
PROPER TRANSLATION

HEIKE MILDENBERGER AND SAHARON SHELAH

Abstract. We continue our work on weak diamonds [11]. We show that
2ω = ℵ2 together with the weak diamond for covering by thin trees, the weak
diamond for covering by meagre sets, the weak diamond for covering by null
sets, and “all Aronszajn trees are special” is consistent relative to ZFC. We
iterate alternately forcings specialising Aronszajn trees without adding reals
(the NNR forcing from [14, Ch. V]) and < ω1-proper ωω-bounding forcings
adding reals. We show that over a tower of elementary submodels there is a
sort of a reduction (“proper translation”) of our iteration to the c.s. iteration
of simpler iterands. If we use only Sacks iterands and NNR iterands, this
allows us to guess the values of Borel functions into small trees and thus
derive the mentioned weak diamonds.

1. Introduction

The motive is a generalisation of diamond. We generalise the result of [11] to
get the consistency of the weak diamond for the relation of covering a real by
a thin tree together with 2ℵ0 > ℵ1 and “all Aronszajn trees are special”. The
proof of the analogous result with CH in [11] used that no reals are added. Now
the main technical work is to show that a combination of NNR forcings and
adding certain innocuous reals does not destroy certain weak diamonds. (There
is, of course, a match between the two “certain”.) Since the NNR iterands have
size 2ℵ1 , we will translate relevant parts of these iterands into the real numbers
in order to guess the values of Borel functions with hereditarily countable argu-
ments. Such a translation procedure is also established for countable support
iterations of NNR iterands and other < ω1-proper ωω-bounding iterands. We
call this procedure, which is the core of the current work, proper translation.

We recall the definition of a weak (or parametrised or generalised) diamond.
Let A and B be sets of reals and let E ⊆ A × B. Here we work only with
Borel sets A and B and absolute E, so that the interpretation of the notions
in various ZFC models is absolute. The set A carries the topology inherited
from the reals and 2α carries the product topology. A function F : 2<ω1 → A
is called a Borel function if each part F � 2α, α < ω1, is a Borel function. The
complexity of the set of ℵ1 parts can be high.
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Definition 1.1. (Definition 4.4. of [12]) Let ♦(A,B,E) be the following state-
ment: For every Borel map F : 2<ω1 → A there is some g : ω1 → B such that
for every f : ω1 → 2 the set

{α ∈ ω1 : F (f � α)Eg(α)}

is stationary. Commonly, if E is not the equality ♦(A,B,E) is called a weak
or a parametrised or a generalised diamond.

In this paper we describe a technique that allows to translate from one proper
forcing to a simpler one. We apply this technique in order to prove:

Theorem 1.2. Let r : ω → ω such that lim r(n)
2n = 0. Then the conjunction

of the following weak diamonds together with 2ω = ℵ2 and with “all Aronszajn
trees are special” is consistent relative to ZFC:

(a) ♦(2ω, {lim(T ) : T ⊆ 2ω perfect ∧ (∀n)|{η � n : η ∈ lim(T )}| ≤ r(n)},∈),

(b) ♦(R, Fσ null sets,∈),

(c) ♦(R, Gδ meagre sets,∈).

Remarks: a) The first weak diamond implies the other two, since there is
a Borel reduction of the corresponding relations (see [12, Prop. 2.8]). So we
only have to work with the relation in item (a) of the theorem, which we call
“covering by thin trees”.

b) We must dash some hope that our result might help to answer Juhász’
question as to whether the club principle (see, e.g., [6, Second page]) implies
the existence of a Souslin tree. Since our forcing has the Sacks property, in the
extension cof(M) = ℵ1. By [6, Theorem 6] the club principle does not hold in
the extension.

We work with a nep (non-elementary proper) forcing as the outcome of
our translation. In particular, its iterands Q∗ will be subsets of ωω such
that (Q∗,≤Q∗ ,⊥Q∗) is Π1

1-definable. The behaviour of the large NNR forcing
(a condition has already size ℵ1) over countable models above generic con-
ditions is “faked”, as in [15]. That is, we work with the original forcing P
and another “simpler” forcing P∗ that knows parts of P. The relevant parts
are: Let χ > 2|P| be a regular cardinal. Let H(χ) denote the set of sets of
hereditary cardinality strictly less than χ and let <χ be a well-order of H(χ).
We use the well-order for inductive constructions. Given a countable model
M = (M,∈ ∩M2, <χ ∩M2) ≺ (H(χ),∈, <χ) and a condition p ∈ P∩M , we es-
tablish a Borel function that computes pairs (q, g) with the following properties:
q is a (M,P)-generic condition and q ≥ p. The function g : P ∩M → P∗ ∩M
is a reduction. If q ∈ G, then the translation preserves the incompatibility
of two conditions and dense subsets I ∈ M in both directions and hence is
particularly useful for evaluating P-names in M for objects in M as P∗-names.
For iterating this translation procedure we work with towers of models as in
Def. 2.1 and with < ω1-properness and with the known completeness systems
for the NNR forcing. Our particular way of finding completely generic filters
for the NNR iterands uses that all former iterands are ωω-bounding. After the
translation procedure we guess thin trees. In order to keep the outcome of the
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translation in countable iteration lengths, we use that the iterands in P∗ are
non elementary proper and that hence all P∗-names for reals can be seen in a
sub-iteration of countable length, as proved in [16, Section 3].

For example we think of

P = 〈Pα,Q
˜
β : α ≤ γ(k), β < γ(k)〉

being a countable support iteration of proper iterands as in Definition 1.3. We
do not try the more involved ones as in [14, Ch. VIII; Ch. XVIII, §23] and
in [13]. The forcing notion P∗ will be just the iteration of the oddly indexed
iterands. For specialising all Aronszajn trees, we use γ(k) = ω2. However, the
translation procedure works at any iteration length.

Definition 1.3. (a) In the following P2γ = 〈Pα,Q
˜
β : α ≤ 2γ, β < 2γ〉

is an alternation of forcings for the even stages Q2α, α < γ, and forcings
of the odd stages Q2α+1, α < γ, of the following kind:

Even Stages: The iterand Q2α is an NNR forcing QT as in Def. 2.7 or
in [14, Ch. VI, §5] for specialising an Aronszajn tree T (whose name is
given by suitable book-keeping).

Odd stages: The iterand Q2α+1 is a < ω1-proper ωω-bounding nep
(Def. 2.4) forcing. In our special case we have that the set of conditions
is a subset of the real line such that (Q,≤Q,⊥Q) is Π1

1-definable.

(b) In Section 6, for the weak diamond, we require in addition to the properties
in (a) for the odd iterands Q that they have the Sacks property, i.e., for
every q ∈ Q for every Q-name f

˜
for a member of ω2 for every r : ω → ω

with r(n) → ∞ there is a T ∈ V and a q′ ≥ q such that (∀n)(|T ∩ n2| ≤
r(n)) and q′ 
Q (∀n)(f

˜
� n ∈ T ).

(c) For enumerating all Aronszajn trees in an iteration of length ω2, we require
in addition to item (a), that the odd iterands have the ℵ2-p.i.c. (this will
be explained at the end of Section 2).

For proper forcing, not adding a real is the same as not adding a new sequence
of ordinals (or of members of V), and the description “not adding new reals”
is much more common. Since the evenly indexed iterands do not add reals (in
an iterable manner, there is a completeness system, so that also in limit steps
there are no new reals) and since the oddly indexed iterands have countable
conditions and since all the iterands are proper one could hope that P2γ from
Def. 1.3 is equivalent to a forcing in which every condition q ∈ Q2α+1 has a

P∗,2α+1 = 〈Q
˜

2β+1 : β < α〉-name.

This will indeed be true in our special case. For the proof, we use specific
features of the NNR forcing there is a countably complete completeness system
that is parametrised by dominating functions. In addition we use the fact that
the oddly indexed iterands (and hence, by [1, Theorem 3.5] or [14, Ch. VI]) the
initial segments of the iteration are ωω-bounding.

In the core of the paper we show that the part P∩M that is compatible with
the computed (M,P)-generic condition is equivalent to the simpler iteration

P∗ = 〈P∗,2α+1,Q
˜

2β+1 : α ≤ γ(k), β < γ(k)〉.
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The sequence of Borel functions 〈Bγ : γ ∈ otp(M ∩ γ(k))〉 that we are
going to establish translates with the help of additional arguments 〈ηγ : γ ∈
otp(M ∩ γ(k)) + 1〉 the given iteration M ∩ P to M ∩ P∗. In our application,
P∗ is just a cs iteration of Sacks forcing. In [11], where we force only with
NNR forcing, the Borel functions had values just in the ground-model. This
was possible since no reals were added. Now, when we add reals, the outcome
of the proper translation gives us P∗-names for the reals that are the arguments
of the function F in the weak diamond.

The Borel computation of completely generic conditions is related to the
apparatus of completeness systems for proper forcings not adding reals in the
following way: If D(M,P, p) = {Aη : η ⊂ Mk} and Aη ⊆ Gen(M,P, p) are
parts of a completeness system and at least one Aη ⊆ Gen+(M,P, p) then our
parameter η is one of these very good η’s and with the help of a well-ordering <χ
on H(χ) the on step Borel function B0,1,0(η,M,P, p) will give an upper bound
of a definable member of such an Aη ⊆ Gen+(M,P, p). All the symbols about
the completeness systems are explained in [14, Ch. 7] and will not be used here.
Note that in this setting P is just one iterand. In the current work we work
with Borel functions for iterations and we compute (only) generic conditions.

An analogous computation of generic conditions will also be performed for
the iterated forcing. To find P∗-names of the generics of the NNR forcing over
a countable tower of models 〈Mα : α ∈ otp(γ(k) ∩M0) + 1〉 we use a function

which computes with the help of η̄ ∈ otp(M0∩γ(k))(ωω) that is ≤∗-increasing fast
enough (M̄,Pγ(k), p)-generic conditions and P∗,γ(k)-names for these.

In order to get a weak diamond in the forcing extension we use the “invari-
ance”, that the proper translation commutes with the Mostowski collapse, so
that in the end only hereditarily countable sets will be guessed, namely the
collapses of (M̄,P, p,<χ, β̄). For this purpose, we use the original diamond in
the ground-model. In Section 6, we apply the translation procedure to an iter-
ation of NNR forcing and Sacks forcing, and show that the result of the proper
translation and the application of any Borel function onto it is covered by a
thin tree. For this, we use that in this special case the outcome of the proper
translation has the Sacks property, that is, can be covered by a thin tree in
the ground-model. In our imitation of Lemma 3.11 of [11], we use that there
is a Laver name for these thin trees. By the results of [16, Section 3] for nep
forcings, the P∗-name of the generic given by the Borel function is equivalent
to a name in the iteration of Sacks forcing of length otp(M ∩ ω2) for a suitable
countable model M . By the Sacks property there is a thin tree in the ground
model that covers this Sacks name that depends on η̄ and on q. With the help
of Laver forcing now a bit thicker still thin tree is found that serves for ≤∗-
cofinally many η̄’s at once. The guessing function gF in the weak diamond will
be a suitable enumeration of the possible second thin trees and not even depend
on F ∈ VPω2 . This leads to the weak diamonds for covering by thin trees, by
meagre sets and by Lebesgue null sets. The chain condition and the reflection
properties of our iterated forcing yield: if there is a function gF witnessing the
weak diamond, then this object of size ℵ1 is in an initial segment of the ex-
tension after the appearance of F . In Section 6 we show that one function g
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works for all old and new Borel F . Thus we get a weak diamond with switched
quantifiers.

We follow the Israeli convention that the stronger forcing condition is the
larger one. We assume that each poset P has a weakest element and denote it
by 0P. We write p ⊥ q if p and q are incompatible, that is 6 ∃r(r ≥ p ∧ r ≥ q).

Definition 1.4. See [9, Def. 7.1] Let (P,≤P) and (Q,≤Q) be two notions of
forcing. A function i : P → Q is called a complete embedding if it has the
following properties

(1) p1 ≤P p2 implies i(p1) ≤ i(p2),

(2) p1 ⊥ p2 iff i(p1) ⊥ i(p2),

(3) (∀q ∈ Q)(∃p ∈ P)(∀p′ ≥P p)(i(p
′) 6⊥ q).

Iff there is a complete embedding then there a surjective function π : Q→ P,
called a reduction or a projection, such that

(1) q1 ≤Q q2 implies π(q1) ≤ π(q2), π(0Q) = 0P,

(2) (∀q ∈ Q)(∀p′ ≥P π(q))(∃q′ ≥ q)(π(q′) = p′).

In an iterated forcing 〈Pα,Q
˜
β : β < γ, α ≤ γ〉, for α ≤ β ≤ γ there are the

projections π : Pβ → Pα, π(p) = p � α. These satisfy the following strengthening
of property (2):

(2’) (∀q ∈ Q)(∀p′ ≥P π(q))(∃q′ ≥ q)(π(q′) = p′ ∧ ∀r(r ≥ q ∧ π(r) ≥ p′ → r ≥
q′)). Such a q′ is denoted by q + p′ or q ∪ p′.

If the identity is a complete embedding, then P is called a complete suborder
of Q, written PlQ. In this situation, P-names are Q-names at the same time.
In iterations 〈Pα,Q

˜
β : α ≤ γ, β < γ〉, for α < β, Pα l Pβ and (2’) holds. If

q1 ⊥ q2 implies π(q1) ⊥ π(q2) (this is now a “trivial” projection [1], since its
inverse is a dense embedding) then Q-names can be mapped to P-names by
just mapping the weights in the names from Q to their projections. We will use
such a map from the set of P-names in M for members of Q

˜
that are compatible

with an (M,P ∗Q
˜

)-generic condition to the set of P∗-names for members of Q
˜

.

