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ω AND THE COFINALITY OF THE SYMMETRIC GROUP

CAN BE LARGER THAN b+

HEIKE MILDENBERGER AND SAHARON SHELAH

Abstract. We prove the statement in the title.

1. Introduction

We show that b+ is neither an upper bound on mcf nor on cf(Sym(ω)). In
all models known formerly the two cardinals were bounded by b+ and since
the related cardinal g is bounded by b+ in ZFC the possibility that also these
two cardinals be bounded by b+ was not excluded before our research. We
provide forcing constructions to increase these two cardinal characteristics.

We recall the definitions:

Definition 1.1. By ultrapower we mean the usual modeltheoretic ultra-
power: (ω,<)ω/U is the structure with domain {[f ]U : f ∈ ωω} where
[f ]U = {g ∈ ωω : {n : f(n) = g(n)} ∈ U } and [f ]U ≤U [g]U iff
{n : f(n) ≤ g(n)} ∈ U . The minimal cofinality of an ultrapower of ω,
mcf, is defined as the

mcf = min{cf((ω,<)ω)/U ) : U non-principal ultrafilter on ω}.

Definition 1.2. Sym(ω) is the group of all permutations of ω. If Sym(ω) =⋃
i<κGi and κ = cf(κ) > ℵ0, 〈Gi : i < κ〉 is strictly increasing, Gi is a

proper subgroup of Sym(ω), we call 〈Gi : i < κ〉 a decomposition. We call
the minimal such κ the cofinality of the symmetric group, and denote it
cf(Sym(ω)).

We recall some related cardinal characteristics and some estimates: For
f, g ∈ ωω we write f ≤∗ g and say g eventually dominates (bounds) f if
(∃n)(∀k ≥ n)(f(k) ≤ g(k)). A set B ⊆ ωω is called unbounded if there is no
g that dominates all members of B. The bounding number b is the minimal
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cardinality of an unbounded set. A set D ⊆ ωω is called dominating if for
every f ∈ ωω there is a g ∈ D such that f ≤∗ g. The minimal cardinal of a
dominating set is called the dominating number, d. A set G ⊆ [ω]ω is called
groupwise dense if it is closed under almost subsets and for every strictly
increasing sequence πi, i ∈ ω there is A ∈ [ω]ω such that

⋃
i∈A[πi, πi+1) ∈ G .

A groupwise dense ideal is a groupwise dense set that is additionally closed
under finite unions. The groupwise density number g (groupwise density
number for filters gf ) is the minimal size of a collection of groupwise dense
sets (ideals) whose intersection is empty. A set D ⊆ ωω is called finitely
dominating if for every f ∈ ωω there is k ∈ ω and there are gi, i < k, gi ∈ D
such that f ≤∗ max{gi : i < k}, where the maximum is taken pointwise.
The cardinal invariant cov(Dfin) is the smallest cardinality of a collection
of non finitely dominating sets whose union is dominating. An equivalent
definition of cov(Dfin) (see [14]) is the smallest κ such that there are non-
principal ultrafilters Uα on ω, α < κ, and sequences gα,β, β < κ for α < κ
such that for every f ∈ ωω there are α, β < κ such that f ≤Uα gα,β.

Obviously mcf ≥ b. By Canjar [6], cf(d) ≥ mcf. ZFC also implies mcf ≥ g
[4, Theorem 3.1] and mcf ≥ gf (with the same proof) and mcf ≥ cov(Dfin) ≥
gf [11]. There is it shown with an oracle c.c. forcing that mcf = cov(Dfin) =
b+ = ℵ2 > max(b, g) = ℵ1 is consistent. A model of mcf = cov(Dfin) =
ℵ2 > max(gf , u) = ℵ1 is given in [10] (u is the minimal character of a non-
principal ultrafilter on ω.) Shelah [13] showed that gf ≤ b+ in ZFC. This
consequence of ZFC lead to the question:

Question 1.3. Are there cardinal invariants “slightly” above gf that still
are bounded by b+?

Here we show that there is no such upper bound on mcf. A similar proof
works for cov(Dfin).

Theorem 1.4. Suppose that ℵ1 ≤ ∂ = cf(∂) ≤ θ = cf(θ) < κ = cf(κ) < λ
and GCH holds up to λ. Then there is a notion of forcing P of size λ that
preserves cardinalities and cofinalities and that forces MA<∂ and b = θ and
mcf ≥ κ and c = λ.

We write the proof here for µ+ = λ and µℵ0 < λ. The cardinal preserving
forcing P from the proof of the theorem gives a model of κ ≤ mcf and
c = λ = µ+ > κ. Our constructon gives that κ is a successor. With the
collapse Coll(κ, λ) we can arrange κ = λ in the end. Since the collapse is
(< κ)-closed it does not destroy the cardinal invariant constellation of ∂,
θ and κ. If we want for example that the continuum is a limit afterwards
(or even a weakly inaccessible) then we assume the existence of a strong
limit cardinal (or of a strongly inaccessibel cardinal) ν, carry out the forcing
P with κ < µ, λ < ν as in the theorem and thus ν stays a strong limit
cardinal (or strongly inaccessible). Then after the forcing P we collapse ν
to κ with conditions of size < κ. κ = c is a limit cardinal afterwards (or
weakly inaccessible).
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Sharp and Thomas [12] showed that cf(Sym(ω)) = b+ is consistent and
also cf(Sym(ω)) < b is consistent, and Mildenberger and Shelah [9] showed
that g = ℵ1 < cf(Sym(ω)) = b = ℵ2 is consistent. Brendle and Losada
[5] showed that the inequality g ≤ cf(Sym(ω)) follows from ZFC. Simon
Thomas [15] showed that cf(Sym(ω)) ≤ cf∗(Sym(ω)) ≤ d. For the definition
of cf∗(Sym(ω)) and more results on this useful intermediate cardinal we refer
the reader to [15]. So also cf(Sym(ω)) is a candidate for the question above.
Again we prove that it is not bounded.

Theorem 1.5. Suppose that ℵ1 ≤ ∂ = cf(∂) ≤ θ = cf(θ) < κ = cf(κ) < λ
and GCH holds up to λ. Then there is a notion of forcing P of size λ that
preserves cardinalities and cofinalities and that forces MA<∂ and b = θ and
mcf ≥ κ and cf(Sym(ω)) ≥ κ and c = λ.

The same remark about using Lévy collapses afterwards apply. The forc-
ing Coll(κ, λ) might add new short sequences of subgroups. However, it
does not introduce new witnesses decompositions of length < κ. Our forc-
ing in the proof of Theorem 1.5 uses only the witness to define an iterand
destroying the witness and at the same time all decompositions that have
this witness. So Coll(κ, λ) preserves cf(Sym(ω)) ≥ κ.

2. Forcing arbitrary spread between b and mcf

In this section we prove Theorem 1.4.
For a set of ordinals C, the set of accumulations points is acc(C) = {δ ∈

C : δ = sup(C ∩ δ)}. If C is closed then acc(C) ⊆ C. For a set C of
ordinals, otp(C) denotes its ordertype, the unique ordinal α such that there
is an order preserving bijection from (α,∈) onto (C,∈).

Hypothesis 2.1. GCH holds up to λ, ℵ1 ≤ ∂ = cf(∂) ≤ θ = cf(θ) < κ =
cf(κ) < λ, µ+ = λ.

Lemma 2.2. By a preliminary forcing of size λ that preserves cofinalities
and cardinalities starting from the hypothesis we get a forcing extension with
the following situation:
(a) ∂ = cf(∂) < κ = cf(κ) ≤ µ < λ = λ<λ, µ+ = λ, µℵ0 < λ.

(b) A` is a family of size λ of subsets of [µ]<κ, (∀A ∈ A0)(∀B ∈ A1)(A∩B
is finite).

(c) if κ1 < κ and (u0, u1) is a partition of µ then there is ` ∈ 2 and there
are λ many A ∈ A` such that A ⊆ u` and |A| ≥ κ1.

(d) there is a square sequence C̄ = 〈Cα : α ∈ λ, α limit〉 in λ = µ+ that is
club guessing, i.e., C̄ has the following properties
(1) Cα ⊆ α is cofinal in α and closed in α, i.e., acc(Cα) ⊆ C ∪ {α},

otp(Cα) ≤ µ,

(2) for β ∈ acc(Cα), Cβ = Cα ∩ β,
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(3) for every club E in λ there are stationarily many α ∈ λ with
cf(α) = µ and Cα ⊆ E. We call this “C̄ is club guessing”.

(e) There is an ≤∗-unbounded sequence 〈gα : α < θ〉 in ωω.

