
THE RELATIVE CONSISTENCY OF g < 
f(Sym(!))HEIKE MILDENBERGER AND SAHARON SHELAHAbstra
t. We prove the 
onsisten
y result from the title. By for
ing we
onstru
t a model of g = �1, b = 
f(Sym(!)) = �2.0. Introdu
tionWe re
all the de�nitions of the three 
ardinal 
hara
teristi
s in the title andthe abstra
t. We write A �� B if A n B is �nite. We write f �� g if f; g 2 !!and fn : f(n) > g(n)g is �nite.De�nition 0.1. (1) A subset G of [!℄! is 
alled groupwise dense if{ for all B 2 G, A �� B we have that A 2 G and{ for every partition f[�i; �i+1) : i 2 !g of ! into �nite intervalsthere is an in�nite set A su
h that Sf[�i; �i+1) : i 2 Ag 2 G.The groupwise density number, g, is the smallest number of groupwisedense families with empty interse
tion.(2) Sym(!) is the group of all permutations of !. If Sym(!) = Si<�Kiand � = 
f(�) > �0, hKi : i < �i is in
reasing and 
ontinuous, Ki isa proper subgroup of Sym(!), we 
all hKi : i < �i a 
o�nality witness.We 
all the minimal su
h � the 
o�nality of the symmetri
 group, short
f(Sym(!)).(3) The bounding number b isb = minfjFj : F � !! ^ (8g 2 !!)(9f 2 F)f 6�� gg:Simon Thomas asked whether g 6= 
f(Sym(!)) is 
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2 HEIKE MILDENBERGER AND SAHARON SHELAH1. For
ings destroying many 
ofinality witnessesIn this se
tion we introdu
e two families of for
ings that will be used in 
er-tain steps of our planned iteration of length �2. The plot is: If b is large, thereis some way to destroy all shorter 
o�nality witnesses be
ause by Claims 1.6and 1.5 none of the subgroups in a 
o�nality witness 
ontains all permutationsrespe
ting a given equivalen
e relation. In our intended 
onstru
tion, we shallextend suitable intermediate models with a for
ing built upon su
h an equiva-len
e relation and thus prevent possible 
o�nality witnesses to be lifted to thefor
ing extension and all further extensions (Claim 1.4).Here we show some details about destroying one 
o�nality witness that 
anbe put separately before we laun
h into an iteration. The additional task, toin
rease the bounding number along the way, will be taken 
are of only in thenext se
tion.De�nition 1.1. (1) We work with the following set of equivalen
e rela-tions:E
on = fE :E is an equivalen
e relation of !;ea
h equivalen
e 
lass is a �nite interval and! = lim infhjn=Ej : n < !ig:We say b � ! respe
ts E 2 E
on if (nEm ^m 2 b) ! n 2 b. A partialpermutation � of ! respe
ts E if dom(�) respe
ts E and we have thatn 2 dom(�)! nE�(n).(2) Let Q be the set of p su
h that(a) p is a permutation of some subset dom(p) of !,(b) ! n dom(p) is in�nite.We order Q by in
lusion.(3) For E 2 E
on, QE is the set of p satisfying (2)(a) { (b) and addition-ally(
) p respe
ts E.Part (1) of the following 
laim is important for later use, whereas part (2)will never be used dire
tly.Claim 1.2. (1) If E 2 E
on and p 2 QE and �~ is a QE-name of an ordinaland b is a �nite subset of ! n dom(p) respe
ting E, then there is some qsu
h that(a) p � q and b � ! n dom(q),



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 3(b) if � is a permutation of b and it respe
ts E then q [ � for
es avalue to �~ .(2) QE is proper, !!-bounding, nep (see [5℄) and Souslin.Proof. (1) Note that there are only �nitely many permutations of b (that respe
tE). So we 
an treat them 
onse
utively and �nd stonger and stronger q's.(2) Let N � H(�;2) be su
h that QE 2 N and p 2 N , � � (2!)+. Let �n~ ,n 2 !, be a list of all QE-names for ordinals that are in N . Let bn, n 2 !,be a list of pairwise disjoint E-
lasses su
h that Sn2! bn is in�nite. Now takeqn by indu
tion starting with q0 = p. If qn is 
hosen, take i(n) su
h thatdom(qn) \ bi(n) = ;. Now take qn+1 treating qn, �n~ and bi(n) as in the proof ofpart (1). We have that q = S qn 2 QE and that q 
QE (8n 2 !)�n~ 2 �N . By [6,III, Theorem 2.12℄, QE is proper.QE is !!-bounding: Let f~ be a name for a fun
tion from ! to !. Again let bn,n 2 !, be a list of pairwise disjoint E-
lasses su
h that Sn2! bn is in�nite. Nowtake qn by indu
tion starting with q0 = p. If qn is 
hosen, take i(n) su
h thatdom(qn)\bi(n) = ;. Now take qn+1 treating qn, �n~ and bi(n) as in part (2) of this
laim and look whi
h values for f~ (n) the �nitely many permutations in (1)(b)for
e. Take g(n) to be the maximum of them. We have that q = S qn 2 QEand that q 
QE (8n)f~(n) � g(n).nep (non-elementary properness): We use mu
h less than N � H(�;2). Weuse that E 2 N � H(�;2). See [5℄.Souslin: p 2 QE , q � q and p ? q 
an be expressed in �11(E)-formulas. �We shall work with the following spe
ial subsets of Sym(!).De�nition 1.3. (1) For E 2 E
on and A � ! we de�ne:SE;A := f� 2 QE : � � (! n A) = idg:(2) We set F := ff : f 2 !!; f(n) � n; limhf(n)� n : n 2 !i =1g. Forf 2 F we set Sf := f� 2 Sym(!) : (8n)�(n) � f(n)g:The following 
laim des
ribes the basi
 step in order to in
rease 
f(Sym(!)).Claim 1.4. Assume(a) hKi : i < �i is a 
o�nality witness,(b) R~ is a QE-name of a for
ing notion,(
) E 2 E
on, and for no i < � and 
oin�nite A 2 [!℄! respe
ting E we havethat Ki � SE;A.