The paper is organised as follows: In Section 2 we recall the NNR iterands,
in Section 3 we describe the theoretical framework of proper translation. In
Section 4 we show that our particular examples, that is NNR forcing alternated
with some < ω1-proper ωω-bounding iterands with Π1

1-definable (Q,≤Q,⊥Q),
allow proper translation in the successor steps of an iteration. In Section 5 we
prove that the translation procedure can be carried over limit steps in countable
support iterations if the initial segments allow proper translation. In Section 6
we prove the weak diamonds for forcings whose outcome of the proper transla-
tion is a nep forcing with the Sacks property.

2. The iterands

In this section we recall some definitions and the NNR iterands.

A condition q ∈ P is (M,P, p)-generic if q ≥ p and for every P-generic filter
G over V with p ∈ G, for every I ∈ M that is dense in P (seen from M or

from V, if M ≺ (H(χ),∈) for a χ > 2|P|, this is the same) q 
 I ∩G
˜
6= ∅. We
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write G
˜

for a canonical name for the P-generic filter. In general, q is not in M .
However often it is a subset of M or an element of a small extension of M . If
P has the c.c.c. then every condition p ∈ P ∩M is (M,P)-generic.

Remark. Every Axiom A forcing (for a definition see, e.g., [4]) is < ω1-proper,
and Ishiu [7] showed the converse.

Definition 2.1. Let χ > 2|P| be a regular cardinal. Let <χ be a well-ordering
of H(χ). We call 〈Mi : i < α〉 a tower of elementary submodels for P and we
call α the height of the tower, if the following holds: P ∈ M0 and for i < α,
Mi is countable and (M,∈, <χ) ≺ (H(χ),∈, <χ). Here, on the M -side, we just
take the inherited relations ∈ and <χ. Let P ∈ M0 and let 〈Mi : i ≤ α〉 be
an increasing sequence such that 〈Mj : j ≤ i〉 ∈ Mi+1 and for limit ordinals
j, Mj =

⋃
i<jMi. We also work with expansions of (H(χ),∈, <χ). Expanded

towers (M̄,P, q0, p) stand for towers of expansions (Mi,∈, <χ,P, q0, p), where
all the additional symbols are constants with interpretations in M0.

Definition 2.2. P is α-proper if the following holds: Let 〈Mi : i ≤ α〉 be a
tower for P. Then for every p ∈ P ∩M0 there is a q ≥ p that is (Mi,P, p)-
generic for all i ≤ α. We abbreviate “(Mi,P, p)-generic for all i ≤ α” by
(M̄,P, p)-generic. We write “< γ-proper” for “α-proper for every α < γ”.

Since the towers are continuous, for limit α, 〈Mi : i < α〉-genericity is
equivalent to 〈Mi : i ≤ α〉-genericity. For non-limit α, say α = α′ + 1, any
〈Mi : i < α〉 generic condition in Mα can be strengthened to an 〈Mi : i ≤ α〉-
generic condition. However, for indecomposable α the existence of 〈Mi : i ≤ β〉-
generic conditions for any β < α does not necessarily imply that there is an
〈Mi : i ≤ α〉-generic condition.

Definition 2.3. A notion of forcing P is called ωω-bounding if for all p ∈ P
for all P-names f

˜
for functions in ωω there are a q ≥P p and an g ∈ V ∩ ωω

such that q 
P f
˜
≤∗ g.

The words “non-elementary proper” (and their acronym “nep”) are used for
a family of definitions [15]. For our purposes, the following instance will suffice:

Definition 2.4. A notion of forcing is nep if (P,≤P) is proper and P ⊆ ωω and
P, ≤P and ⊥P have Π1

1-definitions.

Usually we write just P instead of (P,≤P). In our application, we use that
Sacks forcing is nep and the following important property of nep forcings proved
by Shelah and Spinas [16, Section 3]:

Theorem 2.5. Let P = 〈Pα,Q
˜
β : α ≤ γ, β < γ〉 be a cs iteration of nep

iterands. Then every P-name for a real has an equivalent 〈Q
˜
α : α ∈ a〉-name

for a countable a ⊆ γ (which is the order type of a closure inside a countable
elementary submodel of the name under all arguments where its conditions are
not trivial).

We will use this theorem on the P∗-side. The iterands need not have iden-
tical definitions in general, however, in our case, each of them is just Sacks
forcing. Now we recall the partial order QT that is also known as “the NNR
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forcing”. These forcings for specialising an Aronszajn tree T without adding
reals are presented in [14, Chapter V, Section 6]. We take the version from
there. A slightly different version (where the side conditions are not just collec-
tions of finite subsets of the Aronszajn tree, but certain partial functions from
the tree into the rational numbers) is presented in [2] and in [11, Section 2].
It is known that these forcings are < ω1-proper and are D-complete for a sim-
ple ℵ1-completeness system D, which guarantees that their countable support
iterations do not add reals, [14, Theorem V.7.1].

We will compute completely generic (Def. 2.13) conditions for the NNR
iterands and interleave forcings that do add reals. After one step of adding
reals, so in our setting after Q0 ∗Q1

˜
= QT ×Q1, we shall work with names for

completely generic conditions. More general, in the forcing P∗QT
˜

there will be
P-names for completely Q

˜
T-generic conditions, for a < ω1-proper ωω-bounding

P. This is crucial for the successor step of the proper translation.

From now until the end of the current section, Q is the set of rational
numbers. Later, it will again be a forcing. Recall, a specialisation of an
Aronszajn tree T = (ω1, <T) is a function f : ω1 → Q such that for any
s, t ∈ ω1, s <T t → f(s) < f(t). We call such a function monotone. Now
we work with monotone functions f , that specialise only a part of T, namely
the union of countably many of its levels, so that the indices of the levels form
a closed set C. We call such a pair (f, C) an approximation. For α < ω1 let
Tα = {y ∈ T : otp({x ∈ T : x <T y}, <T ) = α} denote the α-th level of T.
For x ∈ Tα and β < α we let xdβ be the y ∈ Tβ such that y <T x. For making
the notation easier, we consider only Aronszajn trees T whose α-th level, Tα, is
[ωα, ω(α+1)). This is no loss of generality since specialising all these Aronszajn
trees suffices. Moreover we stipulate that every node in an Aronszajn tree has
infinitely many immediate successors. A specialisation of a club set of levels of
an Aronszajn tree gives rise to a total specialisation.

Definition 2.6. (See [14, Chapter V, Section 6])

(1) An approximation is a pair (f, C) such that there are a countable ordinal α
such that C ⊆ α+1 is a closed set with α ∈ C and such that f :

⋃
i∈C Ti →

Q is a partial specialisation function. The ordinal α is called last(f). We
say “(f2, C2) extends (f1, C1)” and write (f1, C1) ≤ (f2, C2) iff f1 ⊆ f2

and C1 ⊆ C2 and (C2 \ C1) ∩ (
⋃
C1) = ∅.

(2) We say that a finite function h : Tα → Q bounds an approximation f with
last(f) = α iff ∀x ∈ dom(h), f(x) < h(x). More generally, if β ≥ α =
last(f), then h : Tβ → Q bounds f iff ∀x ∈ dom(h)(f(xdα) < h(x)).

A forcing condition is an approximation together with a countable set Ψ of
T-promises. This set functions as a side-condition and ensures that the forcing
and also all of its countable support iterations do not add new reals. In the
current work, this property is not so decisive, since adding some mild (i.e.,
ωω-bounding with the Sacks property) reals would not render the procedure of
proper translation impossible. However, the side-conditions are still of benefit,
since they help to establish the important Lemma 2.11.
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We extend the d-notation: Let α < γ. For x̄ ∈ ω>Tγ we let x̄dα = 〈xidα :
i < |x̄|〉.

Definition 2.7. (See [14, Ch. V, Def. 6.2].) Γ is a T-promise iff dom(Γ) is
club C(Γ) in ω1 and if there is n ∈ ω such that Γ = 〈Γ(γ) : γ ∈ dom(Γ)〉 has
the following properties:

(a) For each γ ∈ dom(Γ), Γ(γ) is a countable set of x̄ ∈ nTγ for some n ∈ ω.

(b) For every α < γ ∈ dom(Γ), for every x̄ ∈ Γ(α) there are infinitely many
ȳ ∈ Γ(γ) whose ranges are pairwise disjoint such that ȳdα = x̄.

(c) Γ(min(C(Γ)) 6= ∅.

Definition 2.8. ([14, Ch. V, Def. 6.4]) We say that an approximation (f, C)
fulfils the promise Γ iff last(f) ∈ C(Γ), and C r min(C(Γ)) ⊆ C(Γ) and for
every α < β, α, β ∈ C(Γ) ∩ C and x̄ ∈ Γ(α) for every ε > 0 there are infinitely
many pairwise disjoint ȳ ∈ Γ(β) such that ȳdα = x̄, lg(ȳ) = lg(x̄) = n and and
f(x`) < f(y`) < f(x`) + ε for all ` < n.

Definition 2.9. ([14, Ch. V, Def. 6.5]) QT is the set of (f, C,Ψ) such that (f, C)
is an approximation, and Ψ is a countable set of promises and for all Γ ∈ Ψ,
(f, C) fulfils Γ. The partial order is defined as (f0, C0,Ψ0) ≤ (f1, C1,Ψ1) iff

(1) f1 extends f0,

(2) C1 is an end-extension of C0 and C1 \ C0 ⊆
⋂

Γ∈Ψ0
C(Γ), and

(3) Ψ0 ⊆ Ψ1.

If p = (f, C,Ψ), we write f = fp , C = Cp and Ψ = Ψp, and we write
last(p) = last(fp) = max(Cp).

Now we want to extend a given condition to a stronger condition of a given
height, and we want to show that the set of promises can be enlarged.

Lemma 2.10. ([14, Ch. 5, Fact 6.6], [2, Lemma 4.3], [11, Lemma 2.6], The
extension lemma.) Let µ < ω1. If p ∈ QT and if last(p) < µ ∈

⋂
Γ∈Ψp dom(Γ),

ȳ ∈ [Tµ]n then there is some q ≥ p such that Ψq = Ψp and last(q) = µ and
fp(yidlast(p)) < f q(yi) < fp(yidlast(p)) + ε. Moreover, if h : Tµ → Q is finite
and bounds fp, then q can be chosen such that h bounds f q.

The promises enter the proof of the following important lemma.

Lemma 2.11. ([2], [14, V, Fact 6.7A], [11, Lemma 2.9]) Let T be an Aronszajn
tree. Let M ≺ (H(χ),∈) be a countable elementary substructure with a regular
χ > 2ℵ1, QT ∈M , p ∈ QT∩M , µ = ω1∩M and h : Tµ → Q be a finite function
which bounds fp. Let D ∈M , D ⊆ QT be dense open. Then there is an q ≥ p,
q ∈ D ∩M , that h bounds q.

Now we describe the iterations a bit more precisely than in Definition 1.3:
We assume V |= ♦ω1 + 2ℵ1 = ℵ2 and let Pω2 = 〈Pα,Q

˜
β : α ≤ ω2, β < ω2〉 be

a countable support iteration with Qα an ωω-bounding < ω1-proper ℵ2-p.i.c.
forcing for odd α, and for even α (let us say, limit ordinals are even) Q

˜
α = QTα

˜being as above for some Aronszajn tree Tα ∈ V[Gα], where the filter Gα is
Pα-generic over V, such that 
Pα “T

˜
α is an Aronszajn tree and for γ < ω1 its



PROPER TRANSLATION 9

γ-th level is [ωγ, ωγ + ω)”. The book-keeping shall be arranged so that every
Pω2-name for an Aronszajn tree is used in some iterand.

We argue that every Aronszajn tree in VPω2 has a Pα-name for some α <
ω2. We have |QT| = ℵ2, so that it need not necessarily have the ℵ2-chain
condition. However, [14, Chapter VIII, Section 2] takes care of our iteration:
By Lemma 2.11, each QT has the ℵ2-p.i.c. (proper isomorphism condition), see
[14, Chapter VIII, Def. 2.1]. The Sacks iterands with |Qα| ≤ ℵ1 have the the
ℵ2-p.i.c. by [14, Lemma VIII 2.5]. Hence by [14, Chapter VIII, Lemma 2.4],
Pω2 has the ℵ2-c.c., if V0 fulfils the CH. For the readers’ convenience we recall
the definition of the ℵ2 proper isomorphism condition:

Definition 2.12. (See [14, Ch. VIII, Def. 2.1].) Let κ be a cardinal. A notion
of forcing Q satisfies the κ-p.i.c. if the following holds for sufficiently large χ:
Suppose i < j < κ, Ni ≺ (H(χ),∈, <χ), κ ∈ Nj ≺ (H(χ),∈, <χ), Nj, Ni are
countable, Q ∈ Ni∩Nj, i ∈ Ni, j ∈ Nj, Ni∩κ ⊆ j, Ni∩ i = Nj ∩ j, p ∈ Ni∩Q,
h an isomorphism from Ni to Nj, h � Ni ∩Nj is the identity, and h(i) = j.

Then there is a q ≥ p such that

(a) p, h(p) ≤ q, q is (Ni,Q) and (Nj ,Q)-generic, and

(b) for every q′ and r ∈ Q such that r ∈ Ni ∩ Q and q ≤ q′ there is q′′ ∈ Q
such that q′ ≤ q′′ and (r ≤ q′′ iff h(r) ≤ q′′).

Since Pω2 has the ℵ2-c.c., by a lemma similar to the one of [5, 5.10], now
for subsets of ω1 instead of real numbers, every subset of ω1 in VPω2 for a
countable support iteration Pω2 of proper forcings such that Pω2 has the ℵ2-c.c.
has a name at some stage of cofinality ω1. So, if CH and 2ℵ1 = ℵ2 hold in the
ground-model we an carry out a desired book-keeping that enumerates all Pω2-
names of all Aronszajn trees in the extension. Now we know that our forcing
specialises all Aronszajn trees, and in the remainder of the paper we focus on
its effect onto the weak diamond.

