
THE RELATIVE CONSISTENCY OF g < f(Sym(!))HEIKE MILDENBERGER AND SAHARON SHELAHAbstrat. We prove the onsisteny result from the title. By foring weonstrut a model of g = �1, b = f(Sym(!)) = �2.0. IntrodutionWe reall the de�nitions of the three ardinal harateristis in the title andthe abstrat. We write A �� B if A n B is �nite. We write f �� g if f; g 2 !!and fn : f(n) > g(n)g is �nite.De�nition 0.1. (1) A subset G of [!℄! is alled groupwise dense if{ for all B 2 G, A �� B we have that A 2 G and{ for every partition f[�i; �i+1) : i 2 !g of ! into �nite intervalsthere is an in�nite set A suh that Sf[�i; �i+1) : i 2 Ag 2 G.The groupwise density number, g, is the smallest number of groupwisedense families with empty intersetion.(2) Sym(!) is the group of all permutations of !. If Sym(!) = Si<�Kiand � = f(�) > �0, hKi : i < �i is inreasing and ontinuous, Ki isa proper subgroup of Sym(!), we all hKi : i < �i a o�nality witness.We all the minimal suh � the o�nality of the symmetri group, shortf(Sym(!)).(3) The bounding number b isb = minfjFj : F � !! ^ (8g 2 !!)(9f 2 F)f 6�� gg:Simon Thomas asked whether g 6= f(Sym(!)) is onsistent [8, Question 3.1℄.In this paper we prove:Theorem 0.2. g < f(Sym(!)) is onsistent relative to ZFC.1991 Mathematis Subjet Classi�ation. 03E15, 03E17, 03E35.The �rst author was supported by a Minerva fellowship.The seond author's researh was partially supported by the \Israel Siene Foundation",founded by the Israel Aademy of Siene and Humanities. This is the seond author's worknumber 731. 1



2 HEIKE MILDENBERGER AND SAHARON SHELAH1. Forings destroying many ofinality witnessesIn this setion we introdue two families of forings that will be used in er-tain steps of our planned iteration of length �2. The plot is: If b is large, thereis some way to destroy all shorter o�nality witnesses beause by Claims 1.6and 1.5 none of the subgroups in a o�nality witness ontains all permutationsrespeting a given equivalene relation. In our intended onstrution, we shallextend suitable intermediate models with a foring built upon suh an equiva-lene relation and thus prevent possible o�nality witnesses to be lifted to theforing extension and all further extensions (Claim 1.4).Here we show some details about destroying one o�nality witness that anbe put separately before we launh into an iteration. The additional task, toinrease the bounding number along the way, will be taken are of only in thenext setion.De�nition 1.1. (1) We work with the following set of equivalene rela-tions:Eon = fE :E is an equivalene relation of !;eah equivalene lass is a �nite interval and! = lim infhjn=Ej : n < !ig:We say b � ! respets E 2 Eon if (nEm ^m 2 b) ! n 2 b. A partialpermutation � of ! respets E if dom(�) respets E and we have thatn 2 dom(�)! nE�(n).(2) Let Q be the set of p suh that(a) p is a permutation of some subset dom(p) of !,(b) ! n dom(p) is in�nite.We order Q by inlusion.(3) For E 2 Eon, QE is the set of p satisfying (2)(a) { (b) and addition-ally() p respets E.Part (1) of the following laim is important for later use, whereas part (2)will never be used diretly.Claim 1.2. (1) If E 2 Eon and p 2 QE and �~ is a QE-name of an ordinaland b is a �nite subset of ! n dom(p) respeting E, then there is some qsuh that(a) p � q and b � ! n dom(q),



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 3(b) if � is a permutation of b and it respets E then q [ � fores avalue to �~ .(2) QE is proper, !!-bounding, nep (see [5℄) and Souslin.Proof. (1) Note that there are only �nitely many permutations of b (that respetE). So we an treat them onseutively and �nd stonger and stronger q's.(2) Let N � H(�;2) be suh that QE 2 N and p 2 N , � � (2!)+. Let �n~ ,n 2 !, be a list of all QE-names for ordinals that are in N . Let bn, n 2 !,be a list of pairwise disjoint E-lasses suh that Sn2! bn is in�nite. Now takeqn by indution starting with q0 = p. If qn is hosen, take i(n) suh thatdom(qn) \ bi(n) = ;. Now take qn+1 treating qn, �n~ and bi(n) as in the proof ofpart (1). We have that q = S qn 2 QE and that q QE (8n 2 !)�n~ 2 �N . By [6,III, Theorem 2.12℄, QE is proper.QE is !!-bounding: Let f~ be a name for a funtion from ! to !. Again let bn,n 2 !, be a list of pairwise disjoint E-lasses suh that Sn2! bn is in�nite. Nowtake qn by indution starting with q0 = p. If qn is hosen, take i(n) suh thatdom(qn)\bi(n) = ;. Now take qn+1 treating qn, �n~ and bi(n) as in part (2) of thislaim and look whih values for f~ (n) the �nitely many permutations in (1)(b)fore. Take g(n) to be the maximum of them. We have that q = S qn 2 QEand that q QE (8n)f~(n) � g(n).nep (non-elementary properness): We use muh less than N � H(�;2). Weuse that E 2 N � H(�;2). See [5℄.Souslin: p 2 QE , q � q and p ? q an be expressed in �11(E)-formulas. �We shall work with the following speial subsets of Sym(!).De�nition 1.3. (1) For E 2 Eon and A � ! we de�ne:SE;A := f� 2 QE : � � (! n A) = idg:(2) We set F := ff : f 2 !!; f(n) � n; limhf(n)� n : n 2 !i =1g. Forf 2 F we set Sf := f� 2 Sym(!) : (8n)�(n) � f(n)g:The following laim desribes the basi step in order to inrease f(Sym(!)).Claim 1.4. Assume(a) hKi : i < �i is a o�nality witness,(b) R~ is a QE-name of a foring notion,() E 2 Eon, and for no i < � and oin�nite A 2 [!℄! respeting E we havethat Ki � SE;A.



