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Abstract. We show that the Filter Dichotomy Principle implies that there are exactly four
classes of ideals in the set of increasing functions from the natural numbers. We thus answer
two open questions on consequences of � < �. We show that � < � implies that � = �,
and that Filter Dichotomy together with � < � implies � < �. The technical means is the
investigation of groupwise dense sets, ideals, filters and ultrafilters. With related techniques
we prove the new inequality � ≤ cf(�).

1. Introduction

We are going to consider some cardinal invariants between � and cf(�), all vari-
ants of the groupwise density number �. All cardinal invariants and combinatorial
principles used in this paper will be explained in the end of this introduction.

We shall show that in the following chain of equivalences and implications from
[4,5,15]

� < � ⇔ five classes in ω↑ω ⇔ trichotomy
⇒ only four types of ideals (4I)
⇒ only four growth types (4G)
⇒ filter dichotomy (FD)
⇒ near coherence of filters (NCF)

(∗)

in the third and in the fourth line also the reverse implication holds. Since (4G)
is equivalent to the statement that there are exactly four slenderness classes of
groups (see [12]), our result shows that the latter, algebraic statement follows from
FD.

In the second section we give some estimates for the variants �i of �.

In the third section we show that � < �i is equivalent to the i-th line in (∗) and
that the middle three principles are equivalent.
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In the fourth section we show that � may be replaced by � and that � < �4

implies � = �. We also prove that � < � follows from FD together with � = �.

In the final section we prove a new inequality for the splitting number.

In the rest of this section, we explain the notation and recall the definitions of
the well-known cardinal characteristics �, �, �, �, �, � and the six principles on
the right hand side of the scheme (∗) above, and we define the new variations �i .
This paper will be self-contained in definitions and in most of the proofs of the new
results, though the latter requires to present some parts of [2,5–7,15]. In general,
we focus on the direction “getting back to the strict inequality” and merely give
references where to find the known implication from the strict inequalities to the
combinatorial principle.

Notation. The set of all functions from ω to ω is denoted by ωω; the set of all
increasing functions from ω to ω is denoted by ω↑ω; and the set of all infinite sub-
sets of ω is written as [ω]ω. The quantifier ∀∞ is interpreted by “for all but finitely
many”, and its dual quantifier is ∃∞. On the set ωω, the ordering of eventual dom-
inance is defined by f ≤∗ g iff ∀∞n f (n) ≤ g(n). Similarly we define eventual
inclusion, which is rather called almost inclusion, for two infinite subets X, Y of
ω: X ⊆∗ Y iff X \ Y is finite.

The bounding number � is the smallest cardinality of a subset of ωω that is not
bounded with respect to ≤∗. The dominating number � is the smallest cardinality
of a dominating subset in the same partial order.

A subset D of [ω]ω is called dense if for any infinite set X there is an Y ∈ D

such that Y ⊆∗ X. A subset D of [ω]ω is called open if for any Y ∈ D for any
X ⊆∗ Y also X ∈ D. The density number, �, is the smallest number of open dense
sets whose intersection is empty.

A subset G of [ω]ω is called groupwise dense if

G is open, and

for every partition of ω into finite intervals � = {[πi, πi+1) | i ∈ ω} there is an
infinite set A such that

⋃{[πi, πi+1) | i ∈ A} ∈ G.

The groupwise density number, �, is the smallest number of groupwise dense
families with empty intersection.

A base (pseudo base) of an ultrafilter U is a subset B of U (of [ω]ω) such that
∀U ∈ U ∃B ∈ B B ⊆ U . The smallest cardinality of a base (pseudo base) of U is
called χU (πχU). The cardinal characteristic � is the minimal χU when U ranges
over the free ultrafilters on ω. The refining number is the smallest cardinality of a
family R ⊆ [ω]ω such that ∀f ∈ 2ω ∃R ∈ R f �R is almost constant.

Balcar and Simon [1] showed that � = min{πχU |U free ultrafilter on ω}.
Goldstern and Shelah [13] constructed a model of � < �.
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A family S ⊆ [ω]ω is called a splitting family if for every X ∈ [ω]ω there is
some S ∈ S such that S ∩ X and X \ S are both infinite (which is expressed as
“S splits X”). The splitting number is the smallest size of a splitting family.

We define a preordering � on P(ω↑ω) by X � Y iff ∃r ∈ ω↑ω ∀f ∈ X ∃g ∈
Y f ≤∗ g ◦ r . (This is �2 in [15].)

The preordering � on P(ω↑ω) gives rise to the equivalence relation E on
P(ω↑ω), with IEJ if I � J and J � I. We write E also for its restrictions.
E-classes are commonly called �-classes.

An ideal in ω↑ω is a subset of ω↑ω that is closed under pointwise maxima and
under ≤∗-smaller functions. A growth type in ω↑ω is an ideal of ω↑ω that is closed
under pointwise sums.

A function f :ω → ω is called finite-to-one if ∀n ∈ ω the f -preimage of the
singleton {n} is finite. A filter F on ω is called feeble if there is a finite-to-one
function f such that f (F) (i.e. the filter generated by {f [X] |X ∈ F}) is the filter
of all cofinite sets. A subset X of ω↑ω is called unbounded iff ∀f ∈ ωω ∃g ∈
X g �≤∗ f . Note that ω↑ω is dominating in ωω, and therefore unboundedness in
ω↑ω is the same as unboundedness in ωω. For X ∈ [ω]ω, the “next” function is
defined by next(X, n) = min(X ∩ [n,∞)). Following [6], for X ⊆ [ω]ω we set
X∼= {ω \ X |X ∈ X} and ∼X = [ω]ω \ X.

In order to increase the growth of a function we often use the ˜ -operation: For
f ∈ ω↑ω we define f̃ by

f̃ (0) = 0,

f̃ (n + 1) = f (f̃ (n)).