In the context of proper forcings that do not add reals we find completely
(M,P, p)-generic conditions.

Definition 2.13. A condition q is completely (M,P, p)-generic if G = {r ∈
P ∩M : r ≤ q} is an (M,P, p)-generic filter. G is called bounded and q is
called a bound of G. For p ∈ P ∩M , we let Gen+(M,P, p) = {G ⊆M ∩ P : G
is completely (M,P)-generic and p ∈ G}.

Any condition stronger than a bound of G is a bound as well. However, often
there are canonical upper bounds of the form q =

⋃
n∈ω qn, qn ∈M .

3. Proper translation in countable support iterations

Since we work with iterations of lengths ω2 and since we want to perform
the translation also if it does not commute with the Mostowski collapse, we
will work with ord-hc (ordinarily hereditarily countable) sets in order to keep
the actual information about the ordinals. If the translation commutes with
the Mostowski collapse (“is invariant”, see Def. 3.7 (4)) then “ord-hc” can be
replaced by the ordinary notion of “hereditarily countable” in the domains and
in the ranges of the translation functions.
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We recall the definition of ord-hc from [15]:

Definition 3.1. (1) Tcord(x), the hereditary closure of x relative to the ordi-
nals, is defined by induction on rk(x) = γ as follows:

If γ = 0 or if x is an ordinal then Tcord(x) = ∅. If γ > 0 and x is not
an ordinal then Tcord(x) =

⋃
{Tcord(y) : y ∈ x} ∪ x.

(2) Let κ be an uncountable regular cardinal and let Vκ be the set of sets of
rank less than κ. The collection of all sets which are ordinarily hereditarily
countable relatively to κ is the set

H<ℵ1(κ) = {x ∈ Vκ : Tcord(x) is countable and Tcord(x) ∩On ⊆ κ}.

(3) We say x is an ord-hc (ordinarily hereditarily countable) set if x is an
element of H<ℵ1(κ) for some uncountable κ.

(4) We say x is a strict ord-hc set if x is an element of H<ℵ1(κ) for some
uncountable κ and if x is not an ordinal.

In our applications, κ will be the iteration length, i.e. ℵ2, or it will be (2ℵ1)+ ≥
ℵ3 as in Theorem 3.4. We consider the ordinals as urelements i.e. ω 6= {n :
n ∈ ω}. We recall the following definition also from [15, Def. 0.5].

Definition 3.2. We define the family of ord-hc Borel operations to be the min-
imal family F of functions such that the following conditions are satisfied:

(a) Each B ∈ F is a function with ≤ ω arguments and with each argument
is designated to an ord-hc set or to an ordinal or to a truth value or to
strictly ord-hc set.

(b) The arity of the value of B is also ≤ ω, and each place in the ≤ ω-tuple has
a designation as ord-hc set or strict ord-hc set or ordinal or truth value.

(c) F contains the following atomic functions with the obvious interpreta-
tion:

(α) ¬x for a truth value x,

(β) x ∨ y for two truth values,

(γ)
⋂
i<α xi, for α ≤ ω and truth values xi,

(δ) the constant values “true” and “false”,

(ε) the following types of composition, for all α ≤ ω and xn varying on
truth values and for all yn varying on hc-sets or on ordinals or on
strict hc-sets:

• for n < ω the composition: if xn but not xm for m < n, then yn,

• the composition: if ¬xn for every n < α then yn,

(ζ) {yi : i < α, xi is true} for α ≤ ω, where yi varies on ord-hc sets or
on ordinals, xi on truth values. Note that by our convention this is
always a strict hc-set, never an ordinal,

(η) the truth value of “x is an ordinal” where x varies on ord-hc sets.

(d) F is closed under composition (preserving the designation to strict ord-hc
sets ordinals and truth values).
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Definition 3.3. Let M ⊆ V.

(a) We define the ord-collapse πMord by induction.

πMord(x) =

{
x, if x ∈ On,
{πMord(y) : y ∈ x ∩M}, else.

(b) Two structures are ord-isomorphic if there is an isomorphism being the
identity on the ordinals.

(c) M is ord-transitive if ωM = ω and OnM = M ∩ On and x ∈ M r On
implies x ⊆M .

The ord-hc isomorphism type of a τ∪{∈, <χ}-structure (M,∈, <χ, (P )P∈τ ) is
represented by its ord-collapse. The ord-collapses are ord-transitive. If M and
its signature τ are countable, then the ord-hc collapse (πMord(M), (πMord(P ))P∈τ
is in H<ω1(κ) for some κ.

Ord-hc Borel computations B have ord-hc collapses as domains. In [15]
it is shown that forcing can be defined not only over transitive models but
also over countable ord-transitive models. In the ord-hc Borel version of our
Main Lemma 3.12, we will use ord-hc Borel computations of generics over ord-
transitive models. In the application to the particular forcings of Def. 1.3,
though, we will use Borel computations over coutable transitive models.

Every condition in a cs iteration of proper iterands can be realised as a subset
of H<ω1(µ) for a suitable µ. This is proved in (the proof of)

Theorem 3.4. ([14, Ch. III, Theorem 4.1 and Claim 4.1A])) Let κ be an
uncountable regular cardinal. Suppose that 〈Pα,Q

˜
β : α ≤ κ, β < κ〉 is a cs

iteration and


Pα “Q
˜
α is a proper forcing notion of size < κ”,

κ is regular and (∀µ < κ)µℵ0 < κ. Then Pκ (and every Pα as well) has the
κ-c.c and each Pα for α < κ has a dense subset P′α of power < κ, indeed,
P′α ⊆ H<ω1(µ) for some µ < κ. Hence for α < κ, 
Pα 2ℵ0 < κ.

Theorem 3.4 is often used for forcings of size ℵ1 and κ = ℵ2. We will apply
this theorem for µ = 2ℵ1 < κ and thus get P′ω2

⊆ H<ω(µ). Indeed, in our
statements about ord-hc Borel functions we will tacitly assume that Pω2 is P′ω2

.

However, our iteration length is only ℵ2, not κ > 2ℵ1 . The theorem does not
give the ℵ2-chain condition. The latter is derived with the help of the proper
isomorphism condition (p.i.c.) [14, VIII, 2.1]. As mentioned, QT has the ℵ2-
p.i.c. and hence, under CH, the iteration Pω2 has the ℵ2-c.c.

Beyond the application of Theorem 3.4 we use QT ⊆ 2ω1 and QT∩N ⊆ 2N∩ω1

for transitive N and we work with ordinary Mostowski collapses. Then we see
that the continuation of a partial specialisation onto the level N ∩ ω1 is closely
connected to the existence of completely generic conditions.

Definition 3.5. Let K be the class of candidates. k ∈ K means k consists of
the following components that fulfil the following conditions:

(a) P = Pk = 〈Pk
α,Q

˜

k
β : α ≤ γ(k), β < γ(k)〉,

(b) P is a countable support iteration,
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(c) each Q
˜

k
α is < ω1-proper and ωω-bounding,

(d) I = 〈Iα : α < γ(k)〉,
(e) Iα is an ℵ1-directed partial order and Iα ⊆ H<ω1(ℵ1),

(f) 〈Pk
∗,α,Q

˜

k
∗,β : α ≤ γ(k), β < γ(k)〉 is a cs iteration of nep (in the sense of

Definition 2.4) iterands.

Remark 3.6. Under CH, every countably directed partial order I ⊆ H<ω1(ℵ1)
has a <I-cofinal subset that can be embedded into (ωω,≤∗). So, if “sufficiently
large” (in the following definitions) means <I-dominating a certain countable
set, then we do not lose generality by taking Iβ = (ωω,≤∗) for all β as we do
here. However, as in [10] one could take only almost ωω-bounding iterands Q

˜
α,

and then let “sufficiently large” mean “not ≤∗-dominated by a certain countable
set”. More general applications with iterands Qα preserving <I-boundedness
or weak <I-boundedness in a strong iterable manner and with I as a domain
for the Borel function is thinkable. In our case, the correspondence between
the ωω-boundedness of the iterands and the existence of sufficiently large first
arguments of the Borel translation function is used at a crucial point in the
proof of Lemma 4.7.

We adopt the convention that p, pi, p
+, q, qi, q

+ and so forth are used for
conditions in Pγ and in Pu = {p ∈ Pγ : dom(p) ⊆ u}, u ⊆ γ, and conditions r,
ri, r

+ are used for conditions in P∗,γ and P∗,u = {r ∈ P∗ : dom(r) ⊆ u}. We
also follow the convention that conditions later in the alphabet or with more or
higher indices are stronger.

Before we present one of the main definitions we explain the meanings of the
indices of the Borel functions Bα

γ0,γ,i
computing Bα

γ0,γ,i
(η̄, M̄ ,Pγ , q0, p):

(1) i = 0, 1 are the two dimensions of the image of the computation: Bα
γ0,γ,0

stands for the computation of a generic condition, and Bα
γ0,γ,1

stands for
the translator function from Pγ to P∗,γ ,

(2) q0 ∈ Pγ0 is a given (M̄,Pγ0)-generic condition. It is entered as an argument
in the fourth place. We do not write γ0 as a subscript to Bα

γ0,γ,i
if γ0 = 0.

As usual this will be done, when the induction is performed.

(3) γ > γ0 and p ∈ Pγ . q0 ∈ Pγ0 and q0 
 p � γ0 ∈ G
˜
γ0 . Then Bα

γ0,γ,0
(η̄, M̄ ,P, q0, p)

computes an (M̄,Pγ , p)-generic condition stronger than p and extending
q0.

(4) α ≥ otp(M0 ∩ [γ0, γ)). A tower M̄ = 〈Mi : i ≤ α〉 is used for computing
(M0,P) generic conditions with enough completeness. The top part 〈Mi :
i ∈ [1, α + 1)〉 is just a helper to compute the desired objects as values of
a Borel function with the tower as an argument. Since all the forcings are
< ω1-proper, we could use higher towers N̄ˆM̄ , use only the M̄ -part for
the computation and end up with N̄ -generic conditions.

(5) We write g′′I = g[I] = {g(p) : p ∈ I}.

Definition 3.7. η̄ = 〈ηε : ε ∈ α〉 is sufficiently large for the tower M̄ = 〈Mε :
ε ∈ α+ 1〉 if (∀ε ∈ α)(∀f ∈Mε+1)(f ≤∗ ηε).
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Definition 3.8. Let k ∈ K. We say that B̄ = 〈Bα
γ0,γ : γ0 < γ ≤ γ′, α ∈ ω1〉 is

a solution to (γ′,k) if γ′ ≤ γ(k) and for any γ ≤ γ′, Bα
γ0,γ is an ord-hc Borel

function

Bα
γ0,γ :

∏
ε<α

Iε × {(M̄,Pγ , q0, p) : (M̄, q0, p) as below}

→ Pγ × Pγ∩M0(P∗,γ ∩M)

with the following properties:

(a) the second argument of Bα
γ0,γ, M̄ = 〈Mε : ε ≤ α〉, is the ord-hc collapse

of a tower of models for P, expanded by constants for P, q0, p, we write
uncollapsed structures as arguments for B in case it commutes:

(πMα
ord )−1(B(η̄, πMα

ord (M̄), πMα
ord (P), πMα

ord (q0), πMα
ord (p))) = B(η̄, M̄ ,P, q0, p),

(b) p ∈M0 ∩ Pγ, Pγ ∈M0,

(c) q0 ∈ Pγ0 is an (M̄,Pγ0)-generic condition,

(d) q0 
γ0 p � γ0 ∈ G
˜
γ0,

(e) Bα
γ0,γ,i

is an ord-hc Borel function,

(f) we write Bα
γ0,γ = (Bα

γ0,γ,0
,Bα

γ0,γ,1
), the values of Bα

γ0,γ are ord-hc sets of

the form (q, g) such that letting u = M0 ∩ [γ0, γ + 1) we have for η̄ = 〈ηε :
ε < α〉 sufficiently large:

(α) Bα
γ0,γ,0

(η̄, M̄ ,Pγ , q0, p) = q ∈ Pu is ≥Pγ stronger than p and (M̄,Pγ , p)-
generic, q � γ0 = q0, q ⊆Mα ∩ Pu,

(β) g : M0 ∩ Pu → M0 ∩ P∗,u, preserves ≤, (note that the translator g
really works well only on M0)

(γ) sup g[{p ∈ Pu ∩M0 : p ≤Pγ q}] ⊆ M0 ∩ P∗,u exists and we denote
it by g′′q and is (M0,P∗,u)-generic,

(δ) if q 
Pu M0 |= “I ⊆ Pγ is predense”, then g′′q 
P∗,u “g′′(I ∩M0) is
predense in P∗,u ∩M0.”

(g) coherence: If γ0 < γ1 < γ2 are from M0 ∩ γ′ then for all α, Bα
γ0,γ2 projects

to Bα
γ0,γ1 that is for q0 ∈ Pγ0 that is (M̄,Pγ0 , p � γ0)-generic, if Bα

γ0,γi(〈ηε :
ε ∈ α〉,M,P, q0, p � γi) = (qi, gi), then q2 � γ1 = q1 and g2 �M0 ∩Pγ1 = g1.

Actually, in the proofs we need only the following: For any branch b ∈ Mε

of the Aronszajn tree T that has a continuation on level otp(Mε ∩ ω1) the
function ηε eventually dominates a code of the branch b. Since these branches
are elements of Mε+1, it is just easiest to require that ηε dominates ωω ∩Mε+1.
We write ηε ≥∗ Mε+1 for the latter.

