Arch. Math. Logic 40, 93-112 (2001) H H
Digital Object Identifier (DOI): Mathematlcal Loglc

10.1007/s001530000049

Heike Mildenberger

Groupwise dense families

Received: 9 October 1998 / Revised version: 18 August 1999 /
Published online: 21 December 2000 — © Springer-Verlag 2000

Abstract. We show that the Filter Dichotomy Principle implies that there are exactly four
classes of idealsin the set of increasing functions from the natural numbers. We thus answer
two open questions on consequences of 11 < g. We show that v < g impliesthat u = r,
and that Filter Dichotomy together with 1 < s impliesu < g. The technical meansis the
investigation of groupwise dense sets, ideals, filters and ultrafilters. With related techniques
we prove the new inequality s < cf (b).

1. Introduction

We are going to consider some cardinal invariants between b and cf(d), al vari-
ants of the groupwise density number g. All cardinal invariants and combinatorial
principles used in this paper will be explained in the end of thisintroduction.
We shall show that in thefollowing chain of equivalencesand implicationsfrom

[4,5,15]
1 < g < fiveclassesinw! «  trichotomy

= only four types of ideals (4l)

= only four growth types (4G) (%)

= filter dichotomy (FD)

= near coherence of filters (NCF)

in the third and in the fourth line aso the reverse implication holds. Since (4G)
is equivalent to the statement that there are exactly four slenderness classes of
groups (see[12]), our result shows that the latter, algebraic statement follows from
FD.

In the second section we give some estimates for the variants g; of g.

In the third section we show that u < g; isequivaent tothei-thlinein (x) and
that the middle three principles are equivalent.
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In the fourth section we show that 11t may be replaced by r and that u < g4
impliest = 1. We also prove that u < g follows from FD together with 5 = b.

In the final section we prove anew inequality for the splitting number.

In the rest of this section, we explain the notation and recall the definitions of
the well-known cardinal characteristics b, 9, g, u, r, 3 and the six principles on
the right hand side of the scheme (x) above, and we define the new variations g;.
This paper will be self-contained in definitions and in most of the proofs of the new
results, though the latter requires to present some parts of [2,5-7,15]. In general,
we focus on the direction “ getting back to the strict inequality” and merely give
references where to find the known implication from the strict inequalities to the
combinatorial principle.

Notation. The set of al functions from o to w is denoted by »®; the set of al
increasing functions from o to w is denoted by »'*; and the set of all infinite sub-
sets of w iswritten as [w]®. The quantifier V*° isinterpreted by “for all but finitely
many”, and its dual quantifier is 3°°. On the set w®, the ordering of eventual dom-
inanceis defined by f <* g iff V®°n f(n) < g(n). Similarly we define eventual
inclusion, which is rather called ailmost inclusion, for two infinite subets X, Y of
w: X C* Y iff X\ Y isfinite.

The bounding number b isthe smallest cardinality of a subset of w® that is not
bounded with respect to <*. The dominating number b is the smallest cardinality
of adominating subset in the same partial order.

A subset 7 of [w]® iscalled dense if for any infinite set X thereisanY € &
such that ¥ C* X. A subset & of [w]® is caled open if for any Y € & for any
X C* Y dso X € 2. Thedensity number, §), isthe smallest number of open dense
sets whose intersection is empty.

A subset @ of [w]® is called groupwise dense if

% isopen, and

for every partition of w into finiteintervalsIT = {[r;, 7;4+1) | i € w} thereisan
infinite set A suchthat  J{[7;, mi+1) |i € A} € 4.

The groupwise density number, g, is the smallest number of groupwise dense
families with empty intersection.

A base (pseudo base) of an ultrafilter % is asubset 4 of % (of [w]®) such that
YU € % 3B € # B C U. Thesmallest cardinality of abase (pseudo base) of % is
caled x4 ( x#). The cardina characteristic u isthe minimal x4 when % ranges
over the free ultrafilters on w. The refining number is the smallest cardinality of a
family # C [w]® suchthat Vf € 2° 3R € # f[R isamost constant.

Balcar and Simon [1] showed that v = min{x x4 | % free ultrfilter on w}.
Goldstern and Shelah [13] constructed amodel of r < u.
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A family & C [w]® is called a splitting family if for every X € [w]® thereis
some S € & suchthat S N X and X \ S are both infinite (which is expressed as
“S splits X). The splitting number is the smallest size of a splitting family.

We define a preordering < on 2(wt) by < % iff Ir e ' Vf € ¥ g €
Y f <* gor.(Thisis<2in[15].)

The preordering < on 2(w'®) gives rise to the equivalence relation E on
P(@'?), with JE 7 if # < ¢ and ¢ < .#. We write E also for its restrictions.
E-classes are commonly called <-classes.

Anidea in » isasubset of w1 that is closed under pointwise maxima and
under <*-smaller functions. A growth typein o' isanideal of w1 that is closed
under pointwise sums.

A function f:w — w iscaled finite-to-one if Vrn € w the f-preimage of the
singleton {n} isfinite. A filter # on w is called feeble if there is a finite-to-one
function f suchthat (%) (i.e. thefilter generated by { f[X] | X € Z}) isthefilter
of al cofinite sets. A subset 2 of w'® is called unbounded iff Vf € o® g €
Z g £* f.Notethat o' is dominating in »®, and therefore unboundedness in
o' is the same as unboundedness in w®. For X € [w]®, the “next” function is
defined by next(X, n) = min(X N [n, 00)). Following [6], for Z C [w]® we set
X~={w\X|XeXltad~%F =[w]®\ ¥.