Now we come to the chain of implications in (∗). First we recall the stated
principles, starting with the strongest one.

First line. “Five classes in ω↑ω” is an abbreviation for: there are just five �-classes
of downward closed subsets of ω↑ω. “Trichotomy” stand for the following trichot-
omy principle: For every subset Y of [ω]ω that is closed under almost supersets,
there is a finite-to-one f such that either f [Y] = [ω]ω or f [Y] is an ultrafilter or
f [Y] is the filter of cofinite sets.

Second line. The principle of 4 classes of ideals (4I) says: E restricted to the set of
ideals has exactly four classes. We can name these: The first three classes are: the
dominating ideals, the bounded ideals containing an unbounded function, and the
ideals containing only bounded functions. Here, a function is called bounded iff its
range is finite.

Under (4I), for any pair I,J of unbounded, non-dominating, =∗-closed ideals
in ω↑ω we have IEJ. Hence the set of ideals not belonging to any of these three
classes is, under (4I) also one E-class, the fourth one.
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Third Line. 4G says that there are four classes of growth types (4G) in the equiv-
alence relation E. The classes have the same properties as the classes of ideals in
(4I).

Fourth line. The filter dichotomy principle (FD) says: For any non-feeble filter F
on ω there is a finite-to-one f such that f (F) is an ultrafilter.

Fifth line. NCF says that any two ultrafilters are nearly coherent, i.e. there is a finite-
to-one f such that their images under f coincide. NCF stands for near coherence
of filters.

References to the implications. The first question is whether any of the stated
principles is consistent. Initially, Blass and Shelah [9] have proved the relative con-
sistency of NCF. Later Blass and Laflamme [7] have found that � < � holds in
the NCF-models from [9]. Somewhat simpler consistency proofs are presented in
[4, 10].

Laflamme [15] has shown that � < � implies that there are only five �-classes
and the trichotomy principle. Blass [5] has shown that each of these consequences
of � < � is actually equivalent to it.

The other four implications are shown in [7].
There are many equivalents to NCF in algebra and functional analysis, see

[2, 3].

Cofinalities of reduced products. With a filter F on ω we get a partial ordering
≤F on ωω which is the ≤ in the reduced product of (ω,≤)ω modulo F: f ≤F g

iff {n ∈ ω | f (n) ≤ g(n)} ∈ F. If U is an ultrafilter, then ≤U is a linear order, and
we write cf(U−prodω) for its cofinality. If F is just a filter, then the smallest size
of an unbounded set and the smallest size of a dominating set in (ω,≤)ω modulo F

need not be the same. We write �(F−prodω) for the former and cf(F−prodω)
for the latter.

Some estimates for these cf(U−prodω) are given in [8]. We write �	
 for the
minimal cf(U−prodω) when U ranges over the non-principal ultrafilters on ω.

Variants of �. Now we are going to define relatives �i to � such that the right hand
side in the i-th line of the scheme (∗) will be equivalent to � < �i (see Corollary
3.6) and to � < �i (see Theorems 4.1 and 4.2). A look at �2 and at �4 will yield the
new fact that FD implies 4I. We shall show that � < �4 implies � = �. From the
weaker � < �5 we derive � < �5.

Definition 1.1. a) Let Y ⊆ [ω]ω be such that Y ∼ is groupwise dense. Let X ∈
[ω]ω.

G1(X,Y) = {Z | ∃Y ∈ Y (∀a, b ∈ Z)

(a < b → ([a, b) ∩ Y �= ∅ → [a, b) ∩ X �= ∅))}.
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�1(Y) = min{|X| |X ⊆ [ω]ω ∧
⋂

X∈X
G1(X,Y) = ∅}.

�1 = min{�1(Y) |Y ⊆ [ω]ω ∧ Y∼ is groupwise dense}.

b) LetI ⊆ ω↑ω be an unbounded non-dominating ideal ofω↑ω that is closed under
=∗.

G2(X,I) = {Z | ∃f ∈ I ∀∞n ∈ ω next(X, n) ≤ f (next(Z, n))}.
�2(I) = min{|X| |X ⊆ [ω]ω ∧

⋂

X∈X
G2(X,I) = ∅}.

�2 = min{�2(I) |I unbounded non-dominating =∗-closed ideal in

ω↑ω}.

c) We get G3(X,GT ) and �3(GT ) by restricting the second component of the do-
main to growth types. We get �3 by replacing every occurrence of an ideal I in b)
by a growth type GT and otherwise taking the same definition.

d) Let F be a non-feeble filter on ω.

�4(F) = min{|X| |X ⊆ [ω]ω ∧
⋂

X∈X
G1(X,F) = ∅}.

�4 = min{�4(F) |F non-feeble filter}.

e) Let U be a free ultrafilter on ω.

�5(U) = min{|X| |X ⊆ [ω]ω ∧
⋂

X∈X
G1(X,U) = ∅}

�5 = min{�5(U) |U ultrafilter}.

Why are these variants of �? We shall first show that the families G1(X,Y),
G2(X,I), G2(X,GT ), G1(X,F), G1(X,U) are groupwise dense. So in all in-
stances we are asking for the smallest size of a family of special groupwise dense
families whose intersection is empty.

Lemma 1.2. a) ([6, Proof of Thm 9.15]) Let Y ⊆ [ω]ω be such that Y∼ is group-
wise dense. Let X ∈ [ω]ω. Then G1(X,Y) is groupwise dense.

b) ([7, Theorem 1, (0) ⇒ (1)]) Let I ⊆ ω↑ω be an unbounded non-dominating
ideal of ω↑ω that is closed under =∗. Then G2(X,I) is groupwise dense.

c) ([6, Lemma 9.4]) LetF be a filter. ThenF is non-feeble iffF∼ is groupwise
dense.

d) ([6, Proposition 9.12]) Any ultrafilter is non-feeble.

