining the 
o-�nite subsets, ; 62 D, i; � < �,(ii) D is generated by < � members,(iii) if k < ! and for ` < k, j` < i, and dom(fj`) 2 D and limDhf1j`(i) : i 2dom(fj`)i = ! and u` 2 [� n �℄<�0 , �` 2 u`2, then(n 2 \̀<k dom(fj`) : ^̀<k�f2j`(n) \ �A[�℄ 6= ;�) 6= ; mod D:Let (D1; i1; �1) �AP (D2; i2; �2) if both tuples are in AP and(�) D1 � D2, i1 � i2, �1 � �2, and(�) if k < ! and fj0; : : : ; jk�1g � i1, dom(fj`) 2 D2 and limD2hf1j`(i) : i 2dom(fj`)i = ! and u` � [�1; �2) is �nite and �` 2 u`2 then(n 2 \̀<k dom(fj`) : ^̀<k f2j`(n) \ �A[�`℄ 6= ;) 2 D2:Now we have that�1 (AP ;�AP) is a non-empty partial order. Take i = � = 0 and D the�lter of all 
o�nite subsets of !.�2 In (AP ;�AP) every in
reasing sequen
e of length < � has an upperbound, namely, take the �lter generated by the union in the �rst 
oordi-nate and take the supremum in the se
ond and in the third 
oordinate.�3 If B � ! and (D; i; �) 2 AP then there are some D0, i0, �0 su
h that(D0; i0; �0) �AP (D; i; �) and that B 2 D0 or that ! nB 2 D0. Why? TryD0 = the �lter generated by D [ fBg and the same i and �. If this failsthen we 
an �nd k < !, su
h that for ` < k we have j` < i, su
h thatdom(fj`) 2 D0 and limD0hf1j`(i) : i 2 dom(fj`)i = !, u` 2 [� n �℄<�0 ,�` 2 u`2 and su
h that(n 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;) \ B = ; mod D:



16 HEIKE MILDENBERGER AND SAHARON SHELAHLet �0 < � be su
h that � � �0 and V`<k u` � �0. Let D0 be the �ltergenerated byD [ �nn 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;o :k < !; j` < i; u` 2 [�0 n �℄<�0 ; �` 2 u`2�:Then ! nB 2 D0, and (D0; i; �0) 2 AP .�4 If (D; i; �) 2 AP then for some D0, �0 we have that (D0; i+1; �0) 2 AP.Proof. Let M � (H(�);2) su
h that M \ � 2 �, (D; i; �) 2 M , Fg 2M , and jM j < �. Suppose that dom(fi) 2 D and that limDhf1i (k) :k 2 dom(fi)i = !. Let �0 = M \ �. Let D1 be the �lter in the booleanalgebra in P(!) \M generated by(D \M) [ �nn 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;o :k < !; j` � i; u` 2 [�0 n �℄<�0 ; �` 2 u`2�:Sin
e in M , �A is (g; �)-o.k., this has the in�nite interse
tion property.Let D02 be an ultra�lter in M extending D1. Let D0 be the �lter on ! inV that D02 generates.Now we take a maximal element in the partial order (AP ;�AP). By theproperties �1 to �4 it is as required in (�).Note that (�) of 3.7 implies that �A is (g; �)-o.k. The following is a preservationtheorem for suitable ultra�lters:Claim 3.8. Assume that(a) �A is (g; �)-o.k.(b) D = hD� : � 2 <!!i, D� = D, D is ultra�lter on ! as in 3.7.(
) QD = fT : T � <!! is a subtree, and for some � 2 T; � E � 2 T )fk : � k̂ 2 Tg 2 D�g, ordered by inverse in
lusion. (The /-minimal �of this sort is 
alled the trunk of T , tr(T ).)Then 
QD \ �A is (g; �)-o.k.".Proof. We use the fa
t [8℄ that QD has the pure de
ision property: Let 'i,i 2 !, be 
ountably many senten
es of the QD-for
ing language. We thinkof names f~̀ , ` < k, for some elements of Fg and 'i = \�the i-th element ofB~ = T`<k dom(f~̀ )� = �bi and V`<k f~̀ ( �bi) = ( �f 1̀;i; �f 2̀;i)". The pure de
isionproperty says:



ON NEEDED REALS 178p 2 QD 9q �tr p 8r � q 8i �r 
 'i ! (9si 2 r)q[si℄ 
 'i�;where we write �tr for the pure extension: q �tr r if r � q and tr(q) = tr(r),and q[si℄ = f� 2 q : si E �g.Towards a 
ontradi
tion we assume that there is a 
ounterexample. By Claim 3.3(�rst (b) and then (a)) we may assume that it is of the following formp� 
\hf~̀ : ` < ki form a tasksu
h that the interse
tion of the domains is B = !and for i 2 B, maxff 1̀~ (i) : ` < kg < minff 1̀~ (i+ 1) : ` < kgand there is no � < � su
h that the statement(3.1) from De�nition 3.2(3)(
) holds."(��)We �nd q su
h that(�) q 2 P(�) q �tr p�,(
) for all i 2 ! for all f 1̀;i 2 !, f 2̀;i � [0; g(f 1̀;i)) of size bigger than f 1̀;i wehave thatif r � q; r 
 \f~̀ (�i) = ( �f 1̀;i; �f 2̀;i)";then also for some si 2 r, the 
ondition q[si℄ for
es the same."We �x su
h a q.Now we set for � 2 q and ` < kB1�;` = fi 2 ! : some pure extension of q[�℄ de
ides f`(i)~ g:We say (�; `) is 1-good if B1�;` 2 D. Let for i 2 B1�;`, h�;`(i) = (h1�`; h2�;`) thevalue of f`(i)~ that is given by the pure de
ision. This is well-de�ned be
ause anytwo pure extensions are 
ompatible. Of 
ourse, by the requirements we had puton the 
ounterexample, we have that limDhh1�;`(i) : i 2 B1�;`i = !.We say that (�; `) 2 q � k is 2-good, if it is not 1-good and we have for allm 2 ! that M�;`;m = fj 2 ! : (9i 2 !)(h� ĵ;`(i)) is well-de�ned,and h1� ĵ;`(i) > m)	 2 D:So, for 2-good but not 1-good (�; `) we may de�ne for j 2M�;`;m,g�;`(j) =h� ĵ;`(i� ĵ;`);where i� ĵ;` is su
h that h� ĵ;`(i� ĵ;`) is de�ned in h1� ĵ;`(i� ĵ;`) > mand if there is a maximal su
h i, then take this as i� ĵ;`.



18 HEIKE MILDENBERGER AND SAHARON SHELAHWe show that there is M 0�;`;m 2 D, M�;`;m � M 0�;`;m su
h that for j 2 M 0�;`;mthere a maximal su
h i: If h� ĵ;`(i) is de�ned and i0 < i then there is some pureextension de
iding h� ĵ;`(i0) sin
e there are only �nitely many possibilities for itvalues, by the third line of (��). Hen
e some pure extension de
ides the value.Hen
e also h� ĵ;`(i0) is de�ned. If h� ĵ;`(i) is de�ned for all i, then (� ĵ; `) is1-good. Hen
e , if (� ĵ; `) is 2-good but not 1-good, then there is a maximal iwitnessing j 2 M�;`;m. If fj : (� ĵ; `) is 1-good g 2 D, then by gluing togethersuitable pure extensions rj of q[� ĵ℄ together we get a pure extension of q[�℄ thatshows that (�; `) is 1-good. Hen
e X = fj : (� ĵ is 2-good and not 1-good g 2 D.So we may take M 0�;`;m = M�;`;m \X . In order to simpily notation, we assumethat M 0�;`;m =M�;`;m.Also from the third line of (��) we get that for every � 2 q either for all ` < k,(�; `) is 1-good or no (�; `) is 1-good. In the latter 
ase there is some i� , su
hthat for all ` < k, dom(h�;`) = i� or dom(h�;`) = i� + 1. Moreover, also by (��)we get that if for some ` < k, for all m, M�`;m 2 D, then for all ` < k, for all m,M�;`;m 2 D. So if (�; `) is 2-good, then all (�; `0) are 2-good. We 
all � i-good ifthere is some ` su
h that (�; `) is i-good. We set M�;m = T`<kM�;`;m.We �x some diagonal interse
tion M� of hM�;m : m 2 !i, su
h that limhi� ĵ :j 2M�i = !.Then we also have that limDhminfg1�;`(j) : ` < kg : j 2M�i = !, be
ause forea
h z < !, fj : minfg1�;`(j) : ` < kg < zg is a 
o�nite set. Hen
e g�;` 2 Fg . By
ombining with an enumeration of M� , we may assume that dom(g�;`) = ! 2 D.We will not write this enumeration, in order to prevent too 
lumsy notation, butwe shall later apply that D is as in 3.7 for Fg, and therefore we need that thedomains are in D.Now we take � suÆ
iently large and N � (H(�);2) su
h that hf~ ` : ` < ki 2N , hB1�;`; h�;`; g�;` : � 2 q; ` < ki 2 N , q;D 2 N . We take �� = sup(N \ �). We
laim that q for
es that �� is as in the De�nition 3.2(3)(
).If not, then there are 
ounterexamples u` 2 [� n ��℄<�0 and �` 2 u`2 andr 2 QD, r � q, and b� su
h thatr � q; andr 
QD \ \̀<k dom(f~̀ ) = ! and(8i 2 !)maxff 1̀~ (i) : ` < kg < minff 1̀~ (i+ 1) : ` < kgand nb 2 ! : (8` < k)(f 2̀~ (b) \ �A[�`℄~ 6= ;)o � [0; b�℄".(��)First 
ase: There is some � 2 r with tr(r) E � su
h that all � is 1-good. Nowwe take for ea
h t 2 !, some pure extension of q[�℄t of r[�℄ su
h that it for
esV`<k(h�;` � t = f~̀ � t). Sin
e �A is (g; �)-o.k., and sin
e all is re
e
ted to N and