In order to increase the growth of afunction we often use the ~-operation: For
f € o' wedefine f by

f( =0,
fn+1) = f(f(n).

Now we come to the chain of implications in (x). First we recall the stated
principles, starting with the strongest one.

First line. “Fiveclassesin w'®” isan abbreviation for: there arejust five <-classes
of downward closed subsets of w'®. “Trichotomy” stand for the following trichot-
omy principle: For every subset % of [w]® that is closed under almost supersets,
thereis afinite-to-one f such that either f[%] = [w]® or f[#] isan ultrafilter or
f[#] isthefilter of cofinite sets.

Second line. The principle of 4 classes of ideals (4l) says: E restricted to the set of
ideals has exactly four classes. We can name these: The first three classes are: the
dominating ideals, the bounded ideals containing an unbounded function, and the
ideals containing only bounded functions. Here, afunction is called bounded iff its
range isfinite.

Under (41), for any pair .7, _¢ of unbounded, non-dominating, =*-closed ideals
inw'® we have .7 E_#. Hence the set of ideals not belonging to any of these three
classesis, under (4l) also one E-class, the fourth one.
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Third Line. 4G saysthat there are four classes of growth types (4G) in the equiv-
alencerelation E. The classes have the same properties as the classes of ideadsin

(@).

Fourth line. Thefilter dichotomy principle (FD) says: For any non-feeblefilter 7
on w thereis afinite-to-one f suchthat f () isan ultrdfilter.

Fifth line. NCF saysthat any two ultrafiltersare nearly coherent, i.e. thereisafinite-
to-one f such that their images under f coincide. NCF stands for near coherence
of filters.

References to the implications. The first question is whether any of the stated
principlesis consistent. Initially, Blass and Shelah [9] have proved therel ative con-
sistency of NCF. Later Blass and Laflamme [7] have found that u < g holdsin
the NCF-models from [9]. Somewhat simpler consistency proofs are presented in
[4, 10].

Laflamme [15] has shown that 11 < g impliesthat there are only five <-classes
and the trichotomy principle. Blass [5] has shown that each of these consequences
of u < gisactualy equivalent to it.

The other four implications are shownin [7].

There are many equivalents to NCF in algebra and functional analysis, see
[2,3].

Cofinalities of reduced products. With afilter # on « we get a partia ordering
<z on w® which isthe < in the reduced product of (w, <) modulo 7 f <z g
iff (new| f(n) <gn}eZ.Ifuisan ultrdfilter, then <4 isalinear order, and
wewrite cf (% —prod w) for itscofindity. If # isjust afilter, then the smallest size
of an unbounded set and the smallest size of adominating setin (w, <) modulo #
need not be the same. We write b(# —prod w) for the former and cf (% —prod w)
for the latter.

Some estimates for these cf (% —prod w) are givenin [8]. We write mcf for the
minimal cf (% —prod w) when % ranges over the non-principal ultrafilters on w.

Variants of g. Now we are going to define relatives g; to g such that the right hand
sidein the i-th line of the scheme (x) will be equivalent to u < g; (see Corollary
3.6)andtor < g; (see Theorems4.1 and 4.2). A look at g2 and at g4 will yield the
new fact that FD implies 4l. We shall show that v < g4 impliest = u. From the
weaker r < g5 we deriveut < gs.

Definition 1.1. a) Let % C [w]® be such that % ~ is groupwise dense. Let X €
[w].
G1(X,%)={Z|3Y € ¥ (Na,b € Z)
(a<b— (a,b)NY £ 0 — [a,b) N X # B))).
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Q@) = min(|2] 12 S [0]” A [] 91X, %) = 0.
XeZ
g1 = min{g1(%) | % C [w]” A ¥ ~ isgroupwise dense}.

*

b) Let.# € »'* bean unbounded non-dominating ideal of 1 that isclosed under

Go(X, I) ={Z|3f € I V®n € w next(X,n) < f(next(Z, n))}.
a2() = minf| 2112 S [0] A (1) %2(X, ) = 9).
XeZ
g2 = min{g2(¥) | .# unbounded non-dominating =*-closed ideal in

o).

c) We get ¥3(X, 9T) and g3(¥9T) by restricting the second component of the do-
main to growth types. e get g3 by replacing every occurrence of anideal .# in b)
by a growth type 4T and otherwise taking the same definition.

d) Let # be a non-feeblefilter on w.

a(F) =min( 2112 S [0]” A [] 91X, F) = 0).
XeZ
g4 = min{g4(Z#) | # non-feeblefilter}.

€) Let % be a free ultrafilter on w.

as5(%) = min(lZ]| 2 < [0]” A [ G2(X, %) = 0}
Xex
as = min{gs(%) | % ultrafilter}.

Why are these variants of g? We shall first show that the families 41 (X, %),
Go(X, I), 92(X,%9T), 91(X, F), 91(X, 4) are groupwise dense. So in al in-
stances we are asking for the smallest size of afamily of special groupwise dense
families whose intersection is empty.

