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ON THE COFINALITY OF ULTRAPOWERS 

ANDREAS BLASS AND HEIKE MILDENBERGER 

Abstract. We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers 

with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics 

of the continuum, the splitting number a, the unsplitting number r, and the groupwise density number g. 

We also prove some related results for reduced powers with respect to filters other than ultrafilters. 

?1. Introduction. All ultrafilters considered in this paper are non-principal ul- 
trafilters on the set co of natural numbers. We shall be concerned with the possible 
cofinalities cf(W-prod co) of ultrapowers of co with respect to such ultrafilters. We 
shall show that no cardinal below the groupwise density number s (see definition 
below) can occur as such a cofinality and that at most one cardinal below the split- 
ting numbers can so occur. The proof for a, when combined with a result of Nyikos, 
gives the additional information that all Pb+ -point ultrafilters are nearly coherent. 

In Section 2, we review the necessary terminology and some previously known 
results. In Section 3, we prove the result concerning a. In Section 4, we prove 
the result concerning s, we show that in the statement of that result "at most one 
cardinal" cannot be improved to "no cardinal," and we deduce the result about 
P+ -points. Section 5 is devoted to a dual result concerning the unsplitting number, 
and Section 6 contains some generalizations concerning filters that need not be 
ultrafilters. 

We thank Simon Thomas for posing the question whether cf(W-prod co) can ever 
be smaller than a. 

?2. Preliminaries. We write 3' and V? for the quantifiers "there exist infinitely 
many" and "for all but finitely many," respectively. Any ultrafilter (by which we 
always mean a non-principal ultrafilter on co) W will also be used as a quantifier 
meaning "for almost all with respect to X," i.e., 

(Wn) (p (n) f n { n p (n)} E . 

Thus, the quantifier W is intermediate between V?? and 3?? in the sense that 
(V??n) (p (n) =#- (Wn) (p (n) ==> (]"On) ( (n) for any predicate (o on natural num- 
bers. 
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The ultrapower W-prod co is formed from the set wco of all functions f: co - co 
by identifying f with g whenever (Wn) f (n) = g (n). It is linearly ordered by the 
relation 

f <v g 4 \ (Wn) f (n) < g(n). 
By cf(W-prod co) we mean the cofinality of this ordering, the smallest cardinality of 
a subset F of Oco such that every f E 'co is <v, some g E F. 

This cofinality obviously satisfies b < cf(W-prod co) < D, where the bounding 
number b and the dominating number Di are defined as follows. (For more infor- 
mation on these and other cardinal characteristics of the continuum, see the survey 
papers [10, 11].) D is the minimum size of a family 9 C `co such that, for each 
f E I co there is some g E 9 satisfying (V?n) f (n) < g(n). The definition of b is 
the same except that V?? is replaced with 3??. 

In addition to b and -, four other cardinal characteristics of the continuum, s, t, 

a, and cov(B), will play a role in this paper. 
The splitting number s is defined as the minimum size of a family cS of subsets 

of co such that every infinite X C co is split by some Y E S in the sense that both 
x n Y and X - Y are infinite. 

Dually, the unsplitting number r (sometimes called the refining number or the 
reaping number) is defined as the minimum size of an unsplittable family, i.e., a 
family of infinite subsets of co such that no single set splits them all. 

To define a, we first need the notion of groupwise density. A family W of infinite 
subsets of co is said to be groupwise dense if it is closed under infinite subsets and 
finite modifications and if, whenever co is partitioned into finite intervals, the union 
of some infinitely many of these intervals is in S. Then g is defined as the minimum 
number of groupwise dense families with empty intersection. (See [2] for more 
information about groupwise density and a.) 

Finally, cov(B) is defined to be the minimum number of meager sets (i.e., sets of 
the first Baire category) needed to cover the real line. 

We shall be concerned with restrictions, in terms of cardinal characteristics of the 
continuum, on the possible values of cf(W-prod co). The following theorem of Can- 
jar [4, 5] and Roitman [8] suggests that the trivial restriction b < cf(W-prod co) < Di 
is all one can hope for. 

THEOREM 2.1 ([4, 5, 8]). It is consistent (relative to ZFC) that b <K D and every 
regular cardinal i' in the range b < i' < D occurs as cJ(W -prod co) for some W . 