ON NEEDED REALS 19by the 
hoi
e of �� we have that I = fn 2 ! : (8` < k)(h2�;`(n) \ �A[�`℄ 6= ;g isin�nite. So we take t 2 I su
h that t > b�. Now q[�℄t 
ontradi
ts (��).Se
ond 
ase. There is some � 2 r su
h that all �, ` < k are 2-good but not1-good. We set g�;`(j) = h� ĵ;`(i� ĵ;`) as purely de
ided above q[� ĵ℄. Fa
t:Now hg�;` : ` < ki is as required in the de�nition of �A being (g; �)-o.k., be
ause! = limDhg1(i� ĵ) : j 2 !i.Now we take for ea
h t 2 !, some pure extension of q[� ĵ℄t of r[�^j℄ su
h that itdetermines V`<k g�;` � t. Sin
e �A is (g; �)-o.k., and sin
e all is re
e
ted to N andby the 
hoi
e of �� we have that J = fn 2 ! : (8` < k)(g2�;`(n) \ �A[�`℄ 6= ;g isin�nite. Then also Ĵ = fi�^n : n 2 Jg is in�nite. So we take t > b�, t 2 Ĵ . Nowthe gluing together of q[� ĵ℄t , j 2 T`<kM�;`;t, 
ontradi
ts (��) be
ause we haveg�;`(j) = h� ĵ;`(i� ĵ;`) = f`(i� ĵ), if q[�℄t 2 G. Here we write f` for f~̀ [G℄.Third 
ase: All � 2 r are neither 1-good nor 2-good. We shall prove somethingstronger:An end-segment of the generi
 Sf� : there is some element q 2 Gwith trunk �g 
an be thinned out (su
h that still in�nitely manypoints are left) and inje
ted into an in�nite subset of fn 2 ! :V`<k f 2̀~ [G℄(n) \ A[�`℄ 6= ;g.This is more than enough.Let i�;` = max(B1�;`) < !, be
ause � is not 1-good. Let i�� = dom(h�;`) su
hthat i�� = i��;` or i�� = i��;` + 1. By the premise (��), there are su
h i�� . There isr � q with no � 2 r being 1-good or 2-good in N . W.l.o.g. we take q like that.Now we try to shrink q purely. Let �0 = tr(q).First: We have that f~̀ � i�� is de
ided by q. The range of hi�� ĵ : � ĵ 2 qi isbounded modulo D be
ause � is not 2-good. Hen
e we may assume that thereis just one value i��� . So say (after shrinking q) that it is 
onstant with valuei��� � i�� .Se
ond we have that �0 E � 2 q implies that q[�℄ de
ides f~̀ � i��� .Third we have that if i 2 [i�� ; i��� ℄ then limDhf1� ĵ;`(i) : j 2 !i = ! by thede�nition of i�� and i��� . So de�ne g�;`;i by g�;`;i(j) = h� ĵ;`(i). So g�;`;i 2 N is afun
tion of the right form.We have by the de�nition of �� that for all i 2 [i�� ; i��� ) for all � 2 q for all u`,�` that A := fb : (8` < k)g2�;`;i(b) \ �A[�`℄ 6= ;g 2 D:Sin
e the range of Sf� : there is some element q 2 G with trunk �g =: �! iseventually 
ontained is every set in D, we now �nd the following in�nite set: Wetake h�n : n 2 !i su
h that �n 2 range(�!) \ A and su
h that i���n < i��n+1 . Weset �n = �n � j�n� 1j. Then we have for almost all n su
h that �n 2 A and hen
efor all i 2 [i��n ; i���n): g�n;`;i(�n(j�n � 1j)) = h�n^�n(j�n�1j);`(i) = h�n;`(i) = f`(i).So Sn2![i��n ; i���n ℄ �� fb : (8` < k)f 2̀(b) \ �A[�`℄ 6= ;g is in�nite.



