
ON NEEDED REALSHEIKE MILDENBERGER AND SAHARON SHELAHAbstrat. Following Blass [4℄, we all a real a \needed" for a binary re-lation R on the reals if in every R-adequate set we �nd an element fromwhih a is Turing omputable. We show that every real needed for Cof(N )is hyperarithmeti. Replaing \R-adequate" by \R-adequate with minimalardinality" we get related notion of being \weakly needed". We show thatis is onsistent that the two notions do not oinide for the reaping relation.(They oinide in many models.) We show that not all hyperarithmeti re-als are needed for the reaping relation. This answers some questions askedby Blass at the Oberwolfah onferene in Deember 1999 and in [4℄.Contents0. Introdution 11. Needed reals for Cof(N ) 22. Needed reals for the slalom relation and a general sheme 63. Weakly needed reals for the reaping relation 104. There may be more weakly needed reals than needed reals 205. Needed reals for reaping 226. Coinidene 26Referenes 260. IntrodutionWe onsider some aspets of the following notions:De�nition 0.1. (1) (Needed reals). Suppose that we have a ardinal har-ateristi x of the reals of the following form: There are (in most ases:Borel) sets A�; A+ � R and there is a (in most ases: Borel) relationR � A� �A+ suh thatx = jjRjj := minfjY j : Y � A+ ^ (8x 2 A�)(9y 2 Y )R(x; y)g:1991 Mathematis Subjet Classi�ation. 03E15, 03E17, 03E35, 03D65.The �rst author was supported by a Minerva fellowship.The seond author's researh was partially supported by the \Israel Siene Foundation",administered by the Israel Aademy of Siene and Humanities. This is the seond author'swork number 725. 1



2 HEIKE MILDENBERGER AND SAHARON SHELAHWe all jjRjj the norm of R. A set Y � A+ is alled R-adequate if(8x 2 dom(R)) (9y 2 Y )xRy. We say that � 2 !2 is needed for R if forevery R-adequate set Y there is some y 2 Y suh that � �T y.If A+ 6� R but an be mapped ontinuously and injetively into Rby a mapping  whih is, as a funtion on the digits, omputable in bothdiretions, then we all the real a needed for R and  if for any R-adequateset Y � A+ there is some y 2 Y suh that a �T (y). We all suh afuntion  a oding. In this situation, a real a is alled needed for R, ifit is needed for R and  for any oding .(2) (Weakly needed Reals). We all a real a weakly needed for R if for anyR-adequate set Y of minimal ardinality there is some y 2 Y suh thata �T y.Every needed real is weakly needed. Setions 3 to 6 will give some informationon the reverse diretion.1. Needed reals for Cof(N )In this setion we answer Blass' question whether only hyperarithmeti reals areneeded for the o�nality relation on the ideal of Lebesgue null sets aÆrmatively.In this setion we work with two partiular relations on the reals: For funtionsf; g : ! ! ! we write f �� g and say g eventually dominates f if (9n < !)(8k �n)(f(k) � g(k)). The dominating relation isD = f(f; g) : f; g 2 !! ^ f �� gg;and the o�nality relation for the ideal of sets of Lebesgue measure zero isCof(N ) = f(F;G) : F;G are F�-sets of Lebesgue measure 0 and F � Gg:We write of (N ) for jjCof(N )jj.Before stating our �rst theorem, we review some notation: For s 2 !>2 = ft :(9m 2 !)(t : m ! 2)g, we write lg(s) = dom(s). If s 2 !�2 and t 2 !�2, wewrite s E t if s = t � lg(s). Let s / t denote that s E t and s 6= t. A subsetT � !>2 is alled a tree if it is downward losed, i.e., if for all t 2 T for all s E t,we have that s 2 T . We let lim(T ) = ff 2 !2 : (8n 2 !)f � n 2 Tg. An elements 2 T is a leaf if there is no t 2 T suh that s / t. For a tree T � <!2 and some� 2 <!2 we set T [�℄ = fs 2 T : s E � _ � E sg.Leb denotes the Lebesgue measure on the measurable subsets of !2, the produtspae of ! opies of the spae f0; 1g, where eah point has measure 12 .



ON NEEDED REALS 3We deal with the following forings, where the �rst is the ordinary Amoebaforing:Q =�T : T � !>2; T is a tree and Leb(lim(T )) > 12�;Q̂ =�T 2 Q : lim� jT \ n2j2n : n 2 !� > 12 and T has no leaves� :We set hT (�) = Leb(lim(T [�℄)).Q� =nT 2 Q : �8n 2 !)(� 2 n2 \ T ! hT (�) � 22n 2 ! n f0g�o ;Q̂� =Q̂ \ Q� :The partial order on Q and its variants is inlusion: subtrees are stronger (�,we follow the Jerusalem onvention) onditions. It is easy to see that Q̂ , Q� andQ̂� are dense suborders of Q.Theorem 1.1. Let G be Q̂ -generi over V . Then in V [G℄ the following holds:For every � 2 !2 \ V , if � is reursive in the generi tree T = TG, then � isneeded for domination.Conlusion 1.2. Sine being needed for domination is a an absolute notion (see[6, 9℄ or 4.1), also in V , every � that is reursive in V [G℄ in the generi treeT = TG, is needed for domination.Proof of 1.1. For some p 2 Q̂ , � 2 !2, both in V , and Turing mahineM (w.l.o.g.also in V ) we have that p  \M omputes � from T~ ".(�)Let n(�) 2 [1; !) and p� 2 Q̂� be suh that p � p� and Leb(lim(p�)) = 12+ 1n(�) .Then, by the Lebesgue density theorem (3.10 in [7℄), we may hoose m(�) suhthat for any m � m(�),12 + 1n(�) � jp� \ (m2)j2m � 12 + 1n(�) + 12n(�)+7 :In order to derive from (�) some omputation of � relative to a suitable memberof a given D-adequate set, we shall work with the following trees.De�nition 1.3. For r 2 Q̂ and " > 0, if Leb(lim(r)) � 12 + " letT "r;n =�(q \ n>2; hq � n>2) : r � q 2 Q̂� ;Leb(lim(q)) � 12 + "; (8m 2 !)� jq \ m2j2m � 12 + "��:



4 HEIKE MILDENBERGER AND SAHARON SHELAHWe set T "r = SfT "r;n : n 2 !g. For x 2 T "r;n we write x = (x(1); x(2)). Weorder T "r by �T : (q \ n>2; hq � n>2) �T (q0 \ n0>2; hq0 � n0>2) i� n � n0 andq \ n>2 = q0 \ n>2 and hq0 � n>2 = hq � n>2. Equivalently, we may onsidert 2 T "r;n as a funtion t : q \ n>2 ! R, t(�) = hq(�). We equip T "r with the treetopology given by �T , i.e., basi open sets in the topology are ft 2 T "r : t �T t0g,t0 2 T "r .These trees exhibit the following properties:(�)0 T "r is a tree with �nite levels, the nth level being T "r;n.(�)1 If htn : n 2 !i is an !-branh of T "r then Leb(lim(S tn(1)) � 12 + " andif " > 0 then S tn(1) 2 Q.(�)2 Moreover, we have if r1 � r2 in Q̂ and Leb(lim(r2)) � 12 � ", thenT "r2 � T "r1 .(�)3 If Leb(lim(r)) � 12 + ", p� � r 2 Q� and n 2 ! and ht` : ` 2 !i is an!-branh of T "r , then for some m 2 !, there is t� � dom(tm) (here weregard t's as funtions) suh that(a) Pftm(�) : � 2 t� \ m2g > 12 .(b) If M runs with input n and orale fm;t� it will give the value�(n), where fm;t� : m�2! f0; 1g, fm;t�(�) = 1, (9� 2 t�)(� E�).(�)4 Let g";ht` : `2!i(n) be the �rst m > n as in (�)3. For every n; k 2 ! thesetsSn;k = ([̀2! t` : ht` : ` 2 !i is a branh of T "r ^ g";ht` : `2!i(n) � k)are open sets in the ompat tree T "r , and T "r = Sk2! Sn;k is a unionof an inreasing sequene hSn;k : k 2 !i. Hene there is K, suh thatSn;K = T "r and hene K � g";ht` : `2!i(n) for all branhes ht` : ` 2 !i ofT "r . We let g"(n) be the minimal suh K.Now we speify the following items:(�) We take some g : ! ! ! is suh that (8n)g"(n) � g(n). Our aim is toshow that � is reursive in suh a g.(�) " = 14n(�) , and "0 = 34n(�) . We hoose some p� as above and some Q̂ -generi �lter G suh that p� 2 G. We �x an ! branh of T "p� suh thattg(`) determines �(`) and the part of the orale needed for it in the senseof (�)3 and (�)4, and tg(`)(1) is an initial segment of a ondition in G.() p�� = f� : � 2 p� \ m(�)2 _ (� 2 !>2 n m(�)2 ^ � � m(�) 2 p�)g.The proof of the following laim will �nish the proof of Theorem 1.2.Claim. For every n 2 !, k 2 f0; 1g, the following are equivalent:



ON NEEDED REALS 5(i) �(n) = k,(ii) for some t1 2 T "0p��;g(n) (| and this is reursive in g |) for every t0satisfying t0 � t1 and t0 2 T "p��;g(n) there is t2 � t0 suh that (�)3 (a) +(b) holds with t� = dom(t2) and value �(n) = k.Proof: (i) to (ii): We assume (i). We take t1 = p�� � g(n). If t0 � t1,t0 2 T "0p��;g(n) is given, we may take t2 = t0. Sine any branh ontaining t0 andstronger than p� fores �(n) = k, we have by the de�nition of g(n), that the partbelow g(n) suÆes for the omputation. So t2 ats as desired.(ii) to (i): Assume that �(n) = 1� k. As we have \(i) ) (ii)" for this situation,there is some s1 2 T "0p��;g(n) suh that for every s0 � s1 with s0 2 T "p��;g(n) thereis s2 � s0 suh that the analogues of (�)3 (a) and (b) hold with �(n) = 1 � k.We have t1 as in (ii) for �(n) = k. There are q0; q1 witnessing t1; s1 2 T "0p��;g(n).Sublaim: q0; q1 are ompatible in the Amoeba foring.Proof of the laim: Both satisfy:lim(p��) � lim(q`);12 + 1n(�) � Leb(lim(p��)) � jp� \ m(�)2j2m(�) � 12 + 1n(�) + 12n(�)+7 ;Leb(lim(q`)) � 12 + "0:We show that Leb(lim(q0) \ lim(q1)) > 12 :We have thatLeb(lim(p��)n(lim(q0) \ lim(q1)))� Leb(lim(p��) n (lim(q0))) + Leb(lim(p��) n lim(q1)))� 2 �� 14n(�) + 12n(�)+7�= 12n(�) + 12n(�)+6 ;heneLeb(lim(q0) \ lim(q1)) �Leb(lim(p��))� Leb(lim(p��) n (lim(q0) \ lim(q1)))�12 + 1n(�) � 12n(�) � 12n(�)+6 > 12 :So the sublaim is proved. We take some q � q` for ` = 0; 1.But: q0 and q1 annot be ompatible in the Amoeba foring. By the hoie ofp� we have that p�  \� is omputed by M using the orale Te ."We have q` � p� and q � q`. But then we �nd t2̀ � q \ 2g(n) suh that



6 HEIKE MILDENBERGER AND SAHARON SHELAH(a) Px2t2̀ hp�(x) > 12 , and(b) if M runs on the input n and the orale t2̀ it will give the result �(n) for` = 0 and 1� �(n) for ` = 1.Sine � 2 V , there annot be two di�erent omputations, depending on twodi�erent T~ [G℄ \ g(n)2. Hene the assumption that q0 and q1 with the aboveproperties both exist leads to a ontradition, and the Claim and Theorem 1.2are proved.Theorem 1.4. Every needed real for Cof(N ) is needed for the dominating rela-tion.Proof. : Let fAi : i < �g be a Cof(N )-adequate set, suh that eah Ai is aBorel set. Let � 2 !2.For eah i hoose a ountable elementary submodel Ni of (H(i3);2) to whih� and Ai belong. We let Gi be a subset of QNi that is generi over Ni and letTi = T~ [Gi℄. Now let A�i beA�i = f� 2 !2 : no �0 2 !2 whih is almost equal to �(i.e. �(n) = �0(n) for every large enough n) belongs to TigA�i is a null set: We have A�i = Tn2!(f�0 : (9� 2 Ti) (�0 � [n; !) = � �[n; !))g). Furthermore we have that limn!1 Leb(f�0 : (9� 2 T )(�0 � [n; !) =� � [n; !))g) = 1, beause for a given ", by the Lebesgue density Theorem (3.20in [7℄) there is some n0 suh that for n � n0 we have for all s 2 T \ n2 thatLeb(T \ [s℄) �2n > 1�" and hene Leb(f�0 : (9� 2 T )(�0 � [n; !) = � � [n; !))g) >1� ".By generiity of Ti and beause Ai 2 Ni and beause Ai is a nullset in Niwe have that Ai � lim(Ti). The same argument shows that for all s 2 !>2 wehave that fŝ f : 9s0 (js0j = jsj ^ s0̂ f 2 Ai)g is a subset of (lim(Ti)). Hene wehave that Ai � A�i . Therefore also fA�i : i < �g is a Cof(N )-adequate set. If� is reursive in A�i (more preise: in one one of A�i 's simple odings) it is alsoreursive in Ti and hene by Theorem 1.2 needed for dominating.Fat 1.5. We use the result of Jokush and Solovay every real that is neededfor the dominating relation is hyperarithmeti (Solovay [9℄) and this is optimal(Jokush, [6℄): every hyperarithmeti real is needed for the dominating relation.Blass [4, Theorem 6, Corollary 8℄ showed that every real that is needed for Dis also needed for Cof(N ) and hene that all hyperarithmeti reals are neededfor Cof(N ). So this gives the other inlusion in the following orollary:Corollary 1.6. Exatly the hyperaritmethi reals are needed for the Cof(N )-relation.2. Needed reals for the slalom relation and a general shemeIn this setion we deal with a foring L whih is losely related to the loaliza-tion foring from [2, page 106℄. Theorem 2.3 is analogous to Theorem 1.1, but



ON NEEDED REALS 7for the foring L. Theorem 2.10 is analogous to Theorem 1.4, but the translationmehanism in the proof is di�erent.In the seond part of the setion, we ollet suÆient onditions and give ageneral sheme for the proofs of \being omputable in the generi and being inV implies being hyperarithmeti" and of \every real needed for R is �11."De�nition 2.1.L = fp : p = (n; �u) = (np; �up); �u = hu` : ` 2 !i; u` 2 [!℄�`;h(p) := lim suphju`j : ` 2 !i < ! is well-de�nedg;p � q $  ^̀2! up̀ � uq̀ ^ �uq � np = �up � np! :The generi is onsidered as a harateristi funtion � with domain ! � ! suhthat �(n;m) = 1$ (9p 2 G)(m 2 upn).Notation 2.2. An m-orale is a funtion from m�m to f0; 1g. If �u = hu` : ` <mi, u` 2 [!℄<` the �u-orale ��u 2 m�m2 is de�ned by ��u(n1; n2) = 1$ n2 2 un1 .We allow that (9` < m) max(u`) > lg(�u) = m.Theorem 2.3. Assume that M is a Turing mahine and that � 2 !2. Let G~ bea name for an L-generi element. Suppose that p� 2 L and thatp� L M omputes � from G~ :Then � is hyperarithmeti.Proof. Let n� = np� and �u� = �up� � n�, and h� = h(p�). By a density argumentwe may assume that n� > 4h� ^ (8`)(` � n� ! ju�̀j � h�).We let T = T�u� =f�u : n� � m < !; �u = hu` : ` 2 mi; u` 2 [!℄�`;�u � n� = �u� ^ ` � n� ! ju`j = h�g:We order T by the initial segment relation E.If �u 2 T�u� we let��u =��u;�u� = f��v : lg(�u) = lg(�v); �v � n� = �u�;(n� � ` < lg(�u)! [0; lg(�u)) \ u` � v`)g:Fat 2.4. For every j < !, �u = hu` : ` 2 !i 2 lim(T�u�), suh that for eah `,and lg(u`) = `, there are m 2 [n�; !), �v 2 ��u�m \ ��u� suh thatwith ��v as an orale on domain lg(�v)� lg(�v), M �nishes its runand gives the result �(j)(�)Proof. The onditions (n�; �u) and p� = (np� ; �up�) are ompatible: (n�; �v) =(n�; hu` [ up�` : ` 2 !i) 2 L is stronger or equal to both of them (here we usen� > 4h�) and in ��u�m for all m. We take a generi to whih (n�; �v) belongs.Consider the run of M , it uses only �v \ (m�m) for m large enough.