4 HEIKE MILDENBERGER AND SAHARON SHELAHThen in VQE�R~ we annot �nd a o�nality witness hK 0i : i < �i suh thatVi<� �K 0i \ Sym(!)V = Ki�.Proof. Let f~ = Sfp : p 2 GQE~ g be a QE-name of a permutation of !. ItsuÆes that QE\for unboundedly many i < �,for some g 2 Ki we have f~ Æ g 2 Ki+1 nKi."(�)Why does this suÆe? Suppose that (�) holds and we had found a o�nalitywitness hK 0i : i < �i in VQE�R~ suh that Vi<� �K 0i \ Sym(!)V = Ki�. Let Gbe QE � R~ -generi over V. Take j < � suh that f~ [G℄ 2 K 0j . Then we �ndaording to (�) some i � j and some g 2 Ki suh that f [G℄~ Æg 2 Ki+1nKi � V.But this ontradits the fats that f~ [G℄ Æ g 2 K 0i (beause this is a subgroup)and K 0i \ Sym(!)V = Ki.Proof of (�): Let p 2 QE and j < �. Let ! n dom(p) be the disjoint unionof A0; A1, both in�nite subsets of ! respeting E. Let g0 2 Sym(!) be suhthat fn : g0(n) 6= ng = A0. Let g0 2 Ki(�), i(�) > j. By assumption SE;A0is not inluded in any Ki, so in partiular not inluded in Ki(�). Hene thereis g1 2 SE;A0 n Ki(�). Take i suh that g1 2 Ki+1 n Ki. Neessarily we have� > i � i(�) > j. Now there is a permutation f of A0 respeting E suh thatf is an isomorphism from (A0; g1) onto (A0; g0). Namely set f(g0(n)) = g1(n).Hene n 2 A0 ) f(g0(n)) = g1(n). Let q = p [ f . The ondition q fores thatf~ Æ g0 = g1, g1 2 Ki+1 nKi, and i 2 (j; �), g0 2 Ki(�) � Ki, so (�) is proved. �Claim 1.5. Assume that hKi : i < �i is a o�nality witness. Assume thatK0 ontains all permutations that move only �nitely many points. Then thefollowing are equivalent:(�) For some E 2 Eon, for no i < �, oin�nite A 2 [!℄�0 we do haveKi � SE;A.(�) For every E 2 Eon, for no i < �, oin�nite A 2 [!℄�0 we do haveKi � SE;A.() For some f 2 F , for no i < � do we have that Sf � Ki.(Æ) For every f 2 F , for no i < � do we have that Sf � Ki.Proof. The impliations (�)) (�) and (Æ) ) () are trivial. We shall not use(�)) (�) but lose a irle of impliations as follows: (�)) (Æ) and (�)) (�)and ()) (�).Now we prove :(Æ)) :(�). Let f and i� exemplify the failure of (Æ).



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 5By the de�nition of F we have that limhf(n)� n : n 2 !i = 1. Hene wemay hoose a stritily inreasing sequene hki : i 2 !i suh that (8i 2 !)(8n �ki)(f(n) � i + n). Then we take E = f[ki; ki + i) : i 2 !g [ f[ki + i; ki+1) :i 2 !g and A = Si2![ki; ki+1). A is in�nite and oin�nite. Then we have thatSE;A � Sf � Ki� , so :(�).Now we show :(�) implies :(�). This follows fromClaim. For all E;E0 2 Eon there are f1; f2 2 Sym(!) suh that for any A � !we have SE;A � (f1 Æ SE0;f�11 [A℄ Æ f�11 ) Æ (f2 Æ SE0;f�12 [A℄ Æ f�12 ):Proof. Enumerate the E-lasses with order type !. Let f1 injet the even-numbered E-lasses into high enough (there are large enough ones by the de�-nition of Eon) E0 lasses. The E0-lasses need not be overed, it is enough thatnEm! f1(n)E0f1(m). We �ll this funtion up to a permutation of ! and allit f1. Let f2 do the same with the odd-numbered E-lasses. If g 2 SE;A theng = g1 Æ g2 where g1 is the identity on odd-numbered E-lasses and g2 is theidentity on even-numbered E-lasses. We have that f�1i Æ gi Æ fi 2 SE;f�1i [A℄ fori = 1; 2 and thus the laim is proved.To omplete a yle of impliations, we show :(�) ) :(). To prove :()let f 2 F . We hoose by indution on k 2 !, mi suh that m0 = 0, mk+1 > mkand (8n < mk)(f(n) < mk+1). Now we take ni by indution on i suh thatn0 = 0, ni+1 > ni and (8m � mni+1)(�(m) � mni).Now we de�ne two equivalene relations.E0 = f[mnk ;mnk+2) : k 2 !g;E1 = f[mnk+1 ;mnk+3) : k 2 !g [ f[0;m1)g:For � 2 f0; 1; 2; 3g let A� = Sf[mnk ;mnk+3) : k < !; k = �mod4g.Now note that(�)1 If � 2 Sf then we an �nd �` 2 SE`;! for ` = 0; 1 suh that � = �1 Æ �0.Why?By our hoie of hmi : i 2 !i and hni : i 2 !i and E`, for any x 2 !,xE0�(x) or xE1�(x). Now we hoose �0(x) and �1(x) by ases.If x and �(x) are in the same E0-lass and �(x)E0�(�(x)), then weset �0(x) = �(x) and �1(�(x)) = �(x). So we have �(x) = �1 Æ �0(x).If x and �(x) are in the same E0-lass and not �(x)E0�(�(x)), thenwe set �0(x) = y and �1(y) = �(x) for some yE0x suh that �(y) 6= yand yE1�(x) and yE0�(y). (If there are not enough suh y, just takethe lasses of \double width". We also assume w.l.o.g. that � has no



6 HEIKE MILDENBERGER AND SAHARON SHELAH�xed points.) Then we have that �0 respets E0 in the point x, and �1respets E1 in the point y and �(x) = �1 Æ �0(x).If x and �(x) are not in the same E0-lass, then we have that xE1�(x).If not ��1(x)E0x then we set �1(x) = �(x) and �0(x) = x.If x and �(x) are not in the same E0-lass, then we have that xE1�(x).If ��1(x)E0x then we also set �0(x) = x and �1(x) = �(x). Note thatthe pair (��1(x); x) falls under the seond ase and that hene there is noonit in our settings, i.e. also �0 and �1 an be hosen as permutations.Then we have that � = �1 Æ �0.(�)2 Let ` = 0; 1 and �` be as above. Then we an �nd  `;� 2 SE`;A�for � = 0; 1; 2; 3 suh that �` =  `;3 Æ  `;2 Æ  `;1 Æ  `;0. Why? Forall x 2 ! there are three �'s suh that x 2 A� and three �'s suhthat �`(x) 2 A�. Hene we an �nd � (indeed, two �'s) suh thatx; �`(x) 2 A�, and suh we may hose some  `;� 2 SE;A� suh that�`(x) =  `;�(x) and suh that  `;� restrited to ! n A� is the identityand suh that �` =  `;3 Æ  `;2 Æ  `;1 Æ  `;0.(�)3 Let for ` = 0; 1 the in�nite, oin�nite set A` and the ordinal i`(�) be asin :(�) for E`. For � < 4 there is g� 2 Sym(!) mapping ! n A� into! n A` suh that (8k0; k1 2 ! n A�)(k0E`k1 , g�(k0)E`g�(k1)), henefor ` = 0; 1 onjugation by g� maps SE`;A� into SE`;A` � Ki.By our assumption :(�) we have some i`(�) 2 � suh that SE`;A` � Ki`(�) for` = 0; 1 and � = 0; 1; 2; 3. Let i(�) = max(i0(�); i1(�)). For some j(�) 2 [i(�); �)we have that g� 2 Kj(�) for � = 0; 1; 2; 3, and SE`;A� = g� ÆSE`;A` Æg�1� � Kj(�),hene Sf � Kj(�), that is, :(). �Claim 1.6. Assume that hKi : i < �i is a o�nality witness suh that K0ontains all the permutations that move only �nitely any points. If b > �, thenlause () of Claim 1.5 holds (and hene all the other lauses hold as well).Proof. For eah i < � hoose �i 2 Sym(!) n Ki. Sine b > � there is somef 2 !! suh that (8i < �)(81n)(�i(n) < f(n)) and w.l.o.g. f 2 F . if Sf were asubset of Ki, then we had that �i 2 Ki, whih is not the ase. So f exempli�eslause () of Claim 1.5. �



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 7De�nition 1.7. (1) Let E 2 Eon. We setQ0E = ff : f is a permutation of some oin�nite subset of ! suh that(a) n 2 dom(f)) nEf(n);(b) for every k < ! for some n we have k � j(n=E) n dom(f)jg:The order is by inlusion.(2) We all �f = hfi : i < �i, Q0E-o.k. if � � !1 and for i � j < �,fi �� fj 2 Q0E (i.e. fn 2 dom(fi) : n 62 dom(fj) _ fi(n) 6= fj(n)g is�nite). For �f being Q0E-o.k. we set Q0E( �f) = fg 2 Q0E : g =� fi forsome ig, where fi =� g i� fi �� g and g �� fi. The order is inheritedfrom Q0E.Remarks. 1) Claims 1.4 and 1.5 hold for Q0E as well with the analogously mod-i�ed de�nition of S0E;A. This is shown with the same proofs. The domainsof the involved partial permutations must be arranged suh that they respet1.7(1)(b), but they need not be unions of equivalene lasses. The q 2 QE ful�lrequirement 1.7(1)(b) automatially, beause we have that limhjn=Ej : n 2!i = ! and that the domain of q needs to be oin�nite and needs to be a unionof equivalene lasses.2) Both QE and Q0E an serve for our purpose. Q0E exhibits the following\independene of E": For E0; E1 2 Eon (8p 2 Q0E1) (9q) (p � q 2 Q0E1 ^(Q0E1)�p �= Q0E0).3) Note that for � < !1, if �f = hf� : � 2 �i Q0E-o.k., then we have thatQ0E( �f) is Cohen foring.Claim 1.8. Let E be as in De�nition 1.7.(1) Q0E is proper, even strongly proper, with the Saks property (the last ismore than QE).(2) If p 2 Q0E and a sequene hwn : n 2 !i of pairwise disjoint �nite subsetsof ! are given, then we �nd an in�nite u � ! suh that hwn : n 2 uiand (8n)(9m)(wn � m=E) and wn\dom(p) = ; and n1 < n2 ) 8m1 2wn18m2 2 wn2:m1Em2, and for every permutation f of Swn whihrespets E we have that p � p [ f 2 Q0E.(3) If �f is as in 1.7(2), and � < !1 and Q0E( �f) � M , ! + 1 � M �(H(�);2), M a ountable model of ZFC�, then we an �nd f� suhthat(a) �f f̂� is Q0E-o.k.



8 HEIKE MILDENBERGER AND SAHARON SHELAH(b) If �f f̂�/ �f 0 and �f 0 is Q0E-o.k., then f� is (M;Q0E( �f 0))-generi. Infat, for every predense I � Q0E( �f 0) from M some �nite J � Iis predense above f� in Q0E( �f 0). In fat, J does not depend on�f 0.Proof. (1) We prove the Saks property. Let f~ 2 V Q0E\!!. We take bn as in theproof of the !!-boundedness for QE (whih applies also to Q0E) in Claim 1.2,but we do not require that bn respets E. Additionally we hoose bn so smallthat there are only fewer than n permutations of bn. Then we take qn as thereand ollet into S(n) all the possible values fored by qn [ � for f~ (n), when �ranges over the permutations of bn.(2) Easy.(3) Let h �f 0n : n 2 !i enumerate all the � � !1-sequenes inM that are Q0E-o.k. Let �n~ , bn, n 2 ! be as in the proof of 1.2. Now we hoose fn� ��-inreasingwith n, and i(n) stritly inreasing with n suh that bi(n) \ dom(fn� ) = ; andsuh that if �f f̂n� / �f 0n then fn� Q0E �n~ 2 V . This is done with the �nitelymany permutations of a suitable bi(n) as in 1.2. Note that fn� Q0E �n~ 2 V and�f f̂n� / �f 0 implies fn� Q0E( �f 0) �n~ 2 V, independent of the hoie of �f 0. We setf� = Sn2! fn� , and by one of the equivalent haraterizations of (M;Q0E( �f 0))-generiity [6, III, Theorem 2.12℄ we are done. �2. Arranging g = �1; b = f(Sym(!)) = �2Starting from a ground model with a suitable diamond sequene we �nd aforing extension with the onstellation from the setion headline. The require-ments on the ground model an be established by a well-known foring (see [3,Chapter 7℄) starting from any ground model, and are also true in L (see [2℄).De�nition 2.1. (1) We say A is a (�; g)-witness if � = f(�) > �0 and(�) A � [!℄�0 ,(�) if k < ! and f` : ! ! ! is injetive for ` < k then for someA0 � A of ardinality < � we have that for any A that is a �niteunion of members of A n A0fn : ^̀<k f`(n) 62 Ag is in�nite.(2) We say �M �-exempli�es A if(a) A is a (�; g)-witness,(b) �M = hMi : i < �i is �-inreasing and ontinuous, and !+ 1 �M0 and P(!) � Si<�Mi,