4 HEIKE MILDENBERGER AND SAHARON SHELAHThen in VQE�R~ we 
annot �nd a 
o�nality witness hK 0i : i < �i su
h thatVi<� �K 0i \ Sym(!)V = Ki�.Proof. Let f~ = Sfp : p 2 GQE~ g be a QE-name of a permutation of !. ItsuÆ
es that 
QE\for unboundedly many i < �,for some g 2 Ki we have f~ Æ g 2 Ki+1 nKi."(�)Why does this suÆ
e? Suppose that (�) holds and we had found a 
o�nalitywitness hK 0i : i < �i in VQE�R~ su
h that Vi<� �K 0i \ Sym(!)V = Ki�. Let Gbe QE � R~ -generi
 over V. Take j < � su
h that f~ [G℄ 2 K 0j . Then we �nda

ording to (�) some i � j and some g 2 Ki su
h that f [G℄~ Æg 2 Ki+1nKi � V.But this 
ontradi
ts the fa
ts that f~ [G℄ Æ g 2 K 0i (be
ause this is a subgroup)and K 0i \ Sym(!)V = Ki.Proof of (�): Let p 2 QE and j < �. Let ! n dom(p) be the disjoint unionof A0; A1, both in�nite subsets of ! respe
ting E. Let g0 2 Sym(!) be su
hthat fn : g0(n) 6= ng = A0. Let g0 2 Ki(�), i(�) > j. By assumption SE;A0is not in
luded in any Ki, so in parti
ular not in
luded in Ki(�). Hen
e thereis g1 2 SE;A0 n Ki(�). Take i su
h that g1 2 Ki+1 n Ki. Ne
essarily we have� > i � i(�) > j. Now there is a permutation f of A0 respe
ting E su
h thatf is an isomorphism from (A0; g1) onto (A0; g0). Namely set f(g0(n)) = g1(n).Hen
e n 2 A0 ) f(g0(n)) = g1(n). Let q = p [ f . The 
ondition q for
es thatf~ Æ g0 = g1, g1 2 Ki+1 nKi, and i 2 (j; �), g0 2 Ki(�) � Ki, so (�) is proved. �Claim 1.5. Assume that hKi : i < �i is a 
o�nality witness. Assume thatK0 
ontains all permutations that move only �nitely many points. Then thefollowing are equivalent:(�) For some E 2 E
on, for no i < �, 
oin�nite A 2 [!℄�0 we do haveKi � SE;A.(�) For every E 2 E
on, for no i < �, 
oin�nite A 2 [!℄�0 we do haveKi � SE;A.(
) For some f 2 F , for no i < � do we have that Sf � Ki.(Æ) For every f 2 F , for no i < � do we have that Sf � Ki.Proof. The impli
ations (�)) (�) and (Æ) ) (
) are trivial. We shall not use(�)) (�) but 
lose a 
ir
le of impli
ations as follows: (�)) (Æ) and (�)) (�)and (
)) (�).Now we prove :(Æ)) :(�). Let f and i� exemplify the failure of (Æ).



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 5By the de�nition of F we have that limhf(n)� n : n 2 !i = 1. Hen
e wemay 
hoose a stri
tily in
reasing sequen
e hki : i 2 !i su
h that (8i 2 !)(8n �ki)(f(n) � i + n). Then we take E = f[ki; ki + i) : i 2 !g [ f[ki + i; ki+1) :i 2 !g and A = Si2![ki; ki+1). A is in�nite and 
oin�nite. Then we have thatSE;A � Sf � Ki� , so :(�).Now we show :(�) implies :(�). This follows fromClaim. For all E;E0 2 E
on there are f1; f2 2 Sym(!) su
h that for any A � !we have SE;A � (f1 Æ SE0;f�11 [A℄ Æ f�11 ) Æ (f2 Æ SE0;f�12 [A℄ Æ f�12 ):Proof. Enumerate the E-
lasses with order type !. Let f1 inje
t the even-numbered E-
lasses into high enough (there are large enough ones by the de�-nition of E
on) E0 
lasses. The E0-
lasses need not be 
overed, it is enough thatnEm! f1(n)E0f1(m). We �ll this fun
tion up to a permutation of ! and 
allit f1. Let f2 do the same with the odd-numbered E-
lasses. If g 2 SE;A theng = g1 Æ g2 where g1 is the identity on odd-numbered E-
lasses and g2 is theidentity on even-numbered E-
lasses. We have that f�1i Æ gi Æ fi 2 SE;f�1i [A℄ fori = 1; 2 and thus the 
laim is proved.To 
omplete a 
y
le of impli
ations, we show :(�) ) :(
). To prove :(
)let f 2 F . We 
hoose by indu
tion on k 2 !, mi su
h that m0 = 0, mk+1 > mkand (8n < mk)(f(n) < mk+1). Now we take ni by indu
tion on i su
h thatn0 = 0, ni+1 > ni and (8m � mni+1)(�(m) � mni).Now we de�ne two equivalen
e relations.E0 = f[mnk ;mnk+2) : k 2 !g;E1 = f[mnk+1 ;mnk+3) : k 2 !g [ f[0;m1)g:For � 2 f0; 1; 2; 3g let A� = Sf[mnk ;mnk+3) : k < !; k = �mod4g.Now note that(�)1 If � 2 Sf then we 
an �nd �` 2 SE`;! for ` = 0; 1 su
h that � = �1 Æ �0.Why?By our 
hoi
e of hmi : i 2 !i and hni : i 2 !i and E`, for any x 2 !,xE0�(x) or xE1�(x). Now we 
hoose �0(x) and �1(x) by 
ases.If x and �(x) are in the same E0-
lass and �(x)E0�(�(x)), then weset �0(x) = �(x) and �1(�(x)) = �(x). So we have �(x) = �1 Æ �0(x).If x and �(x) are in the same E0-
lass and not �(x)E0�(�(x)), thenwe set �0(x) = y and �1(y) = �(x) for some yE0x su
h that �(y) 6= yand yE1�(x) and yE0�(y). (If there are not enough su
h y, just takethe 
lasses of \double width". We also assume w.l.o.g. that � has no