20 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 3.9. Let � = 
f(�) > !1. Let V0 j= CH and let P0 = C � be the for
ingadding � Cohen reals. We �x some fun
tion g 2 V0, so that every hyperarithmeti
fun
tion in V0 is 
omputable in every g0 � g. Set V1 = V0[G0℄. Let in V1, �Abe the enumeration of the � Cohen reals.(1) In V1, there is (P; �A) 2 Kg su
h that 
P \r < �", even 
P \r = �1"(2) For (P; �A) as in (1), we have that in V1, 
P \every hyperarithmeti
 realis weakly needed for the reaping relation".Proof. (1) By 3.5 we have that �A is (g; �)-o.k. in V1. A

ording to 3.7, we may
hoose inV1 l-in
reasing and 
ontinuous su
h that (Pi; �A) 2 K, Pi+1 = Pi�QDi~ ,where Di~ = hDi�~ : � 2 <!!i Di� = Di 2 V Pi as in 3.7. Note that P = Si<!1 Pifor
es that r = �1, be
ause it 
onse
utively adds (\shoots") �1 reals throughultra�lters in the intermediate models V0[G�℄, � < !1. It is easy to see thatthese �1 reals are a re�ning family.(2) Now by part (1) and by 3.4 for any g the proof of (2) follows.4. There may be more weakly needed reals than needed realsUnder CH, or if jjRjj = 2�0 , the notions \needed for R" and \weakly neededfor R" 
oin
ide. In this se
tion, we show that there is some quite simply de�nedrelation R and that there is some model of ZFC in whi
h there are more weaklyneeded reals for R than needed reals for R. The idea is to use the for
ing modelfrom the previous se
tion.Claim 4.1. (Blass [3℄) An equivalent 
ondition for \� 2 !2 is needed for R" is(9x 2 dom(R))(8y 2 range(R))(xRy ! � �T y):Proof. Suppose that � is needed for R and that there is no x as in (1). Then(8x 2 dom(R)) (9y 2 range(R))(xRy ^ � 6�T y). So we 
an build a R-adequateset from all these y's, that shows that � is not needed for R. For the otherimpli
ation: Fix x as in (1). Every R-adequate set has to 
ontain one y su
hthat xRy and hen
e � �T y.If 2�0 = �1 then \needed for R" is equivalent to \weakly needed for R" (andfor the usual R's, under MA we have that jjRjj = 2�0 and hen
e any adequate setis of minimal 
ardinality and hen
e the notions 
oin
ide). But in general, theydo not 
oin
ide.Claim 4.2. There is a simply de�ned relation R for whi
h it is 
onsistent thatthe notions \weakly needed" and \needed" do not 
oin
ide. In fa
t, in the for
ingmodel from the previous se
tion, every needed real for R is re
ursive, and all thehyperarithmeti
 (and possibly more) reals are weakly needed for R.