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 9() Mi � (H(�);2) is a model of ZFC� and jMij < � and (Mi j=jXj < �)) X �Mi,(d) �M � (i+ 1) 2Mi+1,(e) for i non-limit, there is Ai 2Mi suh that A\Mi = Ai,(f) if i < �, k < ! and f` 2 Mi is an injetive funtion from ! to! for ` < k, and k0 < !, A` 2 A nMi for ` < k0, thenfn : ^̀<k f`(n) 62 A0 [ � � � [Ak0�1g is in�nite.(3) We say �M leisurely exempli�es A if (a) to (f) above are ful�lled andadditionally;(g) � = supfi : Mi+1 j= \Ai+1 = �0"g:De�nition 2.2. (1) We say (P;A~ ) is a (�; �)-approximation if(�) P is a ... foring notion, jP j � �,(�) A~ is a set of P -names of members of ([!℄�0)VP , eah hereditar-ily ountable, and for simpliity they are fored to be pairwisedistint,() P \A~ is a (�; g)-witness."(2) If � = � we may write just �-approximation. If � = �1 we may omit it.We write (�; �)-approximation if it is a (�; �)-approximation for some�.(3) (P;A~ 1) ��app (P2;A~ 2) if:(a) (P`;A~ `) is a (�; �)-approximation.(b) P1 l P2,() A~ 1 � A~ 2 (as a set of names, for simpliity),(d) if k < ! and A0~ ; : : : ; Ak�1~ 2 A~ 2 n A~ 1 thenP2\ if B 2 ([!℄�0)V P1 ;f` 2 (B!)V P1 for ` < k are injetive, then(n 2 B : ^̀<k f`(n) 62 [̀<kA`~ ) is in�nite".Remark. We mean A~ 1 � A~ 2 as a set of names. It is no real di�erene if A~ is aP -name in 2.2(1) and if in (3) we have  A0;~ : : : ; Ak�1~ 2 A~ 2 n A~ 1.Claim 2.3. ��app is a partial order.



10 HEIKE MILDENBERGER AND SAHARON SHELAHProof. We hek (3) lause (d) of the de�nition. Let (P1;A~ 1) ��app (P2;A~ 2)and (P2;A~ 2) ��app (P3;A~ 3). Let k < !, f~ ` be P1-names of injetive funtionsfrom ! to ! . Let G � P3 be generi over V. So let A` 2 A~ 3[G℄ for ` <m. We assume that for ` < m0 � m we have that A`~ 2 A~ 2 and that thatfA`~ : ` < mg � A~ 3 n A~ 2. By the assumptions on P1 we have that B1 =�n < ! : V`<k f`(n) 62 SfA` : ` < m0g	 is in�nite. It belongs to V[G \ P2℄.Sine we have that (P2;A~ 2) ��app (P3;A~ 3) and fA`~ : ` 2 [m0;m)g � A~ 3 n A~ 2and B1; f0; : : : ; fk�1 2 V[G \ P2℄, by De�nition 2.2(3) lause (d) we are done.Claim 2.4. If h(Pi;A~ i) : i < Æi is a ��app-inreasing ontinuous sequene(ontinuous means that in the limit steps we take unions), then (P;A~ ) =(Si<Æ Pi;Si<Æ A~ i) is an ��app-upper bound of the sequene, in partiular, a(�; �)-approximation.Proof. The only problem is \(P;A~ ) is a �-approximation."Case 1: f(Æ) > �0. Let k < !, f~ ` be P -names of injetive funtions from! to ! . So for some i < Æ we have that hf~̀ : ` < ki is a Pi-name. LetG � P be generi over V. In V[G \ Pi℄, there is some A~ 0 � A~ suh that A~ 0 2([A~ i[G\Pi℄℄<�)V[G\Pi℄ as required inV[G\Pi℄ for hf~̀ [G\Pi℄ : ` < ki. We shallshow that A~ 0 is as required in V[G℄ for hf~̀ [G \ Pi℄ : ` < ki. So let A` 2 A~ [G℄for ` < m, w.l.o.g. A`~ 2 A~ , A` = A`~ [G℄. We assume that for ` < m0 � m wehave that A`~ 2 A~ i and that j < Æ is suh that fA`~ : ` < mg � A~ j. By theassumptions on Pi we have that B1 = �n < ! : V`<k f`(n) 62 SfA` : ` < m0g	is in�nite. It belongs to V[G \ Pi℄. Sine we have that (P;A~ i) ��app (Pj ;A~ j)and fA`~ : ` 2 [m0;m)g � A~ j n A~ i and B1; f0; : : : ; fk�1 2 V[G \ Pi℄, byDe�nition 2.2(3) lause (d) we are done.Case 2: f(Æ) = �0. W.l.o.g. Æ = !. So let k < !, p 2 P , p  \ for ` < k; f~̀ 2!! is injetive." By renaming we may assume w.l.o.g. that p 2 P0. For everym < ! we �nd hf m̀~ : ` < ki suh that(�)1 f m̀~ is a Pm-name for a P=Gm-name for an injetive funtion from ! to!,(�)2 if p 2 Gm � Pm, Gm generi over V and m < !, then for densely manyq 2 P=Gm we have that p Pm \q P=Gm V`<k(f~̀ � m = (f m̀~ [Gm℄) �m)".So easily p Pm \f m̀~ 2 !A is injetive" where A is a ountable set suh that!A is the set of all funtions from ! into a set of maximal antihains for P=Gmnames for funtions from ! to !. (Sine we have the ... it is possible to makesuh an identi�ation. Also in A~ m, A~ 0m, Ai~ suh an identi�ation is made.)and by the hypothesis on Pm we have that p Pm \there is A~ m 2 [A~ m℄<� as in2.2(1)". As Pm is ... and beause of the form of A~ m there is A~ 0m a set of



