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Summary. The local homogeneity property is defined as in [Mak]. We show that 
500,,,(Q~) and some related logics do not have the local homogeneity property, 
whereas cofinality logic 50,~,~(QCyO~) has the homogeneity property. Both proofs use 
forcing and absoluteness arguments. 

I Introduction 

Our modeltheoretic notation is standard, see e.g. [Eb 85]. Let le, 5~ denote 
regular logics. The local homogeneity property of a pair (501,502) of logics gives an 
aspect of the strength of 50z with respect to 5~ Suppose (9/, ao)=-~2(9.I, a~). Has 
any q~e Thso 1 (9/, ao, al) a model (~3, bo, bl) with an automorphism f of ~B such that 
f(bo) = bl ? If the answer is 'yes', (501,502) is said to have the local homogeneity 
property [in short: loc Horn(501,502)]. If there is even a (2, bo, b~)-s~ (9.1, ao, a~) 
with an automorphism of ~3 such that f(bo) = bl, then (~1,502) is said to have the 
homogeneity property [in short: Horn(501, 5~ Of course, in the case of 501 being 
compact both notions coincide. 50 has the homogeneity property means that 
(50, 50) has the homogeneity property. 

The paper is organized as follows: In Sect. 2 counterexamples to the local 
homogeneity property of 50o~o~(Q1) and 50| are constructed via forcing. In the 
Sect. 3 we show that many cofinality logics have the homogeneity property. In the 
rest of the introduction we shall show that many familiar logics do not have the 
homogeneity property unless they are compact. 

The homogeneity property together with a small occurrence number implies 
strong compactness properties. To be more precise: [tc]-compactness is relative 
~:-compactness, i.e. 50 is [~c]-compact iff for any sets X, A of 50-sentences with 
I~1 <~c the following holds: If for any subset So of S with I~ol <~c the theory 2;o~A is 
satisfiable, then S~A is satisfiable. The occurrence number of 50, 0(50), is the 
smallest cardinal x such that any q5 e 50[z] depends on less than x symbols in z [if 
such a cardinal exists, otherwise we write 0(50)= oo]. Using techniques similar to 
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those in the proof of the abstract amalgamation theorem [3.3.1 in Mak; 5.2 in 
Mak-Sh; 11.2.8 in Sh 85] we show 

Proposition 1.1. Let tr be a regular cardinal. I f  Horn(501, 5~ and 0(502)~ x, then 
50a is [~c]-compact. 

As a corollary we get, e.g., 

Corollary 1.2. (i) --7 Hom(50o,o(Q0). 
(ii) -7 Hom(50~o, 50~) unless tc is compact (in which case Hodges and Shelah 

show Hom(50~,o, 50~), see [Ho-Sh]).  

Proof of Proposition 1.1. We assume o(502)__< x and that 501 is not [K]-compact, 
and give a counterexample (96, no, a0  for Hom(501,502). x is cofinally characteriz- 
able in 501, i.e. there is a z-structure 9J/= (M, pM, <U (C~)~,...) such that for any 

(c~)~,~ is increasing and cofinal in the linear ordering 9~-ze193/, the sequence N 
(pN,<N). Fix such an 91l, set lz=card(M\{c~l~ex}),  and assume that 
z~\{c~ [ ~ s tc} is relational. Then expand the branches of the partial order 

#* + ({0, 1} x - ~Z, {((i, f ) ,  (i, g))li  = 0,1, f ,  g ~ =< ~Z, f initial segment of g}) 

with copies of 9~[z~\{c~ I ~ e ~c} such that 

-~991 

via isomorphisms h~,: with the following properties: 
For any f,  g : x ~ Z ,  c~e ~c, ye--<~Z, ze#*,  i=0,  1: 

ho, y(O, y) = hi ,  j.(], y) and ho, :(z) = hi, f(z) 

and, if f l e=g le ,  then 

(hi.f)-~l{x e M I x < ~ }  =(h,,o)- ~[{x e M I x < ~ }  �9 

We let ~I contain this expansion to a z~\{c~ [c~e~:}-structure and interpret 
additional relations and constants 

Sga:= {((1 - i, f) ,  (i, g))[i = 0, 1, f, g: x ~ Z ,  {~ [f(~) 4: g(~)} 

is finite and Z(g(~) - f ( c0 )  = i mod(2)} ,  

ai: = c~: = (i, fo), where fo = (0, 0,...) �9 ~Z, i = 0, 1, 
9s R~.-{(O, folcO,(l,fol~)}, for eeoc. 

o(50z)___< ~: and an automorphism argument yield: (96, ao)-so (gx, a0. Since 93l 
cofinally characterizes x in 501, for any (~,bo, bO-se~(9.I, ao, aO and for any 
automorphism f of ~3 we have f(bo)=bl iff f(bO=bo. But as (~,bo, bO and 
(~I, ao, al) satisfy -nScoc~ASC~Co, there is no automorphism f of ~3 wi th  
f(bo)=b~. [] 

Proposition 1.1 together with the finite dependence theorem [Theorem 4.3 in 
Mak-Sh] and with the properties of the least cardinal ~: such that 50 is 
[~]-compact of [Theorem 1.5 in Mak] lead to 

Proposition 1.3. Horn(50) and o(50)< the least measurable cardinal (if there exists 
one, otherwise o(50)e CARD is enough) imply the compactness of 50. 