Proof. We first add by forcing an almost disjoint family A ⊆ [µ]<κ as in
Baumgartner’s work [3]. We recall some of the main steps of Baumgartner’s
forcing in Section 6 [3]: Let A (κ′, λ, κ′, ν) be the following statement: There
is a family A of size λ such that each A ∈ A is a subset of κ′ of size κ′

and for A 6= B ∈ A , the intersection A ∩ B is of size less than ν. Let
F̄ = 〈Fα : α < λ〉 be a sequence of members of [κ′]κ

′
, repetition is allowed.

A basic forcing factor is Q′(κ′, λ, ν, F̄ ) consisting of conditions p = f that are
partial functions f : λ →

⋃
Fα, |dom(f)| < ν, f(α) ⊆ Fα, |f(α)| < ν and

f ≤Q′(κ′,λ,ν,F̄ ) g iff f(α) ⊆ g(α) for α ∈ dom(f) and for all α 6= β ∈ dom(f),
f(α) ∩ f(β) = g(α) ∩ g(β).

Now let K = {µ : ν ≤ ν ′ ≤ κ, µ regular cardinal} and let

Q(κ′, λ, ν, F̄ ) = {〈fν′ : ν ′ ∈ K〉 ∈
∏
ν′∈K

Q′(κ′, λ, ν ′, F̄ ) :

(∀ν ′′ < ν ′ ∈ K)(dom(fν′′) ⊆ dom(fν′) ∧ (∀α ∈ dom(fν′′))fν′′(α) ⊆ fν′(α))}.
This forcing has size λ, forces the desired witness A of A (κ′, λ, κ′, ν), and
it preserves cardinalities and cofinalities by [3, Lemmata 2.2. to 2.6].

Now we let κ′+ = κ in the successor case, and if κ is a limit, take κ′ = κ.
Forcing with Q(κ′, λ, ν, F̄ ) gives a ν-almost disjoint family A ⊆ [κ′]<κ. We
take ν = ℵ0. We fix µ ≥ κ. Now we show that (c) is true. Let ((uα0 , u

α
1 )) :

α < λ) enumerate all partitions of µ such that each pair appears λ times.
Let {Aα : α < λ} enumerate A . Then, given the task (uα0 , u

α
1 ) we choose

tα ∈ 2 such that |uαtα ∩ Aα| = |Aα|. In the end we let A` = {utα ∩ Aα :
α ∈ λ, tα = `}. So we have the desired A0, A1 and even more: A0 ∪A1 is a
family of almost disjoint sets.

Now, in this forcing extension by Baumgartner’s forcing we force again, by
a µ-distributive (so no new µ sequences are added, and λ = µ+ is preserved)
forcing of size λ: This forcing combines the forcing for adding a square
sequence by approximations (as in [7, Exercise 23.3]) with a component
that makes the sequence club guessing.

A forcing condition has the form p = ((Cα : α ≤ γ, acc(α)),C ) = (Cpα :
α ≤ γ(p), lim(α)),C p) with the following properties. Cα ⊆ α is club in α,
otp(Cα) ≤ µ, γ < λ, for β ∈ lim(Cα), Cβ = Cα ∩ β and C p is a set of size µ
of clubs in λ. A condition q = ((Dα : α ≤ γ′, lim(α)),D) is stronger than
p = ((Cα : α ≤ γ, lim(α)),C ) iff (Dα : α ≤ γ′, lim(α)) is an end extension
of (Cα : α ≤ γ, lim(α)), C ⊆ D , and there is α ∈ γ′, Dα ⊆

⋂
C .

By density arguments, the generic G of this forcing gives rise to

C̄G =
⋃
{C̄ : ∃C (C̄,C ) ∈ G}

a square sequence with built in club guessing.
We now show that the forcing is indeed µ-distributive.
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Let f
˜

be a name for a function f : µ → V, f ∈ V[G]. By induction on
α ≤ µ we choose pα. Let p0 be any condition. Let pα+1 ≥ pα such that pα+1

decides f
˜

(α) and such that Cγ(pα+1) has order type < µ. Now assume that
α ≤ µ is a limit ordinal. Let limβ→α γ(pβ) = γ0. Now let γ(pα) = γ0 + ω · j
for a sufficiently large j < λ. We define C (pα) =

⋃
{C (pβ) : β < α}. The

square sequence part (Cpαβ : β ≤ γ(pα)) of pα is the union of the C̄-parts of
the pβ, β < α, together with the additional elements: Cpαγ0 :=

⋃
β<αC

pβ
γ(pβ) is

of ordertype ≤ µ. Then we prolong the C̄-part of the condition pα coherently
by some additional elements Cpαγ0+ω·i, i ≤ j, so that the last element Cpαγ0+ω·j
again has ordertype< µ and such that there is i ≤ j with Cpαγ0+ω·i ⊆

⋂
C (pα).

Since κ ≥ ℵ2 in the ground model and since all the forcings so far are
(< κ)-closed, after the Baumgartner forcing and the square with club guess-
ing forcing we still have the CH. Now we extend by an iteration of length θ
of Hechler reals (see, e.g., [2, Def. 3.1.9] for Hechler forcing, called D there)
and thus get a sequence 〈gα : α < θ〉 that is ≤∗-unbounded. a

Now we assume that we have families A0, A1 and a square sequence
with built in club guessing C̄ and an unbounded sequence 〈gα : α < θ〉
as described in the conclusion of Lemma 2.2 in the ground model, and will
now describe the final two forcing orders in the proof of Theorem 1.4. For
ease of notation, we consider the model after the forcing from the proof of
Lemma 2.2 now as the ground model V and argue over it.

The first step is a forcing K = (K,≤K) of approximations q ∈ K, where
K =

⋃
{Kα : α < λ} and Kα is the set of α-approximations. The relation

≤K denotes prolonging the forcing iteration and taking an end extension
of the partition of the iteration length and of Ā. Once we have a generic
GK for this forcing by approximations and end extension, we force with the
direct limit

(2.1) PGK
˜

=
⋃
{Pq : q ∈ GK

˜
}.

We let

(2.2) P := K ∗ PGK
˜
.

Definition 2.3. Assume that A`, ` = 0, 1, λ, µ, κ, ∂, ḡ and C̄ have the
properties listed in the conclusion of Lemma 2.2. A finite support iteration
together with three disjoint domains and a sequence of subsets of µ, q =
(Pq,U q

0 ,U
q

1 ,U
q

2 , Ā), is an element of the set Kα of α-approximations iff
it has the following properties:
(a) Pq = Pq

α, where Q̄q = 〈Pq
γ ,Q

˜
q
β : β < α(q), γ ≤ α(q)〉 is a finite support

iteration of c.c.c. forcings of length α = α(q) = lg(q) < λ.

(b) U0 = U q
0 are the odd ordinals in α and U1, U2 is a partition of the

even ordinals in α, U2 contains only limit ordinals, and Ā = 〈Aβ : β ∈
α ∩U2〉.
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(c) For β ∈ U0, Qβ is the Cohen forcing (ω>2, /) and we call the generic
real %

˜
β.

(d) For β ∈ U1, Q
˜
β is a c.c.c. forcing of size ∂β < ∂.

(e) For β ∈ U2, there is η̄˜β = 〈η
˜
β,i : i < κβ〉 of length κβ < κ, that is a

Pβ-name for a sequence of functions from ω to ω.

Moreover there is a sequence 〈ξβ,i : i < κβ〉 =: ξ̄β of ξβ,i = ξ(β, i) ∈
U0 ∩ β, increasing with i, of Cohen reals relevant for time β, and there
are Aβ ⊆ µ and a sequence of conditions p̄β = 〈pβ,i : i < κβ〉, and
tβ ∈ 2 with the following properties

{ξβ,i : i < κβ} ⊆ {ε+ 1 : ε ∈ acc(Cβ)}, and(
Aβ ∈ Atβ ∧Aβ 6∈ {Aγ : γ ∈ β ∩U2}
∧Aβ ⊇

{
otp(ε ∩ acc(Cβ)) : (ε ∈ acc(Cβ)

∧ ε+ 1 ∈ {ξβ,i : i < κβ})
})

and

η
˜
β,i is a Pξβ,i-name, and

p̄β = 〈pβ,i : i < κβ〉, pβ,i ∈ P′ξ(β,i+1).

(2.3)

(f) With the objects named in (e), for β ∈ U2 we define Pβ+1 as follows:
We let p ∈ Pβ+1 iff p : β + 1→ V, p � β ∈ Pβ and

p � β 
Pβ p(β) = (n, f, u)
∧ n ∈ ω
∧ f : n→ ω

∧ u ⊆ κβ is finite

∧ (∀i ∈ u)(pβ,i ∈ G(Pβ)
˜

)

∧ |{i ∈ κβ : pβ,i ∈ G(Pβ)
˜
}| = κβ.

p ≤Pβ+1
q iff

q � β 
Pβ np(β) ≤ nq(β)

∧ fp(β) ⊆ fq(β)

∧ (∀n ∈ [np(β), nq(β)))(∀i ∈ up(β))

(%
˜
ξβ,i(n) = tβ → η

˜
β,i(n) < fq(β)(n)).