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 11< � names from A~ m suh thatif A0~ ; : : : ; Ak�1~ 2 A~ m n A~ 0m thenp Pm \(n : ^̀<k f m̀~ (n) 62 A0~ [ � � � [Ak0�1~ ) is in�nite."(�)So it is enough to show that A~ 0 = Sm<! A~ 0m is as required. Let k0 < !,A0~ ; : : : ; Ak0�1~ 2 A~ nA~ 0 and towards a ontradition assume that q  \fn < ! :V`<k f~̀ (n) 62 A0~ [ � � � [Ak0�1~ g � [0;m�℄." So for some m we have that q 2 Pm,A0~ ; : : : ; Ak0�1~ 2 A~ m n A~ 0m. Let q 2 Gm � Pm be Pm generi over V. In V[Gm℄we have that B0 = fn 2 ! : V`<k f m̀~ [Gm℄(n) 62 A0~ [Gm℄ [ � � � [ Ak0�1~ [Gm℄g isin�nite. So we an �nd n 2 B0 suh that n > m�. Now there are densely manyq0 2 P=Gm foring f~̀ (n) = f m̀~ (n), so w.l.o.g. q � q0 2 P=Gm, and we �ndp0 2 G suh that p � p0 2 P and p0  \f~̀ (n) = f m̀~ (n)": Contradition. �Claim 2.5. Assume that (P;A~ ) is a �-approximation.(1) If  \Q~ is Cohen or just < �-entred ", then (P �Q~ ;A~ ) is a �-approxi-mation, and (P;A~ ) ��app (P �Q~ ;A~ ).(2) If in addition P \hwn : n < !i is a set of �nite non-empty pairwisedisjoint subsets of !", and Q is Cohen foring, and �~ is the P � Q~ -name of the generi, then (P � Q~ ;A~ [ fSfwn : �~(n) = 1gg) is a �-approximation, and ��app-above (P;A~ ).Proof. (1) Let G � P be P -generi over V. We work in V[G℄. It is enough toprove that in (V[G℄)Q, A = A~ [G℄ is a (�; g)-witness. let Q = Sm2�Qm, Qmdireted, � < �. So let Q \f0~ ; : : : fk�1~ 2 !! are injetive." For eah m we �ndhf m̀ : ` < ki suh that(�)1 f m̀ 2 !!,(�)2 if q 2 Qm, m < ! then q 6Q \:V`<k f~̀ � m = f m̀ � m".For hf m̀ : ` < ki we have that A0m 2 [A℄<� as required in De�nition 2.1(1).Let A0 = Sm<�A0m, it is learly as required.(2) We prove lause (d) of 2.2(3). Let G � P be P -generi over V. Solet f0; : : : ; fk�1 2 V [G℄, B 2 ([!℄!)V[G℄ and we should prove that fn 2 B :V`<k f`(n) 62 Sfwm : �~[G℄(n) = 1gg is in�nite. As �~ is Cohen and the wnare pairwise disjoint and �nite and non-empty, this follows from a density ar-gument. �An ultra�lter D on ! is alled Ramsey i� for every funtion f : ! ! ! thereis some A 2 D suh that f � A is injetive or is onstant.



12 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 2.6. Assume that(a) V j= CH,(b) P = h(Pi;A~ i) : i � Æi is ��1app-inreasing and ontinuous and jPij � �1,() f(Æ) = �1 = jÆj,(d) Æ = supfi < Æ : Pi+1 = Pi � Cohen;A~ i+1 = A~ ig.(e) G � PÆ is PÆ-generi over V, and in V[G℄ we have A = Si<�A~ i[G℄.Then(1) In V[G℄ there is �M leisurely exemplifying A.(2) In V[G℄ there is a Ramsey ultra�lter D suh that for every f 2 !!whih is not onstant on any set in D and for all but ountably [< �℄many A 2 A we have that fn : f(n) 62 Ag 2 D. In short we say \D isA-Ramsey [(�;A)-Ramsey℄".Proof. (1) By renaming, w.l.o.g. Æ = �1. Let � � (2�0)+ and let �M0 = hM0i :i < !1i be inreasing and ontinuous and M0i � (H(�);2; <��), M0i ountableand �M0 � (i + 1) 2 M0i+1 and suh that P(!) � Si<!1 M0i . Let M1i = M0i [G℄,Ai = A~ i[G℄. For any i < !1 we shall �nd j(i) � i and Nj(i) suh that(�)M1j(i) � Nj(i) �M1j(i)+1;(�) Nj(i) j= jAj(i)j = �0;() Nj(i) 2M1j(i)+1;(Æ) AÆ \Nj(i) = AÆ \M1j(i);(") (f~ 2 [i<!1M0i ^ f~ [G℄ 2M1i \ !!)! f~ is a Pj(i)-name;(�)M1i j= jXj < �1 ) X �M1j(i):(�)
InM1i , hoose j = j(i) aording to the premise (d) suh that sup(M1i \!1) <j < !1 and Pj+1 = Pj�Cohen, A~ j+1 = A~ j and suh that (") and (�) are true. InM0j+1 we de�ne the foring notion Rj = fg : g is a funtion from some n < !into A~ j+1g. This is a variant of Cohen foring, and hene we an interpretRj as the Cohen foring in Pj+1. We let ĝ be generi and set Nj = M1j [ĝ℄.Now we take a lub C in !1 suh that (8� 2 C)(8� < �)(j(�) < �). We leth(i) : i < !1i be an inreasing enumeration of C. Finally we let for i < !1,Mi =M1(i) for limit i.We have to show that in V[G℄, �M �-exempli�es A. That is, aording to2.1(2):(a) A is an (�1; g)-witness,



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 13(b) �M = hMi : i < �1i is �-inreasing and ontinuous, and ! + 1 � M0and P(!) � Si<�Mi,() Mi � (H(�);2) is a model of ZFC� and jMij < �1 and (Mi j= jXj <�1)) X �Mi,(d) �M � (i+ 1) 2Mi+1,(e) for non-limit i there is Ai 2Mi suh that A\Mi = Ai,(f) if i < �1, k < ! and f` 2 Mi is an injetive funtion from ! to ! for` < k, and k0 < !, A` 2 A nMi for ` < k0, thennn : ^̀<k f`(n) 62 A0 [ � � � [Ak0�1o is in�nite.Item (a) follows from 2.4. The items (b) and () follow fromM0i � (H(�);2; <��),M0i ountable and �M0 � (i+ 1) 2M0i+1 and suh that P(!) � Si<!1M0i .The items (d) and (e) are lear by our hoie of Mi.To show item (f), suppose that i < !1 and f` 2Mi for ` < k and A` 2 AnMi.Then we have that f~̀ 2 V Pi and A` 2 AnAi (the latter holds by (Æ)) and Ai =A~ i[G℄ = A~ i[Gi℄ by our hoie of C. Hene we may use (Pi;A~ i) ��1app (P!1 ;A~ )and get from 2.2(3)(d) if k < ! and A0~ ; : : : ; Ak�1~ 2 A~ n A~ i thenP!1\ if B 2 ([!℄�0)V Pi ;f~̀ 2 (B!)V Pi for ` < k; then(n 2 B : ^̀<k f~̀ (n) 62 [̀<kA`~ ) is in�nite",so we get the desired property in V[G℄.(2) We work in V[G℄. We take hMi : i < !1i as in (1), and hoose byindution on i < !1 sets Bi suh that(�) Bi 2Mi+1,(�) j < i) Bi �� Bj ,() if i = j + 1 and f 2 Mj \ !! is injetive and A 2 A \ (Mi nMj), thenBi �� fn : f(n) 62 Ag 2 D,(Æ) if i is limit and f 2Mi\!! then for some n� we have that f � (Bi nn�)is onstant or f � (Bi n n�) is injetive.(") Bi is <��-�rst of the sets ful�lling (�) { (Æ).Now it is easy to arry out the indution and to show that D, the �lter gen-erated by fBi : i < !1g is as required. We use property (f) of �M in order toshow that requirement () is no problem. �



14 HEIKE MILDENBERGER AND SAHARON SHELAHClaim 2.7. Assume that in V(a) A is a (�; g)-witness,(b) D is a (�;A)-Ramsey,() QD = f(w;A) : w 2 [!℄<!; A 2 Dg, (w;A) � (w0; A0) i� w � w0 �w [A and A0 � A.Then QD \A is a (�; g)-witness.".Proof. For u 2 [!℄<�0 let Qu = f(u;A) : A 2 Dg. This is a direted subset andwe have that QD = SfQu : u 2 [!℄<�0g. So assume w.l.o.g. thatQD \f~̀ 2 !! is injetive for ` < k".For every u 2 [!℄<�0 we de�ne f ù 2 !(! + 1) as follows:f ù(n) = m if (9p 2 Qu)(p  f~̀ (n) = m);f ù(n) = ! if (8m):(9p 2 Qu)(p  f~̀ (n) = m):(
)Sine D is Ramsey [4℄ (without Ramsey but using memory [7℄) we have thatQD has the pure deision property: As usual we write pjj' if p  ' or p  :'and q �tr p i� q � p and q = (wq; Aq), p = (wp; Ap) and wq = wp.8p 2 QD9q �tr p8u 2 [!℄<�0 8` < k 8m 2 ! 8n 2 (! + 1)�(9q0 � q; q0jjf ù(n) = m)! (9s 2 q)(q[s℄jjf ù(n) = m�:Sine QD has pure deision and Qu is direted we have thatfor every u 2 !<! for every m1;m2 < ! there is some p 2 Qu suh thatp  \(8m < m1)min(m2; f~̀ (m)) = min(m2; f ù(m)):(�)For every u 2 [!℄<! and ` < k we an �nd gù 2 !! injetive, suh that iffn : f ù(n) < !g 2 D and (:(9A 2 D)f ù � A is onstant) then fn : f ù(n) =gù(n)g 2 D.We all u (v; n)-ritial if(�) u 2 [!℄<!;(�) ; 6= v � f0; : : : ; k � 1g;() ` 2 v ) f ù(n) = !;(Æ) fm : (8` 2 v)fu[fmg` (n) < !g 2 D;(") ` < k ^ ` 62 v ! fm : fu[fmg` (n) = f ù(n)g 2 D:(�)uv;n
For u (v; n)-ritial and ` 2 v note that limDhfu[fmg` (n) : m < !i =1.



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 15As D is Ramsey for some A = Au;v;n 2 D we have if ` 2 v then hfu[fmg` (n) :m 2 Ai is without repetition.So we an �nd for ` 2 v injetive funtions hu;v;n` 2 !! suh that fm :fu[fmg` (n) = hu;v;n` (m)g 2 D.For eah injetive funtion h 2 !! we have that Ah = fA 2 A : fn :h(n) 2 Ag 2 Dg is empty or at least of ardinality stritly less than �. LetA0 = SfAh : h = gù for some ` < h, u 2 [!℄<�0 or h = hu;v;n` where uis (v; n)-ritial and ` 2 v and ; 6= v � k g. So A0 � A is of ardinalitystritly less than � and it is enough to prove that if A0; : : : Ak0�1 2 AnA0 thenQ \fn : V`<k f~̀ (n) 62 A0 [ � � � [Ak0�1g is in�nite".Let A0; : : : ; Ak0�1 be given. Set B� = A0 [ � � � [Ak0�1. Towards a ontradi-tion we assume that p� 2 QD and n� < ! andp�  \(8n) n� < n < ! ! _̀<k f~̀ (n) 2 B�! ":Let M � (H(�);2) be ountable suh that the following are elements of M :p�, D, f~̀ for ` < k, A` for ` < k0, A0, hgù : u 2 [!℄<�0 ; ` < ki, hhu;v;n` : u 2[!℄<�0 ; ` 2 v; ; 6= v � ki.Let p� = (u�; A�). Let A� 2 [!℄! and A� � A� be suh that (8Y 2 D \M)(A� �� Y ) and min(A�) � sup(u�). It is obvious that u [ A� is generireal for QD over M , i.e.: f(u0; A0) 2 QD \M : u0 � u� [ A� � u0 [ A0g is asubset of a (QD)M -generi over M .As A0; : : : ; Ak0�1 2 A n A0 � A n S`<kAgu�` there is n� 2 [n�; !) suh that` < k ) gu�` (n�) 62 B�. LetU = fu : u� � u � u� [A�; u �nite, (8` < k)(f ù(n�) < ! ! f ù(n�) 62 B�g:Now learly u� 2 U . Choose u� 2 U suh that jf` : fu�` (n�) = !gj isminimal. If it is zero, we are done. So assume that is is not zero.We hoose by indution on i < ! ni suh thatni 2 A�;ni < ni+1;sup(u�) < ni:` < k ! fu�` (n�) = fu�[fnj : j<ig` (n�):(�)If we sueed, then u� [ fni : i < !g 2 M ould have served as A�,ontraditing the fat that u� [A� is generi. So for some i we annot hooseni. Let u4 = u� [ fnj : j < ig. Let v = f` < k : fm : fu4[fmg` (n�) 6=fu4` (n�)g 2 Dg � f0; : : : ; k � 1g. Let C = fm : (` 2 v ! fu4[fmg` (n�) 6=fu4` (n�)) and (` 62 v ! fu4[fmg` (n�) = fu4` (n�))g. So C 2 D and neessarily