Proof. For completeness’ sake we write proofs.
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a) First we show that G1(X,Y) is open. Let Z ∈ G1(X,Y) and Z′ ⊆∗ Z, say
Z′ \n ⊆ Z and n ∈ Z. We set n′ = next(Z, n+ 1). We take some Y ∈ Y such that

∀a < b ∈ Z ([a, b) ∩ Y �= ∅ → [a, b) ∩ X �= ∅).

Since Y∼ is closed under =∗, also Y is closed under =∗. Hence Y ′ = Y \ n′ ∈ Y.
Now

∀a < b ∈ Z′ ([a, b) ∩ Y ′ �= ∅ → [a, b) ∩ X �= ∅)
is easily checked.

Now let � = 〈πi | i ∈ ω〉 be given. We merge adjacent intervals in � so that
we may assume that

∀i ∈ ω X ∩ [πi, πi+1) �= ∅.
(For later use, note, that ∀∞i ∈ ω instead of ∀i ∈ ω is would suffice.)

Since Y∼ is groupwise dense, there is some infinite, coinfinite A such that

Z =
⋃

i∈A
[πi, πi+1) ∈ Y∼,

Y =
⋃

i∈ω\A
[πi, πi+1) ∈ Y.

Now again

∀a < b ∈ Z ([a, b) ∩ Y �= ∅ → [a, b) ∩ X �= ∅)
is easily checked.

b) First we show that G2(X,I) is open. Let Z ∈ G2(X,I) and Z′ ⊆∗ Z.
Note that we have ∀∞n next(Z, n) ≤ next(Z′, n) and since f is increasing,
∀∞n f (next(Z, n)) ≤ f (next(Z′, n)). Hence if f is a witness for

∀∞n ∈ ω next(X, n) ≤ f (next(Z, n)),

then the same f is also a witness for the formula with Z′ instead of Z.
Now let � = 〈πi | i ∈ ω〉 be given. We merge intervals of � so that we have

that there is some member of X in each interval. We write � = 〈πi | i ∈ ω〉 for the
new partition. Then we choose g:ω → ω as follows if n ∈ [πi, πi+1) then we set
g(n) = πi+3. Since I is not dominated by g, there is some f ∈ I such that for
infinitely many n, we have that f (n) > g(n). We take

Z =
⋃

{[πi+1, πi+2) | for some n ∈ [πi, πi+1) we have that f (n) > g(n)}.

Clearly Z is the union of infinitely many intervals from �. We show that ∀n ∈
ω next(X, n) ≤ f (next(Z, n)). Suppose that n ∈ [πi, πi+1). Then by the choice
of � we have that next(X, n) ≤ πi+2. There is some j ≥ i such that next(Z, n) ∈
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[πj , πj+1) and such that there is some m ∈ [πj−1, πj ) such that f (m) > g(m) =
πj+2. So we have

f (next(Z, n)) ≥ f (πj ) ≥ f (m) > g(m) ≥ πj+2 ≥ πi+2 ≥ next(X, n).

c) Let F be feeble and let f ∈ ωω be finite-to-one such that f (F) is the filter
of cofinite sets. We set πi = min{f−1{i}} Then we have for anyF ∈ F and for any
A ∈ [ω]ω that

⋃
i∈A[πi, πi+1) ∩ F is infinite, hence that

⋃
i∈A[πi, πi+1) �∈ F∼.

Since F is a filter, we have that F ∼ is open. Given a partition 〈πi | i ∈ ω〉
we stipulate π−1 = 0 and set f (n) = i for n ∈ [πi−1, πi). Since F is not fee-
ble, we have that f (F) is not the filter of cofinite sets, so there is some coinfinite
A ∈ f (F). Thus we have that

⋃
i∈ω\A[πi, πi+1) ∈ F∼.

d) Suppose thatU is an ultrafilter and thatf is finite-to-one andf (U) is the filter
of the cofinite sets. We take some infinite, coinfinite A ⊆ ω. Then ω \ A �∈ f (F),
and hence ω \ f−1(A) = f−1(ω \ A) �∈ U, so f−1(A) ∈ U. For ω \ A instead of
A we get the same. But f−1(A) and f−1(ω \ A) are disjoint. �1.2

Corollary 1.3. ForX,Y,I,GT ,F,U as in Definition 1.1, the familiesG1(X,Y),
G2(X,I), G3(X,GT ), G1(X,F), G1(X,U) are groupwise dense.

Hence for i = 1, 2, 3, 4, 5 we have that �i ≥ �.

2. Some comparisons

We know only the trivial inequalities between the �i that are listed in the first two
parts of the next proposition. In situations of the type � < �i we get more, namely
some implications of the form � < �i �⇒ � < �j even when we cannot prove
�i ≤ �j in general. Though � < � is consistent relative to ZFC (see [6]), all our
relatives �i of � will be greater than or equal �. (For the investigation of conse-
quences of � < �i one could anyway replace �i by max(�i ,�), but this does not
make sense for our purpose here.)

Proposition 2.1. a) � ≤ �1 ≤ �4 ≤ �5,
b) �2 ≤ �3,
c) �5 = �	
,
d) � ≤ �1,
e) � ≤ �2.

Proof. The first inequality in a) follows from Lemma 1.2 a), that all the G1(X,Y)

in the definition of �1 are groupwise dense. The other inequalities in a) follow from
Lemma 1.2 c) that for a non-feeble F the set F∼ is groupwise dense, and from
1.2 d) that ultrafilters are not feeble.
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b) From the definitions follows that growth types are ideals.
c) First we show that for every ultrafilter U we have �5(U) ≥ cf(U−prodω):

We take an X of cardinality �5(U) such that
⋂{G1(X,U) |X ∈ X} = ∅. Then we

have

∀Z ∃X ∈ X ∀U ∈ U ∃a < b ∈ Z ([a, b) ∩ U �= ∅ ∧ [a, b) ∩ X = ∅).
From this we get

∀Z ∃X ∈ X {u | next(X, u) < next(Z, u)} �∈ U.