ON NEEDED REALS 21Proof. Let R = R0 [ R1, where R0 is the ordinary reaping relation, whi
h wewrite for fun
tions on !2� !2:�R0� , �; � 2 !2 ^ (91n)�(n) = 1 ^ � � ��1f1g is almost 
onstant.�R1� , �; � 2 !2 ^ (91n)�(n) = 1 ^ (91n)�(n) = 1 ^� j��1f1g \ ��1f1g \ njj��1f1g \ nj : n 2 !� 
onverges to 12 ;in parti
ular, for every large enough n, j��1f1g \ ��1f1g \ njj��1f1g \ nj 2 �14 ; 34� :We use V P from the previous se
tion. There we have that P = P0 �Q~ , P0 isthe for
ing adding � Cohen reals, and �A~ is an enumeration of the names of theseCohen reals, and Q is the iteration des
ribed in 3.9. Then in V P we have thatjjRjj � jjR0jj = �1.We �rst show that every hyperarithmeti
 real � is weakly needed for R in thismodel. We take some R-adequate set in V P R of power �1. We letY` = fi < � : (9x 2 R)(AiR`x)g:So, by the de�nition of adequate we have that Y0 [ Y1 = �. If jY0j = �, by theproof of 3.4, we get some x 2 R whose enumeration f with f(n) = m if m is thenth element of x is so large in the eventual domination order that the real � is
omputable from it.We now show that jY1j < �. Then it follows that jY0j = �. Towards a
ontradi
tion, we assume that jY1j = �. In the model from the previous se
tionwe have that P = Si<!1 Pi, P0 adds � Cohen reals A�, � < �, Pi in
reasing and
ontinuous, Pi+1 = Pi � QDi~ as there, P = P0 � Q~ . We work in V P0 . We havethat for some p� 2 Q=P0 and some Q=P0-names �i~ , i < !1,p� 
Q=P0 jY1~ j = � ^ R~ = f�i~ : i < !1g:Y � = f� : 9p� � p�; p� 
Q=P0 � 2 Y1~ g: By the 


 of Q=P0, we have thatY � 2 [�℄�, and for � 2 Y � we 
hoose p� � p� 
Q=P0 \� 2 Y1~ ". So for � 2 �we have that A�R1�i(�) and hen
e for a large enough n� for � many � 2 Y �(w.l.o.g.: for all � 2 Y �) we have that n� = n�, where n� is su
h that (8n �n�)( j��1i(�)f1g\A�\njjA�\nj 2 � 14 ; 34�). Moreover, there is a �-system for the dom p� 2[� n f0g℄<! whose root is u�, i(�) = i�.So we may assume that for j 2 u� we have that p�(j) is an obje
t with trunk�j and not just a P0-name. By pure de
idability for some �� 2 V P0 we have:For every � 2 Y � and m for some pure extension q of p� with the same domainq 
 �i(�)~ � m = �� � m. By \n� = n(�)" for � 2 Y � we get an easy 
ontradi
tion:



22 HEIKE MILDENBERGER AND SAHARON SHELAHSuppose p 2 P0 andp 
P0 \8� 2 Y � 8n � n(�) 9q� �tr p�;q� 
Q=P0 \ j��~ �1f1g \ A� \ n(�)jjA� \ n(�)j 2 �14 ; 34� " ".This is impossible, be
ause we may assume that �� 2 V (it needs only 
ountablymany of the � Cohen reals) and we may arrange all other A�'s so that the quotientwill be arbitrary. The for
ing P=P0 does not 
hange the value of the quotient.Now we show that if a real is not re
ursive then it is not needed for R. If� is not re
ursive and x 2 !2, let fx; �g 2 N � (H(�);2), N 
ountable. Let� = �(x; �) be random over N , and we 
laim� 6�Turing �:(4.1)Proof of (4.1): Otherwise we would have that � is re
ursive in the ground modelby the following: Supposep 
Random \M 
omputes � from the ora
le �~":(4.2)Then by the Lebesgue density theorem we �nd s 2 <!2 su
h that above s, phas Lebesgue measure > 99100 � Leb(f� : s / �g. The we setBn = f�0 2 !2 : s / �0 and from �0 M 
omputes �(n) 
orre
tlyg:From (4.2) we get that Leb(Bn) � 99100 � Leb(f� : s / �g. So for every suÆ
ientlylarge m 2 ! we have that2m�lg(s) � jf�0 2 m2 : s / �0 and from �0 M 
omputes �(n) 
orre
tlygj:(4.3)So we 
an run a ma
hine, that has s as an �xed ingredient, and whi
h, given inputn, in
reases m su