In what follows, we investigate the local homogeneity property. 
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2 Some counterexamples 

Proposition 2.1 collects some easy counterexamples. They are based on the 
existence of EC.;e-classes of rigid structures which contain a structure with two 
elements of the same ~- type .  The main part of this section, however, deals with 
~,o,o(Q1) and infinitary logics for which this method of providing counterexamples 
does not work. 

Proposition 2.1. The following logics donot have the local homogeneity property: 
O) stationary logic L~ao~,(aa) (see [Ba-Ka-Ma]) ;  
(ii) under CH the Magidor-Malitz logic ~o~(Q 2) ("1" means the Nl-inter- 

pretation, "2" means the arity of the quantifier, see [Mag-Mal] ) ;  
(iii) Sf, o~,(Q4); 
(iv) (~.~,  ~e..) unless li is strongly inaccessible. 

Proof. (i) Otto [Ot] gives an ~e~,o,(aa)-sentence ~b that has only rigid models and 
that has models of arbitrarily large cardinality. 

(ii) [Ot; Mil] give ~o,o,(Q2)-sentences q5 which are satisfiable under CH and 
have only rigid models. A sentence that says "e is extensional and 92~ ~b" and that is 
true in (N(N(A)); N(A); 92, e) has a model with two elements of the same type and 
has only rigid models, too. 

(iii) lOt, Lemma 6.6(2)]. 
(iv) Easy, with the same method as in (ii). [] 

Ebbinghaus [Eb 71] shows that there are no ~,~o~(Q1)-sentences having infinite 
but only rigid models. Nevertheless, 5r 1) does not have the local homogeneity 
property. This fact and some results on ~ o ,  will be proved in the remainder of the 
section. The counterexamples are provided by a modification and expansion of a 
forcing construction given in [Claim 3.5 in Sh 85]. 

Theorem 2.2. (~o,~,(Q1), Ga,,o,(aa)) does not have the local homogeneity property. 

The proof  of 2.2 will be finished with 2.10. We give an overview: Definition 2.3 
and Lemma 2.4 describe a sentence qSco~cleGa~,o,(Q1) that forbids automor- 
phisms f with f(Co)=q. 2.5 up to 2.10 deal with a forcing notion P such that 
for P-generic G, in V[G] there is a model (92,C~o, c~) of qSco~c ~ with (92, Co ~) 
-z~(92,c~) for certain logics d~2. If Mod(q~co~cl) is a PC-class in ~z with 
symbols of z~, then for suitable ~2  we have the consistency of --1Hom(Gal, ~2). 
If additionally satisfiability of 6r is absolute - -nHom(~,~r  is 
true in V. 

We consider a class K of structures (A,P,U, <,f ,  Co, C~), where 
A=P�9169 ct}, < is a linear order on P, P is uncountable, U is countable, 
f :  P x P ~  U satisfies for any a, b, c, d: if f(a, c) =f(b, d), then a < b iff c < d. This is 
nearly the same class Shelah used in Claim 3.5 in [Sh 85]. The square of a linear 
order (A, <)  is the structure (A x A, <2), where (a l, a2)<2 (b l, b2) iff a i < b l and 
a2 < b2. The restriction to P of the { < }-reduct of any member of K is an order, 
whose square is the union of countably many chains, and hence does not have any 
anti-automorphism. We introduce a 3-ary relation R and a 4-ary relation F, 
expand the members of K and forget < ,  such that any anti-automorphism of the 
unchanged structure corresponds to an automorphism of the new structure that 
carries Co to Cl. The resulting class can be described as the model class of some 
q5 ~ GP~,o(Q1)- To be precise we fix such a sentence. 

Definition 2.3. Let U, R, F be relation symbols of arity 1, 3, 4, respectively and co, c 
be symbols for constants, tr: = { U, R, F, Co, cl}. Let 49~o~c~ denote the ~e~(Q 1) [a]- 
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sentence ~bco~c 1 = / ~  ~bi, where 
i<5 4)o :=---nQlxUx ; 

r 
q~a says, that the relation R(co, . , .  ) is a linear ordering, whose 
field is the universe with the exception of the UL2{Co, cl}-part; 

•3 :=Vxy(R(co, x, y) ~ R(c 1, y, x)); 

~b 4 says that F is the graph of a function 

f :  {(c,, a, b) [ i=0,  1, R(% a, b)} ~ U, 
such that 

Vxy(R(c o, x, y )~  f(c o, x, y) =f(cl ,  y, x)) A VXoXlyoyt(f(c o, Xo, xl)=f(Co, Yo, Yl) 

--*((R(co, x0, Yo) V x o = Y0) ~ (R(co, xl, Yl) v xt = Yt))) �9 

L e m m a  2.4.  ~ ~ Let (~, Co, c l )~ C~co~ ~. Then the square of (B, R~(cSo, . , .  )) is the union 
of countably many chains. Hence there is no automorphism g of ~ with g(c~)= c~. 