8 HEIKE MILDENBERGER AND SAHARON SHELAHFat 2.5. For every j < ! there is mj 2 (n�; !) suh that suh that for everyhu` : ` 2 !i 2 lim(T�u�), there is ��v 2 ��u�mj \ ��u� suh that (�) holds.Proof. By the previous lemma and by K�onig's lemma. All the levels of T�u� are�nite. Note that ��u depends only on hu` \ lg(�u) : ` < lg(�u)i.De�nition 2.6. gM;�u� 2 !! is de�ned bygM;�u�(j) = minfmj : mj in as in the Fat 2.5g:Claim 2.7. For every j 2 !; k < 2 and m � gM;�u�(j) the following are equiva-lent:(i) �(j) = k,(ii) for some �u = hu` : ` < mi and h�, suh that (` 2 [n�;m) ! u` 2[m℄�h�), �u � n� = �u� for every �u0 = hu0̀ : ` < mi suh that ` 2[n�;m)! u0̀ 2 [m℄�h�, �u0 � n� = �u� there is �v 2 ��u \ ��u0 � m�m2 suhthat M running with orale ��v and input j �nishes its run and gives theresult k.Proof. : (i) ) (ii): By the previous fat, �up� � m is as required. (ii) ) (i): Let�u be as guaranteed in (ii). It is said there \for every �u0" so in partiular for�u0 = �up� � m, there is � 2 ��u \ ��u0 as there. Now we an �nd a ondition q 2 Lsuh that nq = m > n�, �uq � n� = �u�, n� � ` < m ) uq̀ = up�` [ v` = u0̀ [ v`,` � m! uq̀ = up�` . So(�) p� � q and q  G~ � m�m2 = ��v, hene(�) q  \M running with the orale G~ and input j gives the result k", andreall() p�  \M omputes �".By (�) + (�) + () we get that �(j) = k is as required.Conlusion 2.8. Assume that � 2 !!, � 2 N , G is L-generi over N and that�~[G℄ = � and N [G℄ j= \� �T �". Then � is hyperarithmeti.Proof. Analogous to the proof of 1.2 for N instead of V . We use 2.7.De�nition 2.9. S 2 !(!>[!℄) is alled a slalom i� for all n, jS(n)j � n.Theorem 2.10. Exatly the hyperarithmeti reals are needed for the slalom re-lationSL = f(f; S) : f 2 !! ^ S is a slalom and (8n 2 !)(f(n) 2 S(n))g:Proof. First show that only hyperarithmeti reals are needed for SL: Let fSi :i < jjSKjjg be an SL-adequate set. Let � 2 !2. We take Ni � (H(i3);2) suhthat �; Si 2 Ni. Then we let Gi be L-generi over Ni. Now we set S�i = f� :(9�0 2 Gi)�0 =� �g. Then we have that Si � S�i , S�i is the union of ! slaloms,eah of them omputable from Gi, and the members of all the unions form anSL-adequate set.



ON NEEDED REALS 9All hyperarithmeti reals are needed for SL, beause all of then are needed forD. Suppose that fhS�i : i 2 !i : � 2 jjSLjjg is SL-adequate and that � 2 !2 ishyperarithmeti. Then fhmaxSi : i 2 !i : � 2 jjSLjjg is D-adequate and henethere is some element f in it from whih � is omputable. But then of ourse �is also omputable in any slalom where f stems from.From our two examples (Q;Cof (N )) and (L;SL) we ollet the followingsheme:Theorem 2.11. Assume that(a) T � H(�0) is reursive, T is a tree with ! levels and eah level is �nite,eah v 2 T is a �nite funtion from H(�0) to H(�0).(b) Q is a foring notion, and �n, n 2 !, are Q-names, andQ (8n 2 !) (�n 2 lim(T )) ^ (8x 2 range(R)) _n2! 8y(yRx! yR�n):() For eah n 2 ! we have: For a dense set of p0 2 Q there is some p � p0suh that the following onditions are ful�lled:(�) Let Tn;p = f� 2 T : p  � � �ng. This is a subtree of T .(�) Let S�n;p = nt : for some subtree T 0 of Tn;p and some k, t =f� 2 T 0 : levelTn;p(�) � kg, and no maximal node of t has levelko, and order S�n;p naturally.() Sn;p is a reursive subtree of S�n;p suh that(i) Tn;p is an !-branh of Sn;p,(ii) for every branh �t = ht` : ` 2 !i of Sn;p there is q 2 Qsuh that q is ompatible with p and Tn;q = S`2! t`.(d) � 2 !2 or !!Then we have for every n 2 !: if Q \� is reursive in �n~ " then � is hyper-arithmeti.Proof. So for some p� as in () and Turing mahine Mp� Q \M omputes � from �n~ ":Let Sn;p� and S�n;p� be as in lause (). Now we prove some intermediate fats,and the proof of 2.11 will be �nished with 2.15.Fat 2.12. For every !-branh htk : k 2 !i of Sn;p� and j 2 ! for some (=every) large enough k 2 ! for some � 2 tk \ levelk(Tn;p�) if M runs on input jand orale � it �nishes (so we do not ask orale questions outside the domain)and gives the result �(j) = k.



10 HEIKE MILDENBERGER AND SAHARON SHELAHProof. There is q ompatible with p� suh that Tn;q � Sn2! tn . Let r � p�; q,and let G � Q be generi with r 2 G, so p� 2 G. If M runs with �n~ [G℄ it gives�(j), so for some � 2 T , � � �n~ [G℄. And M an use as an orale only �, but asq 2 G, � 2 Tn;q � S`2! t`. Of ourse any �0, � � �0 2 Tn;p� an serve.Fat 2.13. For j 2 !, for every large enough m, for every t 2 levelm(Sn) thereis � 2 t\ levelm(Tn;p�) suh that if M runs with � as an orale then it omputes�(j).Proof. By the previous fat and K�onig's lemma.De�nition 2.14. We de�ne gp� 2 !! by gp�(j) = minfm : m as in 2:13g.Cruial Fat 2.15. For j; n 2 !, k 2 2, the following are equivalent for anym � gp�(j):(i) �(j) = k.(ii) there is t1 2 levelm(Sn;p�) suh that for every t2 2 levelm(Sn;p�) there is� 2 t1 \ t2 suh that if we let run M with input j and orale � then therun �nishes and there are no questions to the orale that do not have ananswer, and it gives answer k.Proof. Analogous to 2.7 2:11Remark 2.16. 1. Usually, Sn;p� is not so dependent on p�, rather we have thatQ = Sk2! Qk, and for all k 2 ! we have Sn;p� as above being the same for eahp� 2 Qk.2. Atually we use in ()()(i) only Tn;q = Sk2! tk. But we use Tn;p� =Sk2! tk for some !-branh.Theorem 2.17. A suÆient ondition for \every real needed for R is �11" is:For some foring notion Q and some Q-names �n~ , n 2 !, we have(a) Q \�n~ 2 lim(T ); �n~ 2 range(R)"(b) q\for every x 2 dom(R) for some n, xR�n~ "() for eah n: Q, T and �n~ satisfy the onditions in 2.10 or just its onlu-sion.Proof. Like the �rst half of the proof of Theorem 2.10.3. Weakly needed reals for the reaping relationIn this setion we show that it is onsistent that all hyperarithmeti reals areweakly needed for the reaping relation. In Setion 5 we shall prove in ZFC thatnot all hyperarithmeti reals are are needed for the reaping relation, answeringanother question from Blass' work [4℄. In a model of CH, the notions \neededreal" and \weakly needed real" oinide, and thus in suh a model not all hyper-arithmeti reals are weakly needed for the reaping relation. The model of thissetion, together with the result from Setion 5, gives an example for the fat