Definition 3.9. Assume that B̄ is a solution to (γ′,k). We say that B̄ is a
successful solution for (γ′,k) when in addition to the previous definition

(h) if η̄ is sufficiently large for M̄ = 〈Mi : i ≤ α〉, α ≥ otp[γ0, γ) ∩ M0,
Bα
γ0,γ(η̄, M̄ ,P, q0, p) = (q, g), r 6⊥ g′′q, r ∈ P∗,u ∩ M0 and for n < ω,
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In ⊆ range(g) ⊆ M0, In ∈ M0, In is predense above r in P∗,u, then there
is a q′ ∈ Pγ ∩M0, q′ 6⊥ q with domain u such that,

(∀n < ω)g−1[In] is predense above q′ in Pγ ∩M0.

(i) if q 
Pγ M0 |= “p ⊥Pγ p
′, then g′′q 
P∗,γ “g(p) ⊥P∗,γ g(p′).”

So q and g′′q force that g has a natural extension from P-names in M0 to
P∗-names in M0 preserving predensity in both directions. In the induction, this
is used for names of later conditions. Note that this backwards direction of the
reduction, which says that it is trivial, works only for conditions in M0 and it
works only in the part that is forced by the generic q. Coarsely speaking, q
forbids incompatibilities that are caused by the parts of the conditions that are
dropped in the translation.

We can define a largeness game

(3.1) a(M̄,P,p)

played in α rounds for 〈Mε : ε ≤ α〉. In round ε, the generic player plays
νε and the antigeneric player plays ηε ≥∗ νε. The generic player wins iff η̄ is
sufficiently large, that is if ηε ≥∗ Mε+1. Of course, the generic player has a
winning strategy. In Lemma 6.3 we will interpret such innings differently and
then really use that the νε’s and the ηε’s can be chosen successively.

Fact 3.10. For k ∈ K and γ ≤ γ(k) let k � γ be defined naturally. If k ∈ K
and γ0 ≤ γ and M̄ ≺ (H(χ),∈) is a sufficiently high tower and {k, γ0, γ} ∈M0,
then B̄ is a solution to (γ(k),k) iff B̄ is a solution for (γ(k),k � γ).

Definition 3.11. Let k ∈ K.

(1) We say that B̄ is a good for (η̄, q0, p, M̄ , γ,k) when B̄ is a successful (γ,k)-
solution, (M̄,Pk, q0, p) is a suitable second argument and η̄ is large enough.

(2) We say that k is good iff (∗)1 implies (∗)2.

Here (∗)1 is the following list:

(a) γ0 < γ1 ≤ γ2 ≤ γ(k), αi = otp([γ0, γi) ∩M0,

(b) M̄ = 〈Mε : ε ∈ α2 + 1〉 ≺ (H(χ),∈) is a tower of height α2 + 1

(c) p ∈ Pγ2 ∩M0 and γ0, γ1, γ2 ∈M0,

(d) q0 ∈ Pγ0 is (M̄,Pγ0)-generic and q0 
γ0 p � γ0 ∈ G
˜
γ0,

(e) there is an ord-hc Borel function B̄1 that is a good for (η̄, M̄ �
α1, q0, p � γ1, γ1,k).

Here (∗)2 is the following statement: There are B̄2, η̄′ such that

(α) B̄2 is a good for (η̄′, q0, p, M̄ , γ2,k),

(β) B̄2 � γ1 = B̄1,

(γ) η̄′ � α1 = η̄.

(3) We say that k is atomically good if the above holds for γ2 = γ1 + 1.

(4) Let πM denote the Mostowski collapse of M ≺ H(χ). We say that k is in-
variantly good/invariantly atomically good if for every (M̄ i, γi0, γ

i
1, (q

′)i, pi)
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as in (∗)1 of part (2) / or of part (3) for i = 1, 2 if N̄ i is the Mostowski
collapse πMi of M̄ i (in the language {∈, <χ}) and πM1(γ1

0 , γ
1
1 , q

1
0, p

1,k) =
πM2(γ2

0 , γ
2
1 , q

2
0, p

2,k)

(so in particular πM1(Pk
∗,M̄1∩γ(k)

) = πM2(Pk
∗,M̄2∩γ(k)

)) and πM1(B̄1) =

πM2(B̄2) is defined in a natural manner, then

πM1(B̄1) = πM2(B̄2).

Lemma 3.12. (Main Lemma)

(1) Assume that k satisfies

(a) k ∈ K,

(b) k is atomically good.

Then k is good.

(2) If we strengthen clause (c) to k is invariantly atomically good, then k is
invariantly good.

Proof. As usual in preservation by checking like [14, Ch VI, §5]. However, we
will carry out the proof of the claimed preservation in limit steps in Section 5.

First we will prove in the next section, that k where Pk is from Definition 1.3
together with P∗ being the iteration of the odd iterands and Iε = (ωω,≤∗) is
invariantly atomically good. We do this first, since for this proof we introduce
some notions that appear in the proof of the Main Lemma as well.

4. Proper translation for one and for two steps

We show: Let P = Pk be a forcing as in Definition 1.3, let P∗ be the iteration
of the odd iterands and let Iε = (ωω,≤∗). Then k is invariantly atomically
good.

In the statement

(∀M̄)(∀p ∈ Pγ ∩M0)(∀q0)(q0 is (M̄,Pγ , p � γ0)-generic → (∃q ≥ p)
(q is (M̄,P, p)-generic and q � γ0 = q0))

we want to replace the existential quantifier by a Borel function Bα
γ0,γ,0

with

arguments η̄, M̄ , q0 and p and finitely many relations over M̄ . In a second
step, we use q’s genericity over the tower of models to establish a translation
function g = Bα

γ0,γ,1
as in Definitions 3.8, 3.9.

Any q′ ∈M0∩P that is compatible with q is mapped by the second component
of B to some g(q′) ∈ P∗∩M0 such that dense subsets of P in M0 are mapped to
dense subsets of P∗ in M0 and vice versa and that there are generic conditions
q such that g restricted to {p ∈ M0 : p 6⊥ q} preserves ≤ and ⊥ in both
directions.

In the NNR steps Qγ = QT we know that above each p(γ) there is some q(γ)
that is completely (M̄ [G], QT[G], p(γ)[G])-generic. So we find a Pγ-name for a
filter G(γ) such that q(γ) bounds G(γ) ∩M0[G], and by induction hypothesis
a P∗,γ-name for q(γ). Since Qγ does not add reals, M0 thinks the rest of the
iteration looks the same in VPγ+1 and in VP∗,γ . However, in the successor
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steps and in limit steps, this procedure is not trivial. We shall rework and
adapt a part of the theory of completeness systems (see [14, Ch. V]) to the new
situation in which reals are added in intermediate steps. A crucial point is that
we add only reals bounded by ground model reals and that the statement “ηα
dominates all the reals in Mα+1” can be true with one ηα simultaneously for
densely in Pγ ∩M0 many M0[Gγ ], α = otp([γ0, γ) ∩M0).

First, we recall more facts about QT and its completely generic conditions.
The notion of forcing QT has size 2ℵ1 , and already the set of all approximations
(f, C) to specialisations has size ℵℵ01 . So for a countable M ≺ (H(χ),∈, <χ), we
never have P ⊆ M . If T ∈ M , we can read the definition of P = QT in M , we
call it PM . Since T is definable from QT (x 6<T y iff there is an approximation
with f(x) = f(y)), QT ∈ M implies T ∈ M . So if QT ∈ M ≺ H(χ) and

χ > 22ℵ1 = 2|QT| is regular, then we get QMT = QT ∩M because the definition

of QT is the same in V and in H(χ) and M . QT∩M determines πM (QT) that
is an argument in the Borel functions that are established here. In the section
we work with the ordinary Mostowski collapse πM .

The ord-hc Borel translation functions use as an argument the collapses or
the ord-collapses of (M̄,∈, <χ,P, p). There is a natural lifting to uncollapsed
structures such that this lifting is automatically invariant in the sense of Def-
inition 3.11 (4). In the end, we will guess all possible isomorphism types of
collapsed countable structures with the help of the ordinary diamond.

Now we work on the atomic step of the proper translation for the iterands
QT. From now on we use the requirement that the α-th level of T = (ω1, <T)
is [ωα, ω(α + 1)). Let χ > 2ℵ2 be a regular cardinal. If we have a countable
M ≺ (H(χ),∈, <χ), then

πM (T) = T ′<µ

with N = πM (M) and µ = N ∩ ω1 and T ′ is a flattened version of T, only the
levels of M ∩ ω1 appear, since πM (M ∩ ω1) = otp(M ∩ ω1) = µ. We take an
increasing sequence β̄ = 〈βn : n ∈ ω〉 that is cofinal in µ. Now we take for
x1 ⊆ M2 a code of the branches through T ′<µ, for example x1 : T ′<µ → ω, x1 is
eventually constant on each branch. We also code in x1 the branches through
T ′<µ that have <T successors in Tµ. Indeed the other branches are unimportant.
If we want to find an (M,P, p)-generic condition with last level Tµ we have to
arrange that the approximations to the specialisation function do not diverge
on any branch that is continued in T ′µ. The code x = (x1, β̄) are in general not

in N , but they are predicates ⊆ Nk.

The technique of the following lemma comes from [2]. Actually a sketch
of the elements of the ℵ1-completeness system is also given in the end of the
proof of [14, Chapter V, Theorem 6.1] on page 236. We conceive x = (x1, β̄)
as one relation in M . The completeness system (that is a set, closed under
countable intersections, of sets of generic filters where one set contains only
completely generic filters) does not appear in our setting, since we establish
functions choosing completely generic conditions overM0 and generic conditions
over a tower of models. Note that all the computation are now in the collapsed
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models. We use the letter M (possibly with indices) for the original elementary
substructures and N for the collapsed structures.

Lemma 4.1. Let ψ(x,G) = ψ0(x) ∧ ψ1(x,G), with

ψ0(x) ≡x = (x1, β̄) ∧ β̄ = 〈βn : n ∈ ω〉 increasing

∧N ∩ ω1 =
⋃
{βn : n < ω}

and

ψ1(x,G) ≡(∀ε > 0)(∀t ∈ T ′µ)(∃m < ω)(∀n1 < n2 ∈ [m,ω))(∀y1, y2 <T t)(
(y1 ∈ Tβn1 ∧ y2 ∈ Tβn2 ∧ y1 <T y2 → f

˜
[G](y2) < f

˜
[G](y1) +

ε

2n2

)
∧ “G is a filter”

∧ p ∈ G ∧ ∀D ∈M((D ⊆ P ∧D dense in P)→ D ∩G 6= ∅).

Here M , P , x and G appear in the formulas as (names for) predicates and p
is a constant. We write T ′µ instead of x (though T ′µ is not a subset of M). Let

µ = otp(M ∩ ω1) = sup〈πM (βn) : n < ω〉 and let the βn ∈M be increasing. If

(M ∪ P(M),∈M∪P(M), p,M,QT) |= ψ0(x),

then there is G ⊆ QT, G ∈ Gen+(M,QT, p) such that

(M ∪ P(M),∈M∪P(M), p,M,QT) |= ψ(x,G).

Proof. Let {In : n ∈ ω} be an enumeration of all open dense subsets of QT

that are in M . Let βn be increasing and cofinal in µ = otp(M ∩ ω1). Let
{tn : n ∈ ω} enumerate T ′µ: Now we choose by induction on n < ω, pn such
that

(1) p0 = p,

(2) pn+1 ≥ pn ∈M ,

(3) πM (last(pn+1)) ≥ βn+1,

(4) pn+1 ∈ In,

(5) (∀t ∈ {tk : k ≤ n})(∀y <T t)
(
y ∈ Tβn+1 → fpn+1(y) < fpn(ydβn) +

1
2n+1+n

)
.

Then G = {r : (∃n ∈ ω)(r ≤ pn)} ∈ Gen(M,QT, p).
Why is this choice possible? For Properties (4) and (5) we use Lemma 2.11

for h with

dom(h) = {tkdβn+1 : k ≤ n},

h(y) = fpn(ydβn) +
1

2n+1+n
,

which is a finite function that bounds pn and we find some pn+1 of length βn+1.
Now we show: If (M ∪ P(M),∈, p,M,QT) |= ψ(x,G) for some x, then G

has an upper bound in QT. Again let {In : n ∈ ω} be an enumeration of
all open dense subsets of QT that are in M . Let x be as in ψ(x,G). Let
G ⊇ {qn : n ∈ ω}, qn ∈M ∩ In, last(qn) = βn such that the βn and the qn are
increasing.
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G has an upper bound q in QT. We let f q ⊇
⋃
fpn be a slightly larger

rational variant of
⋃
fpn ∪ {(z, sup{fpk(zdlast(pk) + 1) : k ∈ ω}) : z ∈ Tµ}.

For definiteness, we stipulate that f q(tn) is the <χ-first rational number above
sup{fpk(tndlast(pk) + 1) : k ∈ ω}+ 1

n+1 . We let Cq =
⋃
n∈ω C

pn ∪ {µ}, which

is closed since for each n, Cpn+1 is an end extension of Cpn , Ψq =
⋃
n∈ω Ψpn

and for Γ ∈ Ψpn we have µ ∈ dom(Γ) since M and (H(χ),∈) fulfil that dom(Γ)
is club in ω1 and N ∩ ω1 = µ. Then last(q) = µ ∈ dom(Γ) for all Γ ∈ Ψq.