In [Sh 76] on the base of ZFC Shelah constructs orders whose squares are the 
unions of countably many chains. In [Sh 85], he gives a rather brief sketch of a 
partial order that forces, for generic G, the existence of such orders in V[G]. We use 
the expansion of a suitable c.c.c.-suborder of that partial order. In a generic V[G] 
this gives us a z-structure 9/~q5~o~ 1 such that for certain logics If2_>__~ the 
~2-theory of (9.1, ao) equals the ~2-theory of (9.1, al). The following definition 
collects some properties of a logic s176 that are suitable for the intended forcing. 

Definition 2.5. (~ ,  ~Le) is an No-definable logic with small syntax iff there are a 
parameter c____ co and formulas lp~y~(X, y, z), ~P~om(X, y, Z) ~ ~,~,[{e}] such that for any 
pair of transitive models 9Jl = (M, ~)c= 9l = (N,~) of ZFC with c e M the following 
holds: 

(i) For  any X, z ~ M, 0 e N: 

( ~  z e LeEz]) ~ ~b ~, , [z ,  ~, c], 

and ( (~p~y~[0 ,% c] and OeM) ~ gt~1&ynl-0,%c]). 
(ii) For any X, z e M  and any z-structure E in M: 

9xb ((~b_~ z) ~ (~,,[z, ~, c] ^ ~omEz, ~, c])). 

That means: Z e L~[z] and E ~  X are definable with parameters c__C co in set theory. 
The relation Z e S [ z ]  satisfies the strong absoluteness property (i): for any 
universe M, even in larger universes there are no new S[~]-sentences for -c e M. 
The relation E ~ ) (  may be not absolute. 

For technical reasons we take -c = a u  {H} <2 {_n [ n e co}, where the arity of H is 3. 
The consideration of ~-structures allows us to use the following main theorem also 
for logics that do not contain qS~o~_,c ~, e.g. for infinitary logics in Theorem 2.11. 

Theorem 2.6. Let I f  be an No-definable logic with small syntax. Then there is a c.c.c. 
partial order P = ( P ,  __<v, ]e), such that: 

lV[~-"There is a z-structure (9.1, ao, al) , such that 

(9/,ao, a~)=~e(9/,a~,ao) and 

(9.1, ao, a~)~ 4)~o~c, 
^ Vx#y~(Uk_,{Co, C~})Sue U(H(x,u,O) A --nn(y,u,O_)) 

^ Vx(Ux--., ,~o,V x =_n)". 
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Proof. Let P = ( P ,  =e, 1 ~) be defined as follows: 
P:=  {p =(w~, <~, f~, hv)[p satisfies the conditions (P0) up to (P5)}, where 
(P0) wp is a finite subset of c9~\co. 
(P1) <~ is a nonstrict linear ordering on wp. 
fv : {(e, fl)e w~ x w~ l e <vfl} ~ c9 has the following properties: 
(P2) For  any (~,/?), (e', fl') e dom(f~): If f~(e,/~) =f~(~', if), then (~,/~) and (e', fi') 

are comparable in <2 
For e, fl e wv let [e, flip denote the set {7 e w~ [ e <p7 <fl?}- 
For ~ > fle col let e -  fl be the 7 with fl + 7 = e, if fl > e set ~ - fl = 0. The distance 

of e and fl, d(a, fl), is the maximum of ~ - f l  and f l -~ .  

(P3) Vc~, fl, fl 'e w~ 

((" <vfl <pfl' A fp(~, fl) = f,(a, fl '))~Va e [fi, fl']p~-- a < a~) 

and 
~ ~ ~, fl ~ W p 

((~ <p~' <pfl/x fp(a, fl) = f p(a', fl))--* V 6 e [~, a ']pf l-  6 < co). 

(P4) V~, c(,fl, ff e Wp 

((~ <pfl A ~' <,fl' A ~ <v~' A fl <pfi' A fp(~, fi) = fp(e',/?')) 

~(Vy e Ee, e']~ ~ 6 e [fl,/~']p d(y, 6) < co A V 7 e [fl, fl']p 3 6 e Le, e']~ d(7, fi) < co)). 

(P5) 

For  p, q ~ P let q <=Pp iff 

hp "w, x rg(fp)--* {0, 1}. 