16 HEIKE MILDENBERGER AND SAHARON SHELAH` 2 v ^ m 2 C ) fu4[fmg` (n�) < fu4` (n�) = !. So u4 is (v; n�)-ritial.Hene C1 = fm : V`2v hu4;v;n�` (m) 62 B�g 2 D. Choose ni 2 C1 \ C \M�large enough. If v = ;, it an serve as ni and we have a ontradition. Reallthat hu4;v;n�` (ni) = fu4[fnig` (n�) < 1. If v 6= ;, then u4 [ fnig ontraditsthe hoie of u�, beause we had required that jf` : fu�` (n�) = !gj is minimal.�Later we shall use Claim 1.6 in order to ful�l premise (3) of the followingClaim 2.8, whih is together with 2.3, 2.4, 2.5, 2.6 the justi�ation of the singlesteps of our �nal onstrution of length �2. Claim 2.8 serves to show that ertain(and in the end we want to have: all) o�nality witnesses in intermediate ZFCmodels are not o�nality witnesses any more in any foring extension.Claim 2.8. Assume that V, h(Pi;A~ i) : i � Æi are as in 2.6, and(1) PÆ \hKi~ : i < !1i is a o�nality witness and ff 2 Sym(!) : (81n)f(n) =ng � K0~ ".(2) Let, e.g., E0 = f(n1; n2) : (9n)(n1; n2 2 [n2; (n+1)2)g, A = Sf[(2n)2; (2n+1)2) : n 2 !g. Assume that in VPÆ , SE0;A is not inluded in any Ki.(3) Æ = supf� : Q�~ is Cohen;A~ � = A~ �+1g.Then there is a PÆ-name Q~ suh that(�) (PÆ ;A~ Æ) ��app (PÆ �Q~ ;A~ Æ),(�) PÆ \Q~ � Q0E0~ (where Q0E0 is from 1.7).() PÆ�Q~ \g~ = Sff~ : (p; f~ ) 2 PÆ � Q~ g is a permutation of ! and forarbitrarily large i < !1, hg;Ki~ iSym(!) \ Sym(!)V[PÆ ℄ 6= Ki~ ".Proof. As in 2.6, we assume w.l.o.g. Æ = !1. We an �nd in V, �g� = hg�i~ :i < !1i suh that P!1 \g�i~ 2 Sym(!) nKi~ , g�i~ 2 SE0;A, g�i~ � (! n A) = id and8n 2 A, g�i~ (n) 6= n and g�0~ 2 M0 � (H(�;2), M0 ountable". In V we nowhoose by indution on i < !1 Mi~ ; Ni~ ; pi~ ; �i suh that(a) hMj~ : j � ii is a sequene od VPÆ -names as in 2.6,(b) �PÆ �Q;A~ ; �g�~ ; hKi~ : i < !1i 2M0~ ,() Ni~ = f�~ 1;n : n 2 !g is a ountable P�i -name suh that P�i \Mi[GP�i~ ℄ �Ni � (H(�)V[P�i ℄;2); jjNijj = �0; Ni j= ZFC�",(d) pi~ 2 Q0E0 is hereditarily ountable and a P�i-name of a member Q0E0 ,P�i hpj~ : j � ii is ��-inreasing and 2 Ni~ ; pi~ 2 Ni~ ,(e) in VPÆ we have Mi~ [GÆ℄ =Mi and hNj~ : j � ii 2Mi+1, sup(Mi \!1) ��i 2Mi+1, Q�i~ is Cohen and A�i = A�i+1,



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 17(f) if I~ is a P�i-name of a predense subset of Q0E0(hpj~ : j < ii), then some�nite J(I~) � I~ is predense above pi~ in Q0E0(hpj~ : j � ii) in the universeVP�i+1 .At limit stages i we take for Mi the union of the former Mj . Otherwise hooseMi as required. Next we hoose �i suh that sup(Mi \ !1) � �i < !1 and Q�i~is Cohen and A~ �i = A~ �i+1 . We work in V[P�i ℄. We set N0i = Mi[GP�i ℄. Wenow interpret the Cohen foring as R0 �R1 �R2 whereR0 = fh : (9n < !)h : n! P(!)Migordered by inlusion. In N1i = N0i [GR0 ℄ =Mi[GP�i ℄[GR0 ℄ we letR1 = f(n; q) : n < !; q 2 Q0E0(hpj : j < ii)g;ordered by (n1; q1) � (n2; q2) , n1 � n2 ^ q1 � n = q2 � n ^ q1 � q2.Sine (Q0E0)N1i is ountable we have that R1 is Cohen foring. Let N2i =N1i [GR0 ; GR1 ℄ =Mi[GP�i ℄[GR0 ℄[GR1 ℄, qi = Sfq : (n; q) 2 GR1g.Claim. If I 2 VP�i is a predense subset of Q0E(hpj : j < ii) then for some �niteJ � I we have: For every �p� suh that �p� � i = hpj : j < ji and qi � �p� wehave: J is predense above �p� in Q0E0(hpj : j < ii).Proof. This is the stronger version of 1.8(3)(b), the one starting with \in fat: : : ". �So learly qi 2 (Q0E0)V[P�i+1℄, Vj<i pj �� qi.We an �nd in N2i a sequene hwik : k < !i and h�i suh that
(�)
8>>>>>>>>>>>><>>>>>>>>>>>>:

k1 6= k2 ) wik1 \ wik2 = ;;wik is inluded in some E0-equivalene lass;wik � ! n dom(qi);8n9m�����m=E n dom(qi) nSk2! wik���� > n�;h�i 2 Sym(!);h�i maps fn=E0 : n 2 Ag onto fwik : k < !gmore preise, ĥ�i does this, where for b � !, ĥ�i (b) = range(h�i � b):LetR2 = (f : (9m < !) f is a permutation of [k<mwik mapping wik into itself!) ;ordered by inlusion. In N3i = N2i [GR2 ℄ let f�i = SGR2 so N3i = N2i [f�i ℄.So N3i 2 VP�i+1, and hene is a P�i+1-name. As P�i+1 has the ..., we anassume that this name is hereditarily ountable. Now N3i \ !1 = N0i \ !1 =



18 HEIKE MILDENBERGER AND SAHARON SHELAHMi[G�i ℄ \ !1 = Æi < !1, hene N3i \ Sym(!)V[PÆ℄ � KÆi . Letf�i = (h�i Æ g�Æi Æ (h�i )�1 � [k<!wik) Æ f�i :It is still generi for R2 over VP�i [GR0 ; GR1 ℄. We set N4i = N3i [f�i ℄, q0i = qi[f�i .Now (N4i ; q4i ) are as required and hoose by taking P!1 -names (Ni~ ; pi~ ) in V forthem:Item (�) of the onlusion is seen as follows: We have for i < !1 thatVP!1 j= \Q0E0~ (hpj~ : j < ii) is ...". Hene we have by 2.5 that (PÆ;A~ Æ) ��app(PÆ�Q0E0~ (hpj~ : j < ii);A~ Æ), and (PÆ�Q0E0~ (hpj~ : j < ii);A~ Æ) ��app (PÆ�Q0E0~ (hpj~ :j < ki);A~ Æ) for i < k 2 !1. Sine Q~ = Q0E0~ (hpj~ : j < !1i) = Si<!1 Q0E0~ (hpj~ :j < ii) we an apply 2.4.Item (�) of the onlusion follows from the hoie of Q~ .For item (): Fix i. Note that Æi � i. We have in VP!1 that f�i 2 KÆi =KÆi~ [G!1 ℄. We have that q0i 2 (Q0E0)VP�i andq0i P!1�Q~ g~ � [k2!wik = f�i~ � [k2!wikand hene q0i P!1�Q~ g�Æi � A = (h�i )�1 Æ g~ Æ (f�i )�1 Æ (h�i ) � A;(�)and thus, sine gÆi � A ontains the same information as gÆi sine the latter isin SE0;A, the equation � gives a witness in hg;KÆi~ iSym(!) \ Sym(!)V[P!1 ℄ nKÆi~and hene shows the inequality laimed in (). �In order to organize the bookkeeping in our �nal onstrution of length �2we use }(S21) in order to guess the names hKi~ : i < !1i of objets that we donot want to have as o�nality witnesses. We reall S21 = f� 2 !2 : f(�) = �1g.A subset of !2 is alled lub (losed and unbounded) in !2, if it is losed undertaking suprema in the ordinals and if it is unbounded in !2. A subset ist alledstationary, if its omplement is not a superset of a lub set.For E � !2 being stationary in !2 we have the ombinatorial priniple }(E):There is a sequene hXÆ : Æ 2 Ei suh that for every X � !2 the set fÆ 2 E :XÆ = X \ Æg is stationary in !2.For more information about this and related priniples and their relativeonsisteny we refer the reader to [2, 1℄.Conlusion 2.9. Assume that 2�0 = �1 and that }S21 . Then for some foringnotion P of ardinality �2 in VP we have that g = �1 and f(Sym(!)) = b = �2.