Lemma1.2. a) ([6, Proof of Thm9.15]) Let % C [w]® be suchthat % ~ isgroup-
wisedense. Let X € [w]®. Then ¥1(X, %) is groupwise dense.

b) ([7, Theorem1, (0) = (1)]) Let.# < ' bean unbounded non-dominating
ideal of ™ that is closed under =*. Then %> (X, .#) is groupwise dense.

¢) ([6,Lemma9.4]) Let.# beafilter. Then # isnon-feebleiff # ~ isgroupwise
dense.

d) ([6, Proposition 9.12]) Any ultrafilter is non-feeble.

Proof. For completeness’ sake we write proofs.
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a) First we show that %1(X, %) isopen. Let Z € 41(X, %) and Z' C* Z, say
Z'\nC Zandn € Z.Wesetn' = next(Z,n+1). Wetakesome Y € % such that

Ya<beZ (a,b)NY #0 — [a,b)N X #£ D).

Since # ~ isclosed under =*, also # isclosed under =*. Hence Y’ = Y \n' € #%.
Now

Va<beZ (a,b)NY # @ — [a,b) N X # 0)
is easily checked.

Now let TT = (r; | i € w) be given. We merge adjacent intervalsin IT so that
we may assume that

ViewX N[, mwis1) # 0.

(For later use, note, that V*°i € w instead of Vi € w iswould suffice.)
Since % ~ is groupwise dense, there is some infinite, coinfinite A such that

zZ= U[ﬂi,ﬂiﬂ) eWYr~,

icA
Y = U [7T[,7Ti+1) ed.
icew\A
Now again
Ya<beZ (a,b)NY #@ — [a,b)N X #£ V)
iseasily checked.

b) First we show that 4»(X,.#) isopen. Let Z € %»(X,.¥) and Z' C* Z.
Note that we have Y*®°n next(Z,n) < next(Z’,n) and since f is increasing,
V®n f(next(Z, n)) < f(next(Z’, n)). Henceif f isawitnessfor

Y®n € w next(X, n) < f(next(Z, n)),

then the same f isalso awitness for the formulawith Z’ instead of Z.

Now let IT = (r; | i € w) be given. We merge intervals of IT so that we have
that thereis some member of X in eachinterval. Wewrite IT = (r; | i € w) for the
new partition. Then we choose g: w — w asfollowsif n € [7;, m;4+1) then we set
g(n) = mi43. Since .# is not dominated by g, thereis some f € .# such that for
infinitely many n, we have that f(n) > g(n). We take

Z= U{[n,-+1, miy2) | for somen € [, mip1) we havethat £(n) > g(n)}.

Clearly Z isthe union of infinitely many intervals from IT1. We show that Vi €
o next(X,n) < f(next(Z, n)). Suppose that n € [x;, 7;+1). Then by the choice
of IT we have that next(X, n) < m;42. Thereissome j > i suchthat next(Z, n) €
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[}, mj+1) and such that thereissomem € [mj_1, ;) suchthat f(m) > g(m) =
m;42. Sowe have

f(next(Z,n)) = f(w;) = f(m) > g(m) > wj12 = 72 > NEX(X, n).

c) Let # befeebleand let f € w® befinite-to-one such that /(%) isthefilter
of cofinitesets. Weset r; = min{ f ~1{i}} Thenwehavefor any F € # andfor any
A € [w]? that | J;c4lmi, miy1) N Fisinfinite, hencethat | J; 4 [7i, mit1) & 7 ~.

Since 7 is afilter, we have that # ~ is open. Given a partition (7; |i € o)
we gtipulate 7_1 = Oand set f(n) = i forn € [m;_1, 7;). Since & is not fee-
ble, we havethat f (%) isnot the filter of cofinite sets, so there is some coinfinite
A € f(%). Thuswe have that Uiew\A[ni’ Tiy1) € F ~.

d) Supposethat % isan ultréfilter and that f isfinite-to-oneand f (%) isthefilter
of the cofinite sets. We take some infinite, coinfinite A C w. Thenw \ A & (%),
andhencew \ f~1(A) = f X w\ A) €%, %0 f~1(A) € %.For w \ A instead of
A we get the same. But f~1(A) and f~L(w \ A) aredigoint. O1o

Corollary 1.3. For X, %, #,9T, % ,% asin Definition 1.1, thefamilies 41 (X, %),
Go(X, 9),93(X,%T),%1(X, F), 91(X, U) are groupwise dense.

Hencefori = 1, 2, 3, 4, 5wehavethat g; > g.

2. Some comparisons

We know only thetrivial inequalities between the g; that arelisted in the first two
parts of the next proposition. In situations of the type 1t < g; we get more, namely
some implications of the form u < g; = 1 < g; even when we cannot prove
a; < g; ingeneral. Though g < b is consistent relative to ZFC (see [6]), dl our
relatives g; of g will be greater than or equal b. (For the investigation of conse-
guences of 1t < g; one could anyway replace g; by max(g;, 1), but this does not
make sense for our purpose here.)

Proposition 2.1. @) g < g1 < g4 < gs,
b) g2 < g3,

€) g5 = mcf,

d) b <aqz,

e b < qo.

Proof. Thefirst inequality in a) followsfrom Lemma 1.2 ), that all the %1 (X, %)
inthedefinition of g1 are groupwise dense. The other inequalitiesin a) follow from
Lemma 1.2 c¢) that for anon-feeble # the set # ~ is groupwise dense, and from
1.2 d) that ultrafilters are not feeble.
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b) From the definitions follows that growth types are ideals.