Wp~Wq 

<p = %~(Wp • W,), 

fp =LIW, • Wp, 

hp = halw p x rg(fp). 
F:=(0,0,0,r 

Remark. Shelah's forcing just has properties (P0), (P1), and (P2) except that the 
domain of his fp is Wp x wp rather than a proper subset. It collapses ~o1: Let G be 
generic with ordering <G and function f~. If ~ :# fl, then for any n e co there is at 
most one ~ such that ~, fl<GT, and fG(fl,~)=f~(~,~)--n. Put h(7)=n. Then a 
denseness argument shows that h maps a subset of e) into a cofinal subset of ~o 1. 

Conditions (P3) and (P4) will be used to prove the c.c.c. 

Claim 2.7. P has the c.c.c. 

Proof. Let P0 = P be uncountable. By the A-lemma and the pigeonhole principle 
there are finite sets r (co 1 \co, s (co and a limit ordinal ~ ~ co 1 and an uncountable 
P~ - Po, such that for any p + q e P~ the following is true: r = wpn w a = (chwp and 
s = rg(fp) and 

(wpwrg(fp)w{O, 1}, <~11 (wpwrg(fp)w{0, 1}), <p, fp, hp) 

- . . . . . .  ~ o ,  ~(wawrg(fq)W{0, 1}, <~'  I (waurg(fq)u{0, 1}), <q, fq, ha). 

We shall show that any two elements of P~ are compatible in P. Let r be 
ro<~"r~<~'~... <'~'r,_a. Given p # q ~ P ~ ,  we define a(p,q) a sort of amalgam 
of p and q, which is in general not an element of P. 
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If (wp, <m[w~)=(r o <'~ I <~l. . . r , ,  1 <~'~o < ~ e l  <~1...em_l) and (wq, <~'qwq) 
= (r 0 <tour  1 o~ o~ < . . .r ,-1<~~176 . . .(m-0, then a(p,q)'=(wpWWq, <,, f , ,h,) ,  
where <a is the transitive closure of <pw <qu  <'  with (e~<'~k iff there is no j < n  
with ~k<qrj<p@. Let f , ' = f p u f q w f ' ,  where f '  has the appropriate domain and 
is an arbitrary injective function with rg( f ' )~rg( fp)=0.  For h, take a continua- 
tion of hpwh~ with domain (epwwq) • rg(f,). 

a(p, q) satisfies the defining properties of P except of (P4). (P0), (P1), (P5) are 
obvious; checking (P2) and (P3) is easy but tedious. Let us consider (P2). 

Let f,(a, fl)=fo(~', if). The only interesting case is (~, fl)e wp x wp\r • r and 
(c~', fl') e wq x wq\r x r. Let g be an isomorphism between p and q. Then 

fv( ~, fl) = fa(g(e), g(fl))= fa( ~', i f )= fv(g- ~(e'), g -  l(ff))" 

We prove by cases that (~, fl) is <2-comparable to (~', if). 
Case 1: (e, fl)<~(g-l(a,),g-l(fl,)). 
The transitivity of <2 and g(?) > , ?  yield (e, fl) <2(~,, if). 
Case 2: (g-~(cO, g- ' (ff))<2(e,B).  
Subcase 2.1: [g-  1(c(), a ]pnr  # 0. 

, <  Here we have ~ _,~.  If g 1(c~') = c~, then c( = ~ and (c~, fl) is comparable to (c~', fl') 
in <2 

~ _ . a  �9 

If g -  ~(~') <~e, then [g-  ~(c(), cdpnr # 0 and fp(e, fl) =f~(g- '(c0, g -  l(ff)) and (P3) 
[in case g ~(fl')=fl] or (P4) [in case g -~( f f )%f l ]  show [g-a ( f f ) , f l ]pnr#0 ,  
and hence ff <~fl. 

Subcase 2.2: [g-~(~'), e]p~r =0. The proof is similar to that of Subcase 2.1. 
We make a(p, q) "thicker" in order to get an o(p, q) NPp, q: (a, fl) z w, x w, is said 

to be a jump of  p, q iff fl is a direct <,-successor o f e  and not (c~, fle r or e, ~ e e~\r  or 
a, f le%\r) .  For each ?e(w~ww~)\r and each jump (cqfl) of p,q we take a new 
countable ordinal ~ = 6(?, c~, fl) (s wvwwqw~, such that d(?, 6) < co. Let <o(~.q) =" No 
be any linear ordering such that ~ <o6(7, ~, fl)<off for all ~, fl, ?. Choose fo, ho in a 
similar manner as above. Then it is lengthy but easy verify that o e P. Thus the 
claim is proved. []  

Let V be a countable transitive model of ZFC, P defined in V as above, G be 
P-generic over V. Since D ~ : = { p e P l ~ w ~ }  is dense in P for all ~ c o ~ ,  the 
structure U G = ( ~ { w ,  IpeG},  U { < , I p e G }  ....  ) has support COl (=co/). We 
denote it by (cot, <a, fa, ha) �9 In V[G], we define the z-structure (9.1~,ao, aO by 
A ~ : = c o l ~ { - 1  , -2} ,  

R ~ : = ( { - - 1 }  x ~e)w({--2} x >~), 

F n~ :=({--  I} x Graph(fe)) 

w ({ - 2} x {(a, fl, y)]fl < ~  and fe(fl, ~) = 7}), 

/ ~  : = graph(ho), U ~ : = co, n ~ : = n, n e to, 

c!~a~'"~ for i = 0 , 1 .  