We claim that q is an upper bound of G: First we check that q ∈ QT. We
have that (f q, Cq) is an approximation. Now let H ∈ Ψq(µ) be a T-promise.
For some µ′ ≥ µ, k ∈ ω, H ∈ Ψqk(µ′)dµ. Then, for any ε > 0 and for any n ∈ ω
there are only finitely many z ∈ T ′µ such that f q(z) > fpn(z � βn) + ε. Hence,
since qn fulfils the promise, also q fulfils the promise. a4.4

Now suppose that we do not know T ′µ and do not know the predicate x1

and still want to have an analogue to property (5) that secures that the spe-
cialisation functions do not diverge along any branch of the Aronszajn tree
that has a prolongation on level T ′µ. We give a modified definition ψ that does
not refer to T ′µ but rather uses an argument η ∈ ωω that is ≤∗-dominating all
functions coding branches in T ′<otp(ω1∩M). Now we introduce some functions

h ∈ ωω that code T ′µ. The additional argument η ∈ ωω is suitable for defining
a completely (M,P)-generic condition if η dominates all codes hb of branches b
of the Aronszajn tree that do have a node in T ′µ.

The transition from x1 to η has the advantage that the η come from a count-
ably directed system, called Iε in the theoretical framework from Definition 3.5.
This will be used in Lemma 4.7 to show how to work with completely generic
conditions for iterands though an inital segment of the iteration adds reals.

Definition 4.2. Let T be an Aronszajn tree with levels Tα = [ωα, ω(α + 1)).
Let µ be a limit ordinal in ω1. Given β̄ converging to µ, we can write cofinally
many nodes of a branch b of T ′<µ into a function hb,β̄ : ω → ω, such that for all
n,

b ∩ Tβn = {ωβn + hb,β̄(n)}
and we can describe each node t = ωµ+ k ∈ Tµ, by ht,β̄ : ω → ω, such that for
all n,

tdβn = ωβn + ht,β̄(n).

If t = ωβn + k ∈ Tβn, then we define ht,β̄ : n+ 1→ ω, such that for all m ≤ n,

tdβm = ωβm + ht,β̄(m).

The following lemma improves on the previous one: A completely generic
condition is described by η as a parameter and any η′ ≥∗ η can serve as a
parameter as well. The description is a Borel function that commutes with the
Mostowski collapse:

Lemma 4.3. Let M ≺ (H(χ),∈, <χ), T ∈ M , and let πM : (M,∈) → (N,∈)
be the Mostowski collapse. Let p ∈ QT ∩M . Let 〈βn : n < ω〉 be cofinal in
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M ∩ ω1, βn+1 > βn. We let the functions hy,β̄ be defined as in Def. 4.5. We

write πM (β̄) for 〈πM (βn) : n < ω〉. Note that hπM (y),πM (β̄) = hy,β̄.
Set

U = (N,∈, πM (<χ), πM (β̄), πM (QT), πM (p)).

There is a Borel function B1,0 : ωω ×H<ℵ1(ω1), such that for every η ∈ ωω, if

(4.1) (∀y ∈ T ′µ)(hy,β̄ ≤∗ η),

for
r̂ = B1,0(η, U)

the following holds: r̂ is completely (N, πM (QT), πM (p))-generic and and

B1,0(η,M,QT, p) = r = ((πM )−1)
′′
r̂

is completely (M,QT, p)-generic.

Proof. We verify that each step in the proof of Lemma 4.4 is Borel computable
from (η, U).

We compute from η and U by induction on n < ω, p′n such that

(1) p′0 = π(p),

(2) In ∈ N is the πM (<χ ∩M2)-least dense subset of πM (QT) such that
In 6∈ {Im : m < n},

(3) p′n+1 is the πM (<χ ∩M2)-least element of N such that

(a) p′n+1 ≥πM (QT) p
′
n,

(b) last(p′n+1) ≥ πM (βn+1),

(c) p′n+1 ∈ In,

(d)

(∀x ∈ πM (Tβn+1))(
hx,πM (β̄)(n+ 1) ≤ η(n+ 1)→ fp

′
n+1(x) < fp

′
n(xdπ(βn)) +

1

2n+1+n

)
.

For finding such an p′n+1 we use the Lemma 2.11 for the finitely many initial

segments of branches πM (y � (βn+1 + 1)) with πM (y(βn+1)) = y(πM (βn+1)) ≤
η(n+ 1) and with the following bound h:

dom(h) = {x ∈ π(Tβn+1) : hx,π(β̄)(n+ 1) ≤ η(n+ 1)},

h(x) = fp
′
n(xdπ(βn)) +

1

2n+1+n
.

If Equation (4.1) holds, then η is sufficiently large to take care of all branches
of T ′<µ that lead to points x ∈ T ′µ. Note that if ν dominates all hβ̄,z, z ∈ T ′µ,

then for every z ∈ T ′µ the limit f q(z) exists, because if hz,β̄ ≤∗ ν, then for

almost all n, zdβn = ωβn + hz,β̄(n) and hz,β̄(n) ≤ ν(n). Let B1,0(η, U) be a

definable (as is Lemma 4.4) upper bound of {p′n : n ∈ ω}.
Then B1,0(η, U) is completely (N, πM (QT), πM (p))-generic and the construc-

tion commutes with the Mostowski collapse and

B1,0(η, (πM )−1(U)) := ((πM )−1)′′B1,0(η, U)
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is completely (M,QT, p)-generic. a

Strictly speaking we must write U = U(M,∈, <χ,P, p, β̄), since by the bound-
edness theorem (see, e.g., [8, Theorem 31.1]) a cofinal sequence β̄ cannot be
computed in a Borel manner from (M,∈). The arguments (M,P, p) of U will
change during the iteration, and one of the main tasks is to show that all the
changes are Borel computable. Fortunately, since in proper forcing P the ordi-
nary height of N and N [G] (we use the letters N and G for the objects after the
transitive collapse) are the same for all (M,P)-generic filters G, πM (β̄) will not
change and it does not hide features of the proof if we do not write β̄ during the
proof of the iteration theorem. However, πM (β̄) will be guessed as one com-
ponent in Lemma 6.3 and will be written there. Since our notation is already
heavily burdened, we write only U(M,P, p) and Bα

γ0,γ,i
(η̄, M̄ ,P, q0, p) until the

end of the proof of the Main Lemma.

Lemma 4.4. QT is α-proper for all α < ω1, and for every α-tower 〈Mε :
ε < α〉 there is a Borel function 〈ηε : ε < α〉 7→ Bα

1,0(η̄, M̄ ,P, p) computing

(M̄,P, p) generic conditions.

Proof. The upper bound from Lemma 4.3 gives a completely (M,QT, p)-generic
q ≥ p. Given a tower M̄ of countable height α, we can repeat the construction
α steps, using a “diagonalised” version of Lemma 4.3 for countably many Mε,
ε < α, and countably many enumerations of dense sets simultaneously, so that
in the end we get via Bα

1,0(η̄, M̄ ,P, p) some q that is (Mε, QT)-generic for all
ε < α. a

Before we work on the translation of iterated forcings, we consider the atomic
step for the oddly indexed iterands separately. There are no completely generic
conditions in these steps, since they add reals. However, also we do not need
to translate the conditions of these iterands to anything simpler, since each
condition is already a (name for a) real. Since we assume that Q1 is < ω1-
proper, we know that for every tower M̄ = 〈Mε : ε ≤ α〉 and p ∈ Q1 ∩M0

there is q ≥Q1 p that is (M̄,Q1)-generic. Given a well-order as one of the

arguments this transition from p to q is again a Borel function, call it (B
′
)α1,0.

We demand that q =: (B′)α1,0 be the <χ-least condition ≥ p that forces for every

I ∈
⋃
ε≤αMε, the statement “I ∩ G

˜
6= ∅”. The definition of < ω1-properness

just says that such a condition exists. For this iteration step, we do not need
an argument η ∈ ωω however, we again use a structure prolonging the tower
as an additional input to the computation. For uniformity we write (dummy)
arguments ηi also in these steps.

Now we want to apply this technique of computing a completely generic
condition for an iterand in a countable support iteration where QT is interleaved
with other < ω1-proper ωω-bounding iterands that do add reals. So, along
these lines, let P for a while stand for the initial segment of the iteration and
suppose that P is < ω1-proper and ωω-bounding. Everything what was done
in the previous three lemmas is now given P-names and the iterated version
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of Lemma 4.4 will give a P-name for some completely generic condition for
(M̄ [G], QT[G], p[G]) for some P-generic filter G. We verify that this works.

Lemma 4.5. The class k with Pk from Definition 1.3 and Pk
∗ being the cs

iteration of the odd iterands is invariantly atomically good. If the odd iterands
are nep, then the image P∗ is nep.

Proof. In the terms of Definition 3.11, γ1 = γ and γ2 = γ+ 1. The definition of
qγ is by induction and we show how to combine the atomic functions Bα

0,1,0 in the

successor step in order to compute for every γ0 < γ and q0 that is (M̄,Pγ0 , p)-
generic and every p ∈ Pγ ∩M with q0 
 p � γ0 ∈ G

˜
γ0 an (M̄,Pγ , p)-generic

condition qγ = Bγ0,γ,0(η̄, U) that is longer than q0 and at least as strong as p.
Once the induction is performed, we shall set γ0 = 0, pγ0 = {0P0}. There will
be two main cases in this definition: γ successor and γ limit, and likewise there
will be two cases in the proofs that Bγ0,γ,1 translates in the desired manner. So
in this lemma γ is a successor. When looking at complexity, we regard q0 as a
parameter.

There are two kinds of atomic steps: first, Qγ = QT is an NNR iterand. Then
we compute (M̄,QT, p)-generic conditions as worked out in the Borel function
Bα

1,0 = Bα
0,1,0 above. (The index 1 stands for the iteration length.) Then we

define g = Bα
0,1,1, the translation function. We use one coordinate η ∈ ωω and

one helper model Mα+1 at the top of the tower for this. Let γ0, γ ∈ M0. Let
M̄ = 〈Mβ : 0 ≤ β ≤ α+ 1 be of height α+ 2, with α = otp([γ0, γ) ∩M0). We
assume that q0 is (M̄,Pγ0 , p)-generic for this tower. We first give the formulae
and then we prove that they work. We let η̄ = 〈ηβ : β ≤ α〉. The proof is
simultaneously for all α < ω1. The induction trick is as follows: We are given
a tower 〈Mε : ε ≤ α + 1〉 as an argument for the computation. We apply the
already established function for Pγ to a shifted tower 〈Mε+1 : ε ≤ α〉 and thus
get a sufficiently strong starting point qγ to add a further iteration step.

First case: Qγ = QT is a NNR iterand. Let α + 1 ≥ [γ0, γ + 1) ∩ M0.
The proper translation is: By hypothesis on γ, we have Bα

γ0γ,0
(〈ηε+1 : ε ≤

α〉, 〈Mβ+1 : β ≤ α〉,Pγ , q0, p � γ) =: qγ . Now qγ is an (Mα+1,Pγ , p � γ)-generic
condition. Take G ∈Mα+1 that is (Mα,Pγ , p)-generic and compatible with qγ .

(4.2) Bα+1
γ0,γ+1,0(η̄, M̄ ,Pγ+1, q0, p) = qγˆB

α+1
1,0 (η̄, M̄ [G],Q

˜
γ [G], p(γ)[G])

gives a generic condition, and the translating function g is

Bα+1
γ0,γ+1,1(η̄, M̄ ,P, q0, p)

= Bα
γ0,γ,1(〈ηε+1 : ε ≤ α〉, 〈Mε+1 : ε ≤ α〉,Pγ , q0, p � γ).

(4.3)

So we just drop the last coordinate!
Second: Qγ is a ωω-bounding < ω1-proper iterand with countable conditions.

First compute qγ and G as above.

Bα+1
γ0,γ+1,0(η̄, M̄ ,Pγ+1, q0, p) = qγˆB

′α+1
1,0 (η̄, M̄ [G],Q

˜
γ [G], p(γ)[G])(4.4)
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gives a generic condition, and the translating function g is

Bα+1
γ0,γ+1,1(η̄, M̄ ,P, q0, p) =

Bα
γ0,γ,1(〈ηε+1 : ε ≤ α〉, 〈Mε+1 : ε ≤ α〉,Pγ , q0, p � γ))̂ (P∗,γ-name of p(γ)).

(4.5)

So we just let the last coordinate stand and translate its weights p′ ∈ Pγ ∩M0

by the previous translator to Bα
γ0,γ,1

(η̄′M̄ ′,Pγ , q0, p
′).

We show that in the case of odd γ, that is of Pγ+1 = Pγ ∗ QT, there is a
(Mα[Gγ ],Qγ [Gγ ])-generic filter G(γ) such that qγ 
“ q(γ) bounds G(γ)”, where
G
˜

(γ) the canonical name for the Q
˜
γ [Gγ ]-generic filter. This will guarantee the

properties (f) to (j) of Bγ+1 being a successful solution if Bγ was successful.
For this aim, we performed this transition to a higher step in the tower.

The following technique is for two step iteration in case last step is D-complete
is adapted from [1, pages 58–61]. Now we work on the atomic steps for the
translation function g, towards the properties of Def. 3.9. Let P be a poset
and let Q

˜
= Q

˜
T ∈ VP be a name forced by 0P to be a poset. Let χ be

sufficiently large and regular (as said, χ = (2ℵ2)+ is always sufficiently large)
and 〈Mi : i ≤ α + 1〉 ≺ (H(χ),∈, <χ) be a tower of countable elementary
submodel such that P, Q

˜
T ∈ M0. Henceforth we write just H(χ) instead of

(H(χ),∈, <χ). We want to guarantee that

(1) the condition (q0, q1) ∈ P ∗Q
˜
T is (Mα,P ∗Q

˜
)-generic, and

(2) q0 is generic over (Mα,P), and over (Mα+1,P),

(3) and q0 forces that q1 is completely generic over (Mα[G0
˜

], Q
˜
T),

(4) for every (V,P) generic filter G0 containing q0 there is an (Mα[G0],Q
˜

[G0])-
generic filter G1 that is bounded by q1.