(g) For β ≤ α we define P′β to be the set of the p ∈ Pβ with the following
properties: If γ ∈ dom(p), then p(γ) ∈ V (is not just a name) and if
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γ ∈ dom(p) ∩U2 then

p � γ 
i ∈ up(γ) →
(
pγ,i ≤Pγ p � γ

∧ ξγ,i ∈ dom(p)

∧ p � ξγ,i forces a value to η
˜
γ,i � lg(p(ξγ,i)),

∧ np(γ) ≤ lg(p(ξγ,i))
)
.

(2.4)

Remark: We call (p(ξγ,i), η
˜
γ,i � lg(p(ξγ,i))) in our indiscernibility argu-

ments hp,γ,i.

The objects whose existence is presupposed in Def. 2.3(e) are free pa-
rameters. There is no book-keeping involved, but the forcing K with the
approximations does a similar job: In Lemmata 2.7, 2.8 and 2.10 we invoke
density arguments. Since λ<λ = λ is regular and since PGK

˜
is a finite sup-

port iteration of c.c.c. forcings, since K does not add sequences of length
< λ and since κ ≤ λ, each sequence 〈η

˜
i : i < κ′〉 of κ′ < κ reals in VP has

a Pβ-name for some β < λ. For cf(β) = µ, once 〈η
˜
β,i : i < κβ〉 is fixed, it is

easy to find suitable Aβ, ξ̄β, p̄β, tβ that fulfil (2.3), as we see in the proof of
Lemma 2.7.

We outline the purpose of the properties (a) to (g) listed in Def. 2.3:
Item (e) is to keep the Cohen part {ξβ,i : i < κβ} of the supports in the
definition of the iterand Q

˜
β almost disjoint from that of another iterand Qζ

with tζ 6= tβ, ζ, β ∈ U2. The sequence 〈η
˜
β,i : i < κβ〉 is a possible cofinal

sequence in a reduced product. We do not name the ultrafilter, just the fact
that a Cohen real %ξ(β,i) or its complement will be in the ultrafilter D will
be used to produce a fast growing function f and a collection of domains
di = %−1

ξ(β,i){tβ}, i ∈ Uβ, Uβ cofinal in κβ, such that f dominates ηβ,i on
di ∈ D for i ∈ Uβ. So f shows that the sequence ηβ,i, i < κβ, is not cofinal
in the reduced ordering. Starting with p ∈ Kα, η̄ ∈ VPp

, and a P-name D
˜for a non-principal ultrafilter on ω, there are a β ≥ α and q+ ≥K q ≥K p,

q ∈ Kβ, q+ ∈ Kβ+1, such that Q
˜

q+

β adds a ≤D
˜

-dominator to η̄˜q
β = η̄ (this

will be shown in Lemma 2.7). Item (g) together with equation 2.3 will be
used in the “negative theory” (Lemma 2.10): K ∗ PG

˜
K does not destroy the

unboundedness of the sequence 〈gα : α < θ〉 from the preliminary forcing.

Definition 2.4. We let K =
⋃
{Kα : α < λ} be the set of approximations.

For q = (Pα,U0,U1,U2, Ā) ∈ Kα and β < α we let q � β = (Pβ,U0∩β,U1∩
β,U2 ∩ β, Ā � β). We let the forcing with approximations be K = (K,≤K)
with the following forcing order: q ≥K q0 iff q � α(q0) = q0.

Lemma 2.5. (1) For α < λ, each q ∈ Kα has the c.c.c.

(2) If α < λ and q ∈ Kα and β < α then q � β ∈ Kβ.

Proof. (1) We prove by induction on α that Pα has the c.c.c. For limit
ordinals β, the c.c.c. is preserved because we are iterating with finite sup-
port. In the case of α = β + 1, if we wish to put β ∈ U0 or in U1 we
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have the c.c.c iterand Q
˜
β and Pα = Pβ ∗ Qβ

˜
. If α = β + 1 and we wish

to put β ∈ U2 we prove directly that Pα has the c.c.c. Suppose that
{pγ : γ ∈ ω1} are conditions in Pα. By induction hypothesis we can take
a Pβ-generic filter G such that A = {γ ∈ ω1 : pγ � β ∈ G} is uncount-
able. Now by the definition of Pα, there are n ∈ ω and f : n→ ω such that
B = {γ ∈ A : pγ � β 
 (npγ(β), fpγ(β)) = (n, f)} is uncountable. Now we
take γ 6= δ ∈ B such that pγ � β 6⊥ pδ � β. Since γ, δ ∈ B, also pγ 6⊥ pδ.
Hence Pα has the c.c.c. Now Q

˜
β is the Pβ name of Pα/Pβ. a

Lemma 2.6. (1) K = (K,≤K) is a (< λ)-closed partial order.

(2) 
K PGK
˜

satisfies the c.c.c.

(3) Forcing by K ∗ PGK
˜

does not collapse cofinalities nor cardinals and it
forces 2ℵ0 = λ = λ<λ and the power µκ for µ ≥ λ does not change.

Lemma 2.7. In the generic extension by P = K ∗ PGK, MA<∂ holds and
mcf ≥ κ.

Proof. MA<∂ holds because of the iterands attached to U1 and by Lemma 2.6
as cf(λ) = λ. Now let a P-name for an ultrafilter D

˜
and P-names η

˜
i, i < κ′,

for some κ′ < κ, and (p, p
˜

) ∈ P be given.
As PGK is c.c.c, and K is (< λ)-closed we can assume that η

˜
i is a Pp-name

of a member of ωω and p
˜

= p ∈ Pp.
We show that there is a stronger (q, p

˜
) ≥P (p, p

˜
) that forces that η

˜
i,

i < κ′, is not cofinal in ωω/D
˜

.
We choose 〈qα : α < λ〉 continuously increasing in ≤K such that q0 = p

and qα+1 forces a Pqα+1

lg(qα+1)-name to D
˜
∩ P(ω)V

Pqα
. For this we use (∀α <

λ)(αω < λ) and known reflection properties of finite support iterations of
c.c.c. iterands of size < λ. Then E = {lg(qα) : α < λ} is a club in λ. So
by Lemma 2.2, there are β ≥ lg(p), β ∈ E, cf(β) = µ and Cβ ⊆ E and
otp(Cβ) ≥ µ. Let q be that qα with lg(qα) = β. Let {ε(i) : i < µ} enumer-
ate the accumulation points of Cβ and note that i 7→ otp(acc(Cβ) ∩ ε(i)) is
injective and independent of β, by the coherence of the square sequence C̄.
For i < µ we choose t(i) ∈ 2, pi ∈ Pq

β, pi ≥ p such that

pi 
Pq
ε(i+1)

{n : %
˜
ε(i)+1(n) = t(i)} ∈ D

˜
.

Since κβ < κ ≤ µ, for some µ0 < µ

u` = {i < µ : t(i) = `, (∀j < κβ)(η
˜
j is a Pq

µ0
-name)}, ` = 0, 1

is a partition of µrµ0 into two parts, and hence by conclusion (d) of Lemma
2.1 there is some tβ ∈ 2 such that there is A = Aβ ∈ Atβr{Aγ : γ ∈ U q

2 ∩β}
such that

{i ∈ utβ : otp(ε(i) ∩ acc(Cβ)) ∈ Aβ}
has size at least κ′.
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Now we thin out {ε(i) + 1 : i ∈ utβ , otp(ε(i) ∩ acc(Cβ)) ∈ Aβ}, to a
sequence 〈ξ(i) : i < κ′〉 such that ξ(i) ∈ {ε(i) : i ∈ utβ , otp(ε(i)∩acc(Cβ)) ∈
Aβ}, ξ(i) > ξ(j) for j < i, and ξ(i) increasing with i, such that a there is a
strengthening pβ,i ≥Pβ pi with pβ,i ∈ (P′)qξ(i+1). We define q+ ≥K q by

(a) q+ ∈ Kβ+1,

(b) Aq+

β = A,

(c) κq+

β = κ′,

(d) 〈η
˜

q+

β,i : i < κq+

β 〉 = 〈η
˜
i : i < κ′〉,

(e) 〈ξq
+

β,i : i < κq+

β 〉 = 〈ξ(i) + 1 : i ∈ κ′〉,

(f) pq
+

β,i = pβ,i ∈ (P′)q
+

ξ(β,i+1).

So Q
˜

q+

β is defined by (d), (e), (f).

Now Pq+
has the c.c.c., hence there is p′ ≥

Pq+

β+1

p,

p′ 
Pq+ “W = {i < κ′ : pi ∈ G(Pq)} has cardinality κ′”.