6 HEIKE MILDENBERGER AND SAHARON SHELAH�xed points.) Then we have that �0 respe
ts E0 in the point x, and �1respe
ts E1 in the point y and �(x) = �1 Æ �0(x).If x and �(x) are not in the same E0-
lass, then we have that xE1�(x).If not ��1(x)E0x then we set �1(x) = �(x) and �0(x) = x.If x and �(x) are not in the same E0-
lass, then we have that xE1�(x).If ��1(x)E0x then we also set �0(x) = x and �1(x) = �(x). Note thatthe pair (��1(x); x) falls under the se
ond 
ase and that hen
e there is no
on
i
t in our settings, i.e. also �0 and �1 
an be 
hosen as permutations.Then we have that � = �1 Æ �0.(�)2 Let ` = 0; 1 and �` be as above. Then we 
an �nd  `;� 2 SE`;A�for � = 0; 1; 2; 3 su
h that �` =  `;3 Æ  `;2 Æ  `;1 Æ  `;0. Why? Forall x 2 ! there are three �'s su
h that x 2 A� and three �'s su
hthat �`(x) 2 A�. Hen
e we 
an �nd � (indeed, two �'s) su
h thatx; �`(x) 2 A�, and su
h we may 
hose some  `;� 2 SE;A� su
h that�`(x) =  `;�(x) and su
h that  `;� restri
ted to ! n A� is the identityand su
h that �` =  `;3 Æ  `;2 Æ  `;1 Æ  `;0.(�)3 Let for ` = 0; 1 the in�nite, 
oin�nite set A` and the ordinal i`(�) be asin :(�) for E`. For � < 4 there is g� 2 Sym(!) mapping ! n A� into! n A` su
h that (8k0; k1 2 ! n A�)(k0E`k1 , g�(k0)E`g�(k1)), hen
efor ` = 0; 1 
onjugation by g� maps SE`;A� into SE`;A` � Ki.By our assumption :(�) we have some i`(�) 2 � su
h that SE`;A` � Ki`(�) for` = 0; 1 and � = 0; 1; 2; 3. Let i(�) = max(i0(�); i1(�)). For some j(�) 2 [i(�); �)we have that g� 2 Kj(�) for � = 0; 1; 2; 3, and SE`;A� = g� ÆSE`;A` Æg�1� � Kj(�),hen
e Sf � Kj(�), that is, :(
). �Claim 1.6. Assume that hKi : i < �i is a 
o�nality witness su
h that K0
ontains all the permutations that move only �nitely any points. If b > �, then
lause (
) of Claim 1.5 holds (and hen
e all the other 
lauses hold as well).Proof. For ea
h i < � 
hoose �i 2 Sym(!) n Ki. Sin
e b > � there is somef 2 !! su
h that (8i < �)(81n)(�i(n) < f(n)) and w.l.o.g. f 2 F . if Sf were asubset of Ki, then we had that �i 2 Ki, whi
h is not the 
ase. So f exempli�es
lause (
) of Claim 1.5. �



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 7De�nition 1.7. (1) Let E 2 E
on. We setQ0E = ff : f is a permutation of some 
oin�nite subset of ! su
h that(a) n 2 dom(f)) nEf(n);(b) for every k < ! for some n we have k � j(n=E) n dom(f)jg:The order is by in
lusion.(2) We 
all �f = hfi : i < �i, Q0E-o.k. if � � !1 and for i � j < �,fi �� fj 2 Q0E (i.e. fn 2 dom(fi) : n 62 dom(fj) _ fi(n) 6= fj(n)g is�nite). For �f being Q0E-o.k. we set Q0E( �f) = fg 2 Q0E : g =� fi forsome ig, where fi =� g i� fi �� g and g �� fi. The order is inheritedfrom Q0E.Remarks. 1) Claims 1.4 and 1.5 hold for Q0E as well with the analogously mod-i�ed de�nition of S0E;A. This is shown with the same proofs. The domainsof the involved partial permutations must be arranged su
h that they respe
t1.7(1)(b), but they need not be unions of equivalen
e 
lasses. The q 2 QE ful�lrequirement 1.7(1)(b) automati
ally, be
ause we have that limhjn=Ej : n 2!i = ! and that the domain of q needs to be 
oin�nite and needs to be a unionof equivalen
e 
lasses.2) Both QE and Q0E 
an serve for our purpose. Q0E exhibits the following\independen
e of E": For E0; E1 2 E
on (8p 2 Q0E1) (9q) (p � q 2 Q0E1 ^(Q0E1)�p �= Q0E0).3) Note that for � < !1, if �f = hf� : � 2 �i Q0E-o.k., then we have thatQ0E( �f) is Cohen for
ing.Claim 1.8. Let E be as in De�nition 1.7.(1) Q0E is proper, even strongly proper, with the Sa
ks property (the last ismore than QE).(2) If p 2 Q0E and a sequen
e hwn : n 2 !i of pairwise disjoint �nite subsetsof ! are given, then we �nd an in�nite u � ! su
h that hwn : n 2 uiand (8n)(9m)(wn � m=E) and wn\dom(p) = ; and n1 < n2 ) 8m1 2wn18m2 2 wn2:m1Em2, and for every permutation f of Swn whi
hrespe
ts E we have that p � p [ f 2 Q0E.(3) If �f is as in 1.7(2), and � < !1 and Q0E( �f) � M , ! + 1 � M �(H(�);2), M a 
ountable model of ZFC�, then we 
an �nd f� su
hthat(a) �f f̂� is Q0E-o.k.



8 HEIKE MILDENBERGER AND SAHARON SHELAH(b) If �f f̂�/ �f 0 and �f 0 is Q0E-o.k., then f� is (M;Q0E( �f 0))-generi
. Infa
t, for every predense I � Q0E( �f 0) from M some �nite J � Iis predense above f� in Q0E( �f 0). In fa
t, J does not depend on�f 0.Proof. (1) We prove the Sa
ks property. Let f~ 2 V Q0E\!!. We take bn as in theproof of the !!-boundedness for QE (whi
h applies also to Q0E) in Claim 1.2,but we do not require that bn respe
ts E. Additionally we 
hoose bn so smallthat there are only fewer than n permutations of bn. Then we take qn as thereand 
olle
t into S(n) all the possible values for
ed by qn [ � for f~ (n), when �ranges over the permutations of bn.(2) Easy.(3) Let h �f 0n : n 2 !i enumerate all the � � !1-sequen
es inM that are Q0E-o.k. Let �n~ , bn, n 2 ! be as in the proof of 1.2. Now we 
hoose fn� ��-in
reasingwith n, and i(n) stri
tly in
reasing with n su
h that bi(n) \ dom(fn� ) = ; andsu
h that if �f f̂n� / �f 0n then fn� 
Q0E �n~ 2 V . This is done with the �nitelymany permutations of a suitable bi(n) as in 1.2. Note that fn� 
Q0E �n~ 2 V and�f f̂n� / �f 0 implies fn� 
Q0E( �f 0) �n~ 2 V, independent of the 
hoi
e of �f 0. We setf� = Sn2! fn� , and by one of the equivalent 
hara
terizations of (M;Q0E( �f 0))-generi
ity [6, III, Theorem 2.12℄ we are done. �2. Arranging g = �1; b = 
f(Sym(!)) = �2Starting from a ground model with a suitable diamond sequen
e we �nd afor
ing extension with the 
onstellation from the se
tion headline. The require-ments on the ground model 
an be established by a well-known for
ing (see [3,Chapter 7℄) starting from any ground model, and are also true in L (see [2℄).De�nition 2.1. (1) We say A is a (�; g)-witness if � = 
f(�) > �0 and(�) A � [!℄�0 ,(�) if k < ! and f` : ! ! ! is inje
tive for ` < k then for someA0 � A of 
ardinality < � we have that for any A that is a �niteunion of members of A n A0fn : ^̀<k f`(n) 62 Ag is in�nite.(2) We say �M �-exempli�es A if(a) A is a (�; g)-witness,(b) �M = hMi : i < �i is �-in
reasing and 
ontinuous, and !+ 1 �M0 and P(!) � Si<�Mi,