Since U is an ultrafilter, we get

∀Z ∃X ∈ X {u | next(X, u) ≥ next(Z, u)} ∈ U.

Since U is closed under finite intersections, we have

∀Z0, Z1, Z2∃X0, X1, X2 ∈ X

{u | max(next(X0, u), next(X1, u), next(X2, u)) ≥
max(next(Z0, u), next(Z1, u), next(Z2, u))}
∈ U.

For every f ∈ ω↑ω there are Z0, Z1, Z2 such that

∀n ∈ ω f (n) ≤ max(next(Z0, n), next(Z1, n), next(Z2, n)).

Just choose by induction πi such that ∀n ≤ πi f (n) ≤ πi+1 and set Zj =⋃{[π3i+j , π3i+j+1) | i ∈ ω} for j = 0, 1, 2. Therefore

{max(next(X0, n), next(X1, n), next(X2, n)) |X0, X1, X2 ∈ X}
is dominating in ≤U.

Now we show that for every ultrafilter U we have �5(U) ≤ cf(U−prodω): Let
{fα |α < cf(U−prodω)} be cofinal in ≤U. Take Xα such that fα ≤U next(Xα, ·).
Such anXα exists because we first can take threeXα’s such that the maximum over
their next functions dominates fα everywhere. Then one of the three dominates fα
on a set in U. Then we have

⋂
{{f | f ≥U next(Xα, ·)} |α ∈ cf(U−prodω)} = ∅.

We claim that also
⋂

{G1(Xα,U) |α ∈ cf(U−prodω)} = ∅.
Suppose that the claim is false, i.e. that there is someZ such that ∀α ∃U ∈ U ∀a <
b ∈ Z ([a, b) ∩ U �= ∅ → [a, b) ∩ Xα �= ∅). We let 〈zn | n ∈ ω〉 be the increasing
enumeration of Z and define f by setting f (i) = zn+2 for i ∈ [zn, zn+1). Then
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we have ∀α ∃U ∈ U ∀u ∈ U ∃n (u ∈ [zn, zn+1) ∧ f (u) = zn+2 ∧ next(Xα, u) ≤
zn+1). Hence f would be in the above intersection. Contradiction.

So {Xα |α ∈ cf(U−prodω)} witnesses that �5(U) ≤ cf(U−prodω).
d) Let Y∼ be groupwise dense. Let µ < � and let Xα , α ∈ µ, be infinite sets.

We show that ⋂
{G1(Xα,Y) |α ∈ µ}

is groupwise dense. (All we need is that this intersection is nonempty.)
Since each of the G1(Xα,Y) is open, also their intersection is open. Now sup-

pose that a partition � is given. We take fα as the increasing enumeration of Xα .
Then we take g ∈ ω↑ω such that for α < µ we have that f̃α ≤∗ g.

Then we take i(0) = 0, and i(n + 1) = min{i > i(n) | g(πi(n)) < πi(n+1)}.
Now we show that

∀α ∈ µ ∀∞n [πi(n), πi(n+1)) ∩ Xα �= ∅.

By the proof of Lemma 1.2 a) we are then finished. Suppose α is given. Let k
be such that f̃α(n) ≤ g(n) for all n ≥ k. Suppose that f̃α(k) ∈ [πi(n), πi(n+1)).
Then

f̃α(k + 1) = fα(f̃α(k)) ≤ g(f̃α(k)) < g(πn+1) < πi(n+2).

Hence, starting from some interval [πi(n), πi(n+1)) all later intervals contain an
element of range(f̃α).

e) Let I ⊆ ω↑ω be an unbounded non-dominating ideal of ω↑ω that is closed
under =∗. Let Xα , α < κ , κ < � be given. We show that

⋂
α∈κ G2(Xα,I) �= ∅.

Let g dominate all next(Xα, ·), α ∈ κ . As in c), we take three infinite sets X̃j ,
j = 0, 1, 2, such that g ≤∗ max{next(X̃j , ·) | j = 0, 1, 2}. In Lemma 1.2(b) it
is shown that the G2(X̃j ,I) are groupwise dense. As groupwise dense sets are
dense, we can choose Z0 ⊇∗ Z1 ⊇∗ Z2 such that Zj ∈ G2(X̃j ,I) with witness-
ing function fj ∈ I. Since I is an ideal we have that max{f0, f1, f2} ∈ I. As all
functions are increasing and as next(Z2, ·) ≥∗ next(Z1, ·) ≥∗ next(Z0, ·) we get

∀α ∈ κ ∀∞n ∈ ω next(Xα, n) ≤ g(n) ≤ max{next(X̃j , n) | j = 0, 1, 2}
≤ (max{f0, f1, f2})(next(Z2, n)).

Thus Z2 ∈ ⋂
α∈κ G2(Xα,I). �

Remark. Blass [6, 4.8] gives a model where 	 = ℵℵ1 and � = ℵ1 and � = ℵ2.
Hence � < �1 is consistent relative to ZFC.

In [8] min{cf(U−prodω) |U ultrafilter on ω} ≥ �, which follows also from a)
and c), is proved. Canjar [11] has shown that
min{cf(U−prodω) |U ultrafilter on ω} ≤ cf(�) and this gave the new estimate in
[8] that � ≤ cf(�). Here we give a direct proof for this.
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Theorem 2.2. � ≤ cf(�).

Proof. Let αi , i < cf(�) be cardinals less than � such that limi<cf(�) αi = � and
let {fβ |β < �} be a dominating family. We assume that the enumeration is chosen
in a way such that for every i < cf(�), the set Ci := {fβ |β < αi} is closed under
pointwise maxima. Then we set

Gi := {Z ∈ [ω]ω | ∀β < αi next(Z, ·) �≤∗ fβ}.