Now we write only M0, M1 instead of the top of a tower. Given a countable
M0 ≺ H(χ) such that the two step iteration P ∗ QT

˜
is in M0, we extend

every (M0,P)-generic condition q0 to an (M0,P∗Q
˜

)-generic condition such that
q′0 
 q1 is completely (M0[G0

˜
],Q

˜
[G
˜

])-generic. This is done with the help of an
additional argument M1. We strengthen q0 to q′0 that is also (M1,P)-generic.
In this respect and also at another point the definition depends not only on M0

but also the countable elementary submodel M1 ≺ H(χ) such that M0 ∈ M1.
We take G0 ∈ M1 that is (M0,P)-generic such that q′0 is compatible with G0.
We use a tower M0 ≺M1 ≺ H(χ). M1 will help us to collect sufficiently many
(M0,P)-generic conditions thus that we can establish properties (1) to (4). So
we carry on towers, since in this successor step we are using height 1 of the
tower and in the limit steps we shift the genericity through the tower. We write
only (M0,M1) but of course there could be towers of arbitrary countable height
and the two would be the top of the tower.

In addition, we fix a p ∈ P ∗ Q
˜
T which we want to extend by the seeked

condition (q0, q1). In the following we write Bα for Bα
0,1,0. We start already

with an M1-generic q0. The following definition is used for the iterands QT.

Definition 4.6. Let χ be sufficiently large and M0 ≺ M1 ≺ (H(χ),∈, <χ) be
countable elementary submodels with M0 ∈ M1 and P, QT

˜
, p = (p0, p1) ∈ M0,
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q0 (M0,P, p0)-generic and (M1,P, p0)-generic. Let P be a < ω1-proper ωω-
bounding poset and suppose that QT

˜
, B

˜
∈ VP are such that

q0 
P for η dominating all branches of T ′<ω1∩M0[G0
˜

]

B
˜
α
0,1,0(η,M0[G0

˜
], QT

˜
[G0], p1[G0])

computes a completely (M0[G0
˜

],Q[G0
˜

], p1[G0
˜

])-generic condition.

We fix an η ≥∗ M1. Now choose G0 such that q0 compatible with G0 and G0 is
(M0,P, p0)-generic and G0 ∈ M1. Let p ∈ P ∗ Q

˜
∩M0 be given p = (a, b

˜
) with

a ∈ G0. Then we define

q1 = Bα+1
0,1,0(η,M0[G0],Q

˜
[G0], p1[G0]),

an (M0,P ∗ Q
˜

)-generic condition containing stronger than p by the following
procedure:

Let πM1 : M1 → N1 with πM1(M0) = N0 be the Mostowski collapse and q0 =
(πM1)′′q0. We let G0 ∈ M1 be an (M0,P, p0)-generic filter that is compatible
with q0. Let Q∗0 = Q

˜
[G0].

Moreover, since B0,1,i is invariant, the procedure commutes with the Mostowski
collapse. q0 = (πM1)′′q0. We let G0 = πM1(G0) Form N∗0 = N0[G0]. Observe
that N∗0 ∈ N1.

Thus q1 is defined in N1, where b∗ = b
˜
[G0] is a condition in Q∗0. Since

M1 is countable and since η dominates all branches of T
˜

[G0]<(ω∩M0[G0]) for all
G0 ∈ M1 and for all evaluations of the book-keeping we have that B works for
all possible T[G0], G0 and hence

(4.6) q0 q̂1 is (M0,P ∗Q)-generic.

Moreover,

(4.7) q1 bounds an (M∗0 , Q
∗
0, p)-generic filter and b∗ ≤ q1.

We define q1 in H(χ). We cannot take the above definition verbally, because
it relies on the assumption that M0 and M1 are elementary substructures of
H(χ), something which is not expressible in H(χ). Whenever the definition
above relies on some fact that happens not to hold we let G have an arbitrary
value. For example if M∗0 is not in M1 then we let G be some arbitrary fixed
M0-generic filter. The Borel computation does invoke M1, since we use M1 to
collect sufficiently many possible isomorphic types of (M0[G0], QT

˜
[G0], b

˜
[G0]).

Here, G0 is a parameter and will be set {0P0} later, so that in the end (that
means in Lemma 6.3) only the possible isomorphism types of (M0,∈�M0, <χ�
M0, Pγ , p, β̄) need to be guessed stationarily often alongside with names for the
F and f from the statement of the weak diamond.

The following lemma shows the second part of the argument: We want to
show the (q0, q1) given in Equation (4.7) has properties (1) to (4). This is used
in Bγ0,γ,1 that replaces q1 by a P∗ name for q1 and uses that q1 determines the
coordinate that is left out in the forcing P∗. We show that the coordinates that
are dropped in the translation function g have completely generic conditions
and that the supremum in Definition 3.8(g) exists. Still B is Bα

0,1,0.
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The point is to get a name for a completely generic condition for the QT-
iterands so that the proper translation works.

Lemma 4.7. Compare to [1, Lemma 5.20, the Gambit Lemma]. Let P be
a proper ωω-bounding poset and suppose that Q

˜
, B

˜
∈ VP are such that p =

(p0, p
˜

1) ∈ P ∗Q
˜

and

q0 
P B
˜

is an invariant ord-hc Borel function that

B(η, (M0[G
˜

],Q
˜

[G
˜

], p[G
˜

]) computes a completely

(M0[G
˜

],Q
˜

[G
˜

], p[G
˜

])-generic condition q1
˜
≥ p

˜
1.

Let χ be sufficiently large and M0 ≺ M1 ≺ Hχ be countable elementary sub-
models with M0 ∈ M1 and P, Q

˜
, B

˜
, (p0, p

˜
1) ∈ M0. Suppose that q0 ∈ P is

(M0,P, p � γ0)-generic and (M1,P, p � γ0)-generic, and let G0 ⊆ M0 ∩ P be an
(M0,P, p0)-generic filter such that q0 is compatible with G0. Let (p0, p1) = (a, b

˜
)

and a ≤ q0. Then there is q1 ∈ VP such that (q0, q1) is generic over (M0,P∗Q
˜

)
and p0 ≤ (q0, q1) and there is G1 that is (M [G0], QT

˜
[G0], p

˜
1[G0])-generic such

that
q0 
P q1 bounds the (M0[G

˜
],Q

˜
[G
˜

], p[G
˜

])-generic filter G1.

Proof. Let G0 be some (M0,P, p)-generic filter such that q0 is compatible with
G0 and G0 ∈M1. The following computation depends on G0 but in the end it
just shows that no q′0 ≥ q0 can force the contrary, and this is sufficient.

Let πM1 : M1 → N1, πM1(M0) = N0, be the transitive collapse and G0 =
(πM1)′′G0. We recall the computation of the invariant function
B(η,M0[G0],Q

˜
[G0], p1[G0]). Form N∗0 = N0[G0] and let Q∗0 = π(Q

˜
)[G0], and let

B = πM1(B
˜

)[G0]. Then B ∈ N∗0 . Thus B(η,N∗0 , Q
∗
0, b
∗) is defined in N1, where

b∗ = πM1(b
˜
)[G0] is a condition in Q∗0. Since N1 is countable and η dominates

N1 and hence N∗0 (independently of the choice of G0, here we use that P is
ωω-bounding) we have

(4.8) B(η,N∗0 ,Q∗0, b∗) is a completely (N∗0 ,Q∗0, b∗)-generic condition.

(This is a crucial step.) We define q1 as (πM1)−1(B(η,N∗0 ,Q∗0, b∗)).
Let G

˜
∈ VP be the canonical name of the generic filter over P. Then q0 forces

that πM1 can be extended to a collapse πM1

˜
which is onto N∗0 , that is

q0 
P π
˜
M1 : M0[G

˜
]→ N∗0 .

The conclusion of our lemma follows if we show that

(4.9) q0 
P q1 bounds B1,0(η,M0[G
˜

],Q
˜

[G
˜

], p).

So let F be (V,P)-generic with q0 ∈ F . π
˜

[F ] collapses M0[F ] onto N∗0 and
there is a function η′ dominating M0[F ], η′ ∈M1[F ] and since P is ωω-bounding
η′ ∈ M1, F ∈ A′η. and hence η dominating M1, η ≥ η′ and so B(η,N∗0 , Q

∗
0, b
∗)

is bounded in Q
˜

[F ] and η is independent of F . This proves equation (4.9).
a4.7

End of the proof of the atomic step:
Given Bα

γ0,γ,i
, γ0 ≤ γ, α ≥ otp([γ0, γ) ∩M0) we define Bα+1

γ0,γ+1,i as in equa-

tions (4.2), (4.3), (4.4), (4.5) the list of requirements in Definitions 3.8 and 3.9
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is fulfilled and we know that k is invariantly atomically good. The properties
required for g Definition 3.9 follow in the induction step where the translation
says: drop the last QT-coordinate: Just go into the extension by M [G0, G1] to
show that in G1 there are no incompatibilities and that if we go in the reverse
direction: From any dense set of P∗-conditions by adding the completely generic
condition q as the dropped condition we get a dense set in P above the generic
q.

a4.5

5. Proof of the Main Lemma

We show that for limit γ, we can find ord-hc Borel definitions for func-
tions Bα

γ0,γ,i
that are now desribed axiomatically as in the premise of the

Main Lemma. We show that r = sup Bα
γ0,γ,1

[{p ∈ Pγ ∩ M0 : p ≤P q] as

in item (β) of Definition 3.8(g) exists if we used a sufficiently high tower
α ≥ M0 ∩ [γ0, γ). We inductively prove the existence of Bα

γ0,γ,i
. The induc-

tion is on α = otp[γ0, γ) ∩M0. We have a starting condition q0 in Pγ0 .
First we have a closer look at the Existential Completeness Lemma, since it

will be invoked at several steps of our inductive computations.

Lemma 5.1. (The Existential Completeness Lemma [14, Lemma I 3.1], also
called the Maximal Principle) If q0 
 ∃xϕ(x) then there is a name τ

˜
such that

q0 
 ϕ(τ
˜

), where ϕ(x) is a formula which may mention names. a

Of course, the proof of this lemma uses the axiom of choice. So we will
again use <χ to make the choices definable and get an invariant ord-hc Borel
function with arguments M,P, q0, ϕ that computes a witness τ

˜
: Let M ≺ H(χ)

and let πM (M) = N be the Mostowski collapse. Let q0,P, σ̄ ∈ M and q0 

∃x(ϕ(x) ∧ x ∈ M). Ord-collapse or collapse everything. Then there is Borel
computation of a witness τ

˜
: Just by induction on <χ we choose step for the

step the elements of a maximal antichain A ⊆ D = {q ∈ M : q 
 6 ∃xϕ(x) or
for some name τ

˜
∈ M , q 
 φ(τ)}. Then we take for q ∈ A a minimal witness

τ
˜
∈ M such that q 
 ϕ(τ

˜
)}. Then we glue the {(q, τ

˜
(q)) : q ∈ A} together

to one name. We will use this for φ that are statements about Borel functions
from previous induction steps.

For carrying on (α+1)-properness over a limit step γ the (regular) Properness
Extension Lemma is used. Now we recall this lemma and verify that the proof
of existence leeds to a Borel function computing a witness.

Lemma 5.2. (The Properness Extension Lemma [1, Lemma 2.8]) Let 〈Pi,Q
˜
j :

j < γ, i ≤ γ〉 be a countable support iteration of proper posets. Let λ be a
sufficiently large cardinal. Let M be a countable elementary substructure of
H(χ) with γ, Pγ ∈ M . For every γ0 ∈ γ ∩M0 and q0 ∈ Pγ0 that is (M,Pγ0)-
generic the following holds:

If p
˜
∈ VPγ0 is such that q0 
γ0 p

˜
∈ Pγ ∩M ∧ p

˜
� γ0 ∈ G0

˜
, then there is an

(M,Pγ)-generic condition q such that q � γ0 = q0 and q 
γ p
˜
∈ G

˜
(where G

˜
is
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the canonical name of the generic filter over Pγ and the name p
˜

is now viewed

as a member of VPγ ).

Proof. The name p
˜

0 is not necessarily in M but it is forced by q0 to be a
condition in Pγ ∩M . Since we work above q0 we can assume that p

˜
0 = {(r, σ) :

σ ∈ M, r ∈ A(σ) ∩M} where the the A(σ) are maximal antichains in V. So
p0
˜

is a predicate on M . Borel computable means Borel computable in these
parameters.

Let {Dn : n ∈ ω} be an <χ-increasing enumeration of the dense subsets of
Pγ that are in M .

We define by induction on n < ω a name p
˜
n ∈ VPγn and a condition qn ∈ Pγn

such that

1. q0 ∈ Pγ0 is the given condition. For n ≥ 0, qn+1 ∈ Pγn is (M,Pγn+1)-generic
and qn+1 � γn = qn.

2. p
˜

= p
˜

0 is given. p
˜
n+1 is a Pγn-name such that

qn 
γn “p
˜
n+1 is a condition in Pγ ∩M such that

(a) p
˜
n+1 � γn ∈ Gγn

˜
,

(b) p
˜
n ≤γ p

˜
n+1,

(c) p
˜
n+1 is in Dn.

Assume that qn and p
˜
n have been constructed. We define p

˜
n+1 as a Pγn-name

by the following requirements: Imagine a generic extension V[Gn] made by Pγn
such that qn ∈ Gn. Then p

˜
n[Gn] ∈ M ∩ Pγ and p

˜
[Gn] � γn ∈ Gn. Since qn is

(M,Pγn)-generic, qn 
 (∃pn+1 ≥ p
˜
n) ∧ pn+1 ∈ Dn ∧ pn+1 � γn ∈ Gn). Now take

the existential completeness lemma and invariantly ord-hc Borel compute p
˜
n+1.