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 9(
) Mi � (H(�);2) is a model of ZFC� and jMij < � and (Mi j=jXj < �)) X �Mi,(d) �M � (i+ 1) 2Mi+1,(e) for i non-limit, there is Ai 2Mi su
h that A\Mi = Ai,(f) if i < �, k < ! and f` 2 Mi is an inje
tive fun
tion from ! to! for ` < k, and k0 < !, A` 2 A nMi for ` < k0, thenfn : ^̀<k f`(n) 62 A0 [ � � � [Ak0�1g is in�nite.(3) We say �M leisurely exempli�es A if (a) to (f) above are ful�lled andadditionally;(g) � = supfi : Mi+1 j= \Ai+1 = �0"g:De�nition 2.2. (1) We say (P;A~ ) is a (�; �)-approximation if(�) P is a 
.
.
. for
ing notion, jP j � �,(�) A~ is a set of P -names of members of ([!℄�0)VP , ea
h hereditar-ily 
ountable, and for simpli
ity they are for
ed to be pairwisedistin
t,(
) 
P \A~ is a (�; g)-witness."(2) If � = � we may write just �-approximation. If � = �1 we may omit it.We write (�; �)-approximation if it is a (�; �)-approximation for some�.(3) (P;A~ 1) ��app (P2;A~ 2) if:(a) (P`;A~ `) is a (�; �)-approximation.(b) P1 l P2,(
) A~ 1 � A~ 2 (as a set of names, for simpli
ity),(d) if k < ! and A0~ ; : : : ; Ak�1~ 2 A~ 2 n A~ 1 then
P2\ if B 2 ([!℄�0)V P1 ;f` 2 (B!)V P1 for ` < k are inje
tive, then(n 2 B : ^̀<k f`(n) 62 [̀<kA`~ ) is in�nite".Remark. We mean A~ 1 � A~ 2 as a set of names. It is no real di�eren
e if A~ is aP -name in 2.2(1) and if in (3) we have 
 A0;~ : : : ; Ak�1~ 2 A~ 2 n A~ 1.Claim 2.3. ��app is a partial order.



10 HEIKE MILDENBERGER AND SAHARON SHELAHProof. We 
he
k (3) 
lause (d) of the de�nition. Let (P1;A~ 1) ��app (P2;A~ 2)and (P2;A~ 2) ��app (P3;A~ 3). Let k < !, f~ ` be P1-names of inje
tive fun
tionsfrom ! to ! . Let G � P3 be generi
 over V. So let A` 2 A~ 3[G℄ for ` <m. We assume that for ` < m0 � m we have that A`~ 2 A~ 2 and that thatfA`~ : ` < mg � A~ 3 n A~ 2. By the assumptions on P1 we have that B1 =�n < ! : V`<k f`(n) 62 SfA` : ` < m0g	 is in�nite. It belongs to V[G \ P2℄.Sin
e we have that (P2;A~ 2) ��app (P3;A~ 3) and fA`~ : ` 2 [m0;m)g � A~ 3 n A~ 2and B1; f0; : : : ; fk�1 2 V[G \ P2℄, by De�nition 2.2(3) 
lause (d) we are done.Claim 2.4. If h(Pi;A~ i) : i < Æi is a ��app-in
reasing 
ontinuous sequen
e(
ontinuous means that in the limit steps we take unions), then (P;A~ ) =(Si<Æ Pi;Si<Æ A~ i) is an ��app-upper bound of the sequen
e, in parti
ular, a(�; �)-approximation.Proof. The only problem is \(P;A~ ) is a �-approximation."Case 1: 
f(Æ) > �0. Let k < !, f~ ` be P -names of inje
tive fun
tions from! to ! . So for some i < Æ we have that hf~̀ : ` < ki is a Pi-name. LetG � P be generi
 over V. In V[G \ Pi℄, there is some A~ 0 � A~ su
h that A~ 0 2([A~ i[G\Pi℄℄<�)V[G\Pi℄ as required inV[G\Pi℄ for hf~̀ [G\Pi℄ : ` < ki. We shallshow that A~ 0 is as required in V[G℄ for hf~̀ [G \ Pi℄ : ` < ki. So let A` 2 A~ [G℄for ` < m, w.l.o.g. A`~ 2 A~ , A` = A`~ [G℄. We assume that for ` < m0 � m wehave that A`~ 2 A~ i and that j < Æ is su
h that fA`~ : ` < mg � A~ j. By theassumptions on Pi we have that B1 = �n < ! : V`<k f`(n) 62 SfA` : ` < m0g	is in�nite. It belongs to V[G \ Pi℄. Sin
e we have that (P;A~ i) ��app (Pj ;A~ j)and fA`~ : ` 2 [m0;m)g � A~ j n A~ i and B1; f0; : : : ; fk�1 2 V[G \ Pi℄, byDe�nition 2.2(3) 
lause (d) we are done.Case 2: 
f(Æ) = �0. W.l.o.g. Æ = !. So let k < !, p 2 P , p 
 \ for ` < k; f~̀ 2!! is inje
tive." By renaming we may assume w.l.o.g. that p 2 P0. For everym < ! we �nd hf m̀~ : ` < ki su
h that(�)1 f m̀~ is a Pm-name for a P=Gm-name for an inje
tive fun
tion from ! to!,(�)2 if p 2 Gm � Pm, Gm generi
 over V and m < !, then for densely manyq 2 P=Gm we have that p 
Pm \q 
P=Gm V`<k(f~̀ � m = (f m̀~ [Gm℄) �m)".So easily p 
Pm \f m̀~ 2 !A is inje
tive" where A is a 
ountable set su
h that!A is the set of all fun
tions from ! into a set of maximal anti
hains for P=Gmnames for fun
tions from ! to !. (Sin
e we have the 
.
.
. it is possible to makesu
h an identi�
ation. Also in A~ m, A~ 0m, Ai~ su
h an identi�
ation is made.)and by the hypothesis on Pm we have that p 
Pm \there is A~ m 2 [A~ m℄<� as in2.2(1)". As Pm is 
.
.
. and be
ause of the form of A~ m there is A~ 0m a set of
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f(Sym(!)) 11< � names from A~ m su
h thatif A0~ ; : : : ; Ak�1~ 2 A~ m n A~ 0m thenp 
Pm \(n : ^̀<k f m̀~ (n) 62 A0~ [ � � � [Ak0�1~ ) is in�nite."(�)So it is enough to show that A~ 0 = Sm<! A~ 0m is as required. Let k0 < !,A0~ ; : : : ; Ak0�1~ 2 A~ nA~ 0 and towards a 
ontradi
tion assume that q 
 \fn < ! :V`<k f~̀ (n) 62 A0~ [ � � � [Ak0�1~ g � [0;m�℄." So for some m we have that q 2 Pm,A0~ ; : : : ; Ak0�1~ 2 A~ m n A~ 0m. Let q 2 Gm � Pm be Pm generi
 over V. In V[Gm℄we have that B0 = fn 2 ! : V`<k f m̀~ [Gm℄(n) 62 A0~ [Gm℄ [ � � � [ Ak0�1~ [Gm℄g isin�nite. So we 
an �nd n 2 B0 su
h that n > m�. Now there are densely manyq0 2 P=Gm for
ing f~̀ (n) = f m̀~ (n), so w.l.o.g. q � q0 2 P=Gm, and we �ndp0 2 G su
h that p � p0 2 P and p0 
 \f~̀ (n) = f m̀~ (n)": Contradi
tion. �Claim 2.5. Assume that (P;A~ ) is a �-approximation.(1) If 
 \Q~ is Cohen or just < �-
entred ", then (P �Q~ ;A~ ) is a �-approxi-mation, and (P;A~ ) ��app (P �Q~ ;A~ ).(2) If in addition 
P \hwn : n < !i is a set of �nite non-empty pairwisedisjoint subsets of !", and Q is Cohen for
ing, and �~ is the P � Q~ -name of the generi
, then (P � Q~ ;A~ [ fSfwn : �~(n) = 1gg) is a �-approximation, and ��app-above (P;A~ ).Proof. (1) Let G � P be P -generi
 over V. We work in V[G℄. It is enough toprove that in (V[G℄)Q, A = A~ [G℄ is a (�; g)-witness. let Q = Sm2�Qm, Qmdire
ted, � < �. So let 
Q \f0~ ; : : : fk�1~ 2 !! are inje
tive." For ea
h m we �ndhf m̀ : ` < ki su
h that(�)1 f m̀ 2 !!,(�)2 if q 2 Qm, m < ! then q 6
Q \:V`<k f~̀ � m = f m̀ � m".For hf m̀ : ` < ki we have that A0m 2 [A℄<� as required in De�nition 2.1(1).Let A0 = Sm<�A0m, it is 
learly as required.(2) We prove 
lause (d) of 2.2(3). Let G � P be P -generi
 over V. Solet f0; : : : ; fk�1 2 V [G℄, B 2 ([!℄!)V[G℄ and we should prove that fn 2 B :V`<k f`(n) 62 Sfwm : �~[G℄(n) = 1gg is in�nite. As �~ is Cohen and the wnare pairwise disjoint and �nite and non-empty, this follows from a density ar-gument. �An ultra�lter D on ! is 
alled Ramsey i� for every fun
tion f : ! ! ! thereis some A 2 D su
h that f � A is inje
tive or is 
onstant.