¢) First we show that for every ultrafilter % we have gs5(%) > cf (% —prod w):
Wetake an 2 of cardinality q5(%) suchthat ({91(X, %) | X € ¥} = #. Thenwe
have

VZIXeZVYU €U Ta<beZ (a,b)NU #PAla,b)NX =0).
From this we get
VZ3IX € Z {u|next(X,u) < next(Z,u)} & «.
Since % is an ultrafilter, we get
VZ 3AX € Z {u|next(X,u) > next(Z,u)} € %.
Since % is closed under finite intersections, we have

VZo, Z1, Z23X0, X1, Xo € &

{u | max(next(Xo, u), Next(X1, u), next(Xz, u)) >
max(next(Zo, u), Next(Zy, u), Next(Zz, u))}

e €.

For every f € o' thereare Zg, Z1, Zo such that
Vn € w f(n) < max(next(Zo, n), Nnext(Z1, n), next(Z,, n)).

Just choose by induction m; such that Va < m; f(n) < w41 and set Z; =
Ull73i+j, m3i4j+1) | i € w} for j =0, 1, 2. Therefore

{max(next(Xo, n), next(Xy, n), next(Xz, n)) | Xo, X1, X2 € X}

isdominating in <.

Now we show that for every ultrafilter % we have gs(%) < cf (% —prodw): Let
{fo |l < cf (% —prod w)} be cofinal in <4. Take X, suchthat f, <4 next(Xg, -).
Such an X, existsbecause wefirst can takethree X,,’s such that the maximum over
their next functions dominates f,, everywhere. Then one of the three dominates f,,
onasetin 4. Then we have

(US| f =u next(Xy. )} e € cf (Z—prod w)} = 0.
We claim that also
((“%1(Xa. %) | € cf (—prod w)} = 0.

Supposethat theclaimisfalsg, i.e. that thereissome Z suchthat Vo 3U € % Va <
beZ (a,b)NU £ 0 — [a,b) N X, # D). Welet (z, | n € w) betheincreasing
enumeration of Z and define f by setting f (i) = zy42 fori € [z, zp4+1)- Then
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wehaveVo U € % Vu € U An (u € [zn, Zn+1) A f(U) = Zpa2 A NeXt(Xy, u) <
zZn+1)- Hence f would be in the above intersection. Contradiction.

S0 {X, |« € cf (% —prod w)} witnhesses that gs(%) < cf (% —prod w).

d) Let % ~ be groupwisedense. Let u < b and let X, @ € u, beinfinite sets.
We show that

(%1(Xa. 9 | € 1)

is groupwise dense. (All we need isthat thisintersection is nonempty.)

Since each of the %1 (X, %) is open, aso their intersection is open. Now sup-
pose that a partition IT is given. We take f,, asthe increasing enumeration of X,,.
Then wetake g € w'® such that for « < u we havethat 7, <* g.

Thenwetakei(0) = 0,andi(n + 1) = min{i > i(n) | g(Tiw)) < Tigu+1)}-
Now we show that

Yo € uVn [7i(n)> Tinr1) N Xo # 9.

By the proof of Lemma 1.2 @) we are then finished. Suppose « is given. Let k
be such that f,(n) < g(n) for dl n > k. Suppose that f, (k) € [7im), Tins1))-
Then

fak+1) = fulfa) < 8(fa(k) < §(Tnt1) < Ti(nt2)-

Hence, starting from some interval [7; ), i »+1)) @l later intervals contain an
element of range( fy,).

e) Let .# C ' be an unbounded non-dominating ideal of ' that is closed
under =*. Let X, @ < k, k < b be given. We show that (., Y2(X«, F) # 9.
Let g dominate al next(Xy,-), @ € «. Asin c), we take three infinite sets X ;,
j = 0,1,2, suchthat g <* max{next(X;,)|j = 0,1,2}. In Lemma 1.2(b) it
is shown that the ¥»(X j»-#) are groupwise dense. As groupwise dense sets are
dense, we can choose Zg 2* Z; 2* Zp suchthat Z; e @Z(f(j, 4) with witness-
ing function f; € .. Since .7 isanided we havethat max{ fo, f1, f2} € .#. Asall
functions are increasing and as next(Z», -) >* next(Zy, -) >* next(Zo, -) we get

Va € k Y¥n € o next(Xq, n) < g(n) < max{next(X;,n)|j =0, 1,2}
< (maX{ fo, f1, f2))(NEXt(Z2, n)).

Go( Xy, I). (]

A

Thus Z2 € (N, ex
Remark. Blass [6, 4.8] gives amodel wherec = Ry, and g = Ry and b = Ro.
Hence g < g1 isconsistent relative to ZFC.

In [8] min{cf (% —prod w) | % ultrafilter on w} > g, which follows also from a)
and c), is proved. Canjar [11] has shown that
min{cf (% —prod w) | % ultrefilter on w} < cf (b) and this gave the new estimate in
[8] that g < cf (b). Here we give adirect proof for this.
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Theorem 2.2. g < cf (D).

Proof. Let «;, i < cf(d) be cardinals less than b such that lim; ¢y o; = b and
let {fg | B < b} beadominating family. We assume that the enumeration is chosen
in away such that for every i < cf(d), theset 4; := {fg | B < «;} isclosed under
pointwise maxima. Then we set

G ={Z € [w]?|VB < a; NeXt(Z, ) £* fp}.