( ~ ,  ao, a~)~ r162 follows from the definition of P. The existence of suitable 
dense subsets of P shows 

(9.Iv, ao, a0  ~ Vx =I = y r (Uw {Co, ca}) ~ u e U(H(x, u, 0_)/x ~ H(y, u, 0_)). 

It remains to show that (gt~,ao)=.~(9.I~,a0; we shall even get (Nr ax) 
-.~(9.I~, ax, %). Let s ~p~y=(X, y,z), ~P,om(X,y, Z), and c=co be as in Definition 2.5, 
For x e V let 2 be a canonical P-name for x, for x e V[G] let 2 be a P-name for xi 
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The names should be chosen in an obvious manner such that (gA~,ao, a 0' is 
computable from (gAG, al, ao)'- We suppress the dots in the following and show 

1P IlZ Vy(IPsyn(Y, "C, ~---~(1/)sem(y , (9-[ G, ao, al) ,  c) ~ IPsem(y , (9~[a, a l ,  ao), c~))) �9 

Let G be a P-generic filter over V, y be in V[G] and V[G]~lpsyn(y,z,c ) 
Alpsem(y,(9A~,ao, al),C). Since the syntax of Aa is small, we have y e K  We fix 
a p ~ G such that 

p [lP11)syn(y, z, C~ A lJ)sem(Y,(9~, ao, al), C~ 

and show in 2.8 up to 2.10 that 

D:={q~Plqll2W~om(~,(9.l, al,ao),~} is dense in P below p. 

The idea is that the order-reversed version of p forces /Psem@,(9.I, al, a0),c ~. 
Unfortunately, if card(wp)=> 2, its order-reversed version is incompatible with p 
and hence cannot be a member of D. So we introduce besides the order-reversing 
automorphisms of P automorphisms of P which shift the supports of the p's a little 
bit. Given q <ep, by reverting a suitably shifted version ofp and joining it to q, we 
get an reD, r<=eq. 

Definition 2.8. (i) Perm(~o l, < co):= {g:col ~co~lg is bijective and glco=idlco and 
d(~,g(~))<co for all ~ o h } .  

(ii) Each g ~ Perm(col, < co) induces a mapping ind(g) : P ~  V via 

ind(g)(p): = (g"(cop), {(~, 1~) E g"(cov) x g"(cop) [ g -  l(~) <pg-  l(/~)}, 

{((,,/~),fp(g- ~(~), g-  1(]~))) [ (a,/~) ~ g"(wp) x g"(cov), g-  i(~) <vg-  l(]~)}, 

{((~, fl), hv(g- l(,), fl))l ~ E g"(wp), fle rg(fv)}). 

It is easy to see that for g e Perm(co~, < co) the function ind(g) is an automorphism 
of P. For p e P let mirror(p) = (w~, >p,p{(c~, fl, 7) 1 e >vfi, fp(fl, cO = Y}, hp), and for i any 
automorphism of P define i* : V ~ V , i*(r) = {(i*(a), i(p)) [ (o-, p)  e z}, see [VIIA2 
in Ku]. The next lemma will enable us to use the isomorphism lemma for forcing 
[VII.13.c in Ku] to find the required members of D. 

Lemma 2.9. (i) For g e Perm(col, < co) we have: 

1 P II • (g-  lk..){(ao, ao), (a 1, a 1)}) ~ : (9.Ia, ao, a l )~  ind (g)*((9.IG, ao, a 1))- 

(ii) 1 el[_P (9/o ' a l, ao) = mirror* ((9/G, ao, al)). 

Proof. (i) Each p e G gives a finite substructure p~ of the generic structure 
(~la, ao, ai) by p~:=(w, wrg(fv)~{O, 1}~{ao, a~} , ({ao} x __<p)~({a~} x __>~), 
({ao} x Graph(fp))~{(a~, ~,/~, y)I fv(fl, ~) = ~}, graph(hp), ao, a~). 

To prove (i), we show for P-generic G, that 

(g- ~ ~ {(ao, ao), (al, al)}): (9.Ia, ao, a~) ~ (ind (g)*((9.Ia, ao, al))) a: 

(ind (g)*((9.I~, ao, a~)))a = (ind(g)*((U {P~ [P ~ G})))~ 

= ((0 {P~ [ ind(g)(p)~ G}))a 

= 0 {P~ [ ind(g)(p) e G} -- U {(ind(g- 1)(p))~ [p e G}, 

and g-1 w {(ao, ao), (ai, ai)} : p~ ---- (ind(g- 1)(p))~. 
(ii) is proved in a similar way. [] 

Now let q__<Pp be given. We show 
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1. For all r e P, if there is a g �9 Perm(co 1, < co) such that r <Pind(g)(mirror(p)), 
then r �9 D. 