12 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 2.6. Assume that(a) V j= CH,(b) P = h(Pi;A~ i) : i � Æi is ��1app-in
reasing and 
ontinuous and jPij � �1,(
) 
f(Æ) = �1 = jÆj,(d) Æ = supfi < Æ : Pi+1 = Pi � Cohen;A~ i+1 = A~ ig.(e) G � PÆ is PÆ-generi
 over V, and in V[G℄ we have A = Si<�A~ i[G℄.Then(1) In V[G℄ there is �M leisurely exemplifying A.(2) In V[G℄ there is a Ramsey ultra�lter D su
h that for every f 2 !!whi
h is not 
onstant on any set in D and for all but 
ountably [< �℄many A 2 A we have that fn : f(n) 62 Ag 2 D. In short we say \D isA-Ramsey [(�;A)-Ramsey℄".Proof. (1) By renaming, w.l.o.g. Æ = �1. Let � � (2�0)+ and let �M0 = hM0i :i < !1i be in
reasing and 
ontinuous and M0i � (H(�);2; <��), M0i 
ountableand �M0 � (i + 1) 2 M0i+1 and su
h that P(!) � Si<!1 M0i . Let M1i = M0i [G℄,Ai = A~ i[G℄. For any i < !1 we shall �nd j(i) � i and Nj(i) su
h that(�)M1j(i) � Nj(i) �M1j(i)+1;(�) Nj(i) j= jAj(i)j = �0;(
) Nj(i) 2M1j(i)+1;(Æ) AÆ \Nj(i) = AÆ \M1j(i);(") (f~ 2 [i<!1M0i ^ f~ [G℄ 2M1i \ !!)! f~ is a Pj(i)-name;(�)M1i j= jXj < �1 ) X �M1j(i):(�)
InM1i , 
hoose j = j(i) a

ording to the premise (d) su
h that sup(M1i \!1) <j < !1 and Pj+1 = Pj�Cohen, A~ j+1 = A~ j and su
h that (") and (�) are true. InM0j+1 we de�ne the for
ing notion Rj = fg : g is a fun
tion from some n < !into A~ j+1g. This is a variant of Cohen for
ing, and hen
e we 
an interpretRj as the Cohen for
ing in Pj+1. We let ĝ be generi
 and set Nj = M1j [ĝ℄.Now we take a 
lub C in !1 su
h that (8� 2 C)(8� < �)(j(�) < �). We leth
(i) : i < !1i be an in
reasing enumeration of C. Finally we let for i < !1,Mi =M1
(i) for limit i.We have to show that in V[G℄, �M �-exempli�es A. That is, a

ording to2.1(2):(a) A is an (�1; g)-witness,
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f(Sym(!)) 13(b) �M = hMi : i < �1i is �-in
reasing and 
ontinuous, and ! + 1 � M0and P(!) � Si<�Mi,(
) Mi � (H(�);2) is a model of ZFC� and jMij < �1 and (Mi j= jXj <�1)) X �Mi,(d) �M � (i+ 1) 2Mi+1,(e) for non-limit i there is Ai 2Mi su
h that A\Mi = Ai,(f) if i < �1, k < ! and f` 2 Mi is an inje
tive fun
tion from ! to ! for` < k, and k0 < !, A` 2 A nMi for ` < k0, thennn : ^̀<k f`(n) 62 A0 [ � � � [Ak0�1o is in�nite.Item (a) follows from 2.4. The items (b) and (
) follow fromM0i � (H(�);2; <��),M0i 
ountable and �M0 � (i+ 1) 2M0i+1 and su
h that P(!) � Si<!1M0i .The items (d) and (e) are 
lear by our 
hoi
e of Mi.To show item (f), suppose that i < !1 and f` 2Mi for ` < k and A` 2 AnMi.Then we have that f~̀ 2 V Pi and A` 2 AnAi (the latter holds by (Æ)) and Ai =A~ i[G℄ = A~ i[Gi℄ by our 
hoi
e of C. Hen
e we may use (Pi;A~ i) ��1app (P!1 ;A~ )and get from 2.2(3)(d) if k < ! and A0~ ; : : : ; Ak�1~ 2 A~ n A~ i then
P!1\ if B 2 ([!℄�0)V Pi ;f~̀ 2 (B!)V Pi for ` < k; then(n 2 B : ^̀<k f~̀ (n) 62 [̀<kA`~ ) is in�nite",so we get the desired property in V[G℄.(2) We work in V[G℄. We take hMi : i < !1i as in (1), and 
hoose byindu
tion on i < !1 sets Bi su
h that(�) Bi 2Mi+1,(�) j < i) Bi �� Bj ,(
) if i = j + 1 and f 2 Mj \ !! is inje
tive and A 2 A \ (Mi nMj), thenBi �� fn : f(n) 62 Ag 2 D,(Æ) if i is limit and f 2Mi\!! then for some n� we have that f � (Bi nn�)is 
onstant or f � (Bi n n�) is inje
tive.(") Bi is <��-�rst of the sets ful�lling (�) { (Æ).Now it is easy to 
arry out the indu
tion and to show that D, the �lter gen-erated by fBi : i < !1g is as required. We use property (f) of �M in order toshow that requirement (
) is no problem. �



14 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 2.7. Assume that in V(a) A is a (�; g)-witness,(b) D is a (�;A)-Ramsey,(
) QD = f(w;A) : w 2 [!℄<!; A 2 Dg, (w;A) � (w0; A0) i� w � w0 �w [A and A0 � A.Then 
QD \A is a (�; g)-witness.".Proof. For u 2 [!℄<�0 let Qu = f(u;A) : A 2 Dg. This is a dire
ted subset andwe have that QD = SfQu : u 2 [!℄<�0g. So assume w.l.o.g. that
QD \f~̀ 2 !! is inje
tive for ` < k".For every u 2 [!℄<�0 we de�ne f ù 2 !(! + 1) as follows:f ù(n) = m if (9p 2 Qu)(p 
 f~̀ (n) = m);f ù(n) = ! if (8m):(9p 2 Qu)(p 
 f~̀ (n) = m):(
)Sin
e D is Ramsey [4℄ (without Ramsey but using memory [7℄) we have thatQD has the pure de
ision property: As usual we write pjj' if p 
 ' or p 
 :'and q �tr p i� q � p and q = (wq; Aq), p = (wp; Ap) and wq = wp.8p 2 QD9q �tr p8u 2 [!℄<�0 8` < k 8m 2 ! 8n 2 (! + 1)�(9q0 � q; q0jjf ù(n) = m)! (9s 2 q)(q[s℄jjf ù(n) = m�:Sin
e QD has pure de
ision and Qu is dire
ted we have thatfor every u 2 !<! for every m1;m2 < ! there is some p 2 Qu su
h thatp 
 \(8m < m1)min(m2; f~̀ (m)) = min(m2; f ù(m)):(�)For every u 2 [!℄<! and ` < k we 
an �nd gù 2 !! inje
tive, su
h that iffn : f ù(n) < !g 2 D and (:(9A 2 D)f ù � A is 
onstant) then fn : f ù(n) =gù(n)g 2 D.We 
all u (v; n)-
riti
al if(�) u 2 [!℄<!;(�) ; 6= v � f0; : : : ; k � 1g;(
) ` 2 v ) f ù(n) = !;(Æ) fm : (8` 2 v)fu[fmg` (n) < !g 2 D;(") ` < k ^ ` 62 v ! fm : fu[fmg` (n) = f ù(n)g 2 D:(�)uv;n
For u (v; n)-
riti
al and ` 2 v note that limDhfu[fmg` (n) : m < !i =1.



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 15As D is Ramsey for some A = Au;v;n 2 D we have if ` 2 v then hfu[fmg` (n) :m 2 Ai is without repetition.So we 
an �nd for ` 2 v inje
tive fun
tions hu;v;n` 2 !! su
h that fm :fu[fmg` (n) = hu;v;n` (m)g 2 D.For ea
h inje
tive fun
tion h 2 !! we have that Ah = fA 2 A : fn :h(n) 2 Ag 2 Dg is empty or at least of 
ardinality stri
tly less than �. LetA0 = SfAh : h = gù for some ` < h, u 2 [!℄<�0 or h = hu;v;n` where uis (v; n)-
riti
al and ` 2 v and ; 6= v � k g. So A0 � A is of 
ardinalitystri
tly less than � and it is enough to prove that if A0; : : : Ak0�1 2 AnA0 then
Q \fn : V`<k f~̀ (n) 62 A0 [ � � � [Ak0�1g is in�nite".Let A0; : : : ; Ak0�1 be given. Set B� = A0 [ � � � [Ak0�1. Towards a 
ontradi
-tion we assume that p� 2 QD and n� < ! andp� 
 \(8n) n� < n < ! ! _̀<k f~̀ (n) 2 B�! ":Let M � (H(�);2) be 
ountable su
h that the following are elements of M :p�, D, f~̀ for ` < k, A` for ` < k0, A0, hgù : u 2 [!℄<�0 ; ` < ki, hhu;v;n` : u 2[!℄<�0 ; ` 2 v; ; 6= v � ki.Let p� = (u�; A�). Let A� 2 [!℄! and A� � A� be su
h that (8Y 2 D \M)(A� �� Y ) and min(A�) � sup(u�). It is obvious that u [ A� is generi
real for QD over M , i.e.: f(u0; A0) 2 QD \M : u0 � u� [ A� � u0 [ A0g is asubset of a (QD)M -generi
 over M .As A0; : : : ; Ak0�1 2 A n A0 � A n S`<kAgu�` there is n� 2 [n�; !) su
h that` < k ) gu�` (n�) 62 B�. LetU = fu : u� � u � u� [A�; u �nite, (8` < k)(f ù(n�) < ! ! f ù(n�) 62 B�g:Now 
learly u� 2 U . Choose u� 2 U su
h that jf` : fu�` (n�) = !gj isminimal. If it is zero, we are done. So assume that is is not zero.We 
hoose by indu
tion on i < ! ni su
h thatni 2 A�;ni < ni+1;sup(u�) < ni:` < k ! fu�` (n�) = fu�[fnj : j<ig` (n�):(�)If we su

eed, then u� [ fni : i < !g 2 M 
ould have served as A�,
ontradi
ting the fa
t that u� [A� is generi
. So for some i we 
annot 
hooseni. Let u4 = u� [ fnj : j < ig. Let v = f` < k : fm : fu4[fmg` (n�) 6=fu4` (n�)g 2 Dg � f0; : : : ; k � 1g. Let C = fm : (` 2 v ! fu4[fmg` (n�) 6=fu4` (n�)) and (` 62 v ! fu4[fmg` (n�) = fu4` (n�))g. So C 2 D and ne
essarily