Since {fβ |β < �} is a dominating family, we have that
⋂

i∈cf(�) Gi = ∅.
We show that each Gi is groupwise dense. Obviously, it is closed under ⊆∗.

Let � be a partition of ω into finite intervals. Since Ci is not dominating, there is
some g such that ∀β < αi g �≤∗ fβ . We fix such a g. From the closure property of
Ci we get that

F = {{n | fβ(n) < g(n)} |β < αi}
generates a filter. After merging intervals, we may assume that� = {[πi, πi+1) | i ∈
ω} is such that

∀i ∈ ω ∀n ≤ πi g(n) ≤ πi+1.

We set for j = 0, 1, 2,

Zj =
⋃

{[π3i+j , π3i+j+1) | i ∈ ω},

and we take j such that F ∪ {Zj } has the strong finite intersection property. Then
Zj+2mod3 ∈ Gi , because for each β < αi and for each n in the infinite set Zj ∩
{n | fβ(n) < g(n)}, say for n additionally ∈ [π3i+j , π3i+j+1), we have

next(Zj+2mod3, n) ≥ π3i+j+2 ≥ g(n) > fβ(n).

�

Remark. Let F any non-principal filter on ω. The above proof can be modified for
reduced products (ω,<)ω/F and the partial order ≤F. If we add more sets to F

then cf(F-prodω) can decrease, and thus cf(F-prodω) ≥ cf(U-prodω) for any
ultrafilter U above F.

Corollary 2.3. For any non-principal filter F we have that � ≤ cf(F-prodω).

Discussion. For F non-feeble, corollary 2.3 is superseded by Theorem 16 of [8],
which says that � ≤ �(F-prodω). Besides the fact that we did not require non-
feebleness, another reason for the weakness of 2.3 might be that in the proof in
[8] yet another type of groupwise dense families is considered. For feeble F,
cf(F-prodω) = � and �(F-prodω) = �. In particular, the Theorem 16 of [8]
cannot apply to feeble filters.
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3. The correspondences and coincidences

In this section we add left hand sides to the scheme (∗) and show that the middle
three lines are equivalent. We cite many known facts and complement them by
proving their converses.

First there is a lemma that we shall be using several times and therefore put
separately.

Lemma 3.1. (see [16, Theorem 1 and 3] or [2, Theorem 16]). For every ultrafilter
V we have the inequality πχV · cf(V−prodω) ≥ � .

Proof. Let {Xα |α ∈ πχV} be a π -base of V. Let {fβ |β < cf(V−prodω)}
be a dominating family in ≤V, such that the fβ are increasing functions. Then
{fβ ◦ next(Xα, ·) |β ∈ cf(V−prodω), α ∈ πχV} is ≤∗-dominating. �

Proposition 3.2. a) � < �1 ⇔ � < �,
b) � < �2 ⇒ 4I,
c) � < �3 ⇒ 4G,
d) � < �4 ⇒ FD,
e) � < �5 ⇔ NCF.

Proof. a) In [6, Lemma 9.15 and Theorem 9.22] Laflamme’s trichotomy is derived
from � < �1. The trichotomy is equivalent to � < � by [15] and [5]. The backward
direction is obvious, as � ≤ �1.
b) This is the proof of (0) ⇒ (1) in [7, Theorem 1]. Only groupwise dense families
of the type G2(X,I) are used there.
c) Rewrite the proof described in b) for growth types instead of ideals.
d) This is 9.15 and 9.16 of [6].
e) “⇐” According to [2], under NCF we have �	
 = � and � < �, and by Propo-
sition 2.1c) we have that �	
 = �5.
“⇒” Theorem 12 of [8] says that NCF follows even from the apparently (see Sec-
tion 4) weaker � < �5. An alternative proof is to use min{cf(U−prodω)} = �5

and the reworking 9.15 of [6] with G1(X,U). �

What about the reverse direction in b), c), and d)? The following theorems
complete the picture and answer open questions about the equivalence of FD and
4G and of 4G and 4I: Not only do we have all five equivalences but also that the
three strict inequalities and the three principles in b), c), and d) are all equivalent.

Theorem 3.3. The filter dichotomy principle implies � < �4.

Proof. FD implies NCF (see [7]), and NCF in turn implies � < � (see [2]). There-
fore, it suffices to show that FD implies �4 ≥ �. In order to show the latter we modify
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the beginning of the proof of Theorem 8 in [5]: We fix a non-feeble filter F and
first show that �4(F) ≥ �. Suppose we are given µ < � and {Xα |α ∈ µ} ⊂ [ω]ω.
We show that

⋂{G1(Xα,F) |α ∈ µ} is not empty.
We set

G∗(Xα,F) := {Z | ∃Y ∈ F ∀a ∈ Z next(Y, a) ≥ next(Xα, a)}.
Since ∀a ∈ Z ∀b ∈ Z (next(Y, a) < b → next(Xα, a) < b) is implied by
∀a ∈ Z next(Xα, a) ≤ next(Y, a), we have

G1(Xα,F) ⊇ G∗(Xα,F).

Now we shall show that
⋂{G∗(Xα,F) |α ∈ µ} is not empty.

We have that G∗(Xα,F) is groupwise dense: It is closed under almost subsets,
because the ∀z ∈ Z may be replaced in its definition by ∀∞z ∈ Z as F is closed
under finite modifications. Given a partition�, first we merge intervals so that each
of the new intervals contains at least one element of Xα . Call this new partition
again � and write it as � = {[πi, πi+1) | i ∈ ω}.