THE RELATIVE CONSISTENCY OF g < f(Sym(!)) 19Proof. Let H(�2) = Si<�2 Bi, Bi inreasing and ontinuous, Bi+1 � [Bi℄��0and hXi � Bi : i 2 S21i is a }S21 -sequene. We hoose by indution on i < �2(Pi;A~ i; di) suh that(�) (Pi;A~ i) is an �1-approximation, jPij � �1,(�) (Pi;A~ i) is ��app-inreasing and ontinuous,() di is a funtion from A~ i to !1 (here we use that A~ i is a set of Pi-namesthat are fored to be distint),(Æ) if i < �2 and hwk~ : k < !i is a Pi-name and Pi hwk~ : k < !i arenon-empty pairwise distint and  < !1 then for some j 2 (i; !2) wehave that Pj+1 for some in�nite u � ! and some A~ 2 A~ j+1 we havethat Sk2uwk � A~ 2 A~ j+1 ^ dj+1(A~ ) = ,(") for arbitrarily large i < !2 we have that Pi \Qi = QDi and Di is aRamsey ultra�lter",(�) if i 2 S21 and Pi � Bi, Xi ode of the Pi-name hKj~ : j < !1i andPi \hKj~ : j 2 !1i is a o�nality witness of Sym(!)V[Pi℄ and ff 2Sym(!)V[Pi℄ respets E0 and � id!nA0g is not inluded in any Kj~ ",then Pi+1 \ for some f 2 Sym(!) for arbitrarily large j < !1 we havehKj~ [ ffgiSym(!) \ (Kj+1)Vi~ 6= (Kj)Vi~ ".Can we arry out suh an iteration? We freely use the existene of limitsfrom Claim 2.4 and that ��app is a partial order 2.3. The step i = 0 is trivial.So we have to take are of suessor steps.If i = j + 1 and j 62 S21 then we an use 2.5 to de�ne (P�;A~ �), and takingare of lause (Æ) by bookkeeping.If i = j + 1 and j 2 S21 and the assumption of lause (�) holds, we apply 2.8to satisfy lause (�), using Q0�(hf` : ` < !1i) from there.If i = j+1 and j 2 S21 but the assumption of lause (�) fails (whih neessarilyours stationarily often), we apply 2.6 and 2.7.Having arried out the indution we let P = S�<!2 P�, A~ = S�<!2 A~ �,d = S�<!2 d�. So (P;A~ ) is an (�2;�1)-approximation. For  2 !1 we setA~ hi = fA~ 2 A~ : d(A~ ) = g. Now learly VP�2 j= 2�0 = 2�1 = �2. Let G � Pbe generi.We show: P g = �1. For Æ < �1 we have that A~ hÆi[G℄ is groupwise denseby lause (Æ), and always g � �1. So it is enough to show that the intersetionof the A~ hÆi[G℄ is empty. Suppose that it is not, i.e. that there is some B 2 [!℄!suh that for Æ < !1 there is some AÆ 2 A~ hÆi[G℄ suh that for all Æ, B �� AÆ.Now let h : ! ! B be an injetive funtion. But now we have a ontradition to\(P;A~ ) is a (�2;�1)-approximation (see 2.3) and A~ is a (�1; g)-witness (2.1(b)).



20 HEIKE MILDENBERGER AND SAHARON SHELAHWe show that P b = �2. This follows from lause (").Finally we show that  f(Sym(!)) > �1. Suppose that hKj~ [G!2 ℄ : j < !1i isa o�nality witness inV[G!2 ℄. Then there is a lub subset C in !2 suh that fori 2 C we have that hKj~ [Gi℄ : j < !1i is a o�nality witness in V[Gi℄. By }(S21)there is some i 2 S21 suh that Xi is a ode of a Pi name of hKj~ [Gi℄ : j < !1i.By (the analogues of) Claims 1.4 and 1.6 for Q0E and beause of b = �2 andbeause of lause (�) we get that the sequene hKj~ [Gi℄ : j < !1i does notlift to a o�nality witness in V[G!2 ℄ suh that for all j < !1 we have thatKj~ [Gi℄ = Kj~ [G!2 ℄\V[Gi℄. Hene hKj~ [G!2 ℄ : j < !1i was no o�nality witnessin V[G!2 ℄. �Referenes[1℄ Uri Abraham, Saharon Shelah, and Robert Solovay. Squared diamonds. Fund. Math.,78:165{181, 1982.[2℄ Keith Devlin. Construtibility. Omega Series. Springer, 1980.[3℄ Kenneth Kunen. Set Theory, An Introdution to Independene Proofs. North-Holland,1980.[4℄ Adrian Mathias. Happy families. Ann, Math. Logi, 12:59{111, 1977.[5℄ Saharon Shelah. Non-elementary proper foring notions. Journal of Applied Analysis,[Sh:630℄, submitted.[6℄ Saharon Shelah. Proper and Improper Foring. Springer, 1997.[7℄ Saharon Shelah. Tree forings. preprint [Sh707℄, 2000.[8℄ Simon Thomas. Groupwise density and the o�nality of the in�nite symmetri group. Arh.Math. Logi, 37:483 { 493, 1998.Heike Mildenberger, Saharon Shelah, Institute of Mathematis, The HebrewUniversity of Jerusalem, Givat Ram, 91904 Jerusalem, IsraelE-mail address: heike�math.huji.a.ilE-mail address: shelah�math.huji.a.il