The model used to prove this theorem is the Cohen model, obtained by adding 
a large number of Cohen-generic reals to any model of ZFC. We shall see that the 
trivial lower bound b for all cf(W-prod co) can be improved in some models (but not 
in all, by Theorem 2.1). 

Canjar also showed that the trivial upper bound Di cannot be improved in any 
model where Di is regular. 

THEOREM 2.2 ([6]). There exists an ultrafilter W with cf(W-prodco) = cf(D). In 
particular, if D is regular then it occurs as cf(W-prod co) for some W. 

For any ultrafilter W and any function f: co -* co, the image f (W) is defined as 
the ultrafilter {X C co I f - 1 (X) E W} . (Contrary to our convention, this may be a 
principal ultrafilter, but only if f is constant on some set in W; we shall use f (W) only 
for finite-to-one functions If, so no real difficulty arises.) Two ultrafilters W and W' 
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are said to be nearly coherent if f (W ) = f'(W') for some finite-to-one functions f 
and f '. It is shown in [1] that the same relation of near coherence would be obtained 
if we required in the definition that f = f ' and that f be monotone. It is also shown 
there that near coherence is an equivalence relation and that, whenever W and W' 
are nearly coherent, then cf(W-prodco) = cf(W'-prodco) (because both of these 
ultrapowers have cofinal submodels isomorphic to f (W )-prodco). The principle 
of near coherence of filters (NCF), introduced in [1] and proved consistent in [3], 
asserts that every two non-principal ultrafilters on co are nearly coherent. 

?3. Groupwise density gives a lower bound. In this section, we prove the following 
answer to a question raised by Simon Thomas (private communication). 

THEOREM 3.1. For every non-principal ultrafilter W on co, cfJ(-prod co) > a. 

PROOF. Suppose F C %co is cofinal with respect to <?. We shall associate to 
each f c F a groupwise dense family f in such a way that the intersection of these 
families is empty. Thus, we shall have < IF1, which establishes the theorem. 

By increasing them if necessary, we may assume without loss of generality that 
all the functions f E F satisfy f (n) > n for all n. To define 9f , we first define, for 
each infinite X C co, the function vx co -* co sending each natural number n to 
the next larger element of X. Then let 

Wfl = {X C co I X is infinite and f <v' vx} 

for each f E F. Since these f's are cofinal in W-prodco, the intersection of 
the corresponding Wf 's must be empty. It is also clear that each ?f is closed under 
infinite subsets and under finite modifications. So to verify that each f is groupwise 
dense, thus completing the proof, it remains only to check that, if f is fixed and if 
co is partitioned into finite intervals then the union of some infinitely many of these 
intervals is in WZ,. 

Inductively select intervals Ik from the given partition so that the first element of 
Ik+l is greater than f (x) for all x E Ik and all smaller x. Let X be the union of the 
even-numbered intervals, I2j, and Y the union of the odd-numbered ones. 

For any natural number p in the interval (max In-i, max Ia] one of vX (p) and 
vy(p) (depending on the parity of n) will be min I,+,, which is greater than f (p). 
Thus, every natural number p, except for the finitely many below max Io, is in one of 
the two sets {n E co I f (n) < vx(n)} and {n E co I f (n) < vyf(n)}. Therefore, one 
of these sets is in X, which means that one of X and Y is in 9f . Since both X and Y 
are unions of infinitely many intervals from the given partition, this completes the 
proof that 9f is groupwise dense and thus completes the proof of the theorem. -1 

It is well-known (see [2]) that g < -. The following corollary gives an improve- 
ment when Di is singular. 

COROLLARY 3.2. g < cJ(D). 

PROOF. Combine Theorems 2.2 and 3.1. A 

Encouraged by Theorem 3.1, one might look for additional cardinal characteris- 
tics that give lower bounds on the possible cofinalities of W-prod co. Such charac- 
teristics must be < Di and, to avoid trivialities, % b. Inspection of the diagrams of 
cardinal characteristics in [11] provides just two such characteristics, the splitting 
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number s and the covering number for category cov(B). (If one counts the somewhat 
artificial min{r, D} as a characteristic, then it also lies in the desired region. The 
following remark about cov(B) applies to it as well.) If we add a large number i, of 
Cohen reals to a model of set theory, then the resulting model has cov(B) large but 
has, by the proof of Theorem 2.1, ultrafilters with cf(W-prod co) = tlj. So cov(B) 
cannot serve as a lower bound for cf(Qf-prod co). That leaves z as a possibility, 
which we analyze in the next section. 