Since F is not feeble, by 1.2 c) we have that F ∼ is groupwise dense; and
hence there in an infinite A such that

⋃{[π2i , π2(i+1)) | i ∈ A} ∈ F ∼ and so⋃{[π2i , π2(i+1)) | i �∈ A} ∈ F. Then Z = ⋃{[π2i , π2i+1) | i ∈ A} ∈ G∗(Xα,F)

with witness Y ∈ F, because for all z ∈ Z, say for z ∈ [π2i , π2i+1), we have

next(Y, z) = π2i+2 > next(Xα, z).

G∗(Xα,F) is an ideal, because F is a filter. Hence

Aα := {Z |ω \ Z ∈ G∗(Xα,F)}
is a filter and again by 1.2 c) it is not feeble. Now we apply the filter dichotomy
principle and then we could literally take the end of Blass’ proof of Theorem 8
in [5].

For completeness’ sake and because we need it in the next theorem as well, we
present a somewhat simplified version of Blass’ proof here:

Lemma 3.4. ([5, Part of the proof of Theorem 8]) FD implies that fewer than �

groupwise dense ideals have a common element.

Proof. Let Gα , α < µ < �, be groupwise dense ideals, and let Aα = {ω \Z |Z ∈
Gα} be the dual filters, which are non-feeble, because the Gα are groupwise dense.

By FD, for each α there is some finite-to-one function fα such that fα(Aα)

is an ultrafilter. These fewer than � ultrafilters have according to [2, Theorem 19]
a common finite-to-one image U. So, by composing fα with an appropriate
finite-to-one map and renaming the result fα , we may assume that fα(Aα) = U

for all α.
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We can also arrange that all the fα are increasing.

Since ω ∈ Aα we have that fα(ω) = range(fα) ∈ U.

This means that the following functions are defined on U-almost all arguments:

f−1,upper
α (n) = max{x | fα(x) = n},
f−1,lower
α (n) = min{x | fα(x) = n}.

Since we have NCF, we have that cf(U−prodω) = � and hence there is some
h ∈ ω↑ω that ≤U-dominates all the f−1,upper

α , α ∈ µ.

There is some .′ ∈ ω↑ω that is unbounded and ≤∗-dominates all the fα , α ∈ µ,
and hence fα(ω) witnesses . ≤U f−1,lower

α , where .(n) = max{x | .′(x) < n}, for
α < µ.

By induction we define a sequence a0 < a1 < . . . by setting a0 = 0 and
choosing an+1 so large that .(an+1) > h(an). Let X = {h(an) | n ∈ ω}.

We set

Dα = {n ∈ ω | .(n) ≤ f−1,lower
α (n) ∧ f−1,upper

α (n) ≤ h(n)} ∈ U.

Then we have that fα�(f−1
α (Dα) ∩ X) is injective. Proof: Suppose that x < y ∈

f−1
α (Dα) ∩ X. Then there are k < l such that x = h(ak) and y = h(al). We have

that fα(x), fα(y) ∈ Dα . Hence we have that

.(fα(x)) ≤ f−1,lower
α (fα(x)) ≤ x = h(ak) < h(al)

= y ≤ f−1,upper
α (fα(y)) ≤ h(fα(y)).

Hence fα(x) < ak+1 and ak+1 ≤ al ≤ fα(y).

LetZ be a family of 2ω almost disjoint subsets ofX. By the injectivity property
just proved we have that for each α the sets fα(Z)∩Dα ,Z ∈ Z, are almost disjoint,
so at most one of them is in U. Since there are 	 Z′s and fewer than � α’s there is
Z ∈ Z such that for all α

fα(Z) ∩ Dα �∈ U.

We fix such a Z.

Since Dα ∈ U we have that fα(Z) �∈ U and therefore ω \ fα(Z) ∈ U. Since
U ⊆ fα(Aα)we get thatω\f−1

α (fα(Z)) = f−1
α (ω\fα(Z)) ∈ Aα , and therefore,

by definition of Aα , that Z ⊆ f−1
α (fα(Z)) ∈ Gα .

Thus we have that Z belongs to all the given Gα’s. �3.4

Now we finish the proof of 3.3: The lemma gives someY ∈ ⋂{G∗(Xα,F) |α ∈
µ}. �3.3
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Theorem 3.5. The filter dichotomy principle implies � < �2.

Proof. We show that �2 = �.
This proof is easier than the previous one, because we already have ideals.
Fix an unbounded non-dominating ideal I in ω↑ω that is closed under =∗. Let

Xα , α ∈ µ < � be given infinite sets. Note that G2(Xα,I) is a groupwise dense
ideal, because for any Z0, Z1 ∈ G2(Xα,I), witnessed by f0, f1, we have

max(f0, f1)(next((Z0 ∪ Z1), ·)) ≥
min(f0(next(Z0, ·)), f1(next(Z1, ·))) ≥∗ next(X, ·).

Hence Aα = {ω \ Z |Z ∈ G2(Xα,I)} is a non-feeble filter.
Hence we are again in a position to apply Lemma 3.4. �

Corollary 3.6. a) � < �1 ⇔ � < �,
b) � < �2 ⇔ 4I ⇔ � < �3 ⇔ 4G ⇔ � < �4 ⇔ filter dichotomy,
c) � < �5 ⇔ near coherence of filters.

4. Pseudobases

In this section we show that in each of the inequalities � < �i the ultrafilter char-
acter � can equivalently be replaced by �. For i ≤ 4 this follows from the stronger
result that � < �4 implies � = �; for i = 5 we just have that � < �5 implies
that � < �5. Note that Goldstern and Shelah [13] proved that � < � is consistent
relative to ZFC.

Theorem 4.1. � < �5 implies � < �5 and �5 = �.

Proof. We check that the proof of “� < �5 implies NCF” (see e.g. Proposition 3.2
e)) can be done with the apparently weaker premise � < �5. We take into account
that the X in the G1(X,U) can just as well range only over a pseudo base. From
NCF we get by 3.2 � < �5.