essively, and then 
omputes �(n) with all possible ora
lesabove s of length m � lg(s) and de
ides with (4.3), when it is true for m (andhen
e for all later m), whi
h is the right value. So (4.1) is proved.But we have that xR1� and hen
e xR�. Thus the 
olle
tion f�(x; �) : x 2 !2gis an R-adequate family. So, if � were needed for R, then there would be some� su
h that � �T � in 
ontradi
tion to the equation (4.1). So �nally we showedthat all needed reals for R are re
ursive.5. Needed reals for reapingIn this se
tion we prove in ZFC that not all hyperarithmeti
 reals are neededfor the reaping relation. Sin
e in the model from Se
tion 3 all hyperarithmeti
reals are weakly needed for the reaping relation, this model shows that also for thereaping relation it is 
onsistent that weakly needed and needed do not 
oin
ide.In 
ontrast to the result on the relation R from the previous se
tion, we do notprove that only re
ursi
e reals are needed for the reaping relation.Hypothesis 5.1. We �x B� � ! and some � 2 !2 su
h that: if X � B� = B�1or X � ! nB� = B�2 then � is re
ursive in 
hX .



ON NEEDED REALS 23By 4.1, the hypothesis says, that � is needed for the reaping relation, withwitness B�. For all X , that re�ne B�, we have that � is re
ursive in X . Note that5.1 is similar to � being hyperarithmeti
: the di�eren
e is that � is 
omputablealso in every in�nite subset of the 
omplement of B�.Choi
e 5.2. Let h(Mn1 ;Mn2 ; an1 ; an2 ) : n < !i be a re
ursive list of the quadruples(M1;M2; a1; a2) su
h that(i) M1;M2 are Turing ma
hines (with referen
e to an ora
le),(2) a1; a2 are �nite disjoint sets.W.l.o.g. an1 [ an2 � n and ea
h quadruple appears in�nitely often.De�nition 5.3. (1) We say �E = hEn : n 2 !i is spe
ial if(i) En is an equivalen
e relation on ! n n, and(ii) for m < n, En re�nes Em � (! n n),(iii) if A is an En-equivalen
e 
lass, then A n (n + 1) is devided byEn+1 in at most two equivalen
e 
lasses, and E0 has �nitelymany 
lasses,(iv) if(�) A is an En-equivalen
e 
lass and(�) there is a partition X1; X2 of An(n+1) su
h that for allj < !, Yi � !, i = 1; 2, (if ani � Yi � Xi [ ani , hi < !,and if the ma
hine Mni running with input j and ora
le
hYi �nishes its run giving hi, then h1 = h2),then En+1 indu
es su
h a partition of A.(2) �E is spe
ial to � if in addition(v) for all A and n, if A is an En-
lass, then � is not re
ursive in
hA.Theorem 5.4. There is no �E that is spe
ial to �.Proof. We assume the 
ontrary, and by (Cohen) for
ing and absoluteness we willderive a 
ontradi
tion. The proof will be �nished with 5.11.De�nition 5.5. For a spe
ial �E we de�ne Q = Q �E;B� as the following notionof for
ing:(1) p 2 Q has the form p = (n;A; b1; b2) = (np; Ap; bp1; bp2) su
h that(i) n < !,(ii) A is an En-equivalen
e 
lass,(iii) A is in�nite,(iv) b1; b2 are disjoint subsets of n,(v) b1 � B�, b2 � ! nB�.(2) p � q i�



24 HEIKE MILDENBERGER AND SAHARON SHELAH(i) np � nq, Ap � Aq, bpi � bqi , for i = 1; 2,(ii) (bq1 [ bq2) n (bp1 [ bp2) � Ap.(3) Bi~ = Sfbpi : p 2 GQ~ g is a Q-name of a subset Bi 2 V [G℄ of B�i ifi = 1; 2.So if E0 has �nitely many equivalen
e 
lasses, then Q is equivalent to Cohenfor
ing and independent of �E and B�. Nevertheless we keep the 
ompli
ated
onditions, be
ause they �t better to the investigation of the �'s needed for thereaping relation.Claim 5.6. For i = 1; 2 we have(1) 
Q \bi~ is an in�nite subset of B�i ".(2) For some p�, p� 
Q \Mnp�i 
omputes � with the ora
le 
hbi~ ".Proof. (1) Fix i = 1 or i = 2. It is enough, to �nd for a given p 2 Q some q � p,q 2 Q su
h that bpi 6= bqi . Now Ap \ B�i is in�nite, be
ause of the hypothesis onB� and be
ause � is not re
ursive in 
hAp by the assumption of the indire
t proofof 5.4. We may 
hoose h 2 Ap \ B�i , h � max(bpi ) + 1 and an in�nite Eh+1-
lassA � Ap, whi
h exists be
ause Ap is in�nite and be
ause Eh+1 has �nitely manyequivalen
e 
lasses. We de�ne q as nq = h+1, Aq = A, bqi = bpi [fhg, bq3�i = bp3�i.(2) The statement made in Hypothesis 5.1 on B� and on � is �11 and holds inV , hen
e it holds in V [G℄ as well by [5, Theorem 98, p. 530℄. Now we apply it inV [G℄ to part (1) of this 
laim.We �x p�, Mnp�1 , Mnp�2 as in part (2) of Claim 5.6.Fa
t 5.7. There is some q � p� su
h that for i = 1; 2, Mnqi = Mnp�i and su
hthat bqi = anqi .Proof. For some n� � np� the quadruple (Mn�1 ;Mn�2 ; an�1 ; an�2 ) is equal to(Mnp�1 ;Mnp�2 ; bp�1 ; bp�2 ). Let A be an in�nite En� -
lass whi
h is a subset of Ap� .So we take q = (n�; A; an�1 ; an�2 ).Claim 5.8. For n�, A the demands (�) + (�) of 
lause (iv) of 5.3 hold, hen
ethe 
on
lusion.Proof. We work �rst in V [G℄. There, by 5.6, Xi = A \ B�i and A exemplify5.3(iv). But 5.3(iv) is a �12-statment of the parameters (A; an1 ; an2 ), and thereforeit holds in V as well by Shoen�eld's absoluteness theorem [5, Theorem 98, p.530℄.Convention 5.9. Let A1 6= A2 be the En�+1-equivalen
e 
lasses whi
h are � A,with Ai for Mi as in 5.3(iv).Claim 5.10. If j < ! then for some b � m < ! we have that b \ nq = bq1,b n nq � A1, if we let M1 run with input j and ora
le 
hb � m it gives an answer(i.e. it �nishes and asks the ora
le only questions in its domain m).



ON NEEDED REALS 25Proof. : We de�ne r 2 Q by nr = nq + 1, Ar = A1, bri = bqi for i = 1; 2. Soq � r 2 Q. By the 
hoi
e of q for some s 2 Q, r � s and s for
es a value to therun of M1 with input j and ora
le b1~ so also to the answers to the ora
le in thisrun. Let b = bs1.Claim 5.11. For every j 2 !, k 2 2 the following are equivalent(1) �(j) = k,(2) For some b � m < !, b \ nq = bq1, b n np� � A1, and M1 running withinput j and ora
le 
hb � m gives the answer k.Proof. (i)! (ii) by 5.10. Sin
e � 2 V , the reverse impli
ation holds as well.End of the proof of 5.4: � is re
ursive in 
hA1 . By 5.11 we try all b's for a givenj and hen
e � is re
ursive in 
hA1 . How to run through all trials is explained inmore detail in [4, Theorem 9℄. 5:4Claim 5.12. There is a spe
ial �E that has as a three pla
e relation fhn; x; yi :xEnyg Turing degree � O! and su
h that if A is an En-equivalen
e 
lass then
hA �T On+1, the (n+ 1)st jump of O.Proof. We 
hoose En by indu
tion on n.n = 0. If for every m there is a partition (
0; 
1) of m su
h that for i 2 f1; 2gfor every bi � 
i and j < n, if M0i running with input j and ora
le 
hbi � m andgiving the results ki then k0 = k1, then we 
hoose among these pairs (
m1 ; 
m2 )su
h that 
h
m1 is minimal in the lexi
ographi
al order. If (
m1 ; 
m2 ) are de�nedfor every m, then we have that m1 � m2 � m3 ) 
h
m21 \m1 �lex 
h
m31 \m1 . Soh
m1 : m 2 !i 
onverges to some 
1. Now we de�ne E0, having two 
lasses: 
1and ! n 
1. The relation E0 is 
omputable in O1.In the step from n to n + 1, the relation En+1 is de�ned similarly, with themodi�
ation that we use the des
ription of En as a parameter and take partitions(
0; 
1) of (mnn)\C for ea
h En-
lass C and ora
les bi[ani . Clearly using On+2we 
an de�ne En+1 and it is � �11.Note that di�erent su