Since {fp | B < b} isadominating family, we have that (; ¢ ) 4i = 9.

We show that each ¥; is groupwise dense. Obviously, it is closed under <*.
Let IT be a partition of w into finite intervals. Since ; is not dominating, thereis
some g suchthat VB < o; g £* fp. Wefix such a g. From the closure property of
%; we get that

F ={{n| fp(n) < gm}|B < ;)

generatesafilter. After mergingintervals, wemay assumethat I = {[7;, 7;4+1) |i €
)} issuch that
VicwVYn <m gh) <miy1.

Wesetfor j =0, 1, 2,

Z; = U{[ﬂ3i+j, w3y j+1) i € o},

and we take j suchthat # U {Z;} hasthe strong finite intersection property. Then
Zjiomod3 € %;, because for each 8 < «; and for each » in the infinite set Z; N
{n| fp(n) < g(n)}, say for n additionaly € [n3ij, 734 j+1), we have

Next(Zjomod3, 1) = m3iyj2 = g(n) > fg(n).

O

Remark. Let # any non-principal filter on w. The above proof can be modified for
reduced products (w, <)®/Z and the partial order <. If we add more setsto 7
then cf (% -prodw) can decrease, and thus cf (# -prodw) > cf (%-prodw) for any
ultrafilter % above .

Coroallary 2.3. For any non-principal filter # we havethat g < cf (# -prod w).

Discussion. For # non-feeble, corollary 2.3 is superseded by Theorem 16 of [8],
which saysthat ¢ < 0(Z -prod w). Besides the fact that we did not require non-
feebleness, another reason for the weakness of 2.3 might be that in the proof in
[8] yet another type of groupwise dense families is considered. For feeble 7,
cf (F-prodw) = b and b(F -prodw) = b. In particular, the Theorem 16 of [§]
cannot apply to feeblefilters.
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3. The correspondences and coincidences

In this section we add left hand sides to the scheme (x) and show that the middle
three lines are equivalent. We cite many known facts and complement them by
proving their converses.

First there is a lemma that we shall be using severa times and therefore put

separately.

Lemma 3.1. (see[16, Theorem 1 and 3] or [2, Theorem 16]). For every ultrafilter
" we have the inequality 7y - cf (¥ "—prodw) > b .

Proof. Let {Xy|a € myxy} beamn-base of v". Let {fg|B < cf (¥ —prodw)}
be a dominating family in <4-, such that the fz are increasing functions. Then
{fg onext(Xy, )| B € cf (¥ —prodw), o € m x4} is <*-dominating. O

Proposition3.2. a) 11 < g1 & u < g,
b)u < g2 = 4,

0 u < g3 = 4G,

d)u < g4 = FD,

e) u < gs < NCF.

Proof. a) In[6, Lemma9.15 and Theorem 9.22] Laflamme’strichotomy isderived
fromu < g1. Thetrichotomy isequivalenttou < g by [15] and [5]. The backward
directionisobvious, asg < g1.

b) Thisisthe proof of (0) = (1) in[7, Theorem 1]. Only groupwise dense families
of thetype %2(X, .#) are used there.

c) Rewrite the proof described in b) for growth typesinstead of ideals.

d) Thisis9.15 and 9.16 of [6].

€) “«" According to [2], under NCF we have mcf = d and u < b, and by Propo-
sition 2.1c) we have that mcf = gs.

“=" Theorem 12 of [8] saysthat NCF follows even from the apparently (see Sec-
tion 4) weaker r < gs5. An alternative proof is to use min{cf (% —prodw)} = gs
and the reworking 9.15 of [6] with 91(X, %). d

What about the reverse direction in b), c), and d)? The following theorems
complete the picture and answer open questions about the eguivaence of FD and
4G and of 4G and 4l: Not only do we have al five equivalences but also that the
three strict inequalities and the three principlesin b), c), and d) are al equivalent.

Theorem 3.3. The filter dichotomy principle impliesut < ga.

Proof. FD impliesNCF (see[7]), and NCFinturnimpliesu < b (see[2]). There-
fore, it sufficesto show that FD impliesgs > d. Inorder to show thelatter wemodify
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the beginning of the proof of Theorem 8 in [5]: We fix a non-feeble filter # and
first show that g4(7) > b. Supposewearegiven u < d and { X, | € u} C [w]®.
We show that ({%1(Xa, #) |« € u} isnot empty.

We set

Y. Xy, F):=1{Z|3Y € F VYa € Z next(Y, a) > next(Xy, a)}.

SinceVa € Z Vb € Z (next(Y,a) < b — next(Xy,a) < b) isimplied by
VYa € Z next(Xy, a) < next(Y, a), we have

gl(xou F) 2 Y9 (Xa, F).

Now we shall show that ({%.(Xy, 7) | @ € u} isnot empty.

Wehavethat 4, (X, %) isgroupwise dense: It isclosed under almost subsets,
because the Vz € Z may be replaced in its definition by V*°z € Z as # isclosed
under finite modifications. Given apartition IT, first we mergeintervals so that each
of the new intervals contains at least one element of X,,. Call this new partition
again IT and writeit as I1 = {[7;, mi1+1) | i € w}.