?4. The splitting number. Unlike a, the splitting number's is not in general a lower 
bound for cf(W -prod co). The proof involves the notion of (pseudo-)P, point. An 
ultrafilter W is called a P, point if, for every family 9- C W with 1-1 < iA, there 
is some A E Z/ with A - F finite for all F E i. Pseudo-P, points are defined 
similarly, except that A is not required to be in X, only to be infinite. We shall 
need the following results of Nyikos, folklore, and Shelah, respectively. (Although 
Nyikos's paper [7] is not yet published, Proposition 4.1 and its proof were in a 1984 
letter from Nyikos to the first author.) 

PROPOSITION 4.1 ([7]). If W is a pseudo-P,< point and K, > b, then cJ(W-prod co) 
b. 

PROPOSITION 4.2. If W is a pseudo-P,< point then s > S,. 

PROPOSITION 4.3 ([3]). It is consistent relative to ZFC that b = Ri and there is a 
PN2-point. 

Since the first two of these propositions are fairly easy, we give their proofs. For 
Proposition 4.3, we refer to Theorem 6.1 of [3], which gives (more than) a model 
with a PN2-point and another ultrafilter generated by ti sets. The latter gives us 
b = ti because, by a theorem of Solomon [9], no ultrafilter can be generated by 
fewer than b sets. 

PROOF OF PROPOSITION4.1. Let W be a pseudo-P, point with K' > b, and let 
F C 'co be a family of cardinality b such that for every f e 'co there is g E F with 
(Ej'on) f (n) < g(n). By increasing each g Ec F if necessary, we can assume that g 
is a monotone non-decreasing function. To complete the proof, we show that F is 
cofinal with respect to the linear ordering <v of W-prod co. 

Suppose to the contrary that h E %co is such that g <v h for all g E F. This 
means that the sets Mg = {n E co I g(n) < h(n)} are in 2 for all g E F. Since 
JFJ = b < i' and since W is a pseudo-P, point, there is an infinite set X c co 
such that each X - Mg is finite. As in the proof of Theorem 3, let vX(n) denote 
the next member of X after n. By our original choice of F, there is g EZ F such 
that h(vx(n)) < g(n) for infinitely many n. For each such n we have, since g is 
non-decreasing, h(vx(n)) < g(vx(n)) and therefore vx(nf) C X - Mg. But this 
applies to infinitely many n, giving infinitely many vX (n), contrary to the fact that 
X -Mg is finite. A 

PROOF OF PROPOSITION 4.2. Let W be a pseudo-P, point and let eS be a family of 
fewer than r, subsets of co. We must find an infinite set X C co that is not split by 
any member of S. 
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For each Y E cS, let Y' be Y or co - Y, whichever is in W. As W is a pseudo-P, 
point, there is an infinite X such that X - Y' is finite for all Y E eS. This X is clearly 
not split by any such Y. A 

COROLLARY 4.4. It is consistent, relative to ZFC, that there is a non-principal 
ultrafilter W on co with cf(W -prod co) < s. 

PROOF. In the model given by Proposition 4.3, let W be a PN2 point. Its existence 
gives s > t2 by Proposition 4.2, and we also have, by Propositions 4.1 and 4.3, 
cf(W-prod co) = b = A1 - H 

Although Corollary 4.4 shows that it is consistent for the set of cofinalities of 
ultrapowers of co to contain a cardinal below s, we shall see that this set cannot 
contain two cardinals below z. That will be a consequence of the following theorem. 

THEOREM 4.5. Suppose W and ' are non-principal ultrafilters on co such that both 
cf(W-prodco) and cf(W'-prodco) are smaller than z. Then W and W' are nearly 
coherent. 

PROOF. Let W and W' satisfy the hypotheses of the theorem, and suppose these 
ultrafilters are not nearly coherent. Let F and W' be subfamilies of 'co, each of 
size < s, and cofinal with respect to <v and <v, respectively. Let 9 be the set 
of functions of the form max{g, g'}, where g E A, g' E s', and max means the 
pointwise maximum of the functions. Then, for each f E wco, there is an h E 9 
such that both inequalities f <v h and f <v,/' h hold. 