2. There are r<Pq and g with these properties. 
Ad 1 : By the isomorphism lemma for forcing we have: 

ind (g)(mirror (p))I! ~ ~p~r ind (g)*(mirror* ((92o, ao, a0)), c~). ( + ) 

2.9(i) applied to mirror*((9.I~, ao, a0) yields 

1Pl]_~ (g- 1 w {(ao, ao), (al, a0})~: mirror * ((9IG, ao, al)) 

~- ind (g)*(mirror* ((92[~, ao, a0)). 

Together with 2.9(ii) we get 

1P ii__e (g- 1 w {(a o, ao), (ax, a 0})~: (9.1G, al, ao) ---- ind (g)*(mirror* ((N~, ao, a0) ) . 

Hence (+)  and the isomorphism property of ~s~ give 

ind (g)(mirror (p))]l --e ~Psem(Y, ('~G, a a, a o), c~) �9 

Ad2: Take a g~Perm(col, <co) such that g"(wq)c~wq=O. Let w'=g"(Wq)WWq. 
Then fix an h e Perm(coa, < co), such that h"(w')c~w' = 0. Let p': = ind(g)(mirror(p)). 
Then g"(wp)=wv,. Now take an r with w,=wq~h"(wq)~g"(wp); let <h be some 
linear ordering on h"(wq) and <,  = <qw <hW <p,W(Wq X (h"(wq)wg"(wp)))w(h"(wq) 
x g"(Wv)); fi be a prolongation of fqwfp, to w, x w~ with new and pairwise different 

values for the new arguments, h,~hqwhp,. It is easy to see that reP. Now 2.6 is 
proved. []  

- \  

As a corollary, we get 

Corollary 2.10. Let ~2 be an No-definable logic with small syntax, c as in 2.5 a fixed 
element of V. I f  (O~o~ ~ ~ ~1, then 

(i) Cons(-q loc Hom(5r 5r ). 
(ii) I f  additionally the satisfiability of 

is absolute for c.c.c, forcings (see EVil]) then-qloc Hom(Lzal, s 

Proof. (i) In V[G], ((9.I o, ao, aO, (Oco~c,) is a counterexample. 
(ii) The satisfiability of Ts~2 in V[G] implies the satisfiability in V. [] 

(ii) finishes the proof of Theorem 2.2. The same forcing technique and a suitable 
expansion of (9.Ia, ao, al) provide an example for ~ l o c  Hom(2P, oo~(Q a ....  )), where 
QdenSexyr y) says "r  is a dense linear ordering with a countable dense subset", 
see [Mill. 

The main step for the next theorem is to show the existence of a model 
(9.1, (u),~ v~, ao, a l )~  r such that (~, a o ) - ~ ) ( 9 . I ,  al), where qS'~o~C~ ~ 5r 
satisfes Mod(~b'co~,)]a__c Mod(r 

Theorem 2.11. -7 loc Hom(~,o2,o, ~oo~(aa)), and therefore --qloc Hom(~,o(Qr176 
--7 loc Hom(Se~o,o) etc. 
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Proof. Set 

u {"H is the graph of a binary function h: (Uu  {Co, c~}) ~ x a ~ {_0, 1}" 

A Vx, yr Ca})3ue U(H(x,u, O) A --1H(y,u, O))} 

Z(Co, e .  ; )  e o, !}3}. 

By the proof of 2.10, and by absoluteness of satisfiability of countable ~~ 
theories T has a model. Starting with such a model the use of back-and-forth 
techniques as in [Ca] and a compactness argument yield a ($,  (u),~v~, Co, e~)~ T 
such that 

Co). 
There is an uncountable F__Cv~{0, 1} such that 03, ~ ~ , . (u), ~ : ,  Co, c a) ~ q~ L ~, where r 
= A  3xCUu{eo, c~} ~ H(x,u_,f(u)). Let (Yo:=Vx(Ux~ V x=u_~ and 

f ~ V  u6U ~ ] 

qh '~o~:=r162 A Cg. Then Mod(r162 and hence 
i = 2 , 3 , 4  

C ~ C ~ , ((f&(u).~:, o, O , r 1 7 6  forms a counterexample. []  

3 A positive result 

Let F be a class of regular cardinals. QcSrxych(x, y, ~) means q~(.,., g) is a linear 
ordering whose right cofinality is in F. In this section the homogeneity property of 
the cofinality logic 5r csr) is shown. 

The proof proceeds in two steps. In the first one, for a given (92,ao) 
-~o,o.(eo:~)(92, al) with z~ countable, we give a notion of forcing such that for 
generic G, in V[G] there is a model (~, bo, bl)-~e~,otQc• ao, al) with (~3,Co ~) 
-_~o~(aa)03, e~). Then we apply Shelah's result on Hom(5~ o,(aa)) 
l-Sh 85, Sects. 5, 6], compactness of ~o,,o(Q ~sr) and the transfer theorems of [Sh 72] 
to get Hom(he,o,o(Q~sr)). 

Theorem 3.1. Let (92, ao) - ~o,~(e~o) (92, a O, z~ = z be countable. Then 
T: = Th m,o,(Qo:o,)((92, a o, a 0 ) u  {~b(ao) ~ q~(a01 r 5r is satisfiable. 

Proof. The methods of Proposition 2.1 in [Me-Sh] provide an ~o,,~(Q~S~')-~o - 
homogeneous model (E, co, c~)-s~ (Q~:~)(92, ao, a~) such that for any n ~ o  there 

cf~J are only countably many 5r ~[z]-n-types over 0 realized in (~, Co, c1). We fix 
such a (~, c o, cl). W.l.o.g. let z contain an n-ary relation R(q~) for any ~o~o(Q ~s~) [z]- 
definable relation qh(~). There is a countable Lf~,:co-homogeneous substructure 
~ - < ~  ~ with the following properties: 

1. All s162 over 0, that are realized in if, are realized in ~ ,  too. 
2. For any neon, (~(~,x,y)E~,~(QcS'~), ~eD: If ~R(Q~S~'xy(~(2,x,y))[~], 

then (R(qh)[~, . , .  ])z is a cofinal suborder of (R(~b)[fl, . , .  ])~. 
Taking such a ~3, we define a forcing P = (P, <e, 1 v) by 
P- - (P ,  _<_P, 1P), where P:--{gJ~lg~ is a z-structure, M is a countable limit 

ordinal and ! I R ~ } w { l } ;  
lV:=1;  
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for 9)l, 9l e P let 9J/<P91 iff 91 = 1 or 91 = 93/or the following conditions are true: 
91<v~.gJ/ and for any 8sN, ~o~_~'~o(Q cfC~ the conditions (i) and (ii) are 
equivalent, where: 

(i) (R(r [~, -, .  ])~ is a linear order without last element, and there is a 7 e M\N, 
such that (R(r t ,  7])~ for any fl in the field of (R(r . , .  ])~. 

(ii) 9l~ R(--n Qr176162 x, y) A"r ) is a linear order without last 
element") [~]. 

Let G be P-generic over V, and in V[G] define ibm:= U G, the union over the 
semilattice of structures in G. We shall show that for suitable bo, bl, in V[G], 
(!BG, bo, bO is a model with the desired properties. Since satisfiability of countable 
~o,~,(aa)-theories is absolute (we consider T as an 6eo,~(aa)-theory, see [4.4 in 
Sh 85]), 3.1 will be proved. 

Because of the density of D~: = {9~ e P [ ~ ~ M}, a e col, U G has support col, 
which is equal to col vtG], as P is co-closed. 

An induction over r e Lf~,~,(Q cz~') shows that for any c~ e col we have: 

( ~  ~ r 
iff there is an 9JleG, such that cTeM and 9J/~R(r 

The crucial QCZ~ is based on the definition of <P. 
There are do, dieD such that ~{R(r dl][r such that 9.I~r al]}. 

Therefore, there are bo, bl e co 1, such that (~3G, bo, bl) = ~,oo~(e~f~)(9.Ia, ao, a0  in 
V[G]. For any such bo, b~ we have (!B~,bo)=v~(q~s~)(~a, bl). The fact (~3G, bo) 
=.v~,,(,,)03~, b0 now follows from: 

Lemma3.2. In V[G], for any 7o,?lEco~':  I f  (~3~,~o)-=~%~(eoy~)(!B~,~) then 
(~G, To) =.~o~(,,)(~G, ~). 
Proof. Let (.!BG, ~0)-.v,oo~(O~eo,)(~3e, 71). We take 93~ ~ G such that 9J/~ II--e (~a, ~ )  
--v~o,(qoe~,)(!B~,Z)A~3~v[~] and ~o, Z e M 1 .  By the last lemma, (992~,%) 
--- v ~  (9921, 7S), and because of the homogeneity, there is an h, 

h : (gJ/1, %) ~ (99ll, Z ) .  
h induces an automorphism of 

P~ : = {99l ~ e ] 991 ~e9311} 

by stipulating h~ = hwidM\M~ and 

/~(99l)~9Jl via h~. 

The second claim in 2.1 in [Me-Sh] yields for any ~b ~ ~Lf~o~(aa ) and ~(II~PI: 

Since ~(99~1)=9J/~ we get 9)l~ II~g~#~[Z] and ~3~#~p[~]. [] 

Theorem 3.3. Hom(~Yo, o~(Qcf'~ ~Lf~(aa)). 

Theorem 3.3 can be proved along the lines of [-Sh 85, Sects. 5, 6]. A more 
detailed elaboration is given in [Mil]. Indeed, (~fo~(QCY~~ ~o,~(aa)) has a stronger 
property: One may replace the points ao, a ~ in the homogeneity property by 
arbitrarily long strings of relations R,S of the same arities: If (9.1,R TM) 
---.v~(~f~)(~, ~ ) ,  then there is a (~, R ~ ,  S'~) =s%~(o~f~)(9.I, R ~, ~ )  with 03, g '~) 
~- (~, S~). s162 does not have this stronger property, as can be shown by a 
modification of a counterexample to the Robinson property of 2'~,,~(QCf~ 
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Theorem 3.4. Hom(~q~(Qc:r)). 

Proof. Let (9.I, ao)==_~(QC:~)(9.1, aa). We  have  to show tha t  

T: =Th.~o~o(QC:~)(gA, ao, aOu{f(ao)= ~ ) w ( " f  is an a u t o m o r p h i s m ' }  

is satisfiable, where f r  z~ is a symbol  for a unary  function. By compac tness  it 
suffices to show that  any countab le  subset  T '  of  T has a model .  Given  such a T',  we 
have T ' C  5s for a suitable countab le  o-__ z. We  use the transfer  
t heo rem in [Sh72]  to get a model  (~,Co, CO of  Th~e~Qc:~)(9.I, ao, aO in the 
co-interpretation. By 3.2 and  3.3 we can assume tha t  there is also a model  (~B, bo, bl) 
of  Thse~(Q~:o~)((g, eo, cl)[a) with an a u t o m o r p h i s m  f of  the required kind. A 
further  appl ica t ion  of the transfer  t heo rem leads to a mode l  of 
Th_~o~,,~Q~:~,)((~,bo, bl , f)  ) in the F-interpretation, i.e. to a model to T'. [] 

Acknowledgements. The results are a part of the author's doctoral thesis. I would like to thank 
Peter Koepke for helpful discussions on forcing and for the hints leading to (P3) and (P4). Most 
especially I would like to thank my thesis advisor Ebbinghaus for his friendly guidance. 

References 

[Ba-Ka-Ma] 

[Ca] 

[Eb 71] 

[Eb 85] 

[Ho-Sh] 

[Ku] 

[Mag-Mal] 

[Mak] 

[Mak-Sh] 

[Me-Sh] 

[Mil] 

[Ot] 

[Sh 72] 
[Sh 76] 

[Sh 85] 

[VS] 

Barwise, J., Kaufmann, M.J., Makkai, M.: Stationary logic. Ann. Math. Logic 13, 
171-224 (1978) 
Caicedo, X.: Back-and-forth systems for arbitrary quanfifiers. In: Arruda, A.J., 
Chuaqui, R., da Costa, N.C.R. (eds.). Mathematical Logic in Latin America. 
Amsterdam: North-Holland 1980, pp. 83-102 
Ebbinghaus, H.-D.: On models with large automorphism groups. Arch. Math. 
Logik Grundlagenforsch. 14, 179-197 (1971) 
Ebbinghaus, H.-D.: Extended logics: The general framework, Chap. II. In: Barwise, 
J., Feferman, S. (eds.) Model-theoretic logic. Amsterdam: North-Holland 1985, 
pp. 25-76 
Hodges, W., Shelah, S.: Infinite games and reduced products. Ann. Math. Logic 20, 
77-108 (1981) 
Kunen, K.: Set theory: An introduction to independence proofs. Amsterdam: 
North-Holland 1980 
Magidor, M., Malitz, J.: Compact extensions of L(Q). Part (1 a). Ann. Math. Logic 
11, 217-261 (1977) 
Makowsky, J.A.: Compactness, embeddings and definability, Chap. XVIII. In: 
Barwise, J., Feferman, S. (eds.) Model-theoretic logic. Amsterdam: North-Holland 
1985, pp. 546-716 
Makowsky, J.A., Shelah, S.: Positive results in abstract model theory: a theory of 
compact logics. Ann. Pure Appl. Logic 25, 263-299 (1983) 
Mekler, A., Shelah, S.: Stationary logic and its friends. I. Notre Dame J. Formal 
Logic 26, 129 138 (1985) 
Mildenberger, H.: Zur Homogenit/itseigenschaft in Erweiterungslogiken. 
Freiburg: Dissertation, 1990 
Otto, M.: Ehrenfeucht-Mostowski-Koustruktionen in Erweiterungslogiken. 
Freiburg: Dissertation, 1990 
Shelah, S.: On models with power-like orderings. J. Symb. Logic 37, 247~67 (1972) 
Shelah, S.: Decomposing uncountable squares into countably many chains. J. 
Combin. Theory Series A 21, 110-114 (1976) 
Shelah, S.: Remarks in abstract model theory. Ann. Pure Appl. Logic 29, 255-288 
(1985) 
Vg/iniinen, J.: Set theoretic definability of logics, Chap. XVII. In: Barwise, J., 
Feferman, S. (eds.) Model-theoretic logic. Amsterdam: North-Holland 1985, 
pp. 599-643 