Since # is not feeble, by 1.2 c) we have that # ~ is groupwise dense; and
hence there in an infinite A such that | J{[r2;, m2i+1)) |i € A} € # ~ and 0
Ullm2i, m2i41) 1§ € A} € Z.Then Z = ({[m2i, m2iv1) |i € A} € 94 (Xo, F)
with witness Y € 7, becausefor al z € Z, say for z € [m2;, m2;+1), we have

next(Y, z) = moiy2 > next(Xy, 2).
4.(X,, 7)isanided, because 7 isafilter. Hence
Ay ={Z|w\Z € G (Xy, F)}

isafilter and again by 1.2 ¢) it is not feeble. Now we apply the filter dichotomy
principle and then we could literally take the end of Blass proof of Theorem 8
in[5].

For completeness’ sake and because we need it in the next theorem aswell, we
present a somewhat simplified version of Blass' proof here:

Lemma 3.4. ([5, Part of the proof of Theorem 8]) FD implies that fewer than b
groupwise dense ideal s have a common element.

Proof. Let%,,a < u < b, begroupwisedenseideals, andlet .o/, = {w\Z | Z €
9} bethe dual filters, which are non-feeble, because the %,, are groupwise dense.

By FD, for each « there is some finite-to-one function f, such that f, (<7,)
is an ultrafilter. These fewer than b ultrafilters have according to [2, Theorem 19]
a common finite-to-one image %. So, by composing f, with an appropriate
finite-to-one map and renaming the result f,,, we may assume that f, (7,) = %
for al «.



Groupwise dense families 105

We can aso arrange that all the f,, are increasing.
Sincew € </, we havethat f,(w) = range(fy) € %.
Thismeansthat the following functions are defined on %-amost all arguments:

[ LuPPer (n) = max{x | fy (x) = n},

fa—l,luwer(n) =min{x | fo(x) = n}.

Since we have NCF, we have that cf (# —prod w) = b and hence there is some
h € o' that <4 -dominatesall the £ ““"P*" & € pu.

Thereissome?’ € w' that isunbounded and <*-dominatesall the f,, « € p,
and hence f, (w) witnesses¢ <y, f11ower where £(n) = max{x | €'(x) < n},for
a < .

By induction we define a sequence ap < a1 < ... by setting ap = 0 and
choosing a,,+1 so largethat ¢(a,+1) > h(a,).Let X = {h(a,) |n € w}.

We set

Dy = {n € w|t() < f; 7 () A f7 PP () < h(n)} € U

Then we have that f, [(f,; 1(Dy) N X) isinjective. Proof: Supposethat x < y €
£ 1(Dg) N X. Thenthereare k < [ such that x = h(ay) and y = h(a;). We have

o

that f, (x), fo(y) € Dy. Hence we have that

E(fo (X)) < 71O (fo(x)) < x = h(ag) < h(ar)
=y < f B PP (o (0)) < B(fu(3)).

Hence fo (x) < axr1andagr1 < aj < fo(y).

Let Z beafamily of 2 amost disjoint subsetsof X. By theinjectivity property
just proved we havethat for each « thesets f, (Z)N Dy, Z € &, aredmost digoint,
so at most one of themisin %. Sincethere are ¢ Z’s and fewer than b a’sthereis
Z € & suchthat for dl «

Ja(Z) N Do & U.

Wefix suchaZ.

Since D, € % we havethat f,(Z) ¢ % and therefore w \ f,(Z) € %. Since
U C folody)Wegetthat o\ ;7 1(f2(2)) = [ @\ fo(2)) € o4, andtherefore,
by definition of .7, that Z C £, 1(fu(2)) € Ys.

Thus we havethat Z belongsto all the given 4,,’s. O34

Now wefinishtheproof of 3.3: ThelemmagivessomeY € ({9« (Xo, 7) |a €
wh Uss
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Theorem 3.5. The filter dichotomy principleimpliesit < go.

Proof. We show that go = b.

This proof is easier than the previous one, because we already have ideals.

Fix an unbounded non-dominating ideal .# in w'® that is closed under =*. Let
Xo, @ € n < D be given infinite sets. Note that 4>(X,, .#) is a groupwise dense
ideal, because for any Zg, Z1 € 92(Xq, ), withessed by fo, f1, we have

max( fo, f1)(Next((Zo U Z1), -)) >
min( fo(next(Zo, -)), fi(next(Zy, -))) >* next(X, -).

Hence o/, = {w\ Z | Z € 92(X,, #)} isanon-feeblefilter.
Hence we are again in a position to apply Lemma 3.4. O

Corollary36. @) u < g1 & 1 < g,
b)uu < g2 < 4l & 1u < g3 4 4G & u < g4 < filter dichotomy,
C) u < gs < near coherence of filters.

4. Pseudobases

In this section we show that in each of the inequalities 1 < g; the ultrafilter char-
acter u can equivalently be replaced by r. For i < 4 thisfollows from the stronger
result that v < g4 impliest = u; fori = 5 we just have that v < g5 implies
that 11 < gs. Note that Goldstern and Shelah [13] proved that v < 1 is consistent
relativeto ZFC.

Theorem 4.1. v < gsimpliesu < gs and g5 = d.

Proof. We check that the proof of “11 < g5 impliesNCF” (see e.g. Proposition 3.2
€)) can be done with the apparently weaker premiser < gs. We take into account
that the X in the %1 (X, %) can just as well range only over a pseudo base. From
NCFwegetby 3.2u < gs.

The second equality in the conclusion follows from gs = nicf and NCF
— mcf = d = cf(d) [2]. O

Theorem 4.2. v < ggimpliest =uandgs = b =candu = b.