So (q+, p′) forces for the Q
˜

q+

β -generic real g
˜
β that

i ∈W → η
˜
i � %

−1
ξβ,i
{tβ} ≤∗ g

˜
β � %

−1
ξβ,i
{tβ}.

a

Since i 7→ otp(acc(Cβ) ∩ ε(i)) is by the coherence of the square sequence
independent of β and injective, equation (2.3) has an important consequence:
If tβ0 6= tβ1 , then {(i, j) ∈ κβ0 × κβ1 : ξβ0,i = ξβ1,j} ⊆ {(i, j) : otp(ξβ,i ∩
acc(Cβ0)) ∈ Aβ0 ∧ otp(ξβ1,j ∩ acc(Cβ1)) ∈ Aβ1)}, and this is finite, since
Aβ` ∈ Aβ` , ` = 0, 1. This finiteness will enter in Claim 2.11 part (2).

Now in the remainder we prove that in the generic extension b = θ.

Lemma 2.8. If q ∈ Kα and β ≤ α then P′β = (P′)qβ is a dense subset of
Pβ = Pq

β.

Proof. Let for β1 < β2 ≤ α, P′β1,β2
= {p ∈ Pβ2 : the demands from Defini-

tion 2.3(g) hold for γ ∈ dom(p)rβ1 for all i ∈ up(γ) rβ1, and if i ∈ up(γ)∩β1

then we only demand pγ,i ≤ p � γ and ξγ,i ∈ dom(p)}.
So we prove by induction on β1 ≤ α for every β2 ∈ [β1, α) for every

p ∈ P′β1,β2
there is q ∈ P′β2

such that p ≤Pβ2 q and p � [β1, β2) = q � [β1, β2).
Case 1: β1 = 0. Since P′β2

= P′β1,β2
we can take p = q.

Case 2: β1 is a limit ordinal. We let β0 = sup(dom(p) ∩ β1)) < β1 and
use the induction hypothesis for β0 + 1.

Case 3: β1 = β0 + 1 and β0 ∈ U q
0 . If β0 6∈ dom(p) we use the induction

hypothesis. If β0 ∈ dom(p) we let v = {γ ∈ β2 : γ ∈ U2 ∩ dom(p1) r β1

and for some i < κβ0 , β0 = ξγ,i}. For γ ∈ v let i(γ) witness it. Let
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n∗ = sup{np(γ) : γ ∈ v}. Let q0 ∈ Pβ0 , q0 ≥ p � β0 and force a value to p(β0),
a Cohen condition. As usual w.l.o.g., lg(p(β0)) ≥ n∗. Now {η

˜
γ,i(γ) : γ ∈ v}

is a finite set of Pβ0-names so some q1 ∈ Pβ0 , q1 ≥ q0 forces a value to
η
˜
γ,i(γ) � lg(p(β0)) for γ ∈ v. W.l.o.g. p � β0 = q1 and we are done.

Case 4: β1 = β0 + 1 and β0 ∈ U q
1 . If β0 6∈ dom(p) we use the induction

hypothesis. If β0 ∈ dom(p), p(β0) is a Pβ0-name of a member of Qβ, i.e.
an ordinal < ∂β. Now p � β0 ∈ Pβ0 hence there is q1 ∈ Pβ0 as in the
induction hypothesis and such that p � β0 ≤ q1 and q1 forces a value to
p(β0). Now let dom(q) = dom(q1) ∪ dom(p), q � β0 = q1 and q(β0) = ζ and
q � [β0 + 1, β2) = p � [β0 + 1, β2). Now easily q is as required.

Case 5: β1 = β0 + 1 and β0 ∈ U q
2 . If β0 6∈ dom(p) we use the induction

hypothesis. If β0 ∈ dom(p), p(β0) is a Pβ0-name of a member of Qβ, and by
strengthening p � β0 we can assume that p � β0 forces a value to p(β0), say
(n, f, u). Since β0 ∈ U2 it is a limit ordinal.

Choose q1 ∈ Pβ0 such that (p � β0) ≤ q1 and for every i ∈ up(β0),
ξβ0,i ∈ dom(q1) and q1 ≥ p � β0 and q1 � β0 ≥ pβ0,i. W.l.o.g., q1 = p � β0 and
p(β0) = (n, f, u). Let β∗ = sup(dom(p) ∩ β0) + 1. Now apply the induction
hypothesis to p and β∗. a

Definition 2.9. Let a and b be finite sets of ordinals and |a| = |b|. By
OP(a, b) we denote the unique order preserving bijection from a onto b.

Lemma 2.10. Let ḡ = 〈gε : ε < θ〉 be a ≤∗-increasing sequence in V that
does not have an upper bound, ∂ ≤ θ < κ. Then, for every α < λ and
q ∈ Kα, after forcing with Pq the sequence ḡ is still unbounded.

Corollary 2.11. After forcing with P, ḡ is unbounded.

Proof of the lemma. Towards a contradiction assume that q ∈ Kα and
there is p∗ ∈ Pq and there is a Pq-name g

˜
such that p∗ 
Pq (∀ε < θ)(gε ≤∗ g

˜
).

Hence we can choose for ε < θ, (pε, nε) with the following properties:
pε ∈ (P′)q, p∗ ≤Pq pε, nε ∈ ω and pε 
 n ∈ [nε, ω) → gε(n) ≤ g

˜
(n). We let

pε(γ) = (nε,γ , fε,γ , uε,γ) for γ ∈ dom(pε) ∩ U2. We let uε =
⋃
{uε,γ : γ ∈

dom(pε) ∩U2}.
Now by the ∆-system lemma and by Fodor’s lemma there is a stationary

S ⊆ θ and there are(
n∗,m∗,m

∗
2, v∗, u∗, (nγ , f̂γ)γ∈v∗∩U2 , (p

∗∗
γ )γ∈v∗∩(U0∪U1)

)
with the following homogeneity properties:

(1) For ε ∈ S, |dom(pε)| = m∗ and nε = n∗ and |uε| = m∗2.

(2) For ε ∈ S, β0 6= β1 ∈ dom(pε) ∩ U2 with tβ0 6= tβ1 , the finite set
{ξβ0,i0 : i0 < κβ0} ∩ {ξβ1,i1 : i1 < κβ1} is independent of ε, just
dependent on the position of β0 and β1 in dom(pε).

(3) For ε 6= ζ ∈ S, dom(pε) ∩ dom(pζ) = v∗ and uε ∩ uζ = u∗.
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(4) For ε, ζ ∈ S the function OP(dom(pε), dom(pζ)) maps v∗ to itself and
(β0, ξβ0,i0) to (β1, ξβ1,i1), that means: if i0 ∈ upε(β0), then i1 ∈ upζ(β1

)
and hpε,β0,i0 = hpζ ,β1,i1 .

(5) For ε ∈ S, if γ ∈ v∗ ∩U2, then nε,γ = nγ and fε,γ = f̂γ .

(6) For ε ∈ S, if γ ∈ v∗ ∩ (U0 ∪U1) then pε(γ) = p∗∗γ .

We fix ε̄ = 〈ε(k) : k ∈ ω〉 with the following properties: The sequence
〈ε(k) : k ∈ ω〉 is increasing ε(k) ∈ S and there is n ≥ n∗, nγ γ ∈ v∗, such
that pε(k) 
 gε(k)(n) ≥ k for every k. It is important that n is indendent of k.
Since 〈gε : ε ∈ S〉 is ≤∗-unbounded, there is such a countable subsequence
that has such an n.

Now take q ∈ P′α, q ≥ pε(0) such that q 
 g
˜

(n) = ι for some ι ∈ ω.
Since dom(pε), ε ∈ S, is a ∆-system with root v∗ there is k(∗) > ι such

that dom(pε(k(∗))) ∩ dom(q) ⊆ v∗, w.l.o.g., = v∗ and uq =
⋃
{uq(γ) : γ ∈

dom(q) ∩U2}.
Now here is the critical claim, leading to a contradiction:

Claim 2.12. The conditions pε(k(∗)) and q are compatible in Pq.

Proof. The obvious candidate for a condition witnessing compatibility is r
with
(a) dom(r) = dom(q) ∪ dom(pε(k(∗))),

(b) for β ∈ dom(q) r dom(pε(k(∗))), r(β) = q(β),

(c) for β ∈ dom(pε(k(∗))) r dom(q), r(β) = pε(k(∗))(β),

(d) for β ∈ v∗ ∩ (U q
0 ∪U q

1 ) , r(β) = q(β) = pε(k(∗))(β),

(e) for β ∈ v∗ ∩U q
2 , r(β) = (nq(β), fq(β), uq(β) ∪ upε(k(∗))(β)).

Does r belong to Pα? Is it ≥ q, pε(k(∗))? The critical case is r ≥ pε(k(∗)), and
herein the critical case is

(∀β ∈ v∗ ∩U2)(∀i ∈ upε(k(∗))(β))(∀n ∈ [nβ, lg(fq(β))))

r � β 
 %
˜
ξβ,i(n) = tβ → fq(β)(n) > η

˜
β,i(n).