16 HEIKE MILDENBERGER AND SAHARON SHELAH` 2 v ^ m 2 C ) fu4[fmg` (n�) < fu4` (n�) = !. So u4 is (v; n�)-
riti
al.Hen
e C1 = fm : V`2v hu4;v;n�` (m) 62 B�g 2 D. Choose ni 2 C1 \ C \M�large enough. If v = ;, it 
an serve as ni and we have a 
ontradi
tion. Re
allthat hu4;v;n�` (ni) = fu4[fnig` (n�) < 1. If v 6= ;, then u4 [ fnig 
ontradi
tsthe 
hoi
e of u�, be
ause we had required that jf` : fu�` (n�) = !gj is minimal.�Later we shall use Claim 1.6 in order to ful�l premise (3) of the followingClaim 2.8, whi
h is together with 2.3, 2.4, 2.5, 2.6 the justi�
ation of the singlesteps of our �nal 
onstru
tion of length �2. Claim 2.8 serves to show that 
ertain(and in the end we want to have: all) 
o�nality witnesses in intermediate ZFCmodels are not 
o�nality witnesses any more in any for
ing extension.Claim 2.8. Assume that V, h(Pi;A~ i) : i � Æi are as in 2.6, and(1) 
PÆ \hKi~ : i < !1i is a 
o�nality witness and ff 2 Sym(!) : (81n)f(n) =ng � K0~ ".(2) Let, e.g., E0 = f(n1; n2) : (9n)(n1; n2 2 [n2; (n+1)2)g, A = Sf[(2n)2; (2n+1)2) : n 2 !g. Assume that in VPÆ , SE0;A is not in
luded in any Ki.(3) Æ = supf� : Q�~ is Cohen;A~ � = A~ �+1g.Then there is a PÆ-name Q~ su
h that(�) (PÆ ;A~ Æ) ��app (PÆ �Q~ ;A~ Æ),(�) 
PÆ \Q~ � Q0E0~ (where Q0E0 is from 1.7).(
) 
PÆ�Q~ \g~ = Sff~ : (p; f~ ) 2 PÆ � Q~ g is a permutation of ! and forarbitrarily large i < !1, hg;Ki~ iSym(!) \ Sym(!)V[PÆ ℄ 6= Ki~ ".Proof. As in 2.6, we assume w.l.o.g. Æ = !1. We 
an �nd in V, �g� = hg�i~ :i < !1i su
h that 
P!1 \g�i~ 2 Sym(!) nKi~ , g�i~ 2 SE0;A, g�i~ � (! n A) = id and8n 2 A, g�i~ (n) 6= n and g�0~ 2 M0 � (H(�;2), M0 
ountable". In V we now
hoose by indu
tion on i < !1 Mi~ ; Ni~ ; pi~ ; �i su
h that(a) hMj~ : j � ii is a sequen
e od VPÆ -names as in 2.6,(b) �PÆ �Q;A~ ; �g�~ ; hKi~ : i < !1i 2M0~ ,(
) Ni~ = f�~ 1;n : n 2 !g is a 
ountable P�i -name su
h that 
P�i \Mi[GP�i~ ℄ �Ni � (H(�)V[P�i ℄;2); jjNijj = �0; Ni j= ZFC�",(d) pi~ 2 Q0E0 is hereditarily 
ountable and a P�i-name of a member Q0E0 ,
P�i hpj~ : j � ii is ��-in
reasing and 2 Ni~ ; pi~ 2 Ni~ ,(e) in VPÆ we have Mi~ [GÆ℄ =Mi and hNj~ : j � ii 2Mi+1, sup(Mi \!1) ��i 2Mi+1, Q�i~ is Cohen and A�i = A�i+1,
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f(Sym(!)) 17(f) if I~ is a P�i-name of a predense subset of Q0E0(hpj~ : j < ii), then some�nite J(I~) � I~ is predense above pi~ in Q0E0(hpj~ : j � ii) in the universeVP�i+1 .At limit stages i we take for Mi the union of the former Mj . Otherwise 
hooseMi as required. Next we 
hoose �i su
h that sup(Mi \ !1) � �i < !1 and Q�i~is Cohen and A~ �i = A~ �i+1 . We work in V[P�i ℄. We set N0i = Mi[GP�i ℄. Wenow interpret the Cohen for
ing as R0 �R1 �R2 whereR0 = fh : (9n < !)h : n! P(!)Migordered by in
lusion. In N1i = N0i [GR0 ℄ =Mi[GP�i ℄[GR0 ℄ we letR1 = f(n; q) : n < !; q 2 Q0E0(hpj : j < ii)g;ordered by (n1; q1) � (n2; q2) , n1 � n2 ^ q1 � n = q2 � n ^ q1 � q2.Sin
e (Q0E0)N1i is 
ountable we have that R1 is Cohen for
ing. Let N2i =N1i [GR0 ; GR1 ℄ =Mi[GP�i ℄[GR0 ℄[GR1 ℄, qi = Sfq : (n; q) 2 GR1g.Claim. If I 2 VP�i is a predense subset of Q0E(hpj : j < ii) then for some �niteJ � I we have: For every �p� su
h that �p� � i = hpj : j < ji and qi � �p� wehave: J is predense above �p� in Q0E0(hpj : j < ii).Proof. This is the stronger version of 1.8(3)(b), the one starting with \in fa
t: : : ". �So 
learly qi 2 (Q0E0)V[P�i+1℄, Vj<i pj �� qi.We 
an �nd in N2i a sequen
e hwik : k < !i and h�i su
h that
(�)
8>>>>>>>>>>>><>>>>>>>>>>>>:

k1 6= k2 ) wik1 \ wik2 = ;;wik is in
luded in some E0-equivalen
e 
lass;wik � ! n dom(qi);8n9m�����m=E n dom(qi) nSk2! wik���� > n�;h�i 2 Sym(!);h�i maps fn=E0 : n 2 Ag onto fwik : k < !gmore pre
ise, ĥ�i does this, where for b � !, ĥ�i (b) = range(h�i � b):LetR2 = (f : (9m < !) f is a permutation of [k<mwik mapping wik into itself!) ;ordered by in
lusion. In N3i = N2i [GR2 ℄ let f�i = SGR2 so N3i = N2i [f�i ℄.So N3i 2 VP�i+1, and hen
e is a P�i+1-name. As P�i+1 has the 
.
.
., we 
anassume that this name is hereditarily 
ountable. Now N3i \ !1 = N0i \ !1 =