Now that p
˜
n+1 is defined apply the inductive asumption to γn and to γn+1 and

to qn and p
˜
n + 1 � γn+1. This gives qn+1 = B1

γn,γn+1,0
(M,P, qn, p

˜
n+1 � γn+1)

that satisfies the required inductive assumptions. Now we define r =
⋃
n∈ω qn =

Bγ0,γ,0(M,P, q0, p). a

Now we use towers of models to carry on the property of < ω1-properness.
We recall the α-Extension lemma:

Lemma 5.3. [1, Lemma 5.6] Let γ be a countable ordinal and 〈Pi,Q
˜
j : j <

γ, i ≤ γ〉 be a countable support iteration of α-proper posets. Let λ be a suffi-
ciently large cardinal. Let M̄ = 〈Mξ : ξ ≤ α〉 be an α + 1-tower of countable
elementary substructures of H(λ) with γ, Pγ, α ∈ M0. For every γ0 ∈ γ ∩M0

and q0 ∈ Pγ0 that is (M̄,Pγ0)-generic the following holds:
If p

˜
0 ∈ VPγ is such that q0 
γ0 p

˜
0 ∈ Pγ ∩M0 ∧ p

˜
0 � γ0 ∈ G0

˜
, then there is

an (M̄,Pγ , p)-generic condition q such that q � γ0 = q0 and q 
γ p
˜

0 ∈ G
˜

(where
G
˜

is the canonical name of the generic filter over Pγ and the name p
˜

0 is now

viewed as a member of VPγ ). a

Now in order to establish the transition of p0, q0, η̄ and the M̄ , Pγ to q as a
Borel function (based on the hypothesis that there are already Borel functions
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for shorter iteration lengths) we collect some items from the proof of the α-
Extension Lemma:

Now we turn to computing Bγ0,γ,1 and mapping into P∗ while keeping dense
sets. For this we need that the coordinates p(δ), δ < γ, in Pγ that are dropped
by the function Bα

γ0,γ,1
in P∗,γ have completely generic conditions, that is con-

ditions q(δ) determining an (M0[Gδ],Qδ) generic filter. The existence of com-
pletely generic conditions is equivalent to not adding reals. We show that “all
the g-images of the generic conditions are bounded in P∗” is preserved in the
limit steps of the iteration and that g (or rather g′′) maps dense subsets of P
that are in M to dense subsets in M and that g−1 does the same. This is a
combination of Abraham’s proof of the Extension Lemma [1, The Extension
Lemma] for D-complete iterands with the function resulting from Lemma 4.5.

Lemma 5.4. Let 〈Pγ ,Q
˜
β : β < γ′′, γ ≤ γ′′〉 be a countable support iteration of

forcing posets such that each iterand Qα satisfies the following in VPα:

(1) Qγ is δ-proper for every countable δ.

(2) Bα
γ0,γ,i

exist for each γ < γ′′ with the properties of Definitions 3.8 and 3.9.

Suppose that M0 ≺ H(χ) is countable, Pγ ∈ M0 and p0 ∈ Pγ ∩ M0. For
any γ0 ∈ γ ∩ M0 with α = otp(M0 ∩ [γ0, γ)), if M̄ = 〈Mξ : ξ ≤ α〉 is a
tower of countable elementary substructures starting with the given M0, then
the following holds: Then Bα

γ0,γ′′,i
exists and has the properties from Defs. 3.8

and 3.9.

Let Pγ be a countable support iteration of length γ, γ a limit, with iterands

Qk
α ∈ VPk

α that come from a class of candidates. If cf(γ) > ω we let γn =
sup(γ ∩Mαn) for n ≥ 0. That is, each Pγn , αn = otp(M0 ∩ [γ0, γn), has its
Bαn
γ,0,γn,i

witnessing that k is invariantly good up to γn and for γ itself we
assume that the functions below α are already established.

Now we define Bα
γ0,γ,i

.

Let χ be a sufficiently large regular cardinal. For Bα
γ0,γ,0

we first describe

a machinery for obtaining generic conditions over (transitive collapses or ord-
transitive collapses) of countable submodels of H(χ). We define a function
Bα
γ0,γ,0

that takes five arguments, M̄ � [1, α],Pγ , q0, p of the following types.

1. M0 ≺ Hχ is countable, Pγ ∈M0, so γ ∈M0. Moreover, p ∈M0 ∩ Pγ .

2. γ0 ∈ M0 ∩ γ, q0 is an (M0,Pγ0)-generic condition and such that q0 
 p �
γ0 ∈ Gγ0

˜
. We assume that q0 ∈M1.

3. The order type of M0 ∩ [γ0, γ) is α. 〈γn : n ∈ ω〉 is a strictly increasing
sequence, and αn+1 = otp[γn, γn+1), α0 = 0.

4. M̄ = 〈Mξ : 0 ≤ ξ ≤ α〉 is an α + 1-tower of countable elementary sub-
models of H(χ) and M0 = M . Note that only M0 = M is the domain for
the translation. The rest 〈Mξ : 1 ≤ ξ ≤ α〉 of the tower is used to show
that the coordinates that we drop have completely generic conditions.

The value returned, qγ = Bα
γ0,γ,0

(η̄, 〈Mi : i ≤ α〉,Pγ , q0, p) is an (M̄,Pγ)-

generic condition that extends q0 and is stronger than p. α = sup〈αn : n ∈ ω〉
be an increasing cofinal sequence with α0 = 0.
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We define

qγ = Bα
γ0,γ,0(〈Mi : i ≤ α〉, 〈ηi : i < α〉,Pγ , q0, p)

as follows. We define by induction on n ∈ ω a condition pn ∈ Pγ ∩M0 and an
(〈Mi : i ≤ αn〉,Pγn , pn)-generic condition qn ∈Mαn+1 such that

1. q0 ∈ Pγ0 is the given (M̄,Pγ0)-generic condition. For n ≥ 0, qn+1 ∈ Pγn+1

is (〈Mξ : αn+1 < ξ ≤ α〉,Pγn+1 , pn+1)-generic and qn+1 � γn = qn and it
has the translation property for coordinates δ ∈ [γn, γn+1) ∩Mαn , that is
there is an Pδ-generic filter Gδ such that

qn � δ 
δ“qn(δ) is completely (Mα′ [Gδ],Qδ[Gδ], pn+1(δ)[Gδ])-generic

for α′ = otp([γn, δ) ∩M0)

and it bounds an (Mα′ [Gδ],Qδ[Gδ], pn+1(δ)[Gδ])-generic filter G(δ)”,

(5.1)

and

qn+1 = qnˆ

B
αn+1−αn
γn,γn+1,0

(〈ηi : i ∈ [αn, αn+1)〉, 〈Mξ : αn < ξ ≤ αn+1〉,Pγn+1 , qn, p
˜
n+1 � γn+1).

2. p
˜

0 is given. p
˜
n+1 is a Pγn-name such that

qn 
γn “p
˜
n+1 is a condition in Pγ such that

(a) p
˜
n+1 � γn ∈ Gγn

˜
,

(b) p
˜
n ≤γ p

˜
n+1,

(c) p
˜
n+1 is (〈Mi : αn+1 < i ≤ α〉,Pγ , p

˜
n) generic.

Suppose that qn and pn are defined. First we can find pn+1 by Lemma 5.3
such that pn+1 � γn ∈ Gn. Again we invoke a computable form of the Existential
Completeness Lemma. By the inductive assumption pn+1 exists and as above,
there is a Borel manner to compute it. Now we let

qn+1 = qnˆB
αn+1−αn
γn,γn+1,0

(〈ηi : i ∈ (αn, αn+1]〉, 〈Mξ : ξ ≤ αn+1〉,Pγn+1 , qn, p
˜
n+1 � γn+1)

In the end, qγ =
⋃
{qn : n ∈ ω} = Bα

γ0,γ,0
(〈ηi : i ∈ α〉, 〈Mξ : ξ ≤ α〉,Pγ , q0, p).

Suppose that qn is defined and has the properties of Defs. 3.8 and 3.9. Let
X be in Mαn+1+1 be a maximal antichain in Pγn of conditions r ∈ Gn, Gn ∈
Mαn+1+1, Gn any 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉-generic over Pγn . Observe that
X is predense above qn. For each r0 ∈ X, define by the induction assumption
r1 ∈ Pγn+1 such that r1 with the requirements of a proper translation and
r1 � γn = r0. If r0 ∈ X ∩Mαn+1+1, then r1 is taken from Mαn+1+1. Now view
{r1 : r0 ∈ X} as a name r

˜
for a condition forced by qn to lie in Mαn+1+1. By

induction hypothesis we can choose ηξ, αn+1 < ξ ≤ αn+2 that ≤∗-dominates
Mξ and then with this argument Borel-define qn+1 that satisfies item 1 from
the above list and such that qn+1 
Pγn+1

r
˜
∈ Gn+1

˜
. So the first component

of proper translation is carried on to γn+1. Now q =
⋃
n∈ω qn, and Def. 3.8 is

fulfilled. We define

Bα
γ0,γ,1(η̄, M̄ ,Pγ , q0, p) = q.
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Now the properties of Definition 3.9 that speak only on M0 follow from (5.1)
and the fact that Pk

∗ is nep. a

6. Diamonds

In this section we show that a countable support iteration of NNR iterands
and Sacks iterands fulfils the weak diamonds from Theorem 1.3. The iteration
length does not matter for this aim. However, since we are aiming at all Aron-
szajn trees are special and 2ω = ℵ2 we will use the iteration length ω2 in the
end.

Let k be as in Definition 1.3. Now we also use property (b) from there: That
the odd stages are Π1

1-definable and have the Sacks property. We can just use
the Sacks forcing itself for these iterands. Let S denote the Sacks forcing, that
is conditions are p ⊂ 2<ω that are perfect trees, that is for every s ∈ p there is
some t ⊃ s, t ∈ p such that t̂ 0, t̂ 1 ∈ p. Let Sγ denote the cs iteration of Sacks
iterands of length γ.

Lemma 6.1. Suppose that Pk
∗ = 〈P∗,α,Q

˜
∗,β : β < γ(k), α ≤ γ(k)〉 is an

iteration of Sacks iterands and k ∈ K is invariantly good (Def. 3.11).

(a) V |= ♦ω1,

(b) Ikα = (ωω,≤∗).
Then


Pγ(k)(∃g : ω1 → N/M/ thin trees)(∀ Borel F : 2<ω1 → 2ω)

(∀f : ω → 2ω)(there are stationarily many α ∈ ω1)

(F (f � α) ∈ g(α)).

Definition 6.2. (See [3, Def 7.2.13]) Let g, h : ω → ω, limn h(n) =∞ such that

(∀k) limn→∞
h(n)k

g(n) = 0. A notion of forcing P has the (g, h)-bounding property

if (∀f ∈ VP∩
∏
n∈ω g(n))(∃S ∈ V∩([ω]<ω)ω)(∀n)(|S(n)| ≤ h(n)∧f(n) ∈ S(n)).

Laver forcing and Sacks forcing have the (g, h)-bounding property for any
(g, h).

Lemma 6.1 will be proved by the following two lemmas. The first lemma is
an extension of [11, Lemma 3.11] in which the reals are replaced by Sγ-names
of reals. In the applications α < ω1 from the next Lemma will be the ω2, or
in general, the iteration length of the forcing under consideration, of a guessed
transitive countable model M0.

Lemma 6.3. Suppose that

(α) α < ω1, and

(β) B′ is a Borel function from (ωω)α to Sγ-names of members of 2ω,

(α) r : ω → ω is diverging to infinity, and lim r(n)
2n = 0.

Then we can find some S = SB′ such that

(a) S is a closed subset of 2ω,
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(b) (∀n)|{η � n : η ∈ S}| ≤ r(n), so if S = lim(T ) = {f ∈ 2ω : ∀nf � n ∈ T},
then T ⊆ 2<ω is a tree with n-th level counting less than or equal to r(n),

(c) in the following game a(α,B′) between two players, IN and OUT, the player
IN has a winning strategy, the play lasts α moves and in the ε-th move
OUT chooses νε ∈ ωω and then IN chooses ηε ≥∗ νε. In the end IN wins
iff 
Sα B′(〈ηε : ε < α〉) ∈ S.

Proof. The (g, h)-bounding property is preserved in countable support itera-
tions [3, p. 340]. Let g(n) = 2n, and h(n) = log(r(n)). First we use that Sα
has the (g, h)-bounding property. For every ρ̄ = 〈ρη : η < α〉 there is a slalom
S1(ρ̄) ∈ V, |S1(ρ̄)(n)| ≤ h(n), S1(ρ̄)(n) ⊆ 2n such that

(∀n)B′(〈ρε
˜

: ε < α〉) � n ∈ S1(ρ̄)(n).

An analysis of the proof of this statement with forcing conditions gives that
ρ̄ 7→ S1(ρ̄) can be chosen as to be a Borel function as well, call it B′′. This is a

function to the ground model. For S1(ρ̄)(n) there are g′(n) =
(

2n

h(n)

)
possibilities.

Assume that P∗α = 〈P∗ξ ,Q
˜

∗
ζ : ξ ≤ α, ζ < α〉 is a c.s. iteration of Laver forcing

and assume that p ∈ P∗α and 〈ρ
˜
ξ : ξ < α〉 is a sequence of names for the

P∗ξ-generics. Clearly p 
P∗α B′′(〈ρε
˜

: ε < α〉) ∈ 2ω.

The Laver forcing and any forcing not adding reals at all have the (g′, h)-
bounding property. Hence there are p ≤ p∗ ∈ P∗α and S as in (a) and (b) above
such that

p∗ 
P∗α B′′(〈ρε
˜

: ε < α〉)(n) ∈ S(n).