(2.5)

Fix β′ ∈ v∗∩U2. Let i′ ∈ upε(k(∗))(β′). Let ξ = ξβ′,i′ ∈ dom(pε(k(∗)))∩U0 r
dom(q). We consider

wξ = {β ∈ v∗ ∩U q
2 : (∃i)(ξβ,i = ξ)}.

There is t∗ξ ∈ 2 such that β ∈ wξ → tβ = t∗ξ . Why?
If β0 6= β1 ∈ wξ and tβ0 6= tβ1 , then {ξβ0,i : i < κβ0} ∩ {ξβ1,i : i <

κβ1} = F is finite and non-empty and by item (2) independent of ε ∈ S.
Since v∗ is the heart of the ∆-system {dom(pε) : ε ∈ S}, there is ε ∈ S
such that dom(pε) r v∗ is disjoint from F . By the indiscernibility (2) also
dom(pε(k(∗))) r v∗ is disjoint from F , in contradiction to the choice of ξ ∈
dom(pε(k(∗))) ∩U0 r dom(q) ⊆ dom(pε(k(∗))) r v∗ and ξ ∈ F .
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Well, equation 2.5 is not quite correct. We correct r to a stronger condi-
tion r+ by letting for ξ ∈ dom(pε(k(∗))) ∩U0 r dom(q),

r+(ξ) = r(ξ)_〈1− t∗ξ , 1− t∗ξ , . . . 〉,

and otherwise r+(ξ) = r(ξ). Now r+ ≥ q, pε(k(∗)). We prove

(∀β ∈ v∗ ∩U2)(∀i ∈ upε(k(∗))(β))(∀n ∈ [nβ, lg(fq(β))))

r+ � β 
 %
˜
ξβ,i(n) = tβ → fq(β)(n) > η

˜
β,i(n).

(2.6)

First case: n ∈ [nβ, lg(pε(k(∗))(ξ))). Then fq(β) is big enough as demanded
in the definition of pε(k(∗))(β) ≤ r(β). Why? The point is that we look
at ξ0 = OP(dom(pε(k(∗))), dom(pε(0)))(ξ) and recall we we have the same
h and that p � ξγ,i forces a value to ηγ,i

˜
� lg(p(ξγ,i)). Since β ∈ v∗, and

i ∈ upε(k(∗))(β), ξ0 = ξβ,i′ for some i′ ∈ upε(0)(β). So we have from q ≥ pε(0)

that
q � β 
 %

˜
ξ0(n) = tqβ → fq(β)(n) > η

˜
β,i′(n).

Now since n < lg(pε(k(∗))(ξ)) = lg(pε(0)(ξ0)), already pε(0) forces this:

pε(0) � β 
 %
˜
ξ0(n) = tqβ → fq(β)(n) > η

˜
β,i′(n).

Now from the requirement (d) about the same h we get

pε(k(∗) � β 
 %
˜
ξ(n) = tqβ → fq(β)(n) > η

˜
β,i(n)

and hence
r � β 
 %

˜
ξ(n) = tqβ → fq(β)(n) > η

˜
β,i(n)).

Second case: Now we look at lg(pε(k(∗))(ξ)) ≤ n < lg(fq(β). We show
that fq(β) is big enough as demanded in the definition of pε(k(∗))(β) ≤ r(β).
Now by our thinning out procedure by the requirements we imposed on OP,
pε(0)(ξ) = pε(k(∗))(ξ).

Now ξ 6∈ dom(q) and hence r(ξ) = pε(0)(ξ) = pε(k(∗))(ξ). So for any β ∈ wξ
we get t∗ξ = tqβ and

r+ � β 
 %
˜
ξ = pε(0)(ξ)

_〈1− tqβ, 1− t
q
β, . . . 〉,

and since pε(0)(ξ) = pε(k(∗))(ξ) we get

r+ � β 
 %
˜
ξβ,i(n) = tqβ → fq(β)(n) > η

˜
β,i(n).

a

3. Increasing cf(Sym(ω)) at the same time

In this section we prove Theorem 1.5.

Definition 3.1. (1) For h ∈ Sym(ω), let supp(h) = {n : h(n) 6= n}.
(2) For u ⊆ ω let Hu = {f ∈ Sym(ω) : supp(f) ⊆ u}.
(3) Let wi = {k ∈ ω : k ≡ i mod 3}.
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(4) Let ui = {k ∈ ω : k 6≡ i mod 3}.

Definition 3.2. (1) We say ē is a witness for the decomposition Ḡ =
〈Gi : i < κ〉 iff ē = 〈ei : i < κ〉 and ei ∈ Gi+1 rGi and ei is of order
2 and ei ∈ Hw1.

(2) ē is a witness iff there is a decomposition Ḡ such that ē is a witness
for Ḡ.

Since there are only countably many recursive permutations and since
all decompositions have uncountable lengths [8], we have: If there is a de-
composition Ḡ then there is a decomposition Ḡ′ with the same length such
that all recursive permutations are in G′0. So for increasing cf(Sym(ω)) by
forcing it is sufficient to show that there are no short decompositions with
all recursive permutations in the first subgroup.

Lemma 3.3. Every decomposition Ḡ such that all recursive permutations
are in G0 has a witness.

Proof. We first show that
⋃
i<3Hui generates Sym(ω). Let f ∈ Sym(ω) be

arbitrary. There is ` ∈ 3 such that v0 = {n : n ≡ 0 mod 3 ∧ f(n) ≡ `
mod 3} is infinite. We take `1 ∈ 3 r {0, `}. There is g1 ∈ Hu`1

such that
∀n ∈ v0, g1 ◦ f(n) = n. There is g2 ∈ Hu2 , g2 maps v0 onto w0 and
g2 � {n : n ≡ 2 mod 3} = id, so g2 ∈ Hu2 . So f2 = g2 ◦ g−1

1 ◦ f ◦ g−1
2 is

the identity on {n : n ≡ 0 mod 3}, so f2 ∈ Hu0 . So f is a composition of
permutations in

⋃
i<3Hui .

Now let 〈Gi : i < κ〉 be a decomposition such that all recursive per-
mutations are in G0. Since

⋃
i<3Hui generates Sym(ω), for every α < κ

there is i(α) such that that there is gα ∈ (Gα+1 r Gα) ∩ Hui(α)
6= ∅.

Now since supp(gα) ⊆ ui(α) there is a recursive gα,0 of order 2 such that
g′α = gα,0 ◦ gα ◦ gα,0 ∈ H{6n+1 :n∈ω} ∩ (Gα+1 r Gα): gα,0 maps ui(α) bi-
jectively to {6n + 1 : n ∈ ω} and g′α ∈ Gα+1 r Gα imitates gα after
this bijection. Now there eα,1, eα,2 ∈ Gα+1 ∩ Hw1 of order 2 such that
g′α = eα,1◦eα,2: eα,1(6n+1) = g′α(6n+1)+3, eα,1(3n+i) = 3n+i for i = 0, 2,
eα,1(6n+ 4) = (g′α)−1(6n+ 1). eα,2(6n+ 1) = 6n+ 4, eα,2(3n+ i) = 3n+ i
for i = 0, 2, eα,2(6n+ 4) = 6n+ 1. So eα,1 ∈ (Gα+1 rGα) ∩Hw1 is of order
2, and put it into the witness. a

We explain why we work with permutations of order 2. At the very end
of the proof we will use the following:

Lemma 3.4. Suppose e, f are permutations of order 2 and supp(e) ⊆ w1

and supp(f) ⊆ w0 and both supports are infinite. Then there is g of order
2, supp(g) ⊆ u2 such that

e = g ◦ f ◦ g.

Proof. supp(e) is the union over a collection of pairs {i, e(i)} for i from a
set called E0. Note that i 6= e(i). supp(f) is the union of a collection of
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pairs {i, f(i)} for i in a set called F0. Both E0 and F0 are infinite and
ωr (E0 ∪F0) is infinite. Let g : E0 ∪ e′′E0 ∪F0 ∪ f ′′F0 → ω be defined such
that for every i ∈ E0, g(i) = j iff g(e(i)) = f(j), and for every j ∈ F0,
g(j) = i iff g(f(j)) = e(i). Such a g exists, since there is a bijection from
{(i, e(i)) : i ∈ E0} to {(i, f(i)) : i ∈ F0} and both e and f are of order 2.
Let g identity on ω r E0 ∪ e′′E0 ∪ F0 ∪ f ′′F0. a

We have a preliminary forcing similar to the one from the proof of Theo-
rem 1.4. This time the preliminary forcing establishes a little more almost
disjointness in the family A . This family A will be used as previously to find
the Cohen supports in the history for the iterands adding ≤D -dominating
reals, and now as well to find (disjoint from the former ones) Cohen support
in the history for a new kind of iterands that destroys a given decomposition
of length < κ.