ON NEEDED REALS 11that in ontrast to the notion of \being needed", the notion of \being weaklyneeded" is not absolute.De�nition 3.1. The relationR = f(f;X) : f 2 !2; X 2 ![!℄ ^ f � X is onstantgis alled the reaping or the re�ning or the unsplitting relation. We say \X re�nesf" if f � X is onstant. We say \R re�nes f" if there is some X 2 R that re�nesf . Finally we say \R re�nes F" if for every f 2 F we have that R re�nes f .The norm of this relation is alled r, the reaping number or the re�ning numberor the unsplitting number.De�nition 3.2. Let g 2 !! be stritly inreasing and g(n) > n.(1) We say A 2 [!℄! is g-slow if (91n)jA \ g(n)j � n.(2)Fg = ff : dom(f) 2 [!℄!; for i 2 dom(f) we have that f(i) = (f1(i); f2(i))and f2(i) 2 [g(f1(i))℄�f1(i) and lim suphf1(i) : i 2 dom(f)i = !g:(3) We say that �A is (g; �)-o.k. if(a) �A = hAi : i < �i, and(b) Ai 2 [!℄!,() if k < !, f0; : : : ; fk�1 2 Fg, T`2! dom(f`) = B 2 [!℄! andlim suphminff 1̀(i) : ` 2 kg : i 2 Bi = !, then for some � =�(hf` : ` < ki) we have that:For every u` 2 [� n �℄<! and �` 2 u`2 the setfn 2 B : (8` < k)(f 2̀(n) \ �A[�`℄ 6= ;)gis in�nite;(3.1) where �A[�`℄ = \i2u` A�`(i)i ; andAì = � Ai; if ` = 1;! nAi; if ` = 0:Remark: f 2 Fg implies that Si2dom(f) f2(i) is not g-slow.Claim 3.3. We get an equivalent notion to \ �A is (g; �)-o.k.", if we modify theDe�nition 3.2() as in (a) and/or as in (b), where(a) We demand 3.2() only for f` 2 Fg that additionally satisfy dom(f0) =� � � = dom(fk�1) = !.



12 HEIKE MILDENBERGER AND SAHARON SHELAH(b) We demand 3.2() only for f0; : : : ; fk�1 2 Fg suh that hminff 1̀(i) : i <kg : i < Bi is stritly inreasing (we an even demand, inreasing fasterthan any given h), and for i 2 B, maxff 1̀(i) : ` < kg < minff 1̀(i+1) :` < kg.Proof. (a) Suppose the f0; : : : ; fk�1 2 Fg in the original sense, and that we haverequired the analogue of 3.2() only for Fg in the restrited sense. We supposethat T`<k dom(f`) = B and take a stritly inreasing enumeration fbr : r 2 !gof B. Then we take ~f` : ! ! [!℄<!, ~f`(r) = f`(br) for r 2 !. The analogue of 3.2for the Fg in the restrited sense gives � 2 � and in�nite intersetions in (3.1)for the ~f`. The intersetions are also in�nite for the original f`.(b) Suppose that k < !, f0; : : : ; fk�1 2 Fg, T`2! dom(f`) = B 2 [!℄! andlim suphminff 1̀(i) : ` 2 kg : i 2 Bi = !. Then we an thin out the domain B tosome in�nite B0, indutively on i suh that the f` � B0 ful�l all the requirementsfrom 3.3(b).Cruial Fat 3.4. Let g 2 !!. If r < � = f(�) and if there is some �A thatis (g; �)-o.k., then every �11-real that is omputable in every funtion g0 �� g isweakly needed for the re�ning relation.Proof. Let R = fB� : � < jRjg witness r < �. The family �A is re�ned by R:For i < � for some �i < jRj and �(i) 2 f0; 1g we have that B�i � A�(i)i . Sine �is regular and sine r < �, there are for some ` < 2 and some � < jRj suh thatY = fi < � : �(i) = ` ^ �i = �gis unbounded. So B� � Ti2Y A�(i)i . We laim that B� is not g-slow. Why?Otherwise we have C = fn < ! : jB� \ g(n)j > ng 2 [!℄!, and we may takef 2 Fg suh that C = dom(f), f1(n) = n and f2(n) = B� \ g(n). Take any� 2 �. Then we take u0 suh that u0 = fg,  2 Y ,  > � and �0 = f(; 0)g and�00 = f(; 1)g. Then we do not have (91n)f2(n)\A0 6= ; and (91n)f2(n)\A1 6=; at the same time, beause B� is re�ning A . So �A is not (g; �)-o.k., in ontrastto our assumption.But now we an ompute reursively from B� some g0 �� g, for example wemay take g0(n) =(the nth element of B�) +1. Hene every hyperarithmeti realthat is omputable in every funtion g0 �� g is reursive in B� .So, how do we get the premises of the ruial fat? The rest of this setion willbe devoted to this issue. We onsider the ase � = f(�) > �1 and intend toshow the onsisteny of \r = �1 and there is some �A that is (g; �)-o.k. for everyg."De�nition 3.5. (1) Kg = K = f(P; �A~ ) : P is a  foring and P \ �A~ is(g; �)-o.k."g: For a �xed g, we often leave out the subsript.(2) (P1; �A1~ ) �K (P2; �A2~ ) i� P1 l P2 and �A1~ = �A2~ .



ON NEEDED REALS 13Claim 3.6. (1) We have that K 6= ;. In fat, if P is the foring adding �Cohen reals and �A~ is the enumeration of the � Cohen reals, then (P; �A~ ) 2Kg for any funtion g. (This is true for any funtion g.)(2) If (P�; �A~ ) 2 K for � < Æ, Æ a limit ardinal, and hP� : � < Æi isinreasing and ontinuous, and P = S�<Æ P�, then (P; �A~ ) 2 K and� < Æ ) (P�; �A~ ) �K (P; �A~ ).Proof. (1) Suppose that f0; : : : ; fk�1 2 V [G�℄ are injetive funtions. We take �suh that f0; : : : ; fk�1 2 V [G�℄ where G� is a generi �lter for the �rst � Cohenreals. Suppose that �` 2 u`2. Now a density argument gives that these �A[�`℄ \ipfor in�nitely many n 2 B" to 0 or to 1 within f 2̀(n) for every ` < k.(2) P has the ... by a Fodor argument. Now we show that P \ �A~ is (g; �)-o.k."g: Only the ase of f(Æ) = ! is not so easy. We suppose that Æ = Sn2! �(n),0 < �(n) < �(n+ 1). Towards a ontradition we assume that p� 2 P�(0), andp�  \B~ ; hf~̀ : ` < ki form a ounterexample to �A being (g; �)-o.k."For eah n 2 ! we �nd hqn;i : i 2 !i suh that(�) qn;i 2 P ,(�) qn;0 = p�,() P j= qn;i � qn;i+1,(Æ) for some bn;i~ , f1n;`;i~ , f2n;`;i~ P�(n)-names we haveqn;i  \bn;i~ is the i-th member of B~ ; f~̀ (bn;i~ ) = (f1n;`;i~ ; f2n;`;i~ )";(") qn;i � �(n) = qn;0 � �(n) = p� � �(n).How do we hoose these? Let n and �(n) be given. Then we hoose q0n;iinreasing in i suh that q0n;i 2 P and b0n;i, (f1)0n;i, (f2)0n;`;i in V andq0n;i  ^̀<k the ith element of B~ = �b0n;i ^ f~̀ ( �b0n;i) = ( �(f1)0n;`;i; �(f2)0n;`;i):Then we take bn;i~ = (b0n;i; q0n;i � P�(n));f1n;`;i~ = ((f1)0n;`;i; q0n;i � P�(n));f2n;`;i~ = ((f2)0n;`;i; q0n;i � P�(n));pn;i = p� � �(n) [ q0n;i � [�(n); Æ):Here, the restrition � � is any redution funtion witnessing P�lP (see [1℄), andin the general ase, if P� is not the initial segment of length � of some iteration,the term q0n;i � [�(n); Æ) has to be interpreted as some element from a quotientforing algebra.