Temporarily fix some h E 9. Partition co into finite intervals In = [an, an,+) such 
that h (x) < an+1 for all x < an . (It is trivial to produce such ao = 0 < aI < a2 < 
inductively.) Let p: co - co be the function that sends all points in In to n, for all n. 
Since p is finite-to-one and since W and W' are not nearly coherent, the ultrafilters 
p(W) and p(W') are distinct, so one contains a set whose complement is in the 
other. Pulling these sets back along p, we get two sets, say A E W and A' E A', 
each a union of some In's, but with no In in common. 

Define q(x) = p(x) + 1. Applying again the fact that W and W' are not nearly 
coherent, we have q(W) $4 p(W'), so we can get a set in q(W) whose complement 
is in p(W'). Pulling these sets back along q and p respectively, we get B E W and 
B' E W', each a union of some In's, and such that we never have an In C B and 
In+, C B'. 

Arguing analogously with p(W) $4 q(W'), we get C E W and C' E W', each a 
union of some In's, such that we never have an In C C' and In+, C C. 

Let D = A n B n C and D' = A' n B' n C'. Then D E X, D' E W', and both are 
unions of some In's. Furthermore, if a particular In is included in D then neither it 
nor its neighbors In?1 can be included in D'. 

Let E be the union of all the In's and In+,'s such that In C D, i.e., the union of the 
intervals that constitute D and their right neighbor intervals. Define E' similarly 
from D', and note that E and E' are disjoint. 

We claim that, if X is an infinite subset of co and if vx <v h, then X n E is 
infinite. To see this, notice first that the set {k E co I vx(k) < h(k)}, being in 
X, must contain infinitely many points k E D because D E W. For each of these 
infinitely many k, there is an element of X, namely vx (k), in the interval [k, h (k)]. 
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By our choice of the intervals In, this element of X is either in the same interval as 
k or in its right neighbor. In either case, it is in E because k E D. Thus, we have 
infinitely many (since k can be arbitrarily large) elements of X n E, as claimed. 

Similarly, if vx <?X h, then X n E' is infinite and therefore so is X - E since E 
and E' are disjoint. 

Now un-fix h. For each h E X, the preceding discussion produces an E, which 
we now call Eh to indicate its dependence on the (previously fixed) h. For any 
infinite subset X of co, the function vx is majorized, with respect to both <v and 
<v,, by some h E 9. Then the preceding discussion shows that X is split by the 
corresponding Eh. Therefore, {Eh I h E 9 } is a splitting family. But this is absurd, 
as 1 < s. A 

COROLLARY 4.6. At most one cardinal smaller than z can occur as cf(W-prodco). 

PROOF. Combine Theorem 4.5 and the fact that nearly coherent ultrafilters pro- 
duce ultrapowers of the same cofinality. - 

COROLLARY 4.7. Any two pseudo-Pb+ points are nearly coherent. 

PROOF. If two ultrafilters are pseudo-Pb? points, then the corresponding ultra- 
powers have cofinality b by Proposition 4.1, and this is smaller than s by Proposi- 
tion 4.2. So Theorem 4.5 applies and gives the required near coherence. A 

REMARK 4.8. For an ultrafilter W to have a small system of generators and for 
its ultrapower W -prod co to have small cofinality are in some sense antithetical 
properties. Specifically, the proof of Theorem 16 in [1] shows that the number 
of generators of W and cf(W-prod co) cannot both be smaller than Di. Yet each 
property, when it holds of two ultrafilters (with an appropriate sense of "small") 
implies near coherence. For cf(W-prod co), the appropriate sense of "small" is < s 
and the relevant result is Theorem 4.5 above. For the number of generators of X, 
the appropriate sense of "small" is < -, for Corollary 13 of [1] says that any two 
ultrafilters generated by fewer than D sets are nearly coherent. 

?5. The unsplitting number. The following result is in some sense a dual to The- 
orem 4.5. It involves the characteristic r dual to s, the inequalities are reversed, and 
the proof uses the same ideas as that of Theorem 4.5. What is perhaps surprising 
is that the notions of ultrapower cofinality and of near coherence do not change 
under this dualization. 