Lemma 3.5. By a preliminary forcing of size λ that preserves cofinalities
and cardinalities starting from the premises of Theorem 1.5 we get a forcing
extension with the following situation:

(a) ∂ = cf(∂) < κ ≤ µ < λ = λ<λ = cf(λ), µ+ = λ, µℵ0 < λ,

(b) A is a family of almost disjoint subsets of [µ]<κ,

(c) if (u0, u1) is a partition of µ, then there are ` ∈ 2 and λ many sets
A ∈ A such that A ⊆ u`,

(d) there is a square sequence C̄ = 〈Cα : α ∈ λ, lim(α)〉 in λ = µ+ that is
club guessing (so as in Lemma 2.2),

(e) there is an ≤∗-unbounded sequence 〈gα : α < θ〉 in ωω.

Proof. We do the Baumgartner forcing first, as in Lemma 2.2. However,
then we do not water down the resulting almost disjoint family A ⊆ [κ′]κ

′

as we did in the proof of Theorem 1.4. Let κ′+ = κ. How do we modify
A in order to get item (c)? Let A be {Aα : α < λ}. Enumerate by
{(uα0 , uα1 ) : α < λ} all partitions of µ into two parts, each of them appear-
ing λ times. Then we choose tα ∈ 2 such that |Aα ∩ utα | = |Aα|. We set
A′α = Aα ∩ utα . Now A ′ = {A′α : α < λ} has also property (c). The rest of
the proof is like in Lemma 2.2. a

Now we use the forcing framework as described in equations (2.1), (2.2)
and we use the same letters as there. However, we define a richer notion of
α-approximation, Kα.

Fix a bijection h : ω>2 → {3n : n ∈ ω}, e.g., h′(η) =
∑
{3 · 2n : η(n) =

1, n < lg(η)}, and h(η) = b(lg(η), h′(η)) for some bijection b : ω× {3n : n ∈
ω} → {3n : n ∈ ω}. The purpose of this bijection is to interpret one Cohen
real as 2ω almost disjoint Cohen reals that operate on branches of the tree
ω>2.
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Definition 3.6. q = (P, Q̄, (U`)`<5, Ā, w̄) = (Pq, Q̄q, (U q
` )`<5, Ā

q, w̄q) ∈
H(λ) is an α-approximation iff

(α) Pq = Pq
α, where Q̄q = 〈Pq

γ ,Q
˜

q
β : β < α(q), γ ≤ α(q)〉 is a finite

support iteration of c.c.c. forcings of length α(q) = lg(q) < λ.

(β) (U`)`<5 is a partition of lg(q).

(γ) U0 ∪U3 is the set of odd ordinals below lg(q), U2 ∪U4 is a subset of
the limit ordinals.

(δ) Clauses (c) to (f) from Definition 2.3 hold with A instead of A0∪A1.

(ε) If β ∈ U3 then Qβ is actually a Cohen forcing but interpreted a bit
differently. p ∈ Qβ iff
(a) p = (n, g, b, %) = (np, gp, bp, %p),

(b) b ⊆ {3k : k ∈ ω} is finite, n ∈ ω, % ∈ n2,

(c) {h−1(m) : m ∈ b} ⊆ {ν : ν E %},
(d) g is a permutation of dom(g) = max(n+ 1,max(b) + 1),

(e) g is the identity on dom(g)r (b∪w1), remember w1 = {k : k ≡ 1
mod 3},

(f) g has order 2,

(g) g interchanges (n+ 1) ∩ w1 and b,

(h) p ≤ q if np ⊆ nq and bp ⊆ bq and gp ⊆ gq and %p E %q.

(ζ) w̄ = 〈wβ : β ∈ U4 ∩ α〉 is string such that for β ∈ U4 ∩ α, wβ =
(κβ, Ḡβ˜ , ξ̄β˜ , ēβ˜ , j̄β˜ , p̄β˜ 〉 has the following properties:

(a) κβ = cf(κβ) ∈ [ℵ1, κ),

(b) Ḡβ˜ is a Pβ-name,

(c) 
Pβ “Ḡβ˜ = 〈G
˜
β,i : i < κβ〉 is a κβ decomposition”,

(d) there is a string {ξβ,i : i < κβ} ⊆ U3 ∩ {ε + 1 : ε ∈ acc(Cβ)}
(the latter has size µ by induction hypothesis) and(

Aβ ∈ A ∧Aβ 6∈ {Aγ : γ ∈ β ∩ (U2 ∪U4)}
∧Aβ ⊇

{
otp(ε ∩ acc(Cβ)) : (ε ∈ Cβ ∧ ε+ 1 ∈ {ξβ,i : i < κβ})

})
.

(3.1)

(e) 
Pmin(Cβ)
“ēβ˜ is a witness for Ḡβ˜ .”. So ēβ˜ = 〈e

˜
β,i : i < κβ〉

(f) p̄β = 〈pβ,i : i < κβ〉, pβ,i ∈ P′ξβ,i+1
, p̄β is a ∆-system, see later

for P′i,

(g) j̄β = 〈jβ,i : i < κβ〉 is increasing, jβ,i < κβ,

(h) pβ,i 
 g
˜
ξ(β,i) ∈ G˜ β,jβ,i.
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(η) For β ∈ U4 we define Pβ+1 as follows: First we have wβ as in item
(ζ). We let p ∈ Pβ+1 iff p : β + 1→ V, p � β ∈ Pβ and

p � β 
Pβ p(β) = (n, f, u)
∧ n ∈ ω
∧ f : n→ ω

∧ u ⊆ κβ is finite

∧ (∀i ∈ u)(pβ,i ∈ G(Pβ)
˜

)

∧ |{i ∈ κβ : pβ,i ∈ G(Pβ)
˜
}| = κβ

∧ f is a permutation of order 2

∧ ∀m ∈ nr (w1 ∪
⋃
{bp(ξβ,i) : i ∈ u})f(m) = m

∧ %
˜
ξ(β,i) � n, i ∈ u, are pairwise different.

p ≤Pβ+1
q iff

q � β 
Pβ np(β) ≤ nq(β)

∧ fp(β) ⊆ fq(β)

∧ (∀i ∈ up(β))(∀n ∈ [np(β), nq(β)) ∩ bp(ξβ,i))
((g

˜
ξβ,i ◦ e˜β,i

◦ g
˜
ξβ,i)(n) = fq(β)(n)).

(θ) For α ≤ lg(q) we let P′α = (P′)qα be those p ∈ Pα such that for β ∈
dom(p) p(β) is an object from V and not just a name and for γ ∈
dom(p) ∩U2 the requirements for P′α from Definition 2.3(g) hold and
for γ ∈ dom(p) ∩U4

p � γ 
Pγ i ∈ up(γ) →
(
pγ,i ≤Pγ p � γ

∧ ξγ,i ∈ dom(p)

∧ p � ξγ,i forces a value to e
˜
γ,jγ,i � lg(p(ξγ,i)),

∧ np(γ) ≤ lg(p(ξγ,i))
)
.

(3.2)

Again we call (p(ξγ,i), e
˜
γ,jγ,i � lg(p(ξγ,i))) in our indiscernibility arguments

hp,γ,i.

Notation/Observation 3.7. For ξ ∈ U3 we get the generic objects (%
˜
, g
˜
, B
˜

) =
(%
˜
ξ, g

˜
ξ, B

˜
ξ) := (

⋃
{h−1(n) : n ∈ bp, p ∈ G(qξ)

˜
},
⋃
{gp : p ∈ G(Qξ)

˜
},
⋃
{bp :

p ∈ G(Qξ)
˜
}) ∈ ω2 × Sym(ω) × P(ω) and B

˜
ξ is an infinite subset of {n <

ω : h−1(n) E %
˜
ξ}, it is considered as a branch by the identification h.

Notation 3.8. For β ∈ U4, Let (U
˜
β, f

˜
β) = (

⋃
{up : p ∈ G(Qβ)

˜
},
⋃
{fp :

p ∈ G(Q
˜
β)

˜
}),

Now we show that the forcing P is as desired.

Lemma 3.9. For q ∈ Kα, P′α is dense in Pα.

Proof. Like in Lemma 2.8.
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Lemma 3.10. For β ∈ U4, if 〈η
˜
β,i : i < κβ〉 is such that κβ is not cofinal in

β there are tβ ∈ 2, Aβ ∈ Atβ and {ξβ,i : i < κβ} such that Equation (2.3) in
the Definition of Pβ+1 are true. Then Q

˜
β 6= ∅ and for every n ∈ ω, i0 ∈ κβ,

the q ∈ Pβ+1 with nq(β) ≥ n and ∃i ∈ uq(β) ∩ [i0, κβ) are dense in Pβ+1.