The second equality in the conclusion follows from �5 = �	
 and NCF
→ �	
 = � = cf(�) [2]. �

Theorem 4.2. � < �4 implies � = � and �4 = � = 	 and � = �.

Proof. I am indebted to Andreas Blass for his hints how to shorten my original,
too complicated proof. We re-do and modify Theorem 5 of [5]. First we prove as
there, only replacing base by pseudo base:

Claim: If F is a non-feeble filter and H is a pseudobase (of some ultrafilter
U) of cardinality κ < �4(F) then there is a finite-to-one function f such that

f (H) ⊆ some κ-generated filter ⊆ f (F).
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For completeness’ sake we give a proof: We may assume that H is closed under
those finite intersections that are infinite sets. For each H ∈ H consider the group-
wise dense set G1(H,F). Since |H| = κ < �4(F), there is some X common to
all G1(H,F). Let X be strictly increasingly eumerated by 〈xi | i ∈ ω〉 and define
f :ω → ω by letting f (n) = i if n ∈ [xi−1, xi) (with x−1 = 0). Then we have that
{f [H ] |H ∈ H} is a base for a filter that is contained in f (F) �claim

Then we take for H a pseudobase of cardinality κ = � for some ultrafilter U
and get that {f [H ] |H ∈ H} is a base for f (U) = f (F) of cardinality �.

The second and the third equalities in the conclusion follow the fact that FD
implies � = � ≤ � = 	 ([5]) and the

Claim: FD implies �4 = �.

Proof of the claim. The first proof is by the proof of Theorem 3.3. However, with
the help of Theorem 4.1, we give here a shorter proof: Let 〈πi | i ∈ ω〉 be a strictly
increasing sequence of natural numbers. We set π−1 = 0 and take f :ω → ω such
that f (n) = i for n ∈ [πi−1, πi). Now we claim for any filter F,

�4(F) ≥ �4(f (F)).

In order to show this inequality, fix some µ < �4(f (F)). Let Xα , α < µ, be
infinite subsets of ω. We show that

⋂
α<µ G1(Xα,F) �= ∅. Since µ < �4(f (F)),

we have that
⋂

α<µ G1(f [Xα], f (F)) �= ∅, and we take a witness Z0 for this.
Now π [Z0] ∈ ⋂

α<µ G1(Xα,F) follows from:

Subclaim. For all infinite sets Z and X, if Z ∈ G1(f [X], f (F)) then π [Z] ∈
G1(X,F).

Let Z ∈ G1(f [X], f (F)) be witnessed by Y ∈ f (F). Hence we have for all
a < b in Z, if [a, b) ∩ Y �= ∅, then [a, b) ∩ f [X] �= ∅. We take two elements
c = π(a) and d = π(b) in π [Z] with c < d. Then [c, d) ∩ f−1[Y ] �= ∅ implies
[a, b) ∩ Y �= ∅ and hence [a, b) ∩ f [X] �= ∅ and [c, d) ∩ X �= ∅.

Hence f−1[Y ] witnesses that π [Z] ∈ G1(X,F) and the subclaim and the
displayed inequality are proved.

In order to finish the proof of the claim we use FD and apply the subclaim
with some finite-to-one f (of the above orderly interval form) such that f (F) is
an ultrafilter. Such an f exists by [2]. Then we use that FD implies NCF. Hence
Theorem 4.1 yields the last equality in the following chain: �4(F) ≥ �4(f (F)) =
�5(f (F)) ≥ �5 = �. �4.2

We close this section with another theorem about interrelations:
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Theorem 4.3. FD implies � ≤ �.

Proof. Let fewer than � groupwise dense sets Gα , α ∈ µ < �, be given. We show
that they have a common element.

Since � ≤ � we have that µ < �, and by 3.4 we can find an infinite X that is in
I (Gα) for every α ∈ µ where I (G) denotes the ideal generated by G.

So for every α, X is the union of finitely many members of Gα , that is X =⋃
i<nα

X(i, α), X(i, α) ∈ Gα . The X(i, α), i < nα , α < µ, do not form a splitting
family on X, because µ < �. Hence there is some infinite Z ⊆ X such that for
every α there is some i < nα such that Z ⊆∗ X(i, α). Since the Gα are open we
have that Z ∈ Gα . �

Corollary 4.4. FD and � > � implies � < �.

Proof. By the previous theorem FD implies that � ≤ �. Now our second hypothesis
allows us to put things together. �

Since FD implies � < � we also have

Corollary 4.5. FD and � = � implies � < �.

5. A better upper bound for �

We prove � ≤ cf(�), thus improving the well-known inequality � ≤ �. Thus we
have the following diagram:

�
�

�
�

��✒

❅
❅

❅
❅

❅❅�

��✒

��✒

��✒

���✐

✻

�

�	


✻
cf(�)

�

�1

�4

��

✻

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

Fig. 1.



Groupwise dense families 109

The lower three inequalities and � ≤ cf(�) follow immediately for the defi-
nitions or are very easy to see (see [18]). The inequality � ≤ cf(U−prodω) was
proved in [8], and Canjar [11] proved �	
 ≤ cf(�). From work in [17,9,14,10]
or from more explicit unpublished work of Eisworth one can put together exam-
ples showing that each of the eight assignments of ℵ1 or ℵ2 to each of �, �, � is
realized in some model. The relations to the other entries of Cichoń’s Diagram are
� ≤ unif(M) and � ≤ unif(N) and all that follows from transitivity. In [8] we
have shown that the splitting number may be larger than �	
.

Theorem 5.1. � ≤ cf(�)

Proof. We assume that � > cf(�) and work towards a contradiction. First, we take
one of Canjar’s ultrafilters (see [11]) such that cf(U−prodω) = cf(�) < �. We
note that for such an ultrafilter we have

∀ finite-to-one f
f (U) is not (pseudo) generated by < � sets.