Proof. 1 am indebted to Andreas Blass for his hints how to shorten my original,
too complicated proof. We re-do and modify Theorem 5 of [5]. First we prove as
there, only replacing base by pseudo base:

Claim: If # isanon-feeble filter and »# is a pseudobase (of some ultrafilter
) of cardinality k < ga4(%) then thereis afinite-to-one function f such that

f(A) C somek-generated filter C f (7).
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For completeness' sake we give a proof: We may assume that »# is closed under
thosefinite intersectionsthat are infinite sets. For each H € # consider the group-
wisedenseset 91 (H, #). Since | #| = k < qa(F), thereis some X common to
al 91(H, 7). Let X be dtrictly increasingly eumerated by (x; | i € w) and define
fio— wbyletting f(n) =iifn € [x;—1, x;) (with x_1 = 0). Then we have that
{f[H]| H € #} isabasefor afilter that is contained in f (%) Oolaim

Then we take for 2# a pseudobase of cardinality « = v for some ultrafilter %
and getthat { f[H] | H € o} isabasefor f (%) = f(%) of cardindity r.

The second and the third equalities in the conclusion follow the fact that FD
impliesu = b < b = ¢ ([5]) and the

Claim: FD impliesgs = .

Proof of the claim. Thefirst proof isby the proof of Theorem 3.3. However, with
the help of Theorem 4.1, we give here a shorter proof: Let (r; | i € w) beastrictly
increasing sequence of natural numbers. We set 7_1 = O and take f: w — w such
that f(n) =i forn € [m;_1, m;). Now we claim for any filter &,

94(7) = g4(f(F)).

In order to show thisinequality, fix some u < qa(f(%)). Let X4, @ < u, be
infinite subsets of w. We show that ﬂaw G1( X, F) £ 0.Sincen < g4(f(F)),
we have that ﬂaw G1(f[Xa], f(F)) # @, and we take a witness Zg for this.
Now 7[Zo] € N G1(Xq, F) follows from:

o<t

Subclaim. For dl infinite sets Z and X, if Z € 91(f[X], f(%)) then n[Z] €
G1(X, F).

Let Z € 91(f[X], f(¥)) bewitnessed by Y € f(Z). Hence we have for al
a <binZ,if[a,b)NY # @, then [a, b) N f[X] # B. We take two elements
c=mn(a)andd = n(b) inw[Z] withc < d. Then[c,d) N f~Y[Y] # @ implies
[a,b)NY # @ and hence[a, b) N f[X] # P and[c,d) N X # @.

Hence f~1[Y] witnesses that 7[Z] € %1(X, %) and the subclaim and the
displayed inequality are proved.

In order to finish the proof of the claim we use FD and apply the subclaim
with some finite-to-one f (of the above orderly interval form) such that f (%) is
an ultrafilter. Such an f exists by [2]. Then we use that FD implies NCF. Hence
Theorem 4.1 yieldsthelast equality in thefollowing chain: g4(%) > qa(f (%)) =
as5(f(F)) = gs =d. Cao

We close this section with another theorem about interrel ations:



108 H. Mildenberger

Theorem 4.3. FD implies s < g.

Proof. Let fewer than 3 groupwise dense sets %, @ € u < 3, be given. We show
that they have a common element.

Since 3 < b wehavethat 1 < b, and by 3.4 we can find an infinite X that isin
1(%,) for every o € u where 1 (%) denotes theideal generated by 4.

So for every o, X isthe union of finitely many members of 4, thatis X =
Uknu X(@,a), X(,a) € 9,. The X (i, w),i < ny, @ < u, donot formasplitting
family on X, because u < 3. Hence there is some infinite Z C X such that for
every a thereissomei < n, suchthat Z C* X (i, o). Since the ¢,, are open we
havethat Z € 4, O

Corollary 4.4. FD and 3 > 1 impliesut < g.

Proof. By the previoustheorem FD impliesthat 3 < g. Now our second hypothesis
allows us to put things together. O

Since FD implies1ut < d we also have

Corollary 4.5. FD and 3 = b impliesut < g.

5. A better upper bound for

We prove 3 < cf(b), thus improving the well-known inequality s < d. Thus we
have the following diagram:

cf(d)
mef
/ A
a4
S
a1
ST
q b 3

Fig. 1.
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The lower three inequalitiesand b < cf (d) follow immediately for the defi-
nitions or are very easy to see (see [18]). The inequality g < cf (# —prod w) was
proved in [8], and Canjar [11] proved mcf < cf (b). From work in [17,9,14,10]
or from more explicit unpublished work of Eisworth one can put together exam-
ples showing that each of the eight assignments of 83 or X, to each of b, g, 3 is
realized in some model. The relations to the other entries of Cichon's Diagram are
3 < unif(#) and 3 < unif (/") and al that follows from transitivity. In [8] we
have shown that the splitting number may be larger than ntcf.

Theorem 5.1. 3 < cf(d)

Proof. Weassumethat 3 > cf (b) and work towards a contradiction. First, we take
one of Canjar’s ultrafilters (see [11]) such that cf (% —prodw) = cf(d) < 3. We
note that for such an ultrafilter we have

V finite-to-one f (%)
f (@) isnot (pseudo) generated by < b sets.