Now B′(〈ρε
˜

: ε < α〉) � n has h(n) · h(n) = (log(r(n)))2 possibilities for all n,

and the (log(r(n)))2 < r(n) for almost all n. Now we need to prove part (c) of
the Lemma only for B′′ : (ωω)γ → V ∩

∏
n∈ω g

′(n).

Now we show that player IN can play with the strategy that imitates the
Laver-generic reals over a countable elementary submodel, so that actually ev-
erything is in the ground model. B′′ is a function to the ground model and
hence we now can quote [11, Lemma 3.11]. For completeness we repeat the
proof.

Let M∗ ≺ (H(χ),∈) be countable such B′′, S ∈ M∗. (So M∗ is not the M
from the next proof, but rather contains a non-trivial part of the power-set of
that M .) Now we prove by induction on j ≤ α for all i < j

�i,j Assume that P∗j ∈M∗ and Gi ⊆ P∗i ∩M∗ is generic over M∗, and p∗ is such
that p∗ ∈ P∗j ∩M∗ and p∗ � i ∈ Gi. Then in the following game a∗(i,j,Gi,p∗)
player II has a winning strategy σ(i,j,Gi,p∗). There are j − i moves indexed
by ε ∈ [i, j), and in the ε-th move (pε, νε, ηε) are chosen such that player
I chooses pε ∈ Pε/Gi, pε ≥ p∗ � ε, and νε ∈ ωω and player II chooses
ηε ≥∗ νε.

First case: there is a (P∗ε,M∗)-generic Gε ⊆ P∗ε ∩M∗, such that p∗(ε) ∈
Gε and Gε ⊃ Gi and (∀ξ ∈ [i, ε)ρξ

˜
[Gε] = ηξ and M∗[Gε∩P ∗ξ ] |= pξ ≥ p∗(ξ).

In this case player I chooses pε ∈ Gε forcing this and so that M∗[Gε] |=
p∗(ε) ≤P∗ε pε. Then player I chooses νε dominating M∗[Gε] and the second
player chooses ηε ≥∗ νε.
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Second case: There is no such Gε. Then player I won the play.

We prove by induction on j that player II wins the game a∗(i,j,Gi,p∗): Case 1:

j = 0. Nothing to do. Case 2: j = j∗ + 1. For ε ∈ [i, j) we use the strategy for
a∗(i,j,Gi,p∗), and for ε = j we make the following move: We show that there is a

generic Gj
∗

of Q∗
M∗[Gj∗ ]
j∗ to which p∗(j∗) belongs and such that ρ

˜
j∗ [G

j∗ ] ≥∗ νj∗ .
Then the move ρ

˜
j∗ [G

j∗ ] dominates ωω ∩M∗[Gj∗ ] and also player I’s move νj∗ .

First take q ≥ p∗(j∗) such that q is (M∗[Gj∗ ],Q∗
M∗[Gj∗ ]
j∗ )-generic. q ∈ V is a

Laver condition. Now we take a stronger condition q′ by letting tr(q) = tr(q′)
and for every s ∈ q′ of length n,

suc(q′, s) = {n ∈ suc(q, s) : n ≥ νj∗(n)}.

Now let Gj
∗

= {r ∈ M∗[Gj∗ ] : q′ ≥ r}. Since q′ is a (M∗[Gj∗ ],Q∗
M∗[Gj∗ ]
j∗ )-

generic condition, Gj
∗

is a (M∗[Gj∗ ],Q∗
M∗[Gj∗ ]
j∗ )-generic filter. The generic real

is ρ
˜
j∗ [G

j∗ ] =
⋃
{tr(p) : p ∈ Gj∗}. Then q′ 
 ρ

˜
j∗ ≥∗ νj∗ . Now player II takes

ηj∗ = ρ
˜
j∗ [G

j∗ ]. We set Gj = Gj∗ ∗Gj
∗
. Case 3: j is a limit. Like the proof of the

preservation of properness. From the proof of the preservation of properness
(see, e.g., Lemma 5.1, [14, Ch. II, Theorem 3.2, Ch. II., Section 3.3, or Ch. XII,
Theorem 1.8]) we get that existence of pε, so player I can never win the game
on the ground of the second case.

The winning condition for player II is preserved in the limit steps, since it is
a requirement on all formerly chosen ηε.

Why does �i,j suffice? Use i = 0, j = α, B′′ ∈ M∗. Take P∗α ∈ M∗,
p∗ ∈ P∗α∩M∗. Let σ(0, α, {∅}, p∗) be a winning strategy for player II in the game
a∗(0,α,{∅},p∗). During the play of a(α,B′′) let νε be chosen in stage ε < α. The

player IN simulates on the side a play of a∗(0,α,{∅},p∗): As a move of I he assumes

the νε chosen by OUT in the play of a(α,B′′) and pε, pε � δ = pδ for δ < ε,
the pδ gotten from earlier simulations. Then player IN uses σ(0, α, {∅}, p∗) for
player II, applied to (pε, νε), to compute an ηε, which he presents in this move
in a(α,B′). So pε forces that there is a Laver generic ρε

˜
[Gε] =: ηε over M∗[Gε]

and that ηε ≥∗ νε. The requirement ηε ≥∗ νε is fulfilled.

Suppose that they have played. So we have 〈νε, ηε : ε < α〉 and there
is p =

⋃
ε<α pε ≥ p∗, and for ε < α there is the name for the Q∗ε-generic

real, namely ρε
˜
∈ M∗, such that for all ε < α, p 
P ∗α ρε

˜
= η̌ε. So as

p 
P∗α “B′′(〈ρ
˜
ε : ε < α〉) ∈ S”, we have B′′(〈ηε : ε < α〉) ∈ S. a

Let S ⊆ ω1 be stationary and 〈Aδ : δ ∈ S〉 exemplify ♦(S). For example we
can take the most frequent S = {α < ω1 : α limit ordinal}, which gives ♦ω1 .

Lemma 6.4. Let r : ω → ω such that lim r(n)
2n = 0. Assume that V |= ♦(S).

Then


Pω2 ♦(2ω, {lim(T ) : T ⊆ R perfect ∧ (∀n)|{η � n : η ∈ lim(T )}| ≤ r(n)},∈).
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Proof. Let G be Pω2-generic over V. We use the ♦(S)-sequence 〈Aδ : δ ∈ S〉 in
the following manner: By easy integration and coding we have 〈(N δ, β̄δ, f

˜

δ, F
˜
δ, C

˜
δ,Pδω2

,

pδ, <δ) : δ ∈ S〉 such that

(a) N̄ δ is a transitive collapse of a tower of countable models M̄ ≺ H(χ,∈, <χ)

of height α(δ)+1, α(δ) = ω2∩N δ
0 , <δ is a well-ordering of N δ

α(δ), U
δ codes

the isomorphism type of (N̄ δ,Pδω2
, pδ, β̄δ). (We have a sequence β̄β for each

model in the tower, β̄δ stands for a sequene of sequences.)

(b) N δ
0 |= Pδω2

= 〈Pδα,Q
˜

δ
β : α ≤ ωNδ

2 , β < ω
Nδ

0
2 〉 is as in Definition 1.3.

(c) N δ
0 |= (pδ ∈ Pδω2

, f
˜

δ is a Pδω2
-name of a member of ω12 F

˜
δ : 2<ω1 → 2ω).

(d) If p ∈ Pω2 ,

p 
Pω2 f
˜
∈ 2ω1 ∧ F

˜
: 2<ω1 → 2ω is Borel, C

˜
⊆ ω1 is club,

and p, Pω2 , F
˜

, f
˜

, C
˜
∈ H(χ), then

S(p, F
˜
, f
˜

) := {δ ∈ S : there is a tower M̄ ≺ (H(χ),∈, <χ)

such that f
˜
, F
˜
, C
˜
,Pω2 , p ∈M

and there is an isomorphism hδ from N̄ δ onto M̄

mapping Pδω2
to Pω2 , f

˜

δ to f
˜
,

F
˜
δ to F

˜
, C
˜
δ to C

˜
, pδ to p,<δ to <χ�Mα(δ)}

is a stationary subset of ω1.

(e) Choose 〈Bα(δ)
0,ω2,i

: δ ∈ S〉 (remember α(δ) = otp(N δ
0 ∩ ω2)) as in the proof

of the Main Lemma with U δ = U(N̄ δ,Pδω2
, pδ, β̄δ).

We do not require uniformity, 〈νε, ηε : ε < α(δ)〉 is indeed 〈νδε , ηδε : ε < α(δ)〉
since we have the dependence on the δ in the definition of Bα(δ). We assume

that N δ ∩ω1 = δ. Since this holds on a club set of δ ∈ ω1, this is no restriction.

Now assume the p ∈ G and F
˜

, f
˜

, C
˜

are as in (d).

We define a function B′δ,Uδ with domain (ωω)α(δ).

B′δ,Uδ(〈ηε : ε < α(δ)〉) =

 B
α(δ)
0,ω2,1

′′F
˜
δ(f

˜

δ � δ)[Bα(δ)
0,ω2,0

(〈ηε : ε < α(δ)〉, U δ)],
if ηε ≥∗ Mε+1 for ε < α(δ);
〈0, 0, . . . , 〉 ∈ 2ω, otherwise.

So B′
δ,Uδ

(〈ηε : ε < α(δ)〉 is a Borel function. Now we choose a “very good”

argument 〈ηδε : ε < α(δ)〉 that player IN plays with his strategy in a(α(δ),B′δ,Uδ
)

from Lemma 6.3 applied to B′δ,Uδ and the (r, 2n) bounding property, answering

to an argument 〈νδε : ε < α(δ)〉 played by player OUT such that νδε ≥∗ Mε+1.

Now we derive a guessing function g. We consider for every δ ∈ S a very
good argument 〈ηδε : ε < α(δ)〉. We assume that G is Pω2-generic over V and
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that p ∈ G. Then we also have by the rules of the game a(Nδ,Pδ,pδ) that

B
α(δ)
0,ω2,0

(〈ηδε : ε < α(δ)〉, U δ) is (N̄ δ,Pδ, pδ)-generic and

B
α(δ)
0,ω2,1

(〈ηδε : ε < α(δ)〉, U δ) is a translation of M ∩ Pγ(δ)-names

to Sα(δ)-name in the domain compatible with the first.

Lemma 6.3 gives a closed set SB′
δ,Uδ

with small levels such that for δ ∈ S, and

we have

(6.1) B′δ,Uδ(〈η
δ
ε : ε < α(δ)〉) ∈ SB′

δ,Uδ
.

Note that SB′
δ,Uδ

does not depend on 〈ηδε : ε < α(δ)〉. So (6.1) also holds for

〈ηδε : ε < α(δ)〉 that are the answers of player IN in the game a(α(δ),B′
δ,Uδ

) to

any good sequence 〈νδε : ε < α(δ)〉 given by the generic player that is so fast
growing νδε that B′δ,Uδ(〈ν

δ
ε : ε < α(δ)〉) computes a Sacks name as in the Main

Lemma. This is important, since the isomorphism hδ does not preserve the
knowledge (that is which branches are continued and what are the values of
the promises in these continuations) about the level ω1 ∩Mα for the Aronszajn
trees involved in Pγ ∩Mα.

We set

SB′
δ,Uδ

=: g(δ).

Both sides are conceived as Borel codes for closed sets. Since ω ⊆ M and
ω ⊆ N δ we have that hδ(SB′

δ,Uδ
) = SB′

δ,Uδ
. We show that g is a diamond

function.

Since Pω2 is proper, S(p, f
˜
, F
˜

) is also stationary in V[G]. Now we take a very

good sequence 〈ηδε : ε < α(δ)〉 that is suitable so that B′δ,Uδ(〈η
δ
ε : ε < α(δ)〉)

witnesses that δ ∈ S. So now we take the game a(M,P,p) for the choice of

the 〈νδη : η < αδ〉 and then again we take the winning strategy in the game

a(α(δ),B′δ,Uδ
), which is unchanged by the collapse, for choosing 〈ηδε : ε < αδ〉.

We take q to be a bound of Bδ,Uδ(〈ηδε : ε < α(δ)〉). Now we have that q ≥ p
and

q 
 “Bα(δ),0(〈ηδε : ε < α(δ)〉, U δ) is (M,P)-generic” and

q 
 “F
˜

(f
˜
� δ) = Bδ,Uδ(〈ηδε : ε < α(δ)〉) is a Sα(δ)-name”.

Now for δ ∈ S(p, f
˜
, F
˜

) we have by the isomorphism property of hδ and by (6.1),

q 
 hδ ′′F
˜
δ(f

˜

δ � δ) = F
˜

(f
˜
� δ) ∧ F

˜
(f
˜
� δ) ∈ g(δ) ∧ δ ∈ C

˜
.

So we have that p forces that {α ∈ S : F (f � δ) ∈ g(δ)} contains a stationary
subset of S(p, f

˜
, F
˜

). Note that the stationary subset depends on F (and f of
course), but the guessing function g does not. So actually we proved a diamond
of the kind:
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There is some g : ω1 → B

such that for every Borel map F : 2<ω1 → A

and for every f : ω1 → 2

the set {α ∈ ω1 : F (f � α)Eg(α)} is stationary.

♦′(A,B,E)

a

Corollary 6.5. If V |= ♦ ∧ 2ℵ1 = ℵ2, then


Pω2 |= ♦
′(covering by thin trees) ∧ ♦′(R,N ,∈) ∧ ♦′(R,M,∈).

Proof. Leb(g(δ)) = 0 for the functions g : ω1 → {closed subsets of 2ω} from the
previous lemma. Thus, for every Borel F : 2<ω1 → 2ω, the function g : ω1 → N
is a guessing sequence showing 
Pω2 ♦

′(R,N ,∈). a1.2
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