essful 
omputations have the same out
ome.Remark 1. Just to show that Con(needed for reaping does not 
oin
ide withweakly needed for reaping) is is enough to �nd a �11-relation �E whi
h is spe
ial.Con
lusion 5.13. If � is needed for the reaping relation, then Wn2!(� �T On),hen
e in the V P from Se
tion 3 many �11 reals are not needed for the reapingrelation, but only weakly needed for the reaping relation.Proof. We take �E as in 5.12. From 5.11 we get that �E is not spe
ial to any �that satis�es 5:1 for some B�. So any � that is needed for the reaping relation isre
ursive in �E.



26 HEIKE MILDENBERGER AND SAHARON SHELAH6. Coin
iden
eIn this se
tion we give a 
ondition on a relation R under whi
h the notions\needed for R" and \weakly needed for R" 
oin
ide and show that the 
onditionis ful�lled for the relation Rrandom de�ned below.De�nition 6.1. The domain of the relation Rrandom is f� : � is a 
ode for aT� � <!2 of positive measureg. The range of Rrandom is !2. We set �Rrandom�i� � 2 A� := f� 2 !2 : for some �0 2 T� we have that � =� �0g.Claim 6.2. (1) Assume that(a) R is a 2-pla
e Borel relation on !2, and(b) for every x1; x2 2 !2, if x2 is not re
ursive, there is x 2 !2 su
h that
 (8�)�xR� ! (x1R� ^ :(x2 �T �))�:(
R)
then the notions of being needed for R and being weakly needed for R
oin
ide and 
oin
ide with being re
ursive.(2) The relation Rrandom satis�es the 
riterion 
R from Part (1).Proof. (1) We have show that every weakly needed real for R is re
ursive. Thenby \re
ursive ! needed for R ! weakly needed for R ! re
ursive" all threenotions 
oin
ide.Suppose that x� 2 !2 is not re
ursive. We show that x� is not weakly neededfor R. Let Y be an R-adequate set of minimal 
ardinality. Let Y � = f� 2 Y ::x� �T �g. Y � � Y , and hen
e jY �j � jY j = jjRjj. We show that Y � is alsoR-adequate. Let x1 2 !2 be given. We take x2 = x�, and apply (b) of 
R. Sowe get x as there. Sin
e Y is R-adequate we �nd some � 2 Y su
h that xR�.Hen
e by 
R we have that x1R� ^ x2 6�T �. So � 2 Y � and x1R�.(2) Let x1; x2 be given. We take N � (H(i3);2) su
h that x1; x2 2 N . LetT = T� be Amoeba-generi
 over N . Then � = x is as 
laimed in (1)(b).Con
lusion 6.3. Needed reals for Rrandom and weakly needed for Rrandom 
oin-
ide and are just all the re
ursive reals.Referen
es[1℄ Uri Abraham. Proper for
ing. In Matthew Foreman, Akihiro Kanamori, and Mena
hemMagidor, editors, Handbook of Set Theory. Kluwer, To appear.[2℄ Tomek Bartoszy�nski and Haim Judah. Set Theory, On the Stru
ture of the Real Line. A KPeters, Wellesley, Massa
husetts, 1995.[3℄ Andreas Blass. Needed reals. Talk at Oberwolfa
h De
ember 1999.[4℄ Andreas Blass. Needed reals and re
ursion in generi
 reals. To appear in APAL, spe
ialvolume in honour of Vop�enka, 2001.[5℄ Thomas Je
h. Set Theory. Addison Wesley, 1978.[6℄ Carl G. Jo
kus
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