14 HEIKE MILDENBERGER AND SAHARON SHELAHNow for every n we de�ne P�(n)-namesB0n~ = fbn;i~ : i < !g;f`;n~ : B0n~ ! V;f`;n~ (bn;i~ ) = (f 1̀;n~ (bn;i~ ); f 2̀;n~ (bn;i~ )) = (f 1̀;n;i~ ; f 2̀;n;i~ ):Now we have thatp�  \B0n~ 2 [!℄�0 ; f`;n~ is a funtion with domain B0n~ andlim suphf 1̀;n~ (b) : b 2 B0n~ i = ! andf 2̀;n;i~ when de�ned is a subset of [0; g(f 1̀;n;i~ )) of ardinality > f 1̀;n;i~ ":As (P�(n); �A~ ) is in K we for every np� � �(n) P�(n) \ for some �~ < � for every u` � [� n �~ ℄�0 for every �` 2 u`2(b 2 B0n~ : ^̀<k f 2̀;n(b)~ \ �A~ [�`℄ 6= ;) is in�nite."Let �n~ < � be suh a P�(n)-name. Sine P�(n) has the , there is some ��n < �suh that P�(n) �n~ < ��n < �. Sine � is regular we have that �� = Sn2! ��n < �.It suÆes to prove thatp�  \�� is as required in the de�nition of (g; �)-o.k."If not, then there are ounterexamples u` 2 [�n��℄<�0 , �` 2 u`2, q and b� suhthat p� � q 2 P = PÆq  \nb 2 B~ : (8` < k)(f 2̀~ (b) \ �A[�`℄~ 6= ;)o � [0; b�℄".(�)For some n(�) < ! we have that q 2 P�(n(�)). Let G � P be generi over V ,and let q 2 G�(n(�)). So by the hoie of �n(�) < �� we have thatp P�(n(�)) C = fb 2 B0n(�)~ : (8` < k)(f 2̀;n(�)~ (b) \ �A[�`℄~ 6= ;)g is in�nite".Reall that B0n(�)~ and f`;n(�)~ (b) are P�(n(�))-names and that �A[�`℄~ is a P0-name.Now B0n(�)~ = fbn(�);i~ : i < !g, so for some i we have that bn(�);i~ [G℄ > b�. Soqn(�);i 2 G \ P�(n(�)) fores \the i-th member of B~ is bn(�);i~ and f~̀ (bn(�);i~ ) =f`;n(�)~ (bn(�);i~ ) = (f 1̀;n(�);i~ ; f 2̀;n(�);i~ ). Note that qn(�);i � �(n(�)) = p� � �(n(�))aording to "), and hene qn(�);i 6? q. So there is some r � q and r � qn(�);i.Suh an r fores the ontrary of the property fored in (�), and �nally we reaheda ontradition.Now 3.7 and 3.8 are like [8℄. For h : ! ! ! We write limDhh(i) : i 2 !i = ! iffor all m < ! we have that fi : h(i) > mg 2 D.



ON NEEDED REALS 15Claim 3.7. Assume that in V :(a) �A is (g; �)-o.k.(b) � = 2�0 .Then there is an ultra�lter D on ! suh thatif f 2 Fg and dom(f) 2 D and limDhf1(i) : i 2 dom(f)i = !then for some �f < � for every u 2 [� n �f ℄<�0 and � 2 u2we have that fn 2 dom(f) : f2(n) \ �A[�℄ 6= ;g 2 D.(�)Proof. Let Fg = ffj : j < �g. Let AP be the set of tuples (D; i; �) suh that(i) D is a �lter on ! ontaining the o-�nite subsets, ; 62 D, i; � < �,(ii) D is generated by < � members,(iii) if k < ! and for ` < k, j` < i, and dom(fj`) 2 D and limDhf1j`(i) : i 2dom(fj`)i = ! and u` 2 [� n �℄<�0 , �` 2 u`2, then(n 2 \̀<k dom(fj`) : ^̀<k�f2j`(n) \ �A[�℄ 6= ;�) 6= ; mod D:Let (D1; i1; �1) �AP (D2; i2; �2) if both tuples are in AP and(�) D1 � D2, i1 � i2, �1 � �2, and(�) if k < ! and fj0; : : : ; jk�1g � i1, dom(fj`) 2 D2 and limD2hf1j`(i) : i 2dom(fj`)i = ! and u` � [�1; �2) is �nite and �` 2 u`2 then(n 2 \̀<k dom(fj`) : ^̀<k f2j`(n) \ �A[�`℄ 6= ;) 2 D2:Now we have that�1 (AP ;�AP) is a non-empty partial order. Take i = � = 0 and D the�lter of all o�nite subsets of !.�2 In (AP ;�AP) every inreasing sequene of length < � has an upperbound, namely, take the �lter generated by the union in the �rst oordi-nate and take the supremum in the seond and in the third oordinate.�3 If B � ! and (D; i; �) 2 AP then there are some D0, i0, �0 suh that(D0; i0; �0) �AP (D; i; �) and that B 2 D0 or that ! nB 2 D0. Why? TryD0 = the �lter generated by D [ fBg and the same i and �. If this failsthen we an �nd k < !, suh that for ` < k we have j` < i, suh thatdom(fj`) 2 D0 and limD0hf1j`(i) : i 2 dom(fj`)i = !, u` 2 [� n �℄<�0 ,�` 2 u`2 and suh that(n 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;) \ B = ; mod D:



16 HEIKE MILDENBERGER AND SAHARON SHELAHLet �0 < � be suh that � � �0 and V`<k u` � �0. Let D0 be the �ltergenerated byD [ �nn 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;o :k < !; j` < i; u` 2 [�0 n �℄<�0 ; �` 2 u`2�:Then ! nB 2 D0, and (D0; i; �0) 2 AP .�4 If (D; i; �) 2 AP then for some D0, �0 we have that (D0; i+1; �0) 2 AP.Proof. Let M � (H(�);2) suh that M \ � 2 �, (D; i; �) 2 M , Fg 2M , and jM j < �. Suppose that dom(fi) 2 D and that limDhf1i (k) :k 2 dom(fi)i = !. Let �0 = M \ �. Let D1 be the �lter in the booleanalgebra in P(!) \M generated by(D \M) [ �nn 2 \̀<k dom(fj`) : f2j`(n) \ �A[�`℄ 6= ;o :k < !; j` � i; u` 2 [�0 n �℄<�0 ; �` 2 u`2�:Sine in M , �A is (g; �)-o.k., this has the in�nite intersetion property.Let D02 be an ultra�lter in M extending D1. Let D0 be the �lter on ! inV that D02 generates.Now we take a maximal element in the partial order (AP ;�AP). By theproperties �1 to �4 it is as required in (�).Note that (�) of 3.7 implies that �A is (g; �)-o.k. The following is a preservationtheorem for suitable ultra�lters:Claim 3.8. Assume that(a) �A is (g; �)-o.k.(b) D = hD� : � 2 <!!i, D� = D, D is ultra�lter on ! as in 3.7.() QD = fT : T � <!! is a subtree, and for some � 2 T; � E � 2 T )fk : � k̂ 2 Tg 2 D�g, ordered by inverse inlusion. (The /-minimal �of this sort is alled the trunk of T , tr(T ).)Then QD \ �A is (g; �)-o.k.".Proof. We use the fat [8℄ that QD has the pure deision property: Let 'i,i 2 !, be ountably many sentenes of the QD-foring language. We thinkof names f~̀ , ` < k, for some elements of Fg and 'i = \�the i-th element ofB~ = T`<k dom(f~̀ )� = �bi and V`<k f~̀ ( �bi) = ( �f 1̀;i; �f 2̀;i)". The pure deisionproperty says:



ON NEEDED REALS 178p 2 QD 9q �tr p 8r � q 8i �r  'i ! (9si 2 r)q[si℄  'i�;where we write �tr for the pure extension: q �tr r if r � q and tr(q) = tr(r),and q[si℄ = f� 2 q : si E �g.Towards a ontradition we assume that there is a ounterexample. By Claim 3.3(�rst (b) and then (a)) we may assume that it is of the following formp� \hf~̀ : ` < ki form a tasksuh that the intersetion of the domains is B = !and for i 2 B, maxff 1̀~ (i) : ` < kg < minff 1̀~ (i+ 1) : ` < kgand there is no � < � suh that the statement(3.1) from De�nition 3.2(3)() holds."(��)We �nd q suh that(�) q 2 P(�) q �tr p�,() for all i 2 ! for all f 1̀;i 2 !, f 2̀;i � [0; g(f 1̀;i)) of size bigger than f 1̀;i wehave thatif r � q; r  \f~̀ (�i) = ( �f 1̀;i; �f 2̀;i)";then also for some si 2 r, the ondition q[si℄ fores the same."We �x suh a q.Now we set for � 2 q and ` < kB1�;` = fi 2 ! : some pure extension of q[�℄ deides f`(i)~ g:We say (�; `) is 1-good if B1�;` 2 D. Let for i 2 B1�;`, h�;`(i) = (h1�`; h2�;`) thevalue of f`(i)~ that is given by the pure deision. This is well-de�ned beause anytwo pure extensions are ompatible. Of ourse, by the requirements we had puton the ounterexample, we have that limDhh1�;`(i) : i 2 B1�;`i = !.We say that (�; `) 2 q � k is 2-good, if it is not 1-good and we have for allm 2 ! that M�;`;m = fj 2 ! : (9i 2 !)(h� ĵ;`(i)) is well-de�ned,and h1� ĵ;`(i) > m)	 2 D:So, for 2-good but not 1-good (�; `) we may de�ne for j 2M�;`;m,g�;`(j) =h� ĵ;`(i� ĵ;`);where i� ĵ;` is suh that h� ĵ;`(i� ĵ;`) is de�ned in h1� ĵ;`(i� ĵ;`) > mand if there is a maximal suh i, then take this as i� ĵ;`.