Proof of (x): Itiseasy to seethat for any finite-to-one f we havethat cf (% —prod w)
= cf(f(#)—prodw) = cf(d) < b. Together with the well-known inequality
cf(f(U)—prodw) - x ) = d (see3.1) weget w x ru) > Dd.

We fix a dominating family & of size . By Theorem 15 of [2] there is a set
9% U 9~ of size b, such that for any two filters, if they are nearly coherent then
thisiswitnessed by an f € 2T U 2~. Weasofix suicha2™ U 2.

Now we construct, combining the proofs of Theorem 15 of [2] and of the the-
orem of [11], asecond ultrafilter 7~ such that

cf (#"—prod w) = cf (d) < 3, and
YfeatTug fU)# fF(V).

By thechoiceof U %, the second condition impliesthat for every finite-to-
one f wehavethat (%) # f(7"),i.e.that % and 7" are not nearly coherent. Thus
we have a contradiction to Theorem 8 of [8]: If cf (% —prod w) and cf (¥"—prod w)
are smaller than 3, then % and ¥~ are nearly coherent.

Construction of ¥". Welet 2+ U 2~ be enumerated as { f,, | < b}, and we let
2 be enumerated as {h, | @ < bd}. By induction on « we define ¥*,, Ay, and Hy
such that

"o isthe set of cofinite sets.

For limit &, 7", = U{? o | < A}.

Y wr1isgenerated by 77, U {Aq} U (la| + w) many suitable sets.
falAd] & fu(0).

{nlha(n) < Hy(n)} € 7 g41.

Foral p <o, {n| Hg(n) < Hy(n)} € ¥ o41.

ok~ wbdPE
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7.7 2 U7 o la < d}. (So,if V4 isnot an ultréfilter, then we add more sets to
it until it isan ultrafilter, and call this ultrafilter 77.)

If this construction is accomplished, then for any («; |i < cf (b)) cofinal in b we
have that (Hy, |i < cf(d)) iscofina in w®” /¥, and that % and 7~ are not nearly
coherent.

Only the successor step requires some work: Let 7", and (Hg |8 < «) be
already chosen. We first select A, suchthat 7°, U {A,} hasthe strong finite inter-
section property and that f,[Ay] & fo(%).

With the help of (x), thisis done exactly asin Blass' proof of Theorem 15in
[2]. For completeness’ sake, we insert his argument here;

It sufficesto finda B e f,[#] suchthat f;1[B] ¢ ¥, for we can then set
Ay =\ fail[B]-

Indeed, since ¥, is afilter not containing fa‘l[B] it contains no subsets of
fa‘l[B], i.e. no sets digoint from A,. Furthermore f,[A,] is digoint from B,
hencenot in f, (%).

To complete the proof, we suppose that no B of the desired sort exists and
derive a contradiction. The supposition means that each B € f, (%) aso belongs
to fo (7 &). But by our inductive hypotheses f,,(7") is generated by fewer than d
sets. This contradicts (x) that no finite-to-one image (such as f, (%) = fo (¥ %))
is generated by fewer than b sets.

Then we add |«| + w suitable elementsto 7", U {A,} such that the resulting
union generatesafilter ¥", 1 and such that thereissome H,, suchthat {n | h, (n) <
Hy(n)} € ¥Vqyrandforal g < «, {n| Hg(n) < Hy(n)} € ¥ o41. Thisis done
asin [11]. Again, for completeness' sake we add a proof: Let {B, |a < A} be
a generating set for 7", which is closed under finite intersections and which has
cardinality > < b. Wemay assumethat {Hg | B € «} isclosed under finite maxima
and contains only increasing functions. Since |« - A| < b thereisan H, € »® such
that

VB €a:Vt € A Hg(NexXt(B;, ) #* Hy.

We show that for such an H,, the set
Vo« U{{n| Hg(n) < Hy(n)} | B € a}

has the strong finite intersection property. By the closure properties imposed on
{Byloo < A} and on {Hg|B € a it suffices to show that for any g € « and
T € A theintersection B; N {n | Hg(n) < H,(n)} isinfinite. Thisis true because
B.N{n| Hg(n) < Hy(n)} 2 {n| Hg(next(B;, n)) < Hy(n)}N B, andthelatter set
isinfinite because, by our choice of H,, wehavethat X = {n | Hg(next(B;, n)) <
H,(n)} is infinite and for each n € X we have next(B;,n) € {n|Hg(n) <
Hy(n)} N B;. O
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6. Concluding remarks

There are other families of groupwise dense sets of a special form that are useful
in the study of filters and cardinal characteristics. For a non-feeble filter # and
f €w®,

Gy ={X €[w]”|{n| f(n) < next(X,n)} € 7}

from [8, Theorem 16] is groupwise dense and {% ¢ | f € w®} is useful in connec-
tion with the unboundedness number of the partial orders < 4. Another type of
groupwisedense setis: For % C [w]®, |%| < ¢,

Gy = (X € [0]”|VY € ¥ Y Z* X},

whichisused in [6, 8.6] to show that g < cf(¢). These types of groupwise dense
familiesarenot (yet) put intorelation with theonesfrom Definition 1.1. Sofar, there
seem to be propitious special formsfor each purpose, but not one set of “smallest”
or best groupwise dense families, easily definable and witnessing the computation
of g.

Acknowledgements. | would like to thank Andreas Blass for various discussions and for
suggesting to get cf (b) as an upper bound for 3.
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