Proof. The first statement follows from Definition 2.2 (c) and (d), applied
to u1 = {otp(ε∪acc(Cβ)) : 〈η

˜
β,i : i < κβ〉 is a Pε+1-name} and µru1 = u0:

Since |u0| < µ there are ξ̄β, p̄β, tβ and Aβ for u1 as in Def. 3.6(ζ). This
is shown as in the proof of Lemma 2.7. So we can define Pβ+1. Now for
the density argument: Let p ∈ P′β+1 be given. We assume n > np(β) and
up(β) < i0. We show that there is q ≥ p such that for np ≤ m < nq for
i ∈ up(β), if m ∈ bp(ξβ,i), then

q 
 fq(β)(m) = gξβ,i(m) ◦ eβ,jβ,i ◦ gξβ,i(m)

and such that fq(β) is a permutation of nq(β) and such that it is the identity
on nq(β)r(u1∪

⋃
{bq(ξβ,i) : i ∈ up(β)}). Now up(β) is finite. Fix for a moment

a Pβ+1 generic G with p ∈ G. First choose i ∈ {i : pβ,i ∈ G}r i0. Since Pβ
has the c.c.c. and since pβ,i ∈ Pβ such an i exists. We let uq(β) = up(β)∪{i}.
h−1(m) D %ξβ,i � np for just one i ∈ up(β), since %ξβ,i � np(β) for i ∈ up(β) are
pairwise different. We can choose fq(m) so that the equation is true. The
c.c.c. for Qβ is proved by induction on lg(q) as in the proof of Lemma 2.5. a

Remark 3.11. In Section 2 finding a bound g
˜

for many {ηβ,i : i < κβ} is
easier than showing that for β ∈ U4, Ḡβ˜ is not a decomposition since we
have to put together permutations on the almost disjoint (by the last clause
in Def. 3.6(η)) sets 〈Bξβ,i : i ∈ Uβ〉. The set Uβ is not all of {i < κβ : pβ,i ∈
G(Pβ)} but as in Section 2, an unbounded subset of κβ suffices.

Now we take the framework as in the previous section 2.4, 2.5, 2.6. We
let P = K ∗ PG

˜
K , now with the α-approximations from Definition 3.6.

Lemma 3.12. In the generic extension by P = K ∗ PGK, MA<∂ holds and
mcf ≥ κ and cf(Sym(ω)) ≥ κ.

Proof. MA<∂ and mcf ≥ κ are shown as in Lemma 2.7. Now let a P-name
for a decomposition Ḡ

˜
= 〈G

˜
i : i < κ′〉 of length κ′ < κ and a P-name

〈e
˜
i : i < κ′〉 for a witness for Ḡ, and (p, p

˜
) ∈ P be given. As PGK is c.c.c.

and K is (< λ)-closed we can assume that p
˜

= p ∈ Pp. We show that there
is a stronger (q, p

˜
) ≥P (p, p

˜
) that forces that Ḡ

˜
is not a decomposition.

We choose 〈qα : α < λ〉 continuously increasing in ≤K such that q0 = p
and and qα+1 forces a Pqα+1

lg(qα+1)-name to Gi
˜
∩P(ω)V

Pqα
and a Pqα+1

lg(qα+1)-name

to ei
˜
∈ (ωω)V

Pqα
for each i < κ′.

For this we use 2ω = θ < λ and known reflection properties of finite
support iterations of c.c.c. iterands of size < λ. Then E = {lg(qα) : α < λ}
is a club in λ. So by clubguessing property of C̄, there are β ≥ lg(p),
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β ∈ E, cf(β) = µ and Cβ ⊆ E and otp(Cβ) ≥ κ′. Let q be that qα
with lg(qα) = β. Let {ε(i) : i < µ} enumerate limits of Cβ, and note
that i 7→ otp(acc(Cβ) ∩ ε(i)) is injective. We choose {ε′(i) : i < κ′} ⊆
U q

3 ∩ {ε(i) + 1 : i < µ} and we choose A = Aq
β such that(

A ∈ A ∧A 6∈ {Aq
γ : γ ∈ β ∩ (U q

2 ∪U q
4 )}

∧Aβ ⊇
{

otp(ε ∩ Cβ) : (ε ∈ Cβ ∧ ε+ 1 ∈ {ε′(i) : i < κq
β})
})
.

(3.3)

Now we thin out 〈ε′(i) : i < κβ〉 to a continuous sequence 〈ξ(i) : i < κβ〉
such that there are p̄β = 〈pi : i < κβ〉, pi ∈ P′ξ(i+1), p̄β is a ∆-system, and
j̄β = 〈jβ,i : i < κβ〉 is increasing, jβ,i < κβ, pi 
Pq

ξ(i+1)
g
˜
ξ(β,i) ∈ G˜ β,jβ,i .

Now we define q+ ≥K q and wβ

(a) q+ ∈ Kβ+1, j̄β as above,

(b) Aq+

β = A,

(c) κq+

β = κ′,

(d) 〈G
˜

q+

β,i : i < κq+

β 〉 = 〈G
˜
i : i < κ′〉,

(e) 〈e
˜
q+

β,i : i < κq+

β 〉 = 〈e
˜
i : i < κ′〉,

(f) ξq
+

β,i = ξq
+

(β, i) = ξ(i) + 1 as above,

(g) pq
+

β,i = pi ∈ Pq+

ξ(β,i+1).

So Q
˜

q+

β is defined by (a) to (g).

Now Pq+
has the c.c.c., hence there is p′ ≥Pq+ p,

p′ 
Pq+ “U = {i < κ′ : pi ∈ G(Pq), i ∈ Uβ
˜
} has cardinality κ′”.

So (q+, p′) forces for the Q
˜

q+

β -generic real f
˜
β that (by Def. 3.6(η)(b))

(∀i ∈ U
˜

)(∀∗m ∈ Bξβ,i)(f
˜
β(m) = (g

˜
ξβ,i ◦ e˜β,jβ,i

◦ g
˜
ξβ,i)(m).

We take a Pq+
-generic filter G with p′ ∈ G and let x

˜
[G] = x. We can invert

the composition of permutations and together with g′′ξβ,iBξβ,i = w1 we get

eβ,jβ,i(n) = (gξβ,i ◦ fβ ◦ gξβ,i)(n)

for all n ∈ w1 but finitely many. Since outside w1, eβ,jβ,i and the righthand
side are the identity and w1 is recursive, we so have that eβ,j(β,i) is in the
step of the decomposition as the righthand side. Note that by Def. 3.6(ζ)(h),
gβ,i ∈ Gβ,jβ,i . Now Uβ is cofinal in κβ and jβ,i is cofinal in κβ and Ḡβ
is a decomposition. Hence there is i ∈ Uβ such that fβ ∈ Gβ,j(i,β). A
permutation with finite support making up for the finitely many mistakes
is in Gβ,0. So also eβ,jβ,i ∈ Gβ,jβ,i . So fβ shows that 〈eβ,i : i < κβ〉 is not a
witness for the decomposition Ḡβ.
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How did we refer to Ḡβ? Only j(β, ·) : κβ → κβ entered the forcing Qβ.
So if an iteration covers all possible j and all witnesses, then it covers all
short decompositions. This argument is used for the remark from the end of
the introduction, that Coll(κ, λ) does not destroy the achievement of Theo-
rem 1.5. a

Now in the remainder we prove that in the generic extension b = θ.

Lemma 3.13. Let ḡ = 〈gε : ε < θ〉 be a ≤∗-increasing sequence in V that
does not have an upper bound, ∂ ≤ θ < κ. Then, for every α < λ, after
forcing with Pq for q ∈ Kα, the sequence ḡ is still unbounded.

Corollary 3.14. After forcing with P, ḡ is unbounded.

Proof of the lemma. Towards a contradiction assume that q ∈ Kα and
there is p∗ ∈ Pq and there is a Pq-name g

˜
such that p∗ 
Pq (∀ε < θ)(gε ≤∗ g

˜
).

Hence we can choose for ε < θ, (pε, nε) with the following properties:
pε ∈ (P′)qα, p∗ ≤Pq pε, nε ∈ ω and pε 
Pq

α
n ∈ [nε, ω)→ gε

˜
(n) ≤ g

˜
(n) and let

pε(γ) = (nε,γ , fε,γ , uε,γ) for γ ∈ dom(pε) ∩ (U2 ∪U4). We let uε =
⋃
{uε,γ :

γ ∈ dom(pε) ∩ (U2 ∪U4)}.
Now by the ∆-system lemma and by Fodor’s lemma there is a stationary

S ⊆ θ and there are(
n∗,m∗,m

∗
2, v∗, u∗, (nγ , f̂γ)γ∈v∗∩(U2∩U4), (p

∗∗
γ )γ∈v∗∩(U0∪U1∪U3)

)
with the following homogeneity properties:
(1) For ε ∈ S, |dom(pε)| = m∗ and nε = n∗ and |uε| = m∗2.