18 HEIKE MILDENBERGER AND SAHARON SHELAHWe show that there is M 0�;`;m 2 D, M�;`;m � M 0�;`;m suh that for j 2 M 0�;`;mthere a maximal suh i: If h� ĵ;`(i) is de�ned and i0 < i then there is some pureextension deiding h� ĵ;`(i0) sine there are only �nitely many possibilities for itvalues, by the third line of (��). Hene some pure extension deides the value.Hene also h� ĵ;`(i0) is de�ned. If h� ĵ;`(i) is de�ned for all i, then (� ĵ; `) is1-good. Hene , if (� ĵ; `) is 2-good but not 1-good, then there is a maximal iwitnessing j 2 M�;`;m. If fj : (� ĵ; `) is 1-good g 2 D, then by gluing togethersuitable pure extensions rj of q[� ĵ℄ together we get a pure extension of q[�℄ thatshows that (�; `) is 1-good. Hene X = fj : (� ĵ is 2-good and not 1-good g 2 D.So we may take M 0�;`;m = M�;`;m \X . In order to simpily notation, we assumethat M 0�;`;m =M�;`;m.Also from the third line of (��) we get that for every � 2 q either for all ` < k,(�; `) is 1-good or no (�; `) is 1-good. In the latter ase there is some i� , suhthat for all ` < k, dom(h�;`) = i� or dom(h�;`) = i� + 1. Moreover, also by (��)we get that if for some ` < k, for all m, M�`;m 2 D, then for all ` < k, for all m,M�;`;m 2 D. So if (�; `) is 2-good, then all (�; `0) are 2-good. We all � i-good ifthere is some ` suh that (�; `) is i-good. We set M�;m = T`<kM�;`;m.We �x some diagonal intersetion M� of hM�;m : m 2 !i, suh that limhi� ĵ :j 2M�i = !.Then we also have that limDhminfg1�;`(j) : ` < kg : j 2M�i = !, beause foreah z < !, fj : minfg1�;`(j) : ` < kg < zg is a o�nite set. Hene g�;` 2 Fg . Byombining with an enumeration of M� , we may assume that dom(g�;`) = ! 2 D.We will not write this enumeration, in order to prevent too lumsy notation, butwe shall later apply that D is as in 3.7 for Fg, and therefore we need that thedomains are in D.Now we take � suÆiently large and N � (H(�);2) suh that hf~ ` : ` < ki 2N , hB1�;`; h�;`; g�;` : � 2 q; ` < ki 2 N , q;D 2 N . We take �� = sup(N \ �). Welaim that q fores that �� is as in the De�nition 3.2(3)().If not, then there are ounterexamples u` 2 [� n ��℄<�0 and �` 2 u`2 andr 2 QD, r � q, and b� suh thatr � q; andr QD \ \̀<k dom(f~̀ ) = ! and(8i 2 !)maxff 1̀~ (i) : ` < kg < minff 1̀~ (i+ 1) : ` < kgand nb 2 ! : (8` < k)(f 2̀~ (b) \ �A[�`℄~ 6= ;)o � [0; b�℄".(��)First ase: There is some � 2 r with tr(r) E � suh that all � is 1-good. Nowwe take for eah t 2 !, some pure extension of q[�℄t of r[�℄ suh that it foresV`<k(h�;` � t = f~̀ � t). Sine �A is (g; �)-o.k., and sine all is reeted to N and



ON NEEDED REALS 19by the hoie of �� we have that I = fn 2 ! : (8` < k)(h2�;`(n) \ �A[�`℄ 6= ;g isin�nite. So we take t 2 I suh that t > b�. Now q[�℄t ontradits (��).Seond ase. There is some � 2 r suh that all �, ` < k are 2-good but not1-good. We set g�;`(j) = h� ĵ;`(i� ĵ;`) as purely deided above q[� ĵ℄. Fat:Now hg�;` : ` < ki is as required in the de�nition of �A being (g; �)-o.k., beause! = limDhg1(i� ĵ) : j 2 !i.Now we take for eah t 2 !, some pure extension of q[� ĵ℄t of r[�^j℄ suh that itdetermines V`<k g�;` � t. Sine �A is (g; �)-o.k., and sine all is reeted to N andby the hoie of �� we have that J = fn 2 ! : (8` < k)(g2�;`(n) \ �A[�`℄ 6= ;g isin�nite. Then also Ĵ = fi�^n : n 2 Jg is in�nite. So we take t > b�, t 2 Ĵ . Nowthe gluing together of q[� ĵ℄t , j 2 T`<kM�;`;t, ontradits (��) beause we haveg�;`(j) = h� ĵ;`(i� ĵ;`) = f`(i� ĵ), if q[�℄t 2 G. Here we write f` for f~̀ [G℄.Third ase: All � 2 r are neither 1-good nor 2-good. We shall prove somethingstronger:An end-segment of the generi Sf� : there is some element q 2 Gwith trunk �g an be thinned out (suh that still in�nitely manypoints are left) and injeted into an in�nite subset of fn 2 ! :V`<k f 2̀~ [G℄(n) \ A[�`℄ 6= ;g.This is more than enough.Let i�;` = max(B1�;`) < !, beause � is not 1-good. Let i�� = dom(h�;`) suhthat i�� = i��;` or i�� = i��;` + 1. By the premise (��), there are suh i�� . There isr � q with no � 2 r being 1-good or 2-good in N . W.l.o.g. we take q like that.Now we try to shrink q purely. Let �0 = tr(q).First: We have that f~̀ � i�� is deided by q. The range of hi�� ĵ : � ĵ 2 qi isbounded modulo D beause � is not 2-good. Hene we may assume that thereis just one value i��� . So say (after shrinking q) that it is onstant with valuei��� � i�� .Seond we have that �0 E � 2 q implies that q[�℄ deides f~̀ � i��� .Third we have that if i 2 [i�� ; i��� ℄ then limDhf1� ĵ;`(i) : j 2 !i = ! by thede�nition of i�� and i��� . So de�ne g�;`;i by g�;`;i(j) = h� ĵ;`(i). So g�;`;i 2 N is afuntion of the right form.We have by the de�nition of �� that for all i 2 [i�� ; i��� ) for all � 2 q for all u`,�` that A := fb : (8` < k)g2�;`;i(b) \ �A[�`℄ 6= ;g 2 D:Sine the range of Sf� : there is some element q 2 G with trunk �g =: �! iseventually ontained is every set in D, we now �nd the following in�nite set: Wetake h�n : n 2 !i suh that �n 2 range(�!) \ A and suh that i���n < i��n+1 . Weset �n = �n � j�n� 1j. Then we have for almost all n suh that �n 2 A and henefor all i 2 [i��n ; i���n): g�n;`;i(�n(j�n � 1j)) = h�n^�n(j�n�1j);`(i) = h�n;`(i) = f`(i).So Sn2![i��n ; i���n ℄ �� fb : (8` < k)f 2̀(b) \ �A[�`℄ 6= ;g is in�nite.