18 HEIKE MILDENBERGER AND SAHARON SHELAHMi[G�i ℄ \ !1 = Æi < !1, hen
e N3i \ Sym(!)V[PÆ℄ � KÆi . Letf�i = (h�i Æ g�Æi Æ (h�i )�1 � [k<!wik) Æ f�i :It is still generi
 for R2 over VP�i [GR0 ; GR1 ℄. We set N4i = N3i [f�i ℄, q0i = qi[f�i .Now (N4i ; q4i ) are as required and 
hoose by taking P!1 -names (Ni~ ; pi~ ) in V forthem:Item (�) of the 
on
lusion is seen as follows: We have for i < !1 thatVP!1 j= \Q0E0~ (hpj~ : j < ii) is 
.
.
.". Hen
e we have by 2.5 that (PÆ;A~ Æ) ��app(PÆ�Q0E0~ (hpj~ : j < ii);A~ Æ), and (PÆ�Q0E0~ (hpj~ : j < ii);A~ Æ) ��app (PÆ�Q0E0~ (hpj~ :j < ki);A~ Æ) for i < k 2 !1. Sin
e Q~ = Q0E0~ (hpj~ : j < !1i) = Si<!1 Q0E0~ (hpj~ :j < ii) we 
an apply 2.4.Item (�) of the 
on
lusion follows from the 
hoi
e of Q~ .For item (
): Fix i. Note that Æi � i. We have in VP!1 that f�i 2 KÆi =KÆi~ [G!1 ℄. We have that q0i 2 (Q0E0)VP�i andq0i 
P!1�Q~ g~ � [k2!wik = f�i~ � [k2!wikand hen
e q0i 
P!1�Q~ g�Æi � A = (h�i )�1 Æ g~ Æ (f�i )�1 Æ (h�i ) � A;(�)and thus, sin
e gÆi � A 
ontains the same information as gÆi sin
e the latter isin SE0;A, the equation � gives a witness in hg;KÆi~ iSym(!) \ Sym(!)V[P!1 ℄ nKÆi~and hen
e shows the inequality 
laimed in (
). �In order to organize the bookkeeping in our �nal 
onstru
tion of length �2we use }(S21) in order to guess the names hKi~ : i < !1i of obje
ts that we donot want to have as 
o�nality witnesses. We re
all S21 = f� 2 !2 : 
f(�) = �1g.A subset of !2 is 
alled 
lub (
losed and unbounded) in !2, if it is 
losed undertaking suprema in the ordinals and if it is unbounded in !2. A subset ist 
alledstationary, if its 
omplement is not a superset of a 
lub set.For E � !2 being stationary in !2 we have the 
ombinatorial prin
iple }(E):There is a sequen
e hXÆ : Æ 2 Ei su
h that for every X � !2 the set fÆ 2 E :XÆ = X \ Æg is stationary in !2.For more information about this and related prin
iples and their relative
onsisten
y we refer the reader to [2, 1℄.Con
lusion 2.9. Assume that 2�0 = �1 and that }S21 . Then for some for
ingnotion P of 
ardinality �2 in VP we have that g = �1 and 
f(Sym(!)) = b = �2.



THE RELATIVE CONSISTENCY OF g < 
f(Sym(!)) 19Proof. Let H(�2) = Si<�2 Bi, Bi in
reasing and 
ontinuous, Bi+1 � [Bi℄��0and hXi � Bi : i 2 S21i is a }S21 -sequen
e. We 
hoose by indu
tion on i < �2(Pi;A~ i; di) su
h that(�) (Pi;A~ i) is an �1-approximation, jPij � �1,(�) (Pi;A~ i) is ��app-in
reasing and 
ontinuous,(
) di is a fun
tion from A~ i to !1 (here we use that A~ i is a set of Pi-namesthat are for
ed to be distin
t),(Æ) if i < �2 and hwk~ : k < !i is a Pi-name and 
Pi hwk~ : k < !i arenon-empty pairwise distin
t and 
 < !1 then for some j 2 (i; !2) wehave that 
Pj+1 for some in�nite u � ! and some A~ 2 A~ j+1 we havethat Sk2uwk � A~ 2 A~ j+1 ^ dj+1(A~ ) = 
,(") for arbitrarily large i < !2 we have that 
Pi \Qi = QDi and Di is aRamsey ultra�lter",(�) if i 2 S21 and Pi � Bi, Xi 
ode of the Pi-name hKj~ : j < !1i and
Pi \hKj~ : j 2 !1i is a 
o�nality witness of Sym(!)V[Pi℄ and ff 2Sym(!)V[Pi℄ respe
ts E0 and � id!nA0g is not in
luded in any Kj~ ",then 
Pi+1 \ for some f 2 Sym(!) for arbitrarily large j < !1 we havehKj~ [ ffgiSym(!) \ (Kj+1)Vi~ 6= (Kj)Vi~ ".Can we 
arry out su
h an iteration? We freely use the existen
e of limitsfrom Claim 2.4 and that ��app is a partial order 2.3. The step i = 0 is trivial.So we have to take 
are of su

essor steps.If i = j + 1 and j 62 S21 then we 
an use 2.5 to de�ne (P�;A~ �), and taking
are of 
lause (Æ) by bookkeeping.If i = j + 1 and j 2 S21 and the assumption of 
lause (�) holds, we apply 2.8to satisfy 
lause (�), using Q0�(hf` : ` < !1i) from there.If i = j+1 and j 2 S21 but the assumption of 
lause (�) fails (whi
h ne
essarilyo

urs stationarily often), we apply 2.6 and 2.7.Having 
arried out the indu
tion we let P = S�<!2 P�, A~ = S�<!2 A~ �,d = S�<!2 d�. So (P;A~ ) is an (�2;�1)-approximation. For 
 2 !1 we setA~ h
i = fA~ 2 A~ : d(A~ ) = 
g. Now 
learly VP�2 j= 2�0 = 2�1 = �2. Let G � Pbe generi
.We show: 
P g = �1. For Æ < �1 we have that A~ hÆi[G℄ is groupwise denseby 
lause (Æ), and always g � �1. So it is enough to show that the interse
tionof the A~ hÆi[G℄ is empty. Suppose that it is not, i.e. that there is some B 2 [!℄!su
h that for Æ < !1 there is some AÆ 2 A~ hÆi[G℄ su
h that for all Æ, B �� AÆ.Now let h : ! ! B be an inje
tive fun
tion. But now we have a 
ontradi
tion to\(P;A~ ) is a (�2;�1)-approximation (see 2.3) and A~ is a (�1; g)-witness (2.1(b)).



20 HEIKE MILDENBERGER AND SAHARON SHELAHWe show that 
P b = �2. This follows from 
lause (").Finally we show that 
 
f(Sym(!)) > �1. Suppose that hKj~ [G!2 ℄ : j < !1i isa 
o�nality witness inV[G!2 ℄. Then there is a 
lub subset C in !2 su
h that fori 2 C we have that hKj~ [Gi℄ : j < !1i is a 
o�nality witness in V[Gi℄. By }(S21)there is some i 2 S21 su
h that Xi is a 
ode of a Pi name of hKj~ [Gi℄ : j < !1i.By (the analogues of) Claims 1.4 and 1.6 for Q0E and be
ause of b = �2 andbe
ause of 
lause (�) we get that the sequen
e hKj~ [Gi℄ : j < !1i does notlift to a 
o�nality witness in V[G!2 ℄ su
h that for all j < !1 we have thatKj~ [Gi℄ = Kj~ [G!2 ℄\V[Gi℄. Hen
e hKj~ [G!2 ℄ : j < !1i was no 
o�nality witnessin V[G!2 ℄. �Referen
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