(∗)

Proof of (∗): It is easy to see that for any finite-to-one f we have that cf(U−prodω)
= cf(f (U)−prodω) = cf(�) < �. Together with the well-known inequality
cf(f (U)−prodω) · πχf (U) ≥ � (see 3.1) we get πχf (U) ≥ �.

We fix a dominating family D of size �. By Theorem 15 of [2] there is a set
D+ ∪ D− of size �, such that for any two filters, if they are nearly coherent then
this is witnessed by an f ∈ D+ ∪ D−. We also fix such a D+ ∪ D−.

Now we construct, combining the proofs of Theorem 15 of [2] and of the the-
orem of [11], a second ultrafilter V such that

cf(V−prodω) = cf(�) < �, and

∀f ∈ D+ ∪ D− f (U) �= f (V).

By the choice ofD+ ∪D−, the second condition implies that for every finite-to-
one f we have that f (U) �= f (V), i.e. that U and V are not nearly coherent. Thus
we have a contradiction to Theorem 8 of [8]: If cf(U−prodω) and cf(V−prodω)
are smaller than �, then U and V are nearly coherent.

Construction of V. We let D+ ∪ D− be enumerated as {fα |α < �}, and we let
D be enumerated as {hα |α < �}. By induction on α we define Vα , Aα , and Hα

such that

1. V0 is the set of cofinite sets.
2. For limit λ, Vλ = ⋃{Vα |α < λ}.
3. Vα+1 is generated by Vα ∪ {Aα} ∪ (|α| + ω) many suitable sets.
4. fα[Aα] �∈ fα(U).
5. {n |hα(n) ≤ Hα(n)} ∈ Vα+1.
6. For all β < α, {n |Hβ(n) ≤ Hα(n)} ∈ Vα+1.
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7. V ⊇ ⋃{Vα |α < �}. (So, if V� is not an ultrafilter, then we add more sets to
it until it is an ultrafilter, and call this ultrafilter V.)

If this construction is accomplished, then for any 〈αi | i < cf(�)〉 cofinal in � we
have that 〈Hαi | i < cf(�)〉 is cofinal in ωω/V, and that U and V are not nearly
coherent.

Only the successor step requires some work: Let Vα and 〈Hβ |β < α〉 be
already chosen. We first select Aα such that Vα ∪ {Aα} has the strong finite inter-
section property and that fα[Aα] �∈ fα(U).

With the help of (∗), this is done exactly as in Blass’ proof of Theorem 15 in
[2]. For completeness’ sake, we insert his argument here:

It suffices to find a B ∈ fα[U] such that f−1
α [B] �∈ Vα , for we can then set

Aα = ω \ f−1
α [B].

Indeed, since Vα is a filter not containing f−1
α [B] it contains no subsets of

f−1
α [B], i.e. no sets disjoint from Aα . Furthermore fα[Aα] is disjoint from B,

hence not in fα(U).
To complete the proof, we suppose that no B of the desired sort exists and

derive a contradiction. The supposition means that each B ∈ fα(U) also belongs
to fα(Vα). But by our inductive hypotheses fα(Vα) is generated by fewer than �

sets. This contradicts (∗) that no finite-to-one image (such as fα(U) = fα(Vα))
is generated by fewer than � sets.

Then we add |α| + ω suitable elements to Vα ∪ {Aα} such that the resulting
union generates a filter Vα+1 and such that there is someHα such that {n |hα(n) ≤
Hα(n)} ∈ Vα+1 and for all β < α, {n |Hβ(n) ≤ Hα(n)} ∈ Vα+1. This is done
as in [11]. Again, for completeness’ sake we add a proof: Let {Bα |α < λ} be
a generating set for Vα which is closed under finite intersections and which has
cardinality λ < �. We may assume that {Hβ |β ∈ α} is closed under finite maxima
and contains only increasing functions. Since |α · λ| < � there is an Hα ∈ ωω such
that

∀β ∈ α : ∀τ ∈ λ Hβ(next(Bτ , ·)) �≥∗ Hα.

We show that for such an Hα , the set

Vα ∪ {{n |Hβ(n) ≤ Hα(n)} |β ∈ α}

has the strong finite intersection property. By the closure properties imposed on
{Bα |α < λ} and on {Hβ |β ∈ α} it suffices to show that for any β ∈ α and
τ ∈ λ the intersection Bτ ∩ {n |Hβ(n) ≤ Hα(n)} is infinite. This is true because
Bτ ∩{n |Hβ(n) ≤ Hα(n)} ⊇ {n |Hβ(next(Bτ , n)) ≤ Hα(n)}∩Bτ and the latter set
is infinite because, by our choice of Hα , we have that X = {n |Hβ(next(Bτ , n)) ≤
Hα(n)} is infinite and for each n ∈ X we have next(Bτ , n) ∈ {n |Hβ(n) ≤
Hα(n)} ∩ Bτ . �
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6. Concluding remarks

There are other families of groupwise dense sets of a special form that are useful
in the study of filters and cardinal characteristics. For a non-feeble filter F and
f ∈ ωω,

Gf = {X ∈ [ω]ω | {n | f (n) < next(X, n)} ∈ F}
from [8, Theorem 16] is groupwise dense and {Gf | f ∈ ωω} is useful in connec-
tion with the unboundedness number of the partial orders <F. Another type of
groupwise dense set is: For Y ⊆ [ω]ω, |Y| < 	,

GY = {X ∈ [ω]ω | ∀Y ∈ Y Y �⊆∗ X},
which is used in [6, 8.6] to show that � ≤ cf(	). These types of groupwise dense
families are not (yet) put into relation with the ones from Definition 1.1. So far, there
seem to be propitious special forms for each purpose, but not one set of “smallest”
or best groupwise dense families, easily definable and witnessing the computation
of �.

Acknowledgements. I would like to thank Andreas Blass for various discussions and for
suggesting to get cf(�) as an upper bound for �.
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