20 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 3.9. Let � = f(�) > !1. Let V0 j= CH and let P0 = C � be the foringadding � Cohen reals. We �x some funtion g 2 V0, so that every hyperarithmetifuntion in V0 is omputable in every g0 � g. Set V1 = V0[G0℄. Let in V1, �Abe the enumeration of the � Cohen reals.(1) In V1, there is (P; �A) 2 Kg suh that P \r < �", even P \r = �1"(2) For (P; �A) as in (1), we have that in V1, P \every hyperarithmeti realis weakly needed for the reaping relation".Proof. (1) By 3.5 we have that �A is (g; �)-o.k. in V1. Aording to 3.7, we mayhoose inV1 l-inreasing and ontinuous suh that (Pi; �A) 2 K, Pi+1 = Pi�QDi~ ,where Di~ = hDi�~ : � 2 <!!i Di� = Di 2 V Pi as in 3.7. Note that P = Si<!1 Pifores that r = �1, beause it onseutively adds (\shoots") �1 reals throughultra�lters in the intermediate models V0[G�℄, � < !1. It is easy to see thatthese �1 reals are a re�ning family.(2) Now by part (1) and by 3.4 for any g the proof of (2) follows.4. There may be more weakly needed reals than needed realsUnder CH, or if jjRjj = 2�0 , the notions \needed for R" and \weakly neededfor R" oinide. In this setion, we show that there is some quite simply de�nedrelation R and that there is some model of ZFC in whih there are more weaklyneeded reals for R than needed reals for R. The idea is to use the foring modelfrom the previous setion.Claim 4.1. (Blass [3℄) An equivalent ondition for \� 2 !2 is needed for R" is(9x 2 dom(R))(8y 2 range(R))(xRy ! � �T y):Proof. Suppose that � is needed for R and that there is no x as in (1). Then(8x 2 dom(R)) (9y 2 range(R))(xRy ^ � 6�T y). So we an build a R-adequateset from all these y's, that shows that � is not needed for R. For the otherimpliation: Fix x as in (1). Every R-adequate set has to ontain one y suhthat xRy and hene � �T y.If 2�0 = �1 then \needed for R" is equivalent to \weakly needed for R" (andfor the usual R's, under MA we have that jjRjj = 2�0 and hene any adequate setis of minimal ardinality and hene the notions oinide). But in general, theydo not oinide.Claim 4.2. There is a simply de�ned relation R for whih it is onsistent thatthe notions \weakly needed" and \needed" do not oinide. In fat, in the foringmodel from the previous setion, every needed real for R is reursive, and all thehyperarithmeti (and possibly more) reals are weakly needed for R.



ON NEEDED REALS 21Proof. Let R = R0 [ R1, where R0 is the ordinary reaping relation, whih wewrite for funtions on !2� !2:�R0� , �; � 2 !2 ^ (91n)�(n) = 1 ^ � � ��1f1g is almost onstant.�R1� , �; � 2 !2 ^ (91n)�(n) = 1 ^ (91n)�(n) = 1 ^� j��1f1g \ ��1f1g \ njj��1f1g \ nj : n 2 !� onverges to 12 ;in partiular, for every large enough n, j��1f1g \ ��1f1g \ njj��1f1g \ nj 2 �14 ; 34� :We use V P from the previous setion. There we have that P = P0 �Q~ , P0 isthe foring adding � Cohen reals, and �A~ is an enumeration of the names of theseCohen reals, and Q is the iteration desribed in 3.9. Then in V P we have thatjjRjj � jjR0jj = �1.We �rst show that every hyperarithmeti real � is weakly needed for R in thismodel. We take some R-adequate set in V P R of power �1. We letY` = fi < � : (9x 2 R)(AiR`x)g:So, by the de�nition of adequate we have that Y0 [ Y1 = �. If jY0j = �, by theproof of 3.4, we get some x 2 R whose enumeration f with f(n) = m if m is thenth element of x is so large in the eventual domination order that the real � isomputable from it.We now show that jY1j < �. Then it follows that jY0j = �. Towards aontradition, we assume that jY1j = �. In the model from the previous setionwe have that P = Si<!1 Pi, P0 adds � Cohen reals A�, � < �, Pi inreasing andontinuous, Pi+1 = Pi � QDi~ as there, P = P0 � Q~ . We work in V P0 . We havethat for some p� 2 Q=P0 and some Q=P0-names �i~ , i < !1,p� Q=P0 jY1~ j = � ^ R~ = f�i~ : i < !1g:Y � = f� : 9p� � p�; p� Q=P0 � 2 Y1~ g: By the  of Q=P0, we have thatY � 2 [�℄�, and for � 2 Y � we hoose p� � p� Q=P0 \� 2 Y1~ ". So for � 2 �we have that A�R1�i(�) and hene for a large enough n� for � many � 2 Y �(w.l.o.g.: for all � 2 Y �) we have that n� = n�, where n� is suh that (8n �n�)( j��1i(�)f1g\A�\njjA�\nj 2 � 14 ; 34�). Moreover, there is a �-system for the dom p� 2[� n f0g℄<! whose root is u�, i(�) = i�.So we may assume that for j 2 u� we have that p�(j) is an objet with trunk�j and not just a P0-name. By pure deidability for some �� 2 V P0 we have:For every � 2 Y � and m for some pure extension q of p� with the same domainq  �i(�)~ � m = �� � m. By \n� = n(�)" for � 2 Y � we get an easy ontradition:



22 HEIKE MILDENBERGER AND SAHARON SHELAHSuppose p 2 P0 andp P0 \8� 2 Y � 8n � n(�) 9q� �tr p�;q� Q=P0 \ j��~ �1f1g \ A� \ n(�)jjA� \ n(�)j 2 �14 ; 34� " ".This is impossible, beause we may assume that �� 2 V (it needs only ountablymany of the � Cohen reals) and we may arrange all other A�'s so that the quotientwill be arbitrary. The foring P=P0 does not hange the value of the quotient.Now we show that if a real is not reursive then it is not needed for R. If� is not reursive and x 2 !2, let fx; �g 2 N � (H(�);2), N ountable. Let� = �(x; �) be random over N , and we laim� 6�Turing �:(4.1)Proof of (4.1): Otherwise we would have that � is reursive in the ground modelby the following: Supposep Random \M omputes � from the orale �~":(4.2)Then by the Lebesgue density theorem we �nd s 2 <!2 suh that above s, phas Lebesgue measure > 99100 � Leb(f� : s / �g. The we setBn = f�0 2 !2 : s / �0 and from �0 M omputes �(n) orretlyg:From (4.2) we get that Leb(Bn) � 99100 � Leb(f� : s / �g. So for every suÆientlylarge m 2 ! we have that2m�lg(s) � jf�0 2 m2 : s / �0 and from �0 M omputes �(n) orretlygj:(4.3)So we an run a mahine, that has s as an �xed ingredient, and whih, given inputn, inreases m suessively, and then omputes �(n) with all possible oralesabove s of length m � lg(s) and deides with (4.3), when it is true for m (andhene for all later m), whih is the right value. So (4.1) is proved.But we have that xR1� and hene xR�. Thus the olletion f�(x; �) : x 2 !2gis an R-adequate family. So, if � were needed for R, then there would be some� suh that � �T � in ontradition to the equation (4.1). So �nally we showedthat all needed reals for R are reursive.5. Needed reals for reapingIn this setion we prove in ZFC that not all hyperarithmeti reals are neededfor the reaping relation. Sine in the model from Setion 3 all hyperarithmetireals are weakly needed for the reaping relation, this model shows that also for thereaping relation it is onsistent that weakly needed and needed do not oinide.In ontrast to the result on the relation R from the previous setion, we do notprove that only reursie reals are needed for the reaping relation.Hypothesis 5.1. We �x B� � ! and some � 2 !2 suh that: if X � B� = B�1or X � ! nB� = B�2 then � is reursive in hX .



ON NEEDED REALS 23By 4.1, the hypothesis says, that � is needed for the reaping relation, withwitness B�. For all X , that re�ne B�, we have that � is reursive in X . Note that5.1 is similar to � being hyperarithmeti: the di�erene is that � is omputablealso in every in�nite subset of the omplement of B�.Choie 5.2. Let h(Mn1 ;Mn2 ; an1 ; an2 ) : n < !i be a reursive list of the quadruples(M1;M2; a1; a2) suh that(i) M1;M2 are Turing mahines (with referene to an orale),(2) a1; a2 are �nite disjoint sets.W.l.o.g. an1 [ an2 � n and eah quadruple appears in�nitely often.De�nition 5.3. (1) We say �E = hEn : n 2 !i is speial if(i) En is an equivalene relation on ! n n, and(ii) for m < n, En re�nes Em � (! n n),(iii) if A is an En-equivalene lass, then A n (n + 1) is devided byEn+1 in at most two equivalene lasses, and E0 has �nitelymany lasses,(iv) if(�) A is an En-equivalene lass and(�) there is a partition X1; X2 of An(n+1) suh that for allj < !, Yi � !, i = 1; 2, (if ani � Yi � Xi [ ani , hi < !,and if the mahine Mni running with input j and oralehYi �nishes its run giving hi, then h1 = h2),then En+1 indues suh a partition of A.(2) �E is speial to � if in addition(v) for all A and n, if A is an En-lass, then � is not reursive inhA.Theorem 5.4. There is no �E that is speial to �.Proof. We assume the ontrary, and by (Cohen) foring and absoluteness we willderive a ontradition. The proof will be �nished with 5.11.De�nition 5.5. For a speial �E we de�ne Q = Q �E;B� as the following notionof foring:(1) p 2 Q has the form p = (n;A; b1; b2) = (np; Ap; bp1; bp2) suh that(i) n < !,(ii) A is an En-equivalene lass,(iii) A is in�nite,(iv) b1; b2 are disjoint subsets of n,(v) b1 � B�, b2 � ! nB�.(2) p � q i�



24 HEIKE MILDENBERGER AND SAHARON SHELAH(i) np � nq, Ap � Aq, bpi � bqi , for i = 1; 2,(ii) (bq1 [ bq2) n (bp1 [ bp2) � Ap.(3) Bi~ = Sfbpi : p 2 GQ~ g is a Q-name of a subset Bi 2 V [G℄ of B�i ifi = 1; 2.So if E0 has �nitely many equivalene lasses, then Q is equivalent to Cohenforing and independent of �E and B�. Nevertheless we keep the ompliatedonditions, beause they �t better to the investigation of the �'s needed for thereaping relation.Claim 5.6. For i = 1; 2 we have(1) Q \bi~ is an in�nite subset of B�i ".(2) For some p�, p� Q \Mnp�i omputes � with the orale hbi~ ".Proof. (1) Fix i = 1 or i = 2. It is enough, to �nd for a given p 2 Q some q � p,q 2 Q suh that bpi 6= bqi . Now Ap \ B�i is in�nite, beause of the hypothesis onB� and beause � is not reursive in hAp by the assumption of the indiret proofof 5.4. We may hoose h 2 Ap \ B�i , h � max(bpi ) + 1 and an in�nite Eh+1-lassA � Ap, whih exists beause Ap is in�nite and beause Eh+1 has �nitely manyequivalene lasses. We de�ne q as nq = h+1, Aq = A, bqi = bpi [fhg, bq3�i = bp3�i.(2) The statement made in Hypothesis 5.1 on B� and on � is �11 and holds inV , hene it holds in V [G℄ as well by [5, Theorem 98, p. 530℄. Now we apply it inV [G℄ to part (1) of this laim.We �x p�, Mnp�1 , Mnp�2 as in part (2) of Claim 5.6.Fat 5.7. There is some q � p� suh that for i = 1; 2, Mnqi = Mnp�i and suhthat bqi = anqi .Proof. For some n� � np� the quadruple (Mn�1 ;Mn�2 ; an�1 ; an�2 ) is equal to(Mnp�1 ;Mnp�2 ; bp�1 ; bp�2 ). Let A be an in�nite En� -lass whih is a subset of Ap� .So we take q = (n�; A; an�1 ; an�2 ).Claim 5.8. For n�, A the demands (�) + (�) of lause (iv) of 5.3 hold, henethe onlusion.Proof. We work �rst in V [G℄. There, by 5.6, Xi = A \ B�i and A exemplify5.3(iv). But 5.3(iv) is a �12-statment of the parameters (A; an1 ; an2 ), and thereforeit holds in V as well by Shoen�eld's absoluteness theorem [5, Theorem 98, p.530℄.Convention 5.9. Let A1 6= A2 be the En�+1-equivalene lasses whih are � A,with Ai for Mi as in 5.3(iv).Claim 5.10. If j < ! then for some b � m < ! we have that b \ nq = bq1,b n nq � A1, if we let M1 run with input j and orale hb � m it gives an answer(i.e. it �nishes and asks the orale only questions in its domain m).



ON NEEDED REALS 25Proof. : We de�ne r 2 Q by nr = nq + 1, Ar = A1, bri = bqi for i = 1; 2. Soq � r 2 Q. By the hoie of q for some s 2 Q, r � s and s fores a value to therun of M1 with input j and orale b1~ so also to the answers to the orale in thisrun. Let b = bs1.Claim 5.11. For every j 2 !, k 2 2 the following are equivalent(1) �(j) = k,(2) For some b � m < !, b \ nq = bq1, b n np� � A1, and M1 running withinput j and orale hb � m gives the answer k.Proof. (i)! (ii) by 5.10. Sine � 2 V , the reverse impliation holds as well.End of the proof of 5.4: � is reursive in hA1 . By 5.11 we try all b's for a givenj and hene � is reursive in hA1 . How to run through all trials is explained inmore detail in [4, Theorem 9℄. 5:4Claim 5.12. There is a speial �E that has as a three plae relation fhn; x; yi :xEnyg Turing degree � O! and suh that if A is an En-equivalene lass thenhA �T On+1, the (n+ 1)st jump of O.Proof. We hoose En by indution on n.n = 0. If for every m there is a partition (0; 1) of m suh that for i 2 f1; 2gfor every bi � i and j < n, if M0i running with input j and orale hbi � m andgiving the results ki then k0 = k1, then we hoose among these pairs (m1 ; m2 )suh that hm1 is minimal in the lexiographial order. If (m1 ; m2 ) are de�nedfor every m, then we have that m1 � m2 � m3 ) hm21 \m1 �lex hm31 \m1 . Sohm1 : m 2 !i onverges to some 1. Now we de�ne E0, having two lasses: 1and ! n 1. The relation E0 is omputable in O1.In the step from n to n + 1, the relation En+1 is de�ned similarly, with themodi�ation that we use the desription of En as a parameter and take partitions(0; 1) of (mnn)\C for eah En-lass C and orales bi[ani . Clearly using On+2we an de�ne En+1 and it is � �11.Note that di�erent suessful omputations have the same outome.Remark 1. Just to show that Con(needed for reaping does not oinide withweakly needed for reaping) is is enough to �nd a �11-relation �E whih is speial.Conlusion 5.13. If � is needed for the reaping relation, then Wn2!(� �T On),hene in the V P from Setion 3 many �11 reals are not needed for the reapingrelation, but only weakly needed for the reaping relation.Proof. We take �E as in 5.12. From 5.11 we get that �E is not speial to any �that satis�es 5:1 for some B�. So any � that is needed for the reaping relation isreursive in �E.



26 HEIKE MILDENBERGER AND SAHARON SHELAH6. CoinideneIn this setion we give a ondition on a relation R under whih the notions\needed for R" and \weakly needed for R" oinide and show that the onditionis ful�lled for the relation Rrandom de�ned below.De�nition 6.1. The domain of the relation Rrandom is f� : � is a ode for aT� � <!2 of positive measureg. The range of Rrandom is !2. We set �Rrandom�i� � 2 A� := f� 2 !2 : for some �0 2 T� we have that � =� �0g.Claim 6.2. (1) Assume that(a) R is a 2-plae Borel relation on !2, and(b) for every x1; x2 2 !2, if x2 is not reursive, there is x 2 !2 suh that
 (8�)�xR� ! (x1R� ^ :(x2 �T �))�:(
R)
then the notions of being needed for R and being weakly needed for Roinide and oinide with being reursive.(2) The relation Rrandom satis�es the riterion 
R from Part (1).Proof. (1) We have show that every weakly needed real for R is reursive. Thenby \reursive ! needed for R ! weakly needed for R ! reursive" all threenotions oinide.Suppose that x� 2 !2 is not reursive. We show that x� is not weakly neededfor R. Let Y be an R-adequate set of minimal ardinality. Let Y � = f� 2 Y ::x� �T �g. Y � � Y , and hene jY �j � jY j = jjRjj. We show that Y � is alsoR-adequate. Let x1 2 !2 be given. We take x2 = x�, and apply (b) of 
R. Sowe get x as there. Sine Y is R-adequate we �nd some � 2 Y suh that xR�.Hene by 
R we have that x1R� ^ x2 6�T �. So � 2 Y � and x1R�.(2) Let x1; x2 be given. We take N � (H(i3);2) suh that x1; x2 2 N . LetT = T� be Amoeba-generi over N . Then � = x is as laimed in (1)(b).Conlusion 6.3. Needed reals for Rrandom and weakly needed for Rrandom oin-ide and are just all the reursive reals.Referenes[1℄ Uri Abraham. Proper foring. In Matthew Foreman, Akihiro Kanamori, and MenahemMagidor, editors, Handbook of Set Theory. Kluwer, To appear.[2℄ Tomek Bartoszy�nski and Haim Judah. Set Theory, On the Struture of the Real Line. A KPeters, Wellesley, Massahusetts, 1995.[3℄ Andreas Blass. Needed reals. Talk at Oberwolfah Deember 1999.[4℄ Andreas Blass. Needed reals and reursion in generi reals. To appear in APAL, speialvolume in honour of Vop�enka, 2001.[5℄ Thomas Jeh. Set Theory. Addison Wesley, 1978.[6℄ Carl G. Jokush Jr. Uniformly introreduible sets. J. Symboli Logi, 33:521{536, 1968.
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