THEOREM 5.1. Suppose W and W' are non-principal ultrafilters on co such that 
both cf(W-prodco) and cf(W'-prodco) are greater than r. Then W and W' are nearly 
coherent. 

PROOF. Suppose W and W' satisfy the hypothesis but are not nearly coherent. Let 
X be an unsplittable family of cardinality r, and consider the family of functions 
VX for X E X. (As before, vX (n) is the first element of X that is larger than n.) 
This family cannot be cofinal in either W-prod co or W'-prod co, since it has only r 
members. So there is a function h: co -* co with vx <v h and vx <&X h for all 
X E X. 
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Using this h, proceed exactly as in the proof of Theorem 4.5 to produce a set 
E C co such that, for all infinite X C co, if vx <v' h then X n E is infinite and if 
vx <kx h then X - E is infinite. 

Thus, E splits all the sets X in the unsplittable family X. This contradiction 
completes the proof of the theorem. A 

COROLLARY 5.2. If r < z then there are at most two near-coherence classes of 
ultrafilters. 

PROOF. The ultrafilters W with cf(W-prod co) < s (if any) form a single near- 
coherence class by Theorem 4.5; those with cf(W-prod co) > r (if any) form another 
single near-coherence class. The hypothesis of the corollary implies that every 
ultrafilter is of one or the other of these sorts. A 

COROLLARY 5.3. It is consistent that there are exactly two near-coherence classes 
of ultrafilters. 

PROOF. Consider the model from Theorem 6.1 of [3], which we used to establish 
Proposition 4.3 and Corollary 4.4 above. As pointed out in the proof of Corol- 
lary 4.4, it has z =t82. Since it also has an ultrafilter generated by I sets and since 
a base for an ultrafilter is obviously unsplittable, it has r = ti. So Corollary 5.2 
applies to this model; there are at most two near-coherence classes. 

To see that there are exactly two, suppose instead that there were only one, i.e., 
that NCF holds. Then, by Theorem 16 of [1], all ultrapowers would have cofinality 
D = Z2. But we saw in the proof of Corollary 4.4 that there are ultrapowers of 
cofinality b - R.A 

COROLLARY 5.4. No ultrafilter W can satisfy r < cf(W-prodco) < s. 

PROOF. Suppose r < cf(W-prod co) < z. For any other ultrafilter W' we have 
either r < cf(W'-prod co) or cf(W'-prod co) < e. In either case, W' is nearly coherent 
with W, by Theorem 4.5 or 5.1. Thus, NCF holds. By Theorem 16 of [1], it follows 
that cf(W-prod co) = D. But it is well known that D > s (see [1 0] or [11 ]), so we have 
a contradiction to the hypothesis cf(W-prod co) < s. A 

?6. Smaller filters. In this final section, we indicate how some of our previous 
results can be extended to deal with filters more general than ultrafilters. We shall 
need several definitions and a lemma. We shall give the proofs somewhat sketchily, 
because they are quite similar to the ultrafilter proofs already given. 

All filters considered here will be proper filters on co that contain all the cofinite 
sets. The quantifier associated to a filter and the image of a filter under a function 
are defined just as for ultrafilters in Section 2. A filter 9 is called feeble if there 
is a finite-to-one f: co -* co such that f (S) consists of only the cofinite sets. 
Equivalently, feebleness means that co can be partitioned into finite pieces in such a 
way that every set in S meets all but finitely many of the pieces. A filter is called 
nearly ultra if there is a finite-to-one f: co -* co such that f (S) is an ultrafilter. 

If a filter _ is not an ultrafilter, then the reduced power of co with respect to S is 
not linearly ordered. That is, there are functions from co to co that are incomparable 
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with respect to the ordering 

f <? g (S n)f(n)<g(n). 

Thus, the cofinality of an ultraproduct corresponds to two cardinals associated to a 
reduced product. We write D(S) for the minimum cardinality of a family 9 C 'co 
such that every function in wco is <a one in 9. We write b(T) for the minimum 
cardinality of a family q C %co such that no single function is >5X all members of 
S. Notice that when _ is the filter of cofinite sets then these cardinals are Di and b 
as defined in Section 2. For ultrafilters W, we have D(W) b (W) = cf(W-prod co). 
If 9 C i' then 

b (9) < b ')< D )< D(S) 

Iff is a finite-to-one function then it is easy to verify that 0(f ()) = D(S) and 
b(f(9)) = b(9) 

The following theorem directly generalizes Theorem 3.1. 