(2) For ε ∈ S, β0 6= β1 ∈ dom(pε) ∩ (U2 ∪ U4) the finite set {ξβ0,i0 :
i0 < κβ0} ∩ {ξβ1,i1 : i < κβ1} (as in equation (3.1), that together with
Definition 3.6(d) ensures the claimed finiteness) is independent of ε,
just dependent on the position of β0 and β1 in dom(pε).

(3) For ε 6= ζ ∈ S, dom(pε) ∩ dom(pζ) = v∗ and uε ∩ uζ = u∗.

(4) For ε, ζ ∈ S the function OP(dom(pε),dom(pζ)) maps v∗ to itself
and (β0, ξβ0,i0) to (β1, ξβ1,i1), that means: if i0 ∈ upε(β0), then i1 ∈
upζ(β1), and if β ∈ U2 ∪ U4 and i ∈ upε(β0)

, then hpε,β0,i0 = hpζ ,β1,i1 .
OP(dom(pε),dom(pζ)) preserves the predicates Ui.

(5) For ε ∈ S, if γ ∈ v∗ ∩ (U2 ∪U4), then nε,γ = nγ and fε,γ = f̂γ .

(6) For ε ∈ S, if γ ∈ v∗ ∩ (U0 ∪U1 ∪U3) then pε(γ) = p∗∗γ .
We fix ε̄ = 〈ε(k) : k ∈ ω〉 with the following properties: The sequence

〈ε(k) : k ∈ ω〉 is increasing ε(k) ∈ S and there is n ≥ n∗, nγ γ ∈ v∗, such
that pε(k) 
 gε(k)(n) ≥ k for every k.

Now take q ∈ P′α, q ≥ pε(0) such that q 
 g
˜

(n) = ι for some ι ∈ ω.
Since dom(pε), ε ∈ S, is a ∆-system with root v∗ there is k(∗) > ι such

that dom(pε(k(∗))) ∩ dom(q) ⊆ v∗, w.l.o.g., = v∗ and uq =
⋃
{uq(γ) : γ ∈

dom(q) ∩U2}.
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Now here is the critical claim, leading to a contradiction:

Claim 3.15. The conditions pε(k(∗)) and q are compatible in Pq.

Proof. The obvious candidate for a condition witnessing compatibility is
r with the properties (a) to (e) from the proof of Claim 2.12. As in the
proof of Claim 2.12, we let wξ for ξ ∈ U0 be defined as there for β ∈ v∗,
ξ = ξβ,i ∈ dom(pε(k(∗))) ∩U0 r dom(q). Since A consists of almost disjoint
sets, the proof in Claim 2.12 shows that wξ is a singleton so t∗ξ is well
defined. We correct r by to a stronger condition r+ by letting, for β ∈ v∗,
ξ = ξβ,i ∈ dom(pε(k(∗))) ∩U0 r dom(q) with wξ 6= ∅,

r+(ξ) = r(ξ)_〈1− t∗ξ , 1− t∗ξ , . . . 〉,

and otherwise r+(ξ) = r(ξ). Now r+ ≥ q, pε(k(∗)) in the old cases.
Does r+ belong to Pα? Is it ≥ q, pε(k(∗))? The new critical case in

r+ ≥ pε(k(∗)) is

(∀β ∈ v∗ ∩U4)

r+ � β 
 (∀i ∈ upε(k(∗))(β) r uq(β))

(∀m ∈ [nβ, lg(fq(β))) ∩ bpε(k(∗)(ξβ,i))
fq(β)(m) = g

˜
ξβ,i ◦ e˜β,jβ,i

◦ g
˜
ξβ,i(m).

(3.4)

Fix β′ ∈ v∗∩U4. Let i′ ∈ upε(k(∗))(β′). Let ξ = ξβ′,i′ ∈ dom(pε(k(∗)))∩U2 r
dom(q). (For ξ ∈ dom(q), (3.4) is true as q is a condition.) We consider

vξ = {β ∈ v∗ ∩U q
4 : (∃i)(ξβ,i = ξ)}.

Since A is a family of almost disjoint sets, and ξ = ξβ′,i′ ∈ dom(pε(k(∗)))∩
U2 r dom(q), vξ is a singleton: If β0 6= β1 ∈ vξ, then by Definition 3.6 (d),
{ξβ0,i : i < κβ0} ∩ {ξβ1,i : i < κβ1} is finite and non-empty and by item
(2) independent of ε ∈ S. Since v∗ is the heart of the ∆-system dom(pε),
ε ∈ S, there is ε ∈ S such that dom(pε) r v∗ is disjoint from this finite set.
By the indiscernibility (2) also dom(pε(k(∗))) r v∗ is disjoint from the finite
set, in contradiction to the choice of ξ ∈ dom(pε(k(∗))) ∩ U0 r dom(q) ⊆
dom(pε(k(∗))) r v∗.

First case: m ∈ [nβ, lg(pε(k(∗))(ξ)))∩bpε(k(∗)(ξβ,i). Then fq(β)(m) is the shift
of the witness eβ,i to the branch br+(ξβ,i) by gξβ,i as required in pε(k(∗))(β) ≤
r(β). Why? The point is that we look at ξ0 = ξβ,i′ = OP(dom(pε(k(∗))), dom(pε(0)))(ξ)
and recall we have that p � ξγ,i forces a value to p(ξγ,i) and we have the
same p·(ξγ,·) for γ ∈ v∗. Since β ∈ v∗, and i ∈ upε(k(∗))(β), ξ0 = ξβ,i′ for some
i′ ∈ upε(0)(β). So we have from q ≥ pε(0) that

q � β 
(∀m ∈ [nβ, lg(fpε(0)(β))) ∩ bpε(k(∗)(ξβ,i))
(fq(β)(m) = gξβ,i′ ◦ e˜β,jβ,i′

◦ gξβ,i′ (m)).
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Now since n < lg(pε(k(∗))(ξ)) = lg(pε(0)(ξ0)) and pε(k(∗))(ξ)) = pε(0)(ξ0),
already pε(0) forces this:

pε(0) � β 
(∀m ∈ [nβ, lg(fpε(0)(β))) ∩ bpε(k(∗)(ξβ,i))
(fq(β)(m) = gξβ,i′ ◦ e˜β,jβ,i′

◦ gξβ,i′ (m)).

Now from the requirement about the same h in item (4) of the homogeneity
properties we get

pε(k(∗) � β 
(∀m ∈ [nβ, lg(fpε(k(∗))(β))) ∩ bpε(k(∗)(ξβ,i))
(fq(β)(m) = gξβ,i ◦ e˜β,jβ,i

◦ gξβ,i(m)),

and hence
r+ � β 
(∀m ∈ [nβ, lg(fpε(k(∗))(β))) ∩ bpε(k(∗)(ξβ,i))

(fq(β)(m) = gξβ,i ◦ e˜β,jβ,i
◦ gξβ,i(m)).

Second case: Now we look at lg(pε(k(∗))(ξ)) ≤ m < lg(fq(β), m ∈ bpε(k(∗)(ξβ,i)
and ξ = ξβ,i. Now we can change neither fq(β) nor eβ,j(β,i). However, we
can make them conjugated by correcting, i.e., strengthening, our condi-
tion r+ once more to a condition called r++: Note vξ is a singleton, and
ξ ∈ U3 r dom(q) and hence r+(ξ) = r(ξ) = pε(0)(ξ) = pε(k(∗))(ξ).

So for ξ and the unique β ∈ v∗ such that vξ = {β}, we have that also
there is just one i such there is β ∈ vξ with ξβ,i = ξ. We let r+(ξ) =
(nr+(ξ), gr+(ξ), br+(ξ), %r+(ξ)), so lg(r+(ξ)) = lg(pε(k(∗))(ξ)) = nr+(ξ). We let
r++(ξ) = (nr++(ξ), gr++(ξ), br++(ξ), %r++(ξ)) so that form ∈ [lg(pε(k(∗))(ξ)), lg(fq(β)))∩
bpε(k(∗)(ξβ,i)),

gr++(ξ) ◦ eβ,jβ,i ◦ gr++(ξ)(m) = fq(β)(m).

Note that such an r++ exists by Lemma 3.5, since supp(eβ,i) ⊆ w0 and
supp(fq(β)) ⊆ w1. So for any β ∈ v∗ with {β} = vξ we get

r++ � β 
 (∀m ∈ [nβ, lg(fq(β)))∩br++(ξβ,i))(fq(β)(m) = gξβ,i◦e˜β,jβ,i
◦gξβ,i(m)).

a

4. Open questions

Question 4.1. Is cf(Sym(ω)) ≤ mcf a consequence of ZFC?

Remark: If there are noQ-points, the answer is positive, even for cf∗(Sym(ω)),
see [1].

Question 4.2. Is cf(Sym(ω)) ≥ gf a consequence of ZFC?

Remark: The answer is positive for g, by Brendle and Losada [5].

Acknowledgement: We thank the referee for a detailed and careful
report.
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