THEOREM 6.1. If thefilter S is notfeeble, then b(S) > ,. 

PROOF SKETCH. Proceeding as in the proof of Theorem 3. 1, we find that it suffices 
to prove that 

lf = {X C co I X is infinite and f <5- vx} 

is groupwise dense for every f : ) o-* c. Given f and given a partition of co into 
consecutive finite intervals In we find an infinite union of In's in 9f as follows. By 
merging adjacent intervals, we may assume that, for every x, f (x) lies at most one 
interval beyond x, i.e., (x, f(x)) never includes a whole In. Consider the partition of 
co whose pieces are the double intervals I2n U I2n+1 - Since Y isn't feeble, it contains 
a set A missing infinitely many of these double blocks. Let X be the union of the 
"second halves" I2n+1 of these double blocks missed by A. Then for every a E A, 
there is a whole Ik included in (a, vx(a)), namely the first half of the double block 
whose second half contains vx (a). Since there isn't a whole Ik included in (a, f(a)), 
we have f (a) < vx (a), and since A E Y the proof is complete. -1 

In order to generalize Theorems 4.5 and 5.1, we shall need the following lemma. 

LEMMA 6.2. Suppose that thefilter Y is not nearly ultra, and let co be partitioned 
intofinite intervals In. Then there are sets D, D' C co with the properties: 

(1) Every set in Y intersects both D and D'. 
(2) Each of D and D' is a union of intervals In. 
(3) If In C D then In and its neighbors In_, are disjoint from D'. 

PROOF SKETCH. If every set in Y meets all but finitely many In (so Y is feeble), 
then we can take D to be the union of all 14n and D' to be the union of all 14n+2* So 
assume that some A E Y misses infinitely many In. By merging adjacent intervals 
and enlarging A, we can assume that A consists of theIn for all even n. Let f: co -+ co 
be constant on each In with value n. Since f (Y) is not an ultrafilter, there are two 
disjoint sets C and C' each meeting every set in f (Y). Then D = f1 (C) n A and 
D' = f -1 (C') n A are as required in the lemma. - 

THEOREM 6.3. If Y is not nearly ultra then D(Y) > s and b(3) < t. 
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Before proving this theorem, we point out how it subsumes Theorems 4.5 and 
5.1. Suppose ?e{ and 9/I' are ultrafilters whose ultrapowers both have cofinality < 6. 
Let Y = n /1'. Then it is easy to check that 

D(S) = max{cf(W-prod co), cf(W'-prod co)}. 

So Theorem 6.3 says that 7 is nearly ultra. But if f is a finite-to-one function such 
that f (Y) is an ultrafilter then f (W) and f (W'), which both include this ultrafilter, 
must be equal. So W and A/I' are nearly coherent. This proves Theorem 4.5, 
and the deduction of Theorem 5.1 from Theorem 6.3 is analogous, using b(9) ( 
min{cf(W-prod co), cf(W'-prod co)}. 

PROOF SKETCH FOR THEOREM 6.3. We shall indicate how to modify the proof of 
Theorem 4.5 to obtain D(Y) > s. The other inequality is obtained dually, i.e., by 
analogously modifying the proof of Theorem 5.1. 

Suppose toward a contradiction that 9 is not nearly ultra but 9 is a family 
of fewer than s functions such that every function in 'co is <?3 one from 92. 
Temporarily fix some h E X, and partition o into intervals I, as in the proof of 
Theorem 4.5. Let D and D' satisfy the conclusion of Lemma 6.2 for this partition. 
As in the proof of Theorem 4.5, let E be the union of the intervals I, in D and their 
right neighbor intervals, and similarly for E'. Then E and E' are disjoint. Also, if 
X is an infinite subset of co and vx <?S h then X has infinite intersection with both 
E and E'. The proof of this is just as in the proof of Theorem 4.5, except that where 
we formerly used that D E ?/ and D' E 2/I', we now use 1 of Lemma 6.2. Thus, 
every such X is split by E. 

Finally, un-fix h and observe that, as before, the sets E associated to the func- 
tions f E 9 form a splitting family of cardinality at most I 1. This contradicts 
191 <